JP2009127893A - Refrigerant circuit - Google Patents

Refrigerant circuit Download PDF

Info

Publication number
JP2009127893A
JP2009127893A JP2007301230A JP2007301230A JP2009127893A JP 2009127893 A JP2009127893 A JP 2009127893A JP 2007301230 A JP2007301230 A JP 2007301230A JP 2007301230 A JP2007301230 A JP 2007301230A JP 2009127893 A JP2009127893 A JP 2009127893A
Authority
JP
Japan
Prior art keywords
refrigerant
ice
compressor
amount
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007301230A
Other languages
Japanese (ja)
Inventor
Katsuyuki Osawa
克之 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2007301230A priority Critical patent/JP2009127893A/en
Publication of JP2009127893A publication Critical patent/JP2009127893A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive refrigerant circuit of high reliability. <P>SOLUTION: A first refrigerant valve 8 is closed, and a second refrigerant valve 21 is opened when a signal output by an ice bank sensor 93 indicates the amount of an ice bank B larger than a prescribed amount, and a signal outputted by an ice storage amount sensor 94 of an auger-type ice making machine 20 indicates the amount of ice storage smaller than the prescribed amount, a liquid refrigerant of low temperature and low pressure passing through the second refrigerant valve 21 is evaporated by an evaporator 25 for the ice making machine, drinking water ices on an ice-making cylinder inner wall surface by the evaporative latent heat, and thin ice on the ice-making cylinder inner wall surface is pushed up while being scraped off by rotating an auger, and compressed by an extruding head to make ice. A control portion 90 closes the second refrigerant valve 21 after the lapse of a prescribed time from the stop of operations of a compressor 2 and a blower 5, when the ice bank sensor 93 and the ice storage amount sensor 94 output signals of amounts larger than prescribed amounts with respect to both the amount of the ice bank B and the amount of the ice storage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シロップや希釈水を冷やす冷却水槽と飲料水を冷やして氷を製造するオーガ式製氷機を設けてカップ飲料を調製して販売するカップ式自動販売機や缶飲料を冷やして販売する缶自動販売機に備えられる冷媒回路に関するものである。   The present invention provides a cooling water tank for cooling syrup and dilution water and an auger type ice making machine for producing ice by cooling drinking water to prepare and sell cup beverages and cool can beverages for sale. The present invention relates to a refrigerant circuit provided in a can vending machine.

シロップと希釈水の混合液に氷を投入して調整したコールド飲料を販売するカップ式自動販売機が知られている。このようなカップ式自動販売機では、貨幣が投入されてコールド飲料選択ボタンが押されると、カップ供給装置から供給されたカップに冷却水槽で冷やされたシロップと希釈水が注入されて混合され、さらにオーガ式製氷機で製氷されて貯蔵してある氷が投入されて調整されたコールド飲料が販売口から利用者に販売される。このように、カップ式自動販売機にはコールド飲料を調整して販売するために、シロップや希釈水を冷やす冷却水槽と、飲料水を冷やして氷を製造するオーガ式製氷機と、冷却水槽とオーガ式製氷機を冷却する冷媒回路が備えられている。
冷却水槽は、側面および底面を断熱壁で構成し、その上方を開口した略直方体の水槽にシロップや希釈水を冷やす冷却水を貯留している。そして金属パイプをコイル状に巻回した冷媒回路の蒸発パイプ(以下「冷却水用蒸発器」という)を冷却水中に浸漬し、液冷媒を蒸発させたときに発生する蒸発潜熱(気化熱)で冷却水用蒸発器の周域にアイスバンク(氷魂)を形成し、このアイスバンクの蓄熱を利用して冷却水の温度を略0℃に保つようにしている。さらに、冷却水中に浸漬してある冷却水用蒸発器近傍には、ステンレス製のパイプをコイル状に巻回した複数の冷却パイプが販売するコールド飲料の原料であるシロップ数と希釈水に対応させて冷却水中に浸漬してある。
There is known a cup-type vending machine that sells a cold beverage prepared by adding ice to a mixture of syrup and diluted water. In such a cup-type vending machine, when money is inserted and the cold beverage selection button is pressed, the syrup and dilution water cooled in the cooling water tank are injected and mixed into the cup supplied from the cup supply device, In addition, cold beverages that have been adjusted by placing ice that has been made and stored in an auger type ice maker are sold to users from the sales outlet. In this way, in order to sell and sell cold beverages in cup-type vending machines, a cooling water tank that cools syrup and dilution water, an auger type ice maker that cools drinking water and produces ice, a cooling water tank, A refrigerant circuit for cooling the auger type ice making machine is provided.
In the cooling water tank, side surfaces and a bottom surface are constituted by heat insulating walls, and cooling water for cooling syrup and dilution water is stored in a substantially rectangular parallelepiped water tank opened upward. Then, the evaporation pipe of the refrigerant circuit (hereinafter referred to as “cooling water evaporator”) in which the metal pipe is wound in a coil shape is immersed in cooling water, and the latent heat of vaporization (heat of vaporization) generated when the liquid refrigerant is evaporated. An ice bank (ice soul) is formed in the peripheral area of the cooling water evaporator, and the temperature of the cooling water is maintained at approximately 0 ° C. by using the heat storage of the ice bank. Furthermore, in the vicinity of the cooling water evaporator immersed in the cooling water, a plurality of cooling pipes in which stainless steel pipes are coiled are made to correspond to the number of syrups and dilution water that are the ingredients of cold beverages sold. Soaked in cooling water.

また、コールド飲料を調製するときに使用する氷を製造するオーガ式製氷機は飲料水タンクから供給された飲料水を冷やして製氷する製氷部と、製氷された氷を簀の子上に貯氷する貯氷部とから構成されている。
製氷部は、駆動モータと、駆動モータの回転を減速して伝達する減速機を介して連結されたオーガ(スクリュー状の回転式切削刃)と、オーガが挿通される製氷筒と、製氷筒の外周面に巻装された冷媒回路の蒸発パイプ(以下「製氷機用蒸発器」という)と、オーガの上方に設けられた氷圧縮用の押出しヘッドと、製氷筒および製氷機用蒸発器を包囲する断熱材とを備え、製氷筒の外周面に巻装された製氷機用蒸発器を通流する冷媒の蒸発潜熱で飲料水タンクから供給された飲料水を製氷筒内壁面に着氷させ、この製氷筒内壁面の薄氷をオーガを回転させて掻き取りながら押し上げて押出しヘッドで圧縮して氷を製造する。
貯氷部は、断面円形状の断熱壁で構成した貯氷室を製氷部の上部に配設し、その内部にはオーガと同軸の回転軸に取り付けられた氷片攪拌用のアジテータと、アジテータと貯氷室の底部との間に配設された氷載置用の簀の子(氷が溶けた溶け水を水切りする役目も有している)を備えている。
In addition, an auger type ice maker that produces ice to be used when preparing cold beverages is an ice making unit that cools drinking water supplied from a drinking water tank to make ice, and an ice storage unit that stores the produced ice on a cocoon child. It consists of and.
The ice making unit includes a drive motor, an auger (screw-like rotary cutting blade) connected via a speed reducer that reduces and transmits the rotation of the drive motor, an ice making cylinder through which the auger is inserted, an ice making cylinder Encloses the refrigerant circuit evaporation pipe (hereinafter referred to as “ice-maker evaporator”) wound around the outer peripheral surface, the ice compression extrusion head provided above the auger, the ice-making cylinder and the ice-maker evaporator The drinking water supplied from the drinking water tank by the latent heat of evaporation of the refrigerant flowing through the ice making machine evaporator wound around the outer surface of the ice making cylinder, The ice on the inner wall surface of the ice making cylinder is pushed up while being scraped by rotating an auger and compressed by an extrusion head to produce ice.
The ice storage section has an ice storage chamber composed of a heat insulating wall with a circular cross section at the top of the ice making section. Inside the ice storage section is an agitator for stirring ice pieces attached to a rotating shaft coaxial with the auger, an agitator and ice storage It is equipped with an ice-loading cocoon (having the role of draining the melted water in which the ice melts) disposed between the bottom of the chamber.

冷媒回路は、作動媒体としての低温低圧のガス冷媒を圧縮して高温高圧のガス冷媒とする圧縮機と、圧縮機で圧縮されて高温高圧になったガス冷媒を送風機から送られる空気で冷却して液化させて低温高圧の液冷媒とする凝縮器と、冷却水槽の冷却水中に浸漬されている冷却水用蒸発器と、オーガ式製氷機の製氷筒外周面に巻装されている製氷機用蒸発器と、低温高圧の液冷媒をキャピラリチューブで絞り膨張させて低温低圧の液冷媒として冷却水用蒸発器に供給する第一冷媒弁と、低温高圧の液冷媒を膨張弁で絞り膨張させて低温低圧の液冷媒として製氷機用蒸発器に供給する第二冷媒弁と、冷媒が通流する冷媒管路とから構成され、冷却水用蒸発器および製氷機用蒸発器に供給された液冷媒は蒸発する際に蒸発潜熱を発生し、蒸発してガス化した低温低圧のガス冷媒は圧縮機に戻り、再度圧縮されて高温高圧のガス冷媒となり凝縮器に送られる(例えば、特許文献1参照)。
自動販売機は電源容量あるいは省エネルギーの観点から最大消費電力を抑える必要があり、また、小型で安価に構成するためにも、冷媒回路の圧縮機の冷却能力は冷却水槽でのアイスバンクの形成あるいはオーガ式製氷機での製氷のどちらか一方のみを行える能力に抑えられていて、アイスバンク形成の要求が生じたときには第一冷媒弁を開き、第二冷媒弁は閉じたままで圧縮機と送風機を運転するようにし、製氷の要求が生じたときには第一冷媒弁は閉じたままで第二冷媒弁を開いて圧縮機と送風機を運転して製氷する。
The refrigerant circuit compresses a low-temperature and low-pressure gas refrigerant as a working medium into a high-temperature and high-pressure gas refrigerant, and cools the high-temperature and high-pressure gas refrigerant compressed by the compressor with air sent from a blower. For a low temperature and high pressure liquid refrigerant, an evaporator for cooling water immersed in the cooling water of the cooling water tank, and an ice making machine wound around the outer surface of an auger type ice making machine An evaporator, a first refrigerant valve that squeezes and expands a low-temperature and high-pressure liquid refrigerant with a capillary tube and supplies the refrigerant as a low-temperature and low-pressure liquid refrigerant to the evaporator for cooling water, and a low-temperature and high-pressure liquid refrigerant with an expansion valve Liquid refrigerant supplied to the evaporator for cooling water and the evaporator for ice making machine, which is composed of a second refrigerant valve that supplies low temperature and low pressure liquid refrigerant to the ice machine evaporator and a refrigerant pipe through which the refrigerant flows. Generates latent heat of evaporation when it evaporates, Low-temperature low-pressure gas refrigerant turned into returns to the compressor, is sent to the condenser becomes compressed again high-temperature and high-pressure gas refrigerant (for example, see Patent Document 1).
The vending machine needs to suppress the maximum power consumption from the viewpoint of power supply capacity or energy saving, and the cooling capacity of the compressor of the refrigerant circuit is limited to the formation of an ice bank in the cooling water tank or to make it compact and inexpensive. The capacity of the auger type ice maker is limited to the ability to make only one of the ice, and when a request to form an ice bank occurs, the first refrigerant valve is opened and the second refrigerant valve is kept closed while the compressor and blower are closed. When a request for ice making occurs, the first refrigerant valve is kept closed and the second refrigerant valve is opened to operate the compressor and the blower to make ice.

例えば、オーガ式製氷機の貯氷量が所定量以上で冷却水槽のアイスバンク量が所定量以下になると、圧縮機と送風機を始動すると同時に第二冷媒弁は閉じたままで第一冷媒弁を開くことで、圧縮機で圧縮された高温高圧のガス冷媒は凝縮器で低温高圧の液冷媒となり、第一冷媒弁を通過してキャピラリチューブで絞り膨張した低温低圧の液冷媒は冷却水用蒸発器で蒸発し、その蒸発潜熱でアイスバンク量を増量する。このようにして、アイスバンク量が所定量以上になると圧縮機と送風機を停止すると同時に第一冷媒弁を閉じる。また、オーガ式製氷機の貯氷量が所定量以下になると、圧縮機と送風機を始動すると同時に第一冷媒弁は閉じたままで第二冷媒弁を開くことで、第二冷媒弁を通過して膨張弁で絞り膨張した低温低圧の液冷媒は製氷機用蒸発器で蒸発し、その蒸発潜熱で飲料水タンクから供給された飲料水を製氷筒内壁面に着氷させ、この製氷筒内壁面の薄氷をオーガを回転させて掻き取りながら押し上げて押出しヘッドで圧縮して製氷が行われ、貯氷量が所定量以上になると圧縮機と送風機を停止すると同時に第二冷媒弁も閉じている。
また、アイスバンク形成要求と製氷要求とが同時に生じたときには、圧縮機と送風機を運転して第一冷媒弁と第二冷媒弁とを交互に開き、冷却水槽のアイスバンク形成とオーガ式製氷機の製氷とを交互に行い、アイスバンク量と貯氷量が所定量以上になると圧縮機と送風機を停止すると同時に冷媒弁も閉じるようにしている。
特開平8−287345号公報
For example, if the ice storage amount of the auger type ice making machine is more than a predetermined amount and the ice bank amount of the cooling water tank is less than the predetermined amount, the first refrigerant valve is opened while the compressor and the blower are started and the second refrigerant valve is closed at the same time. The high-temperature and high-pressure gas refrigerant compressed by the compressor becomes a low-temperature and high-pressure liquid refrigerant in the condenser, and the low-temperature and low-pressure liquid refrigerant that has passed through the first refrigerant valve and expanded in the capillary tube is expanded by the cooling water evaporator. It evaporates and the ice bank is increased by the latent heat of vaporization. In this way, when the ice bank amount exceeds a predetermined amount, the compressor and the blower are stopped, and at the same time, the first refrigerant valve is closed. In addition, when the ice storage amount of the auger type ice making machine is less than the predetermined amount, the compressor and the blower are started, and at the same time the first refrigerant valve is closed and the second refrigerant valve is opened, so that the second refrigerant valve passes and expands. The low-temperature and low-pressure liquid refrigerant squeezed and expanded by the valve evaporates in the ice making machine evaporator, and the latent heat of evaporation causes the drinking water supplied from the drinking water tank to icing on the inner wall surface of the ice making cylinder. The auger is rotated and scraped up and pushed up and compressed by an extrusion head to produce ice. When the amount of stored ice exceeds a predetermined amount, the compressor and blower are stopped and the second refrigerant valve is also closed.
In addition, when the ice bank formation request and the ice making request occur simultaneously, the compressor and the blower are operated to open the first refrigerant valve and the second refrigerant valve alternately, and the ice bank formation of the cooling water tank and the auger type ice making machine are performed. The ice making is alternately performed, and when the ice bank amount and the ice storage amount exceed a predetermined amount, the compressor and the blower are stopped and the refrigerant valve is closed at the same time.
JP-A-8-287345

圧縮機の運転を停止した後は、圧縮機の冷媒吐出側と第一冷媒弁および第二冷媒弁を連通させている冷媒管路は高圧の状態で閉塞され、また、第一冷媒弁および第二冷媒弁と圧縮機の冷媒吸入側を連通させている冷媒管路は低圧の状態で閉塞されている。
しかしながら、このように圧縮機の冷媒吐出側と吸入側の差圧が大きいと圧縮機の電動機に大きい始動トルクが要求されることから始動不良が生じ、このような圧縮機の始動不良を繰り返すと圧縮機を破損させる虞がある。このように、圧縮機の電動機に大きい始動トルクが要求されると圧縮機が大型化して高価となる。
本発明は、上記実情に鑑みて、信頼性が高く安価な冷媒回路を提供することを目的とする。
After the operation of the compressor is stopped, the refrigerant line connecting the refrigerant discharge side of the compressor and the first refrigerant valve and the second refrigerant valve is closed in a high pressure state, and the first refrigerant valve and the second refrigerant valve The refrigerant line connecting the two refrigerant valves and the refrigerant suction side of the compressor is closed in a low pressure state.
However, if the differential pressure between the refrigerant discharge side and the suction side of the compressor is large in this way, a large starting torque is required for the motor of the compressor, so that a starting failure occurs. When such a starting failure of the compressor is repeated. There is a risk of damaging the compressor. Thus, when a large starting torque is required for the motor of the compressor, the compressor becomes large and expensive.
In view of the above circumstances, an object of the present invention is to provide a highly reliable and inexpensive refrigerant circuit.

上記目的を達成するため、本発明の請求項1に係る冷媒回路は、低温低圧のガス冷媒を圧縮して高温高圧のガス冷媒とする圧縮機と、前記圧縮機で高温高圧としたガス冷媒を放熱させて液化して低温高圧の液冷媒とする凝縮器と、前記凝縮器で液化した液冷媒を蒸発させて蒸発潜熱を発生させ、低温低圧のガス冷媒として前記圧縮機に帰還させる蒸発器と、並列接続させた前記蒸発器おのおのの上流側に前記凝縮器で液化した液冷媒を当該蒸発器に供給する開閉弁と、を設けた冷媒回路において、
前記圧縮機を運転するときは少なくとも一つの前記開閉弁を開いて前記蒸発器に液冷媒を供給して運転し、前記圧縮機を停止したときにも少なくとも一つの前記開閉弁を開いておくように制御する制御手段を備えたことを特徴とする。
また、本発明の請求項2に係る冷媒回路は、上述した請求項1において、並列接続させた前記蒸発器は、シロップや希釈水を冷やす冷却水槽と飲料水を冷やして氷を製造するオーガ式製氷機を有してカップ飲料を調製して販売するカップ式自動販売機に設けられていることを特徴とする。
In order to achieve the above object, a refrigerant circuit according to claim 1 of the present invention includes a compressor that compresses a low-temperature and low-pressure gas refrigerant into a high-temperature and high-pressure gas refrigerant, and a gas refrigerant that is heated to a high temperature and high pressure in the compressor. A condenser that radiates and liquefies to form a low-temperature and high-pressure liquid refrigerant; an evaporator that evaporates the liquid refrigerant liquefied by the condenser to generate latent heat of vaporization and returns the refrigerant as a low-temperature and low-pressure gas refrigerant to the compressor; An on-off valve for supplying liquid refrigerant liquefied by the condenser to the evaporator upstream of each of the evaporators connected in parallel;
When the compressor is operated, at least one of the on-off valves is opened and liquid refrigerant is supplied to the evaporator for operation, and at least one of the on-off valves is opened even when the compressor is stopped. It is characterized by comprising control means for controlling.
In the refrigerant circuit according to claim 2 of the present invention, the evaporator connected in parallel in claim 1 described above is an auger type that produces ice by cooling a cooling water tank for cooling syrup and dilution water and drinking water. It is provided in a cup-type vending machine which has an ice making machine and prepares and sells cup beverages.

請求項1の発明によれば、冷媒回路の圧縮機を運転するときは少なくとも一つの開閉弁を開いて蒸発器に液冷媒を供給して運転し、圧縮機の運転を停止したときにも少なくとも一つの開閉弁を開いておくように制御する制御手段を備えたことにより、圧縮機の運転を停止後、冷媒回路内の高圧冷媒が冷媒弁を通過して低圧側に移動することが容易となるので、圧縮機の冷媒吐出側と吸入側の圧力を短時間で確実に均衡させることができる。圧縮機の運転を停止後に短時間で確実に冷媒吐出側と吸入側の圧力均衡を保つことができるようになると、圧縮機の運転始動時の電動機負荷を確実に下げることができるので、圧縮機の始動不良を防止でき、圧縮機を破損させる虞をなくして冷媒回路の信頼性を高めることができる。また、圧縮機の電動機に大きい始動トルクが要求されなくなるので電動機を小型にすることができ、圧縮機を小型化して信頼性が高く安価な冷媒回路を提供することが可能となる。
また、請求項2の発明によれば、カップ飲料を調製して販売するカップ式自動販売機に設けられている冷媒回路の圧縮機を小型化して信頼性を高めて安価にすることが可能となる。
According to the invention of claim 1, when operating the compressor of the refrigerant circuit, at least one on-off valve is opened to operate by supplying liquid refrigerant to the evaporator, and at least when the operation of the compressor is stopped. By providing a control means for controlling to keep one on-off valve open, it is easy for the high-pressure refrigerant in the refrigerant circuit to move to the low-pressure side after passing through the refrigerant valve after stopping the operation of the compressor. Therefore, the pressure on the refrigerant discharge side and the suction side of the compressor can be reliably balanced in a short time. If the pressure balance between the refrigerant discharge side and the suction side can be reliably maintained in a short time after the operation of the compressor is stopped, the motor load at the start of operation of the compressor can be reliably reduced. Can be prevented, and the reliability of the refrigerant circuit can be improved without fear of damaging the compressor. Further, since a large starting torque is not required for the electric motor of the compressor, the electric motor can be downsized, and the compressor can be downsized to provide a highly reliable and inexpensive refrigerant circuit.
According to the invention of claim 2, it is possible to reduce the size of the compressor of the refrigerant circuit provided in the cup type vending machine that prepares and sells the cup beverage, thereby increasing the reliability and reducing the cost. Become.

以下に添付図面を参照して、本発明に係る冷媒回路の好適な実施の形態について詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
図1は本発明の実施の形態である冷媒回路をカップ式自動販売機に備えた概念図である。図1に示すように、冷媒回路1は、作動媒体としての低温低圧のガス冷媒を圧縮して高温高圧のガス冷媒とする圧縮機2と、圧縮機2で圧縮されて高温高圧になったガス冷媒を送風機5の運転で送られる空気との熱交換で放熱させて液化して低温高圧の液冷媒とする凝縮器4にガス冷媒を送出するガス冷媒管路3と、液冷媒中の塵埃や水分を除去して浄化するドライヤ6と、冷媒管路9、22に液冷媒を分配するT型フィッティング7と、弁を開くと凝縮器4で液化された液冷媒を冷媒管路9に通流させてキャピラリチューブ11を介して冷却水用蒸発器12に供給する第一冷媒弁8と、凝縮器4で液化された低温高圧の液冷媒を絞り膨張させて圧力をさげて低温低圧の液冷媒とするキャピラリチューブ11と、冷却水槽10の冷却水W中に浸漬され、液冷媒を蒸発させたときに発生する蒸発潜熱(気化熱)でその周域に着氷させたアイスバンクB(氷魂)との熱交換により冷却水Wの温度を略0℃に保つ冷却水用蒸発器12と、弁を開くと凝縮器4で液化された液冷媒を冷媒管路22に通流させて膨張弁24を介して製氷機用蒸発器25に供給する第二冷媒弁21と、冷媒管路22、23を着脱可能に結合する自己シール型のクイックカップリング22a、23aと、凝縮器4で液化された低温高圧の液冷媒を絞り膨張させて圧力をさげて低温低圧の液冷媒とする膨張弁24と、オーガ式製氷機20の製氷筒の外周面に巻装され、液冷媒を蒸発させたときに発生する蒸発潜熱(気化熱)で飲料水タンク(図示せず)から供給された飲料水を製氷筒内壁面に着氷させる製氷機用蒸発器25と、製氷機用蒸発器25で蒸発してガス化した低温低圧のガス冷媒を圧縮機2に戻す冷媒管路26、27を着脱可能に結合する自己シール型のクイックカップリング26a、27aと、冷却水用蒸発器12および製氷機用蒸発器25から圧縮機2に帰還させるガス冷媒を合流させるT型フィッティング13と、ガス冷媒および油が冷却水用蒸発器12および製氷機用蒸発器25に逆流することを防止する逆止弁15と、冷却水用蒸発器12および製氷機用蒸発器25で蒸発しきれなかった液冷媒を貯めて圧縮機2への流入を防止するアキュムレータ16と、T型フィッティング13で合流したガス冷媒を逆止弁15、アキュムレータ16を介して圧縮機2に戻す冷媒管路14と、を備え、冷媒は図中矢印方向に通流する。
Exemplary embodiments of a refrigerant circuit according to the present invention will be explained below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
FIG. 1 is a conceptual view in which a cup-type vending machine includes a refrigerant circuit according to an embodiment of the present invention. As shown in FIG. 1, the refrigerant circuit 1 includes a compressor 2 that compresses a low-temperature and low-pressure gas refrigerant as a working medium into a high-temperature and high-pressure gas refrigerant, and a gas that is compressed by the compressor 2 to become a high-temperature and high-pressure gas. The refrigerant is radiated by heat exchange with the air sent by the operation of the blower 5, and is liquefied to form a low-temperature and high-pressure liquid refrigerant. A dryer 6 that removes and purifies moisture, a T-type fitting 7 that distributes liquid refrigerant to the refrigerant lines 9 and 22, and liquid refrigerant that has been liquefied by the condenser 4 when the valve is opened, flows to the refrigerant line 9. The first refrigerant valve 8 that is supplied to the cooling water evaporator 12 via the capillary tube 11 and the low-temperature and high-pressure liquid refrigerant liquefied by the condenser 4 are squeezed and expanded to reduce the pressure, thereby reducing the low-temperature and low-pressure liquid refrigerant. In the cooling water W of the capillary tube 11 and the cooling water tank 10 The temperature of the cooling water W is brought to approximately 0 ° C. by heat exchange with the ice bank B (ice soul) that has been immersed in the surrounding area by the latent heat of vaporization (heat of vaporization) generated when the liquid refrigerant is evaporated. The cooling water evaporator 12 to be maintained, and the second refrigerant which is supplied to the ice making machine evaporator 25 through the expansion valve 24 by allowing the liquid refrigerant liquefied by the condenser 4 to flow through the refrigerant pipe 22 when the valve is opened. Self-sealing quick couplings 22a and 23a that detachably connect the valve 21 and the refrigerant pipes 22 and 23, and a low-temperature and high-pressure liquid refrigerant liquefied by the condenser 4 are expanded and expanded to reduce the pressure. An expansion valve 24 that is a low-pressure liquid refrigerant and a drinking water tank (not shown) are wound around the outer peripheral surface of the ice making cylinder of the auger type ice making machine 20 and the latent heat of vaporization (heat of vaporization) generated when the liquid refrigerant is evaporated. Evaporation for ice making machines that allow drinking water supplied from 25, and self-sealing quick couplings 26a and 27a for detachably connecting refrigerant pipes 26 and 27 for returning the low-temperature and low-pressure gas refrigerant evaporated and gasified by the ice making machine evaporator 25 to the compressor 2. The T-type fitting 13 for joining the gas refrigerant to be returned to the compressor 2 from the cooling water evaporator 12 and the ice making machine evaporator 25, and the gas refrigerant and oil are the cooling water evaporator 12 and the ice making machine evaporator 25. A check valve 15 for preventing the refrigerant from flowing backward, an accumulator 16 for storing the liquid refrigerant that could not be evaporated by the cooling water evaporator 12 and the ice making machine evaporator 25 and preventing the refrigerant from flowing into the compressor 2; And a refrigerant pipe 14 for returning the gas refrigerant merged at the T-type fitting 13 to the compressor 2 via the check valve 15 and the accumulator 16, and the refrigerant flows in the direction of the arrow in the figure.

図2は、冷媒回路1の制御系を示したブロック図である。同図に示すように制御部(制御手段)90にはメモリ91やタイマー92等が付設されている。制御部90は、メモリ91に記憶している所定の指令信号やタイマー92、および冷却水槽10の冷却水W中に浸漬されている冷却水用蒸発器12の周域に着氷させたアイスバンクB量を検出して検出信号を出力するアイスバンクセンサ93、オーガ式製氷機20の貯氷量を検出して検出信号を出力する貯氷量センサ94からの入力信号に基づいて信号を出力して、圧縮機2、送風機5、オーガ式製氷機20を運転し、第一冷媒弁8、第二冷媒弁21の弁を開閉する。
係る構成で、本発明の冷媒回路1の動作を説明する。オーガ式製氷機20の貯氷量センサ94が出力している信号が所定量以上の貯氷量を示していて、冷却水槽10のアイスバンクセンサ93が出力している信号が所定量以下のアイスバンクB量を示すと、制御部90は圧縮機2と送風機5の運転を始動して第二冷媒弁21は閉じたままで第一冷媒弁8を開くことにより、圧縮機2で圧縮されて高温高圧となったガス冷媒は凝縮器4で低温高圧の液冷媒となり、第一冷媒弁8を通過してキャピラリチューブ11で絞り膨張した低温低圧の液冷媒は冷却水用蒸発器12で蒸発し、その蒸発潜熱でアイスバンクBを増量する。このようにしてアイスバンクBが増量し、アイスバンクセンサ93が出力している信号が所定量以上のアイスバンクB量を示し、一方ではオーガ式製氷機20の貯氷量センサ94が出力している信号が所定量以下の貯氷量を示すと、第一冷媒弁8を閉じて第二冷媒弁21を開くことで、第二冷媒弁21を通過して膨張弁24で絞り膨張した低温低圧の液冷媒は製氷機用蒸発器25で蒸発し、その蒸発潜熱で飲料水タンク(図示せず)から供給された飲料水を製氷筒内壁面に着氷させ、この製氷筒内壁面の薄氷をオーガを回転させて掻き取りながら押し上げて押出しヘッドで圧縮して製氷が行われ、アイスバンクセンサ93と貯氷量センサ94がアイスバンクB量と貯氷量ともに所定量以上の信号を出力すると、制御部90は圧縮機2と送風機5の運転を停止した後も第二冷媒弁21を開き続け、所定時間A(例えば10分間)経過すると第二冷媒弁21を閉じる(図3(a)参照)。
FIG. 2 is a block diagram showing a control system of the refrigerant circuit 1. As shown in the figure, the control unit (control means) 90 is provided with a memory 91, a timer 92, and the like. The control unit 90 is a predetermined command signal stored in the memory 91, a timer 92, and an ice bank that is icing on the peripheral area of the cooling water evaporator 12 immersed in the cooling water W of the cooling water tank 10. An ice bank sensor 93 that detects the B amount and outputs a detection signal outputs a signal based on an input signal from the ice storage sensor 94 that detects the ice storage amount of the auger ice making machine 20 and outputs a detection signal; The compressor 2, the blower 5, and the auger type ice making machine 20 are operated, and the first refrigerant valve 8 and the second refrigerant valve 21 are opened and closed.
With this configuration, the operation of the refrigerant circuit 1 of the present invention will be described. Ice bank B in which the signal output from the ice storage sensor 94 of the auger type ice making machine 20 indicates an ice storage amount of a predetermined amount or more and the signal output from the ice bank sensor 93 of the cooling water tank 10 is less than the predetermined amount. The controller 90 starts the operation of the compressor 2 and the blower 5 and opens the first refrigerant valve 8 while the second refrigerant valve 21 is closed, so that the compressor 90 is compressed at the high temperature and high pressure. The gas refrigerant thus obtained becomes a low-temperature and high-pressure liquid refrigerant in the condenser 4, and the low-temperature and low-pressure liquid refrigerant that has passed through the first refrigerant valve 8 and squeezed and expanded in the capillary tube 11 evaporates in the cooling water evaporator 12. Increase ice bank B by latent heat. In this way, the amount of ice bank B increases, and the signal output from ice bank sensor 93 indicates an amount of ice bank B that is greater than or equal to a predetermined amount, while ice storage amount sensor 94 of auger type ice making machine 20 outputs. When the signal indicates an ice storage amount equal to or less than a predetermined amount, the first refrigerant valve 8 is closed and the second refrigerant valve 21 is opened, so that the low-temperature and low-pressure liquid that has passed through the second refrigerant valve 21 and is expanded by the expansion valve 24 is expanded. The refrigerant evaporates in the ice making machine evaporator 25, and the latent heat of evaporation causes the drinking water supplied from the drinking water tank (not shown) to land on the inner wall surface of the ice making cylinder. When the ice bank sensor 93 and the ice storage amount sensor 94 output a signal exceeding a predetermined amount for both the ice bank B amount and the ice storage amount when the ice bank sensor 93 and the ice storage amount sensor 94 output a signal exceeding a predetermined amount, the control unit 90 Compressor 2 and blower The continued opening of the second coolant valve 21 even after stopping the operation, a predetermined time A (e.g., 10 minutes) elapses Closing second refrigerant valve 21 (see Figure 3 (a)).

このように、圧縮機2の運転を停止した後にも第二冷媒弁21を所定時間A開いていると、圧縮機2の運転停止後、冷媒回路1内の高圧冷媒が第二冷媒弁21を通過して低圧側に移動することが容易となるので、圧縮機2の冷媒吐出側と吸入側の圧力を短時間で確実に均衡させることができる。圧縮機2の運転を停止後に短時間で確実に冷媒吐出側と吸入側の圧力均衡を保つことができるようになると、圧縮機2の運転始動時の電動機負荷を確実に下げることができるので、圧縮機2の始動不良を防止でき、圧縮機2を破損させる虞をなくして冷媒回路1の信頼性を高めることができる。また、圧縮機2の電動機に大きい始動トルクが要求されなくなるので電動機を小型にすることができ、圧縮機2を小型化して安価な冷媒回路1を提供することが可能となる。
なお、アイスバンクセンサ93と貯氷量センサ94がアイスバンクB量と貯氷量ともに所定量以上の信号を出力すると圧縮機2と送風機5の運転を停止した後も第二冷媒弁21を開き続けて所定時間A経過すると第二冷媒弁21を閉じる実施例で説明しているが、アイスバンクセンサ93と貯氷量センサ94が出力している信号がアイスバンクB量と貯氷量ともに所定量以上を示して圧縮機2と送風機5の運転を停止するときに第二冷媒弁21を閉じて第一冷媒弁8を所定時間A開くようにしてもよい(図3(b)参照)。このようにしても、圧縮機2の運転を停止後、冷媒回路1内の高圧冷媒が第一冷媒弁8を通過して低圧側に移動することが容易となるので、圧縮機2の冷媒吐出側と吸入側の圧力を短時間で確実に均衡させることができる。圧縮機2の運転を停止後に短時間で確実に冷媒吐出側と吸入側の圧力均衡を保つことができるようになると、圧縮機2の運転始動時の電動機負荷を確実に下げることができるので、圧縮機2の始動不良を防止でき、圧縮機2を破損させる虞をなくして冷媒回路1の信頼性を高めることができる。また、圧縮機2の電動機に大きい始動トルクが要求されなくなるので電動機を小型にすることができ、圧縮機2を小型化して安価な冷媒回路1を提供することが可能となる。
As described above, if the second refrigerant valve 21 is opened for a predetermined time A even after the operation of the compressor 2 is stopped, after the operation of the compressor 2 is stopped, the high-pressure refrigerant in the refrigerant circuit 1 causes the second refrigerant valve 21 to open. Since it becomes easy to pass and move to the low pressure side, the pressure on the refrigerant discharge side and the suction side of the compressor 2 can be reliably balanced in a short time. If the pressure balance between the refrigerant discharge side and the suction side can be reliably maintained in a short time after the operation of the compressor 2 is stopped, the electric motor load at the start of the operation of the compressor 2 can be reliably reduced. The starting failure of the compressor 2 can be prevented, the risk of damaging the compressor 2 can be eliminated, and the reliability of the refrigerant circuit 1 can be improved. Moreover, since a large starting torque is not required for the electric motor of the compressor 2, the electric motor can be reduced in size, and the compressor 2 can be reduced in size and the inexpensive refrigerant circuit 1 can be provided.
Note that when the ice bank sensor 93 and the ice storage amount sensor 94 output a signal exceeding a predetermined amount for both the ice bank B amount and the ice storage amount, the second refrigerant valve 21 is kept open even after the operation of the compressor 2 and the blower 5 is stopped. In the embodiment, the second refrigerant valve 21 is closed when the predetermined time A has elapsed. However, the signals output from the ice bank sensor 93 and the ice storage amount sensor 94 indicate that the ice bank B amount and the ice storage amount both exceed the predetermined amount. When the operation of the compressor 2 and the blower 5 is stopped, the second refrigerant valve 21 may be closed and the first refrigerant valve 8 may be opened for a predetermined time A (see FIG. 3B). Even in this case, after the operation of the compressor 2 is stopped, it becomes easy for the high-pressure refrigerant in the refrigerant circuit 1 to pass through the first refrigerant valve 8 and move to the low-pressure side. The pressure on the side and suction side can be reliably balanced in a short time. If the pressure balance between the refrigerant discharge side and the suction side can be reliably maintained in a short time after the operation of the compressor 2 is stopped, the electric motor load at the start of the operation of the compressor 2 can be reliably reduced. The starting failure of the compressor 2 can be prevented, the risk of damaging the compressor 2 can be eliminated, and the reliability of the refrigerant circuit 1 can be improved. Moreover, since a large starting torque is not required for the electric motor of the compressor 2, the electric motor can be reduced in size, and the compressor 2 can be reduced in size and the inexpensive refrigerant circuit 1 can be provided.

さらに、アイスバンクセンサ93と貯氷量センサ94が出力している信号がアイスバンクB量と貯氷量ともに所定量以上を示して圧縮機2と送風機5の運転を停止した後に第一冷媒弁8および第二冷媒弁21を所定時間A開くようにしてもよい(図3(c)参照)。このようにすると、圧縮機2の運転停止後、冷媒回路1内の高圧冷媒が第一冷媒弁8および第二冷媒弁21を通過して低圧側に速やかに移動することが容易となるので、圧縮機2の冷媒吐出側と吸入側の圧力をさらに短時間で確実に均衡させることができる。圧縮機2の運転を停止後、さらに短時間で確実に冷媒吐出側と吸入側の圧力均衡を保つことができるようになると、圧縮機2の運転始動時の電動機負荷を確実に下げることができるので、圧縮機2の始動不良を防止でき、圧縮機2を破損させる虞をなくして冷媒回路1の信頼性を高めることができる。また、圧縮機2の電動機に大きい始動トルクが要求されなくなるので電動機を小型にすることができ、圧縮機2を小型化して安価な冷媒回路1を提供することが可能となる。
冷却水槽10のアイスバンクB形成要求とオーガ式製氷機20の製氷要求とが同時に生じたときには、圧縮機2と送風機5を運転して第一冷媒弁8と第二冷媒弁21とを交互に開き、アイスバンクB形成と製氷とを交互に行い、アイスバンクB量と貯氷量が所定量以上になり、圧縮機2と送風機5の運転を停止する場合にも、上述しているように、圧縮機2と送風機5の運転停止時に開いている冷媒弁を開き続けて所定時間A経過すると閉じる。または、開いている冷媒弁を閉じて他の冷媒弁を所定時間A開く。さらに、開いている冷媒弁と他の冷媒弁を所定時間A開くようにしてもよい。
Further, after the signals output from the ice bank sensor 93 and the ice storage amount sensor 94 indicate that the ice bank B amount and the ice storage amount are equal to or greater than a predetermined amount and the operation of the compressor 2 and the blower 5 is stopped, the first refrigerant valve 8 and The second refrigerant valve 21 may be opened for a predetermined time A (see FIG. 3C). This makes it easy for the high-pressure refrigerant in the refrigerant circuit 1 to pass through the first refrigerant valve 8 and the second refrigerant valve 21 and quickly move to the low-pressure side after the operation of the compressor 2 is stopped. The refrigerant discharge side and suction side pressures of the compressor 2 can be reliably balanced in a shorter time. If the pressure balance between the refrigerant discharge side and the suction side can be reliably maintained in a shorter time after the operation of the compressor 2 is stopped, the electric motor load at the start of the operation of the compressor 2 can be reliably reduced. Therefore, the starting failure of the compressor 2 can be prevented, the risk of damaging the compressor 2 can be eliminated, and the reliability of the refrigerant circuit 1 can be improved. Moreover, since a large starting torque is not required for the electric motor of the compressor 2, the electric motor can be reduced in size, and the compressor 2 can be reduced in size and the inexpensive refrigerant circuit 1 can be provided.
When the ice bank B formation request of the cooling water tank 10 and the ice making request of the auger type ice making machine 20 are generated at the same time, the compressor 2 and the blower 5 are operated to alternately switch the first refrigerant valve 8 and the second refrigerant valve 21. When the ice bank B formation and ice making are alternately performed and the ice bank B amount and the ice storage amount are equal to or larger than the predetermined amount and the operation of the compressor 2 and the blower 5 is stopped, as described above, The refrigerant valve that is open when the compressor 2 and the blower 5 are stopped is continuously opened and closed when a predetermined time A elapses. Alternatively, the opened refrigerant valve is closed and the other refrigerant valve is opened for a predetermined time A. Further, the opened refrigerant valve and other refrigerant valves may be opened A for a predetermined time.

本発明の実施の形態における冷媒回路を示す概略図である。It is the schematic which shows the refrigerant circuit in embodiment of this invention. 図1に示した冷媒回路の制御系を示したブロック図である。It is the block diagram which showed the control system of the refrigerant circuit shown in FIG. 図1に示した冷媒回路の制御部の制御を示すタイミングチャートである。It is a timing chart which shows control of the control part of the refrigerant circuit shown in FIG.

符号の説明Explanation of symbols

1 冷媒回路
2 圧縮機
4 凝縮器
5 送風機
8 第一冷媒弁
10 冷却水槽
11 キャピラリチューブ
12 冷却水用蒸発器
20 オーガ式製氷機
21 第二冷媒弁
24 膨張弁
25 製氷機用蒸発器
90 制御部(制御手段)
93 アイスバンクセンサ
94 貯氷量センサ
DESCRIPTION OF SYMBOLS 1 Refrigerant circuit 2 Compressor 4 Condenser 5 Blower 8 First refrigerant valve 10 Cooling water tank 11 Capillary tube 12 Evaporator for cooling water 20 Auger ice making machine 21 Second refrigerant valve 24 Expansion valve 25 Evaporator for ice making machine 90 Control part (Control means)
93 Ice bank sensor 94 Ice storage sensor

Claims (2)

低温低圧のガス冷媒を圧縮して高温高圧のガス冷媒とする圧縮機と、前記圧縮機で高温高圧としたガス冷媒を放熱させて液化して低温高圧の液冷媒とする凝縮器と、前記凝縮器で液化した液冷媒を蒸発させて蒸発潜熱を発生させ、低温低圧のガス冷媒として前記圧縮機に帰還させる蒸発器と、並列接続させた前記蒸発器おのおのの上流側に前記凝縮器で液化した液冷媒を当該蒸発器に供給する開閉弁と、を設けた冷媒回路において、
前記圧縮機を運転するときは少なくとも一つの前記開閉弁を開いて前記蒸発器に液冷媒を供給して運転し、前記圧縮機を停止したときにも少なくとも一つの前記開閉弁を開いておくように制御する制御手段を備えたことを特徴とする冷媒回路。
A compressor that compresses a low-temperature and low-pressure gas refrigerant into a high-temperature and high-pressure gas refrigerant; a condenser that dissipates and liquefies the high-temperature and high-pressure gas refrigerant in the compressor to form a low-temperature and high-pressure liquid refrigerant; The liquid refrigerant liquefied by the evaporator is evaporated to generate latent heat of evaporation, and returned to the compressor as a low-temperature and low-pressure gas refrigerant, and liquefied by the condenser upstream of each of the evaporators connected in parallel. In a refrigerant circuit provided with an on-off valve that supplies liquid refrigerant to the evaporator,
When the compressor is operated, at least one of the on-off valves is opened and liquid refrigerant is supplied to the evaporator for operation, and at least one of the on-off valves is opened even when the compressor is stopped. A refrigerant circuit comprising control means for controlling the refrigerant.
並列接続させた前記蒸発器は、シロップや希釈水を冷やす冷却水槽と飲料水を冷やして氷を製造するオーガ式製氷機を有してカップ飲料を調製して販売するカップ式自動販売機に設けられていることを特徴とする請求項1に記載の冷媒回路。
The evaporator connected in parallel is provided in a cup vending machine that prepares and sells cup beverages with a cooling water tank that cools syrup and dilution water and an auger type ice maker that cools drinking water and produces ice. The refrigerant circuit according to claim 1, wherein the refrigerant circuit is provided.
JP2007301230A 2007-11-21 2007-11-21 Refrigerant circuit Pending JP2009127893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301230A JP2009127893A (en) 2007-11-21 2007-11-21 Refrigerant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301230A JP2009127893A (en) 2007-11-21 2007-11-21 Refrigerant circuit

Publications (1)

Publication Number Publication Date
JP2009127893A true JP2009127893A (en) 2009-06-11

Family

ID=40819018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301230A Pending JP2009127893A (en) 2007-11-21 2007-11-21 Refrigerant circuit

Country Status (1)

Country Link
JP (1) JP2009127893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137331A1 (en) 2009-05-27 2010-12-02 シャープ株式会社 Mobile communication system, base station device, mobile station device, and handover method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180848A (en) * 1986-02-21 1986-08-13 Hitachi Ltd Air conditioner
JPH08287345A (en) * 1995-04-19 1996-11-01 Matsushita Refrig Co Ltd Cooling controller of automatic vending machine
JP2000234828A (en) * 1999-02-16 2000-08-29 Hoshizaki Electric Co Ltd Automated ice making machine
JP2007093052A (en) * 2005-09-27 2007-04-12 Hoshizaki Electric Co Ltd Cooling storage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180848A (en) * 1986-02-21 1986-08-13 Hitachi Ltd Air conditioner
JPH08287345A (en) * 1995-04-19 1996-11-01 Matsushita Refrig Co Ltd Cooling controller of automatic vending machine
JP2000234828A (en) * 1999-02-16 2000-08-29 Hoshizaki Electric Co Ltd Automated ice making machine
JP2007093052A (en) * 2005-09-27 2007-04-12 Hoshizaki Electric Co Ltd Cooling storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137331A1 (en) 2009-05-27 2010-12-02 シャープ株式会社 Mobile communication system, base station device, mobile station device, and handover method

Similar Documents

Publication Publication Date Title
US8453475B2 (en) System and method for making ice
US20110302951A1 (en) Refrigerator, ice maker for a refrigerator, and method for making ice
US8448462B2 (en) System and method for making ice
JP5098472B2 (en) Chiller using refrigerator
JP5854751B2 (en) Cooling system
US11976877B2 (en) Method for controlling water purifier
JP2008119282A (en) Beverage dispenser
US7814763B2 (en) Refrigeration appliance with a water dispenser
CN104755862B (en) Icemaker system for providing cold water, hot water and ice cubes using water heat source
RU2432532C2 (en) Procedure for control of refrigerator and refrigerator with time delay of compressor turning on
JP2000121178A (en) Cooling cycle and refrigerator
KR20080061469A (en) System and method for making ice
JP2009127893A (en) Refrigerant circuit
JP7007573B2 (en) Ice making system
JP5024210B2 (en) Refrigerant cooling circuit
JP2002081772A (en) Refrigerant circuit and vending machine using the same
JP2006317079A (en) Freezer-refrigerator
JP5448482B2 (en) Automatic ice machine
JP5194619B2 (en) Cooling and heating device
US20180283758A1 (en) Method and apparatus for making nugget ice in a refrigerator
JP2008057862A (en) Ice making machine
JP2007293756A (en) Cup-type vending machine
JPH094950A (en) Auger type icemaker
JP2003214748A (en) Refrigerator
CN113631876B (en) Defrosting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A977 Report on retrieval

Effective date: 20111027

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120104

A02 Decision of refusal

Effective date: 20120710

Free format text: JAPANESE INTERMEDIATE CODE: A02