JPS61138227A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPS61138227A
JPS61138227A JP59260529A JP26052984A JPS61138227A JP S61138227 A JPS61138227 A JP S61138227A JP 59260529 A JP59260529 A JP 59260529A JP 26052984 A JP26052984 A JP 26052984A JP S61138227 A JPS61138227 A JP S61138227A
Authority
JP
Japan
Prior art keywords
lens group
lens
wide
zoom
angle end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59260529A
Other languages
Japanese (ja)
Inventor
Sadatoshi Takahashi
貞利 高橋
Takashi Matsushita
松下 敬
Nozomi Kitagishi
望 北岸
Tsunefumi Tanaka
常文 田中
Keiji Ikemori
敬二 池森
Kikuo Momiyama
籾山 喜久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59260529A priority Critical patent/JPS61138227A/en
Publication of JPS61138227A publication Critical patent/JPS61138227A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses

Abstract

PURPOSE:To obtain a compact, high-power zoom lens by dividing the 2nd lens group into a lens group 2-1 with a stop and a lens group 2-2, and moving the lens group 2-2 to an image plane side for the 2nd power variation. CONSTITUTION:A zoom lens has the 1st lens group I with negative refracting power and the 2nd lens group II with positive refracting power successively from the object side; the gap between both lens groups I and II is varied for the 1st power variation and the 1st lens group I is moved for focusing. An infinite-distance object is focused through the 1st lens group I at the wide-angle zooming end. The 2nd lens group II is divided into the 2-1 lens group IIa with the stop and the 2-2 lens group IIb and at least the 2-2 lens group IIb is moved toward the image plane side for the 2nd power variation.

Description

【発明の詳細な説明】 本発明はズームレンズに関し、特にスチールカメラ、シ
ネカメラ、ビデオカメラ等圧適した高変倍のズームレン
ズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zoom lens, and more particularly to a high-power zoom lens suitable for isobaric still cameras, cine cameras, and video cameras.

最近費カメラに限らず一般のカメラに%高変倍のズーム
レンズが要求されてきている。ズームレンズの高変倍化
を図るKは例えば変倍用レンズ群の移動量を増やした9
、変倍用レンズ群の屈折力を強めたり又変倍用レンズ群
の移動レンズ群の数を増加させ九シする方法がある。
Recently, zoom lenses with high zoom ratios have been required not only for high-end cameras but also for general cameras. For example, K, which aims to increase the magnification of a zoom lens, increases the amount of movement of the variable magnification lens group9.
Another method is to strengthen the refractive power of the variable power lens group or increase the number of movable lens groups in the variable power lens group.

しかしながらこれらの方法はレンズ全長が長くなったシ
又良好なる収差補正を行うのが困厳となる等の欠点があ
った。例えは特開昭 53−34539号公報では、物
体@より順に負の屈折力のgiレンズ群と正の屈折力の
第2レンズ群の2つのレンズ群を有し両レンズ群の間隔
を変えで変倍を行う、いわゆる2群ズームレンズにお−
いて、第2レンズ群を正、負、正の屈折力の3つのレン
ズ群に分けて負のレンズ群t−zつの正のレンズ群に対
して相対的に移動させて高変倍化を達成し九ズームレン
ズが開示されている。
However, these methods have drawbacks such as the total length of the lens becomes long and it is difficult to perform good aberration correction. For example, in Japanese Patent Application Laid-Open No. 53-34539, there are two lens groups, a gi lens group with negative refractive power and a second lens group with positive refractive power, in order from the object @, and the distance between both lens groups can be changed. A so-called two-group zoom lens that performs variable magnification.
Then, the second lens group is divided into three lens groups with positive, negative, and positive refractive powers, and the negative lens group is moved relative to the two positive lens groups to achieve a high zoom ratio. Nine zoom lenses are disclosed.

しかしながらこの方法は第1レンズ詳で熱点合わせを行
う際、広角端のズーム位置で至近物体距離からの光束を
第1レンズ群にクランなく入射させる為に第1レンズ群
のレンズ外径を大きくしなければならず又レンズ全長も
長くなろ傾向があった。
However, in this method, when performing thermal point alignment with the first lens, the lens outer diameter of the first lens group is increased to allow the light beam from the closest object distance to enter the first lens group without clanking at the wide-angle end zoom position. Moreover, the overall length of the lens also tended to be longer.

本発明はコンパクトでしかも高変倍のズームレンズの提
供を目的とする。
An object of the present invention is to provide a compact zoom lens with a high zoom ratio.

本発明の目的を達成する為のズームレンズの主たろ特徴
は、物体側より順に負の屈折力の第1レンズ群と正の屈
折力の第2レンズ詳の2つのレンズ詳を有し、両レンズ
群の間隔を変えて第1変倍を行い、前記第1レンズ群を
移動させて焦点合わせを行うズームレンズにシいテ、広
角端ox−五位置くおいて、前記第2レンズ詳を有限距
離物体に焦点合わせをし念状態くし、前記第2レンズ群
を絞りを有する第2−1レンズ群と第2−2レンズ詳に
分割し、前記第2−2レンズ群を像面側へ移動させると
とくより第2変倍を行ったことである。
The main feature of the zoom lens for achieving the object of the present invention is that it has two lens groups, a first lens group with a negative refractive power and a second lens group with a positive refractive power, in order from the object side. A first magnification change is performed by changing the interval between the lens groups, and the details of the second lens are set at the wide-angle end ox-5 position on a zoom lens that performs focusing by moving the first lens group. Focusing on a finite-distance object in a state of mind, dividing the second lens group into a 2-1 lens group having an aperture and a 2-2 lens group, and moving the 2-2 lens group toward the image plane side. In particular, the second change in magnification was performed when the image was moved.

次に本発明のズームレンズの特徴を各図を用いて説明す
る。
Next, features of the zoom lens of the present invention will be explained using the respective figures.

まず第1図に従来の2!Flkズームレンズの薄肉近軸
配置の概略図を示す。同図において■は負の屈折力の第
1レンズ群、■は正の屈折力の第2レンズ群、W、Tは
各々広角端と望遠端のズーム位置を示し、矢印の如く移
動させて変倍を行っている。2群ズームレ/ズにおいて
広角側に高変倍化を図る為には同図の点線の如く両レン
ズ群の移動量を増加させれば良い。しかしながらレンズ
の移動量を増加させるとレンズ全長は長くなり又第1レ
ンズ群と多くの場は絞りを有する第22レンズとの間隔
が増大する為く広角層で軸外光束を確保するのに第1レ
ンズNO径七大きくしなければならずズームレンズの小
型化を図るのが困漏になってくる。
First of all, Figure 1 shows the conventional 2! A schematic diagram of a thin paraxial arrangement of an Flk zoom lens is shown. In the figure, ■ indicates the first lens group with negative refractive power, ■ indicates the second lens group with positive refractive power, and W and T indicate the zoom position at the wide-angle end and telephoto end, respectively, and can be changed by moving as shown by the arrows. We're doing double that. In order to achieve a high zoom ratio on the wide-angle side in a two-group zoom lens, it is sufficient to increase the amount of movement of both lens groups as shown by the dotted line in the figure. However, as the amount of lens movement increases, the total length of the lens increases, and the distance between the first lens group and the 22nd lens, which often has an aperture, increases. Since the NO. diameter of each lens must be increased by 7, it becomes difficult to make the zoom lens smaller.

第2 図tt従来の21FFズームレンズの第1レンズ
詳1t−移動させて焦点合わせを行うときの最大像高へ
至る軸外光線の光路の説明図である。
FIG. 2 is an explanatory diagram of the optical path of off-axis rays leading to the maximum image height when focusing is performed by moving the first lens of the conventional 21FF zoom lens.

同図1ICかいては簡単の為絞りを第2レンズ詳Iの主
平面に一致させている。同図より明らかのよう(第1レ
ンズ群Kを点線の如く繰シ出して無限遠から近距離に焦
点合わせを行うと無限遠物体における最大画角の光aS
1 よシも近距離物体の最大画角の光a 52t−確保
することで第1しyズ詳■の径が決定されろ。特に多く
の場合広角端のズーム位置くおける近距離物体の最大画
角の光線S2を確保することで第1レンズ群Iの径で決
定される。本発明は前述の構成を採ることくより第1変
倍区おける広角端のズーム位置よシ更に超広角へと変洒
範囲を拡大する際、一般(は増大する第1レンズ群の径
をなるべく小さくして高変倍化を達成しているのである
In FIG. 1 IC, for simplicity, the aperture is made to coincide with the principal plane of the second lens I. As is clear from the figure (when the first lens group K is extended as shown by the dotted line and focused from infinity to a short distance, the light aS at the maximum angle of view for an object at infinity is
1. Determine the diameter of the first lens by ensuring the maximum angle of view of light a52t for a close object. In particular, in many cases, the diameter of the first lens group I is determined by securing the light ray S2 at the maximum angle of view of a close object at the zoom position at the wide-angle end. Rather than employing the above-described configuration, the present invention aims to reduce the increasing diameter of the first lens group as much as possible when expanding the zoom range from the wide-angle end zoom position in the first zoom range to an ultra-wide angle. This makes it possible to achieve a high magnification ratio by making the lens small.

第3図に本発明のズームレンズの薄肉近軸配置の一実施
例の概略図を示す。同図において■。
FIG. 3 shows a schematic diagram of an embodiment of a thin paraxial arrangement of a zoom lens according to the present invention. ■ In the same figure.

厘は各々負と正の屈折力の第1、第2レンズ群、la 
 は第2−1 v yズ群、Ibは第2−2 vyスズ
群Sは絞り、W、Tは各々広角層と望遠端のズーム位置
、WWは広角端Wより更に広角端へ変倍を行った超広角
端のズーム位置、領域C1Bは各々第1、第2の変倍範
囲を示す。
The lenses are the first and second lens groups with negative and positive refractive powers, respectively.
is the 2-1st vy tin group, Ib is the 2nd-2nd vy tin group, S is the aperture, W and T are the zoom positions of the wide-angle layer and the telephoto end, respectively, and WW is the zooming further from the wide-angle end W to the wide-angle end. The zoom position at the super wide-angle end, region C1B, indicates the first and second zooming ranges, respectively.

第1変倍は領域C内で第1レンズ群■と絞りを有する第
2レンズ群IIfニ一体的に移動させて行う。又焦点合
わせは第1レンズ群lを移動させて行う。
The first magnification change is performed by integrally moving the first lens group (2) and the second lens group IIf having an aperture within the region C. Focusing is also performed by moving the first lens group l.

次に広角端Wのズーム位置AC更に広角Aの超広角ym
wwへ第2の変倍を行うときは第2レンズ詳Iを繰り出
して有限距離物体に焦点合わせをし$2−2レンズ群I
Ibt−像面側へ移動させる。このとき第2−1レンズ
詳は固定でbる。
Next, the zoom position AC at the wide-angle end W, and the ultra-wide angle ym of wide-angle A
When performing the second magnification change to WW, extend the second lens detail I to focus on a finite distance object, and use the $2-2 lens group I.
Ibt-Move to the image plane side. At this time, the details of the 2-1 lens are fixed.

このとき焦点の合っていた有限距離物体は変化し、像面
位置には例えば無限遠物体く焦点が合うように設定され
る。
At this time, the finite distance object that was in focus changes, and the image plane position is set so that, for example, an object at infinity is in focus.

第4図に第2変倍を行ったときの超広角端ww tcお
ける近軸光学配置と軸外光線の光路図を示す。
FIG. 4 shows a paraxial optical arrangement and an optical path diagram of off-axis rays at the ultra-wide-angle end ww tc when the second magnification is changed.

8g2変倍において絞りを有する第2−1レンズ群11
m を物体側に残こすことくより、第2−1レンズ群(
1m を一体に移動させた場合に比べMシSの中心を通
過する無限遠物体と近距離物体からの光線S、S2の第
1レンズ群!へのメ射高を各々低くすることKよシ第1
レンズ群の径の小型化を図っている。
2-1 lens group 11 having an aperture at 8g2 variable power
Rather than leaving m on the object side, the 2-1st lens group (
Light rays from an object at an infinite distance and a short distance object pass through the center of M and S, compared to the case where 1 m is moved as one, and the first lens group of S2! The first step is to lower the shooting height of each
We are working to reduce the diameter of the lens group.

尚超広角端WWで無限遠物体から有限距離物体へ熱点合
わせを行う場合には第2−2レンズ詳ibを物体側へ移
動させればよい。
Note that when performing thermal point alignment from an object at infinity to an object at a finite distance at the super wide-angle end WW, the 2-2nd lens detail ib may be moved toward the object side.

この場合でも第1レンズ群IK光軸上最も高い位置に入
射する光線は無限遠物体からの軸外光線となる。従って
本実施例の如く超広角端で第1レンズ群Iへ入射する光
線の高さを低くずもことにより効率の良く、ズームレン
ズの小型化を図ることができる。
Even in this case, the light ray that enters the highest position on the optical axis of the first lens group IK is an off-axis ray from an object at infinity. Therefore, by reducing the height of the light beam incident on the first lens group I at the ultra-wide-angle end as in this embodiment, it is possible to efficiently downsize the zoom lens.

このように超広角端で無限遠物体の軸外光線を確保して
おけば第2−2レンズ群を移動させて焦点合わせを行っ
ても広角端Wと超広角端WWの間では最大軸外光線も十
分確保することができる。
In this way, if you secure off-axis rays from an object at infinity at the ultra-wide-angle end, even if you move the 2nd-2nd lens group to adjust the focus, the maximum off-axis ray will remain between the wide-angle end W and the ultra-wide-angle end WW. Sufficient light can also be secured.

本実施例においては第1変倍において社2つのレンズ群
を移動させて各レンズ群の収差変動、特に望遠側での収
差変動を少なくし、第2変倍においては第2レンズ群を
2つに分割し、そのうち一方を移動させるという簡易な
構成によって各レンズ群より生じる収差変動を少なくし
ている。梼に第2変倍において絞りを有している5Z−
tレンズ群を固定とすることKより軸外収差の変動を少
なくすることができる。
In this example, in the first zooming, two lens groups are moved to reduce aberration fluctuations in each lens group, especially aberration fluctuations on the telephoto side, and in the second zooming, two lens groups are moved. The simple structure of dividing the lens into two groups and moving one of them reduces aberration fluctuations caused by each lens group. 5Z-, which has an aperture in the second magnification changer.
By fixing the T lens group, fluctuations in off-axis aberrations can be reduced compared to K.

尚本実施例では第2変倍において第2−2レンズ群を移
動させて超広角端のズーム位置のみを便用した列を示し
たが第2−2レンズ群と共に第1レンズ群若しくは第2
−1レンズ群を移動させろことKより第2変倍の任意の
ズーム位置を使用する!5tCしても良い。
In this example, the row in which the 2-2nd lens group is moved in the second magnification change to conveniently use only the zoom position at the ultra-wide-angle end is shown, but the 2-2nd lens group and the 1st lens group or the 2nd
-Move the 1st lens group and use any zoom position of the 2nd magnification variable from K! 5tC may be used.

以上の構成により本発明の目的は達成されるものである
が、更にズームレンズの小型化を図りクク第1変倍及び
第2変倍における収差変動を少なくしよシ良好なる収差
補正を達成するには次の諸条件を満足させるのが好まし
い。
Although the object of the present invention is achieved with the above configuration, it is also desirable to further downsize the zoom lens and reduce aberration fluctuations during the first and second magnification changes to achieve good aberration correction. It is preferable that the following conditions be satisfied.

第1変′音における広角端と望遠端での焦点距離を各々
/w 、 fT、第2変倍における超広角端での焦点距
離をf  第1レンズ群の焦点距S 離をf□、第2−1レンズ群と第2−2レンズ群の焦点
距離を各々’la ”Ib ’第1変倍の望遠端におけ
る第2レンズ群の結儂倍率をβ2T %第1変倍の望遠
端における第1レンズ詳と第2レンズ群の間隔を4q第
2−1レンズ群の等価V値をV とするとき 1a /W < 11. l < a85 fT     ・
・−= (1)0 (/4 < 02 fw−−−−−
−・−+211<1βzT+ (z       −・
・・・−・・(3)”/W</’ww≦fg     
 ・−=・(4)0 (fIN、 X 、fIN、  
     −−−−−−−−f5)5゜く、。、   
     ・・−・−(71とすることである。
The focal length at the wide-angle end and the telephoto end in the first variable magnification are respectively /w, fT, the focal length at the super wide-angle end in the second variable magnification is f, the focal length S of the first lens group is f The focal lengths of the 2-1 lens group and the 2-2 lens group are respectively 'la ``Ib ' The resulting magnification of the second lens group at the telephoto end of the first variable power is β2T % The focal length of the second lens group at the telephoto end of the first variable power is When the distance between the 1st lens detail and the 2nd lens group is 4q, and the equivalent V value of the 2-1st lens group is V, then 1a /W < 11. l < a85 fT ・
・−= (1) 0 (/4 < 02 fw−−−−−
−・−+211<1βzT+ (z −・
...-...(3)"/W</'ww≦fg
・-=・(4) 0 (fIN, X, fIN,
-----------f5) 5 degrees. ,
...--(It is set as 71.

条件式(1)は第1レンズ群の屈折力即ち焦点距離を制
限する為の条件である。上限値を越えると第1レンズ群
で焦点合わせをする際の繰り出し量が増大し、更に至近
距離物体く於ける広角端の軸外光#lt−確保する際、
前玉レンズ径が増大してくる。又広角端から超広角端へ
変倍する際、第1レンズ群の移動量が増加し、超広角端
での軸外光at確保する為に、第1し/ズ詳の径が増大
してくる。下限l[t−越えると第1レンズ群の屈折力
が強くなシすぎて望遠端に於ける球面収差の変動が大き
くなる。又広角端及び超広角端に於いて歪曲収差が補正
不足となり、これを良好に補正するのが困難となってく
る。
Conditional expression (1) is a condition for limiting the refractive power, that is, the focal length of the first lens group. When the upper limit is exceeded, the amount of extension when focusing with the first lens group increases, and when securing off-axis light #lt- at the wide-angle end for close-range objects,
The diameter of the front lens increases. Also, when changing the magnification from the wide-angle end to the ultra-wide-angle end, the amount of movement of the first lens group increases, and in order to secure off-axis light at the ultra-wide-angle end, the diameter of the first lens group increases. come. If the lower limit l[t- is exceeded, the refractive power of the first lens group becomes too strong and the fluctuation of spherical aberration at the telephoto end increases. Furthermore, distortion is insufficiently corrected at the wide-angle end and the ultra-wide-angle end, and it becomes difficult to correct it satisfactorily.

条件式(2)は第1レンズ群と第2レンズ群との望遠端
に於けるVンズ間隔に関するものである。
Conditional expression (2) relates to the V-lens spacing between the first lens group and the second lens group at the telephoto end.

上限値を越えると望遠端(於ける不必要なスペースが多
くなり、ひいては広角端に於ける第ルノズ詳と第2レン
ズ群の間隔が増大し軸外光線を確保する為く第1レンズ
群の径が増大してくる。又下限値を越えると第1レンズ
群と第2レンズ群が干渉してくるので好ましくない。
If the upper limit is exceeded, unnecessary space will increase at the telephoto end (at the wide-angle end), the distance between the first lens group and the second lens group will increase, and the distance between the first lens group and the second lens group will increase to ensure off-axis rays. The diameter increases. Also, if the lower limit is exceeded, the first lens group and the second lens group will interfere with each other, which is not preferable.

条件式(3)は第1変倍において主に変倍作用を行なう
第2レンズ群の望遠端における倍率を規定したものであ
る。上限値を越える事は第2レンズ群の望遠端の倍率が
等倍(βv−−1)よりも大きくはずれることKなり、
第2レンズ群による収差変動が犬きくな)、特に望遠端
での球面収差の変動が大きくなってしまう。下限値を越
えると広角端から望遠端に至る際、第2レンズ群と第1
レンズ群の移動量が大きくなりその結果広角端に於ける
第1、第2レンズ群の間隔が大きくなシ前記の理由によ
)、前玉レンズ径が大きくなる。
Conditional expression (3) defines the magnification at the telephoto end of the second lens group, which mainly performs the zooming action in the first zooming. Exceeding the upper limit means that the magnification at the telephoto end of the second lens group deviates by a large amount from the same magnification (βv-1).
The aberration fluctuations caused by the second lens group are very large), and the spherical aberration fluctuations especially at the telephoto end become large. When the lower limit is exceeded, the second lens group and the first
The amount of movement of the lens group becomes large, and as a result, the distance between the first and second lens groups at the wide-angle end becomes large (for the reason mentioned above), and the diameter of the front lens becomes large.

条件式(4)は広角端と超広角端の全系の焦点距離を規
定するものである。上限値は本発明の広角端の焦点距離
の変化の出発点を示すものである。下限値は通常のズー
ム領域の広角端と、本発明による超広角端の焦点距離の
関係を示すもので、これを越えると無限遠物体での超広
角端に訃ける最大画角の光線の確保が著しく困難となり
、前玉レンズ径の増大を招くので好ましくない。
Conditional expression (4) defines the focal length of the entire system at the wide-angle end and the ultra-wide-angle end. The upper limit value indicates the starting point for changing the focal length at the wide-angle end of the present invention. The lower limit value indicates the relationship between the focal length of the wide-angle end of the normal zoom range and the ultra-wide-angle end according to the present invention, and if this value is exceeded, it is necessary to secure a ray of light with the maximum angle of view that will fall to the ultra-wide-angle end for an object at infinity. This is not preferable because it becomes extremely difficult to do so and causes an increase in the diameter of the front lens.

条件式(51、+61は第2レンズ群t2つのレンズ群
に分割する際の条件である。
Conditional expressions (51, +61 are conditions for dividing the second lens group t into two lens groups.

条件式(5)はf142レンズ群を分割する際ともに正
の屈折力の2つのレンズ群に分割する為の条件である。
Conditional expression (5) is a condition for dividing the f142 lens group into two lens groups, both of which have positive refractive power.

412−1レンズ群が負の屈折力金持つと第2−2レン
ズ群以降のレンズ径が増大し、望遠側での球面収差の変
動が大きくなる。又第2−2レンズ群が負の屈折力を有
すると第2−2レンズ群を広角端から超望遠端に移行す
る際像側に移動させても変倍しなくなり好ましくない。
If the 412-1 lens group has a negative refractive power, the lens diameters from the 2-2 lens group onward will increase, and the fluctuation of spherical aberration on the telephoto side will increase. Furthermore, if the 2-2nd lens group has a negative refractive power, it is not preferable that the 2nd-2nd lens group will not change its magnification even if it is moved toward the image side when transitioning from the wide-angle end to the super-telephoto end.

条件式(6)は第2レンズ詳を2つのレンズ群に分割の
際の屈折力分担に関するものである。下限値を越えると
第2−2レンズ群の屈折力が弱くなシ超広角端への移行
に際しての第2−2レンズ群の移動量が増加し、又移動
する為の空間を確保する為のレンズ長が長くなる。上限
値を越えると第2−1レンズ群の屈折力が弱くなシすぎ
る為に第2−2レンズ群に入射する軸上光線の高さが高
くなり望遠端に於ける球面収差の変動が大きくなってく
る。又超広角端に於いて屈折力の強い第2−2レンズ詳
が絞シから離れていく為に像面湾曲の変動が大きくなっ
てくろ。
Conditional expression (6) relates to the division of refractive power when the second lens is divided into two lens groups. If the lower limit is exceeded, the refractive power of the 2nd-2nd lens group will be weaker, and the amount of movement of the 2nd-2nd lens group will increase when transitioning to the ultra-wide-angle end, and the Lens length becomes longer. If the upper limit is exceeded, the refractive power of the 2nd-1st lens group will be too weak, and the height of the axial rays incident on the 2nd-2nd lens group will increase, resulting in large fluctuations in spherical aberration at the telephoto end. It's coming. Also, at the ultra-wide-angle end, the 2nd-2nd lens, which has a strong refractive power, moves away from the aperture, so the fluctuations in the curvature of field become large.

条件式(7)は色収差補正の為の条件である。通常のズ
ーム域で色補正を行ない超広角端にすると波長gMの倍
率の色収差が補正過剰となる。
Conditional expression (7) is a condition for correcting chromatic aberration. If color correction is performed in the normal zoom range and set to the ultra-wide-angle end, the lateral chromatic aberration at wavelength gM will be overcorrected.

そこで第2−2レンズ群の移動に対し、波長g線の倍率
の色が補正過剰となるのを補正するに第2レンズ群内で
の色補正を第2−1レンズ群で補正過剰、第2−2レン
ズ群では補正不足とすれば良い。条件式(7)は以上の
観点LFJ色補正を適切に行うものである。
Therefore, in order to correct the overcorrection of the color of the magnification of the wavelength g line due to the movement of the 2-2 lens group, the color correction in the 2-2 lens group is over-corrected in the 2-1 lens group, and the color correction is overcorrected in the 2-1 lens group. The 2-2 lens group may be undercorrected. Conditional expression (7) appropriately performs the above viewpoint LFJ color correction.

次に第5図に本実施列にかいて各レンズ群を移動させろ
為のレンズ鏡筒のカム筒に設ケるカム溝の展開図を示す
。同図において11 + 12 、13は各々第1レン
ズ群、第2−1レンズ群、第2−2レンズ群用のカム溝
であり、実際のカム筒にはこのような3本のカム溝が3
セツト設けである。W 、 T 、 WWは第3図で説
明し九のと同様である。Cの領域は第1変倍の領域、B
の領域は第2変倍の領域、CBの領域は第1レンズ群の
移動の為と第1変倍より第2変倍へと各レンズ群を滑ら
かに移行させる為の領域である。
Next, FIG. 5 shows a developed view of cam grooves provided in the cam barrel of the lens barrel for moving each lens group in this embodiment row. In the figure, 11 + 12 and 13 are cam grooves for the first lens group, 2-1 lens group, and 2-2 lens group, respectively, and an actual cam barrel has three cam grooves like this. 3
It is a set. W, T, and WW are the same as those explained in FIG. 3 and 9. Area C is the area of the first magnification change, B
The area CB is an area for the second variable power, and the area CB is an area for moving the first lens group and smoothly transitioning each lens group from the first variable power to the second variable power.

領域Cでは第2−1レンズ群と第2−2レンズ群は一体
的に移動するのでカム溝12 、13は平行となってい
る。カム@ 12 、13は直線的若しくは非直線的で
構成されている。又第1レンズ群用のカム溝11は非直
線的くなっているがカム溝12 、13を非直線的に構
成すれば直線的に構成しても良い。
In region C, the 2-1st lens group and the 2-2nd lens group move integrally, so the cam grooves 12 and 13 are parallel. The cams @12 and 13 are linear or non-linear. Although the cam groove 11 for the first lens group is non-linear, it may be linear if the cam grooves 12 and 13 are non-linear.

領域Bでは第1レンズ群と第2−1レンズ群が光軸上固
定で第2−2レンズ群が像面側へ移動するようにカム溝
が構成されている。
In region B, the cam groove is configured such that the first lens group and the 2-1st lens group are fixed on the optical axis, and the 2-2nd lens group moves toward the image plane side.

尚第2変倍の際第1レンズ群は有限距離物体へ繰り出さ
れるのでその分領域CB間で光軸上移動するよりにカム
溝l】が構成されている。
It should be noted that during the second zooming, the first lens group is extended to a finite distance object, so a cam groove l] is formed so that the first lens group moves along the optical axis between regions CB.

このような領域CB を設けることにより第2変倍にお
ける第1レンズ群の繰シ出し量を制御することが容易と
なる。
By providing such a region CB, it becomes easy to control the amount of extension of the first lens group during the second magnification change.

尚領域C1間では第2−1レンズ群と 第2−2レンズ群を光軸上固定としても又移動するよう
Kしても良い。
Note that between the regions C1, the 2-1st lens group and the 2-2nd lens group may be fixed on the optical axis or may be moved.

領域8間でカム溝11 、12を非直線とし、例えばS
字形とし第1レンズ群と第2−1レンズ群を移動させて
広角端と望遠端近傍での絞シの位置を制御することによ
〕第1レンズ群の掻及び収差変動を制御するようにして
も良い。
The cam grooves 11 and 12 are made non-linear between the regions 8, for example, S
By moving the first lens group and the second-first lens group to control the position of the diaphragm near the wide-angle end and the telephoto end, the distortion and aberration fluctuations of the first lens group are controlled. It's okay.

第6図は第5図の一変形列のカム溝の展開図である。同
図においてw’、 ’r’、 ww’は各々広角端、望
遠端、超広角端を示す。又21は第1レンズ群、22は
第2−1レンズ群と第2−2レンズ群のカム溝である。
FIG. 6 is a developed view of the cam grooves of the modified row of FIG. 5. FIG. In the figure, w', 'r', and ww' indicate the wide-angle end, telephoto end, and ultra-wide-angle end, respectively. Further, 21 is a cam groove of the first lens group, and 22 is a cam groove of the 2-1st lens group and the 2-2nd lens group.

そして第1レンズ群と第2−1レンズ群は領域C,CB
、Bt−使用し、第2−2レンズ群は領域CI、 C/
B/ 、 B/を使用し各々第1変倍、第2変倍を行う
The first lens group and the 2-1st lens group are in areas C and CB.
, Bt-, and the second-second lens group is in the area CI, C/
The first and second magnification changes are performed using B/ and B/, respectively.

第1変條に際し第1レンズ群は領域CでWからTへ移動
し、第2−1レンズ群は領域CでWからTへ移動し、第
2−2レンズ群は領域ClでW′からT′へと移動する
During the first transformation, the first lens group moves from W to T in area C, the 2-1 lens group moves from W to T in area C, and the 2-2 lens group moves from W' to W' in area Cl. Move to T'.

第2変倍に際しては第1レンズ群は領域Bl、$2−1
レンズ群は領域B′を、そして第2−2レンズ群は領域
B′を使う。
During the second magnification change, the first lens group is in the area Bl, $2-1
The lens group uses area B', and the 2-2nd lens group uses area B'.

又第5図と同様に第1変倍から第2叢倍へと各Vンズ詳
を滑らかに移行させる為に第1vyズ群と第2−1レン
ズ詳には領域CB 、算z−2レンズ詳には領域C’B
’を各々設けて参るー。
Also, in order to smoothly transition the details of each V lens from the first variable magnification to the second variable magnification, as shown in FIG. For details, area C'B
'I will set up each.

第6図の実施例によれば第2−1レンズ詳と第2−2レ
ンズ群の異なる移動レンズ群を181−軌跡部分の単一
のカム溝により移動を制御することができ、機構の簡素
化が図れる。
According to the embodiment shown in FIG. 6, the movement of the different moving lens groups, ie, the 2-1 lens detail and the 2-2 lens group, can be controlled by a single cam groove in the 181-trajectory portion, and the mechanism is simplified. can be achieved.

尚第5図及び第6図の実施例において第1レンズ群を超
広角端WWで物体側へ移動させるようにカム#IIを構
成しても良く、これによれば超広角端での軸外光束を容
易に確保することができろので好ましい。又第5図の領
域Bと第6図の領域B′のカム溝を非直線的にし第2変
倍において第2−1レンズ群を光軸上移動させて第2−
1レンズ群及び第1レンズ群の径を制御するようにして
も良い。
In the embodiments shown in FIGS. 5 and 6, the cam #II may be configured to move the first lens group toward the object side at the ultra-wide-angle end WW. This is preferable because the luminous flux can be easily secured. In addition, the cam grooves in area B in FIG. 5 and area B' in FIG.
The diameters of the first lens group and the first lens group may be controlled.

以上の実施列は2つのレンズ詳1,1を有す パるズー
ムレンズについて説明したが変倍に際して移動着しくは
固定のtIIE3vノズ詳を第2レンズ群の像面VK配
置して一同様に本発明の目的を催11 達成することができる。
The above implementation row describes a zoom lens having two lens details 1 and 1, but when changing the magnification, a movable or fixed tIIE3v nozzle is placed at the image plane VK of the second lens group and the same procedure is performed. The objectives of the present invention can be achieved.

次に本発明の数値実施例を示す。数値実施例においてB
1は物体側より順に第1番目のレンズ面の曲率半組、D
lは物体側よシ第1番目のレンズ厚及び空気間隔、Nl
 とviは各々物体側より順に第1番目のレンズのガラ
スの屈折率とアツベ数である。
Next, numerical examples of the present invention will be shown. B in numerical examples
1 is the curvature half set of the first lens surface in order from the object side, D
l is the first lens thickness and air distance from the object side, Nl
and vi are the refractive index and Abbe number of the glass of the first lens, respectively, in order from the object side.

本数値実施列1.2にシいては第2レンズ群の像面側に
変倍中固定の第3レンズ群を配置し画面全体の収差をよ
り良好に補正している。
In numerical value implementation row 1.2, the third lens group, which is fixed during zooming, is arranged on the image plane side of the second lens group to better correct the aberrations of the entire screen.

数値実施列I F−2487〜29.0〜53.8   FNO−1:
、i52ω−82σ〜737〜4&t R1=  11494−   0 1−124    
N 1−L 65844     w 1−50.9R
2−61L 88   D 2−a2R3−170,8
8D  3−L 43    N 2=L 8061 
    y  2−4a 9R4−L&Q9D←&78 R5−111L 08  D 5−1.28  N 3
=1.804   y 3=4a 6R6細3L 99
  D 6−201 R7−26,53D7−149    N 4−L 8
0518     ν 4霧2翫4R8−72,71D
IS−09 R9−95,5909=Z6  N5=1.60311
  y5=6a7RIO−−5L 13   01G−
L 45R11−(絞シ)Dll−畷 R1トIJL 39   D12ml ON 6−L 
713     v 6−5& 8R13−67,05
Dl3−44 R1←−4& 06  014−& 8    N 7
−L 84666   y 7−219R1ト 2α8
4   Dis−L 4R16−19413D16=L
 7    N 8−L 62004    w 8−
3a 3R17−−5a 09  017−0.1R1
8−145,47DlB−17N 9=L 62004
    y 9−31L 3R19−−2a 33  
 DlG−可変R2G−47,18D2G−L 5  
   NIO曙L 48749    ν1O−7(L
 2R21−3翫78 /1−−3&5  /Ia−sa61  / l1b−
6L37β2T−−L27 数値実施fI12 ?−2表35〜29〜53      F’NO−にλ
52ω−8&τ〜7&イ〜47.4゜ R1−11168D1−λ24   N 1−L 65
844    シ1−5α9FL 2−57a 19 
  D 2−0.20R3−33G、 80   D 
3=L 43   N >L 80610    v 
2→α9R4−19,42D4−&7B R5=  20L 07    D 5p=L 28 
   N 3=L 80400     v  344
6R6−3440D6426 R7−2&20    D7−&49    N4”L
80518     y44&4R8−141,780
8−J& R9= 21a 94  D h2.60  N S=
L 65844   y 540.9R1O−−31,
94010−L 00   N←1゜76182   
 v 6=2a 6R11−−5& 00    Dl
l−L4GR1ト(絞り)D13−可変 R13m 2& 17    Di3−& Go   
 N ?−L 65844    v  7−5α9R
14−546ff   014−alGR15=  1
& 57   D15=L Do   N 8=L 5
6013   y 8−47. OR1← 67.65
   DI酬3L15R17−−89,60017−&
 80   NにLシ圃66   ν9→λ9R18−
1&44  018−L70 R19−70,89019−470Nl0−L 647
69   シ10−3λ8R2G−−23L 56  
 D2G−可変R21−5132D21−1.50 R22鴫 3&26 f□−−3&5   7 II、−77,17lIb−
50,4βzT−−1,25 本数値実施例1,2において全変倍範囲にわたシ良好な
る収差補正を達成する為には物体側よシ順に第1レンズ
群t?E、負、負そして正の屈折力の第11、第12、
第13、第14レンズの4つのレンズで構成し、第2−
1レンズ詳を正の屈折力の単−若しくは貼り合わせのf
421レンズで構成し、第2−2レンズ群を正、負、正
若しくは正、正、負、正の屈折力の3つ若しくは4つの
レンズで構成し、第3レンズ群を物体側へ凸面を向は虎
魚の屈折力のメニスカス状の第31レンズで構成するの
が好ましい。
Numerical implementation sequence I F-2487~29.0~53.8 FNO-1:
, i52ω-82σ~737~4&t R1= 11494- 0 1-124
N 1-L 65844 w 1-50.9R
2-61L 88 D 2-a2R3-170,8
8D 3-L 43 N 2=L 8061
y 2-4a 9R4-L&Q9D←&78 R5-111L 08 D 5-1.28 N 3
=1.804 y 3=4a 6R6 thin 3L 99
D 6-201 R7-26, 53D7-149 N 4-L 8
0518 ν 4 fog 2 rods 4R8-72, 71D
IS-09 R9-95,5909=Z6 N5=1.60311
y5=6a7RIO--5L 13 01G-
L 45R11-(Squeeze) Dll-R1 to IJL 39 D12ml ON 6-L
713 v 6-5 & 8R13-67,05
Dl3-44 R1←-4& 06 014-& 8 N 7
-L 84666 y 7-219R1 2α8
4 Dis-L 4R16-19413D16=L
7 N 8-L 62004 w 8-
3a 3R17--5a 09 017-0.1R1
8-145,47DlB-17N 9=L 62004
y 9-31L 3R19--2a 33
DlG-variable R2G-47,18D2G-L 5
NIO Akebono L 48749 ν1O-7(L
2R21-3 78 /1--3&5 /Ia-sa61 / l1b-
6L37β2T--L27 Numerical implementation fI12? -2 Tables 35-29-53 λ for F'NO-
52ω-8&τ~7&I~47.4゜R1-11168D1-λ24 N 1-L 65
844 Shi1-5α9FL 2-57a 19
D 2-0.20R3-33G, 80 D
3=L 43 N > L 80610 v
2→α9R4-19,42D4-&7B R5= 20L 07 D 5p=L 28
N 3=L 80400 v 344
6R6-3440D6426 R7-2&20 D7-&49 N4”L
80518 y44&4R8-141,780
8-J & R9= 21a 94 D h2.60 N S=
L 65844 y 540.9R1O--31,
94010-L 00 N←1゜76182
v 6=2a 6R11--5&00 Dl
l-L4GR1 (aperture) D13-variable R13m 2 & 17 Di3- & Go
N? -L 65844 v 7-5α9R
14-546ff 014-alGR15= 1
& 57 D15=L Do N 8=L 5
6013y 8-47. OR1← 67.65
DI reward 3L15R17--89,60017-&
80 N to L field 66 ν9→λ9R18-
1&44 018-L70 R19-70,89019-470Nl0-L 647
69 Shi10-3λ8R2G--23L 56
D2G-Variable R21-5132D21-1.50 R22 3&26 f□--3&5 7 II, -77,17lIb-
50,4βzT--1,25 In numerical examples 1 and 2, in order to achieve good aberration correction over the entire zoom range, the first lens group t? E, 11th, 12th, negative, negative and positive refractive power;
Consists of four lenses, the 13th and 14th lenses, and the 2nd -
1 lens details: Single or laminated f with positive refractive power
421 lenses, the 2-2nd lens group is made up of three or four lenses with positive, negative, positive or positive, positive, negative, and positive refractive powers, and the third lens group has a convex surface toward the object side. It is preferable that the lens be constructed of a meniscus-shaped 31st lens having a refractive power of a tiger fish.

特に第12L/ンズと第13レンズを物体側へ凸面を向
けた負の屈折力のメニスカス形状とし、更に@0レンズ
を両凸レンズとすることKより広角側での負の歪曲収差
を良好に補正している。
In particular, by making the 12th L/lens and the 13th lens a meniscus shape with negative refractive power with convex surfaces facing the object side, and making the @0 lens a biconvex lens, negative distortion on the wide-angle side is better corrected than K. are doing.

又第14レンズを物体側へ凸面を向けた正の屈折力のメ
ニスカス形状とすることKより球面収差の補正を良好に
行っている。
Further, by making the 14th lens a meniscus shape with a positive refractive power with a convex surface facing the object side, spherical aberration can be corrected better than K.

第2−1レンズ詳は単一レンズで6っても良いが貼り合
わせレンズとすれば全変倍範囲にわたり色収差を良好に
補正することが出来て好ましい。第31レンズを一負の
屈折力のメニスカス形状とすることKより画面全体の像
面湾曲を少なくしている。
Regarding the details of the 2-1 lens, six lenses may be used as a single lens, but it is preferable to use a combination of lenses because chromatic aberration can be corrected satisfactorily over the entire zoom range. Since the 31st lens has a meniscus shape with a negative refractive power, the curvature of field of the entire screen is reduced compared to K.

尚第2変倍に際して第1レンズ群を数置実施例1,2で
各々8.4 、 &9程物体側へ移動させているがこの
ときの移動量は広角端の焦点距離の半分以下とするのが
第1レンズ群の径を小さく維持するうえで好ましい。
Note that during the second magnification change, the first lens group is moved toward the object side by 8.4 and &9 degrees in Numerical Examples 1 and 2, respectively, but the amount of movement at this time is less than half the focal length at the wide-angle end. This is preferable in order to keep the diameter of the first lens group small.

尚本実施例においては広角端のズーム位置で第2レンズ
群全体を物体側へ移動させれば良好なる収差を維持しつ
つマクロ撮影を行うことができる。
In this embodiment, if the entire second lens group is moved toward the object side at the wide-angle end zoom position, macro photography can be performed while maintaining good aberrations.

以上のように本発明によれば小型でしかも第1変倍と第
2変倍を有した高変倍のズームレンズを達成することが
できろ。
As described above, according to the present invention, it is possible to achieve a compact zoom lens having a first variable power and a second variable power and a high variable power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の2群ズームレンズの薄肉近軸配
置の説明図、w、3図、第4図は本発明のズームレンズ
の薄肉近軸配置の説明図、第5図、第6図は本発明にお
込でレンズ群を移動させるときのカム溝の一実施例の説
明図、第7図、第9図は各々本発明の数置実施的1,2
のレンズ断面図、第8図、第1O図は各々本発明の数値
実施例i、zの諸収差図である。 第8、第10図において^) 、 (B) 、 (C)
 、 CD)は各々超広角端、広角端、中間、望遠端で
の諸収差図である。又収差図においてΔSはサジタル像
面、6Mはメリデイオナル像面でらる。 第1図 裾3図 ■ 夷 4 図 第5図 箋Φ図 JNJxie       9陀、’Ill’(jl 
       tlEνm(%)箋δ図 箋10図
1 and 2 are explanatory diagrams of a thin paraxial arrangement of a conventional two-group zoom lens; Figures 3 and 4 are explanatory diagrams of a thin paraxial arrangement of a zoom lens of the present invention; FIG. 6 is an explanatory diagram of one embodiment of the cam groove when moving the lens group according to the present invention, and FIGS. 7 and 9 are numerical embodiments 1 and 2 of the present invention, respectively.
8 and 10 are aberration diagrams of numerical embodiments i and z of the present invention, respectively. In Figures 8 and 10 ^), (B), (C)
, CD) are various aberration diagrams at the ultra-wide-angle end, wide-angle end, intermediate, and telephoto end, respectively. In the aberration diagram, ΔS is the sagittal image plane, and 6M is the meridional image plane. Figure 1 Hem 3 ■ 夷 4 Figure 5 Notebook Φ Diagram JNJxie 9, 'Ill' (jl
tlEνm (%) Note δ Illustration Note 10

Claims (1)

【特許請求の範囲】[Claims] (1)物体側より順に負の屈折力の第1レンズ群と正の
屈折力の第2レンズ群の2つのレンズ群を有し、両レン
ズ群の間隔を変えて第1変倍を行い、前記第1レンズ群
を移動させて焦点合わせを行うズームレンズにおいて、
広角端のズーム位置において、前記第1レンズ群を有限
距離物体に焦点合わせをした状態にし、前記第2レンズ
群を絞りを有する第2−1レンズ群と第 2−2レンズ群の2つのレンズ群に分割し少くとも前記
第2−2レンズ群を像面側へ移動させることにより第2
変倍を行ったことを特徴とするズームレンズ。
(1) It has two lens groups, a first lens group with negative refractive power and a second lens group with positive refractive power, in order from the object side, and performs the first magnification change by changing the interval between both lens groups, In a zoom lens in which focusing is performed by moving the first lens group,
At the wide-angle end zoom position, the first lens group is focused on a finite distance object, and the second lens group is composed of two lenses, a 2-1 lens group and a 2-2 lens group, each having an aperture. The second lens group is divided into groups and moved at least the 2-2nd lens group toward the image plane side.
A zoom lens characterized by variable magnification.
JP59260529A 1984-12-10 1984-12-10 Zoom lens Pending JPS61138227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59260529A JPS61138227A (en) 1984-12-10 1984-12-10 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260529A JPS61138227A (en) 1984-12-10 1984-12-10 Zoom lens

Publications (1)

Publication Number Publication Date
JPS61138227A true JPS61138227A (en) 1986-06-25

Family

ID=17349226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260529A Pending JPS61138227A (en) 1984-12-10 1984-12-10 Zoom lens

Country Status (1)

Country Link
JP (1) JPS61138227A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727976A (en) * 1993-07-08 1995-01-31 Olympus Optical Co Ltd Small-sized two-group zoom lens system
JP2000275518A (en) * 1999-03-24 2000-10-06 Asahi Optical Co Ltd Zoom lens system
JP2008241794A (en) * 2007-03-26 2008-10-09 Canon Inc Zoom lens and imaging apparatus having the same
JP2009128693A (en) * 2007-11-26 2009-06-11 Canon Inc Zoom lens
CN105629437A (en) * 2014-11-25 2016-06-01 富士胶片株式会社 Imaging lens and imaging apparatus
JP2020134648A (en) * 2019-02-18 2020-08-31 株式会社タムロン Zoom lens and imaging apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727976A (en) * 1993-07-08 1995-01-31 Olympus Optical Co Ltd Small-sized two-group zoom lens system
JP2000275518A (en) * 1999-03-24 2000-10-06 Asahi Optical Co Ltd Zoom lens system
JP2008241794A (en) * 2007-03-26 2008-10-09 Canon Inc Zoom lens and imaging apparatus having the same
JP2009128693A (en) * 2007-11-26 2009-06-11 Canon Inc Zoom lens
CN105629437A (en) * 2014-11-25 2016-06-01 富士胶片株式会社 Imaging lens and imaging apparatus
CN105629437B (en) * 2014-11-25 2019-07-19 富士胶片株式会社 Imaging lens system and photographic device
JP2020134648A (en) * 2019-02-18 2020-08-31 株式会社タムロン Zoom lens and imaging apparatus

Similar Documents

Publication Publication Date Title
JP3478637B2 (en) Small zoom lens
JPH042169B2 (en)
JP3155884B2 (en) Zoom lens
JPH04186212A (en) Zoom lens having high variable power
JPS6187119A (en) Small zoom lens
US6072637A (en) Zoom lens system
JPH06265788A (en) Zoom lens with high variable power ratio
JPS6152620A (en) Small-sized zoom lens
JP2722709B2 (en) Zoom lens
JP3723643B2 (en) High zoom ratio zoom lens system
JPH01191819A (en) High variable power zoom lens
JPH05119260A (en) High-power zoom lens
JPS61138227A (en) Zoom lens
JP3260836B2 (en) Wide-angle high zoom lens
JPS6155093B2 (en)
JPH03225309A (en) Rear focus zoom lens
US4518227A (en) Method of widening the angular field of a photographic objective lens
US4452513A (en) Zoom lens capable of close range photography and method of focusing the same to a short distance
JP2932603B2 (en) Zoom lens
US4948239A (en) Zoom lens
JPH08278446A (en) Zoom lens
JPH04186213A (en) Zoom lens having high variable power
JPH03154014A (en) Zoom lens
JPS5928120A (en) Zoom lens
JPH01193709A (en) Large variable power rate zoom lens system including wide angle range