JP5024210B2 - Refrigerant cooling circuit - Google Patents

Refrigerant cooling circuit Download PDF

Info

Publication number
JP5024210B2
JP5024210B2 JP2008186125A JP2008186125A JP5024210B2 JP 5024210 B2 JP5024210 B2 JP 5024210B2 JP 2008186125 A JP2008186125 A JP 2008186125A JP 2008186125 A JP2008186125 A JP 2008186125A JP 5024210 B2 JP5024210 B2 JP 5024210B2
Authority
JP
Japan
Prior art keywords
refrigerant
ice making
temperature
evaporator
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008186125A
Other languages
Japanese (ja)
Other versions
JP2010025410A (en
Inventor
健 松原
育孝 讃岐
裕一 高橋
克之 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2008186125A priority Critical patent/JP5024210B2/en
Publication of JP2010025410A publication Critical patent/JP2010025410A/en
Application granted granted Critical
Publication of JP5024210B2 publication Critical patent/JP5024210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、シロップや希釈水を冷やす冷却水槽と飲用水を冷やして氷を製造するオーガ式製氷機を設けてカップ飲料を調製して販売するカップ式自動販売機などに備えられる冷媒冷却回路に関するものである。   The present invention relates to a refrigerant cooling circuit provided in a cup-type vending machine that prepares and sells a cup beverage by providing a cooling water tank that cools syrup and dilution water and an auger-type ice maker that cools drinking water to produce ice. Is.

シロップと希釈水の混合液に氷を投入して調整したコールド飲料を販売するカップ式自動販売機が知られている。このようなカップ式自動販売機では、貨幣が投入されてコールド飲料選択ボタンが押されると、カップ供給装置から供給されたカップに冷却水槽で冷やされたシロップと希釈水が注入されて混合され、さらにオーガ式製氷機で製氷されて貯蔵してある氷が投入されて調整されたコールド飲料が販売口から利用者に販売される。このように、カップ式自動販売機にはコールド飲料を調整して販売するために、シロップや希釈水を冷やす冷却水槽と、飲用水を冷やして氷を製造するオーガ式製氷機と、冷却水槽とオーガ式製氷機を冷却する冷媒冷却回路が備えられている。   There is known a cup-type vending machine that sells a cold beverage prepared by adding ice to a mixture of syrup and diluted water. In such a cup-type vending machine, when money is inserted and the cold beverage selection button is pressed, the syrup and dilution water cooled in the cooling water tank are injected and mixed into the cup supplied from the cup supply device, In addition, cold beverages that have been adjusted by placing ice that has been made and stored in an auger type ice maker are sold to users from the sales outlet. In this way, in order to sell and sell cold drinks in cup-type vending machines, a cooling water tank that cools syrup and dilution water, an auger ice maker that cools drinking water and produces ice, a cooling water tank, A refrigerant cooling circuit for cooling the auger type ice making machine is provided.

冷却水槽は、側面および底面を断熱壁で構成し、その上方を開口した略直方体の水槽にシロップや希釈水を冷やす冷却水を貯留している。そして金属パイプをコイル状に巻回した冷媒冷却回路の蒸発パイプ(以下「冷水蒸発器」という)を冷却水中に浸漬し、冷媒を蒸発させたときに発生する蒸発潜熱(気化熱)で冷水蒸発器の周域にアイスバンク(氷塊)を形成し、このアイスバンクの蓄熱を利用して冷却水の温度を略0℃に保つようにしている。さらに、冷水蒸発器近傍の冷却水中には、ステンレス製のパイプをコイル状に巻回した冷却パイプが販売するコールド飲料の原料であるシロップの数と希釈水に対応させて複数浸漬してある。   In the cooling water tank, side surfaces and a bottom surface are constituted by heat insulating walls, and cooling water for cooling syrup and dilution water is stored in a substantially rectangular parallelepiped water tank opened upward. Then, the evaporation pipe (hereinafter referred to as “cold water evaporator”) of the refrigerant cooling circuit in which the metal pipe is wound in a coil shape is immersed in the cooling water, and the cold water is evaporated by the latent heat of vaporization (heat of vaporization) generated when the refrigerant is evaporated. An ice bank (ice block) is formed in the peripheral area of the vessel, and the temperature of the cooling water is maintained at approximately 0 ° C. by using the heat storage of the ice bank. Furthermore, in the cooling water in the vicinity of the cold water evaporator, a plurality of stainless steel pipes are coiled so as to correspond to the number of syrups and dilution water that are the raw materials of cold beverages sold by the cooling pipes.

また、コールド飲料を調製するときに使用する氷を製造するオーガ式製氷機は飲用水タンクから供給された飲用水を冷やして製氷する製氷部と、製氷された氷を簀の子上に貯氷する貯氷部とから構成されている。
製氷部は、駆動モータと、駆動モータの回転を減速して伝達する減速機を介して連結されたオーガ(スクリュー状の回転式切削刃)と、オーガが挿通される製氷筒と、製氷筒の外周面に巻装された冷媒冷却回路の蒸発パイプ(以下「製氷蒸発器」という)と、オーガの上方に設けられた氷圧縮用の押出しヘッドと、製氷筒および製氷蒸発器を包囲する断熱材とを備え、製氷筒の外周面に巻装された製氷蒸発器を通流する冷媒の蒸発潜熱で飲用水タンクから供給された飲用水を製氷筒内壁面に着氷させ、この製氷筒内壁面の薄氷をオーガを回転させて掻き取りながら押し上げて押出しヘッドで圧縮して氷を製造する。
In addition, an auger type ice maker that produces ice to be used when preparing cold beverages is an ice making unit that cools drinking water supplied from a drinking water tank to make ice, and an ice storage unit that stores the ice produced on a cocoon child. It consists of and.
The ice making unit includes a drive motor, an auger (screw-like rotary cutting blade) connected via a speed reducer that reduces and transmits the rotation of the drive motor, an ice making cylinder through which the auger is inserted, an ice making cylinder A refrigerant cooling circuit evaporation pipe (hereinafter referred to as an “ice-making evaporator”) wound around the outer peripheral surface, an ice compression extrusion head provided above the auger, and an insulating material surrounding the ice-making cylinder and the ice-making evaporator. The potable water supplied from the potable water tank by the latent heat of evaporation of the refrigerant flowing through the ice making evaporator wound around the outer surface of the ice making cylinder is icing on the inner wall surface of the ice making cylinder. The ice is made by rotating the auger while scraping it off with an auger and compressing it with an extrusion head.

貯氷部は、断面円形状の断熱壁で構成した貯氷室を製氷部の上部に配設し、その内部にはオーガと同軸の回転軸に取り付けられた氷片攪拌用のアジテータと、アジテータと貯氷室の底部との間に配設された氷載置用の簀の子(氷が溶けた溶け水を水切りする役目も有している)を備えている。
冷媒冷却回路は、作動媒体としての冷媒を圧縮する圧縮機と、圧縮機から供給される冷媒を放熱させる放熱器と、放熱器から供給される冷媒を絞り膨張させる膨張弁と、冷却水槽の冷却水中に浸漬されている冷水蒸発器と、冷水蒸発器に冷媒を供給する冷水冷媒弁と、オーガ式製氷機の製氷筒外周面に巻装されている製氷蒸発器と、製氷蒸発器に冷媒を供給する製氷冷媒弁と、前記各々の機器を連通して冷媒を通流させる冷媒管路とで構成され、冷水蒸発器および製氷蒸発器に供給された冷媒は蒸発する際に蒸発潜熱を発生して圧縮機に戻り、圧縮機で再度圧縮された冷媒は放熱器に送られる。
The ice storage section has an ice storage chamber composed of a heat insulating wall with a circular cross section at the top of the ice making section. Inside the ice storage section is an agitator for stirring ice pieces attached to a rotating shaft coaxial with the auger, an agitator and ice storage It is equipped with an ice-loading cocoon (having the role of draining the melted water in which the ice melts) disposed between the bottom of the chamber.
The refrigerant cooling circuit includes a compressor that compresses refrigerant as a working medium, a radiator that radiates the refrigerant supplied from the compressor, an expansion valve that squeezes and expands the refrigerant supplied from the radiator, and cooling the cooling water tank A cold water evaporator immersed in water, a cold water refrigerant valve for supplying refrigerant to the cold water evaporator, an ice making evaporator wound around the outer peripheral surface of an ice making cylinder of an auger type ice making machine, and a refrigerant to the ice making evaporator It consists of an ice-making refrigerant valve to be supplied and a refrigerant pipe that allows the refrigerant to flow through each of the devices. The refrigerant supplied to the cold water evaporator and the ice-making evaporator generates latent heat of evaporation when it evaporates. Then, the refrigerant returns to the compressor, and the refrigerant compressed again by the compressor is sent to the radiator.

カップ式自動販売機は電源容量あるいは省エネルギーの観点から最大消費電力を抑える必要があり、また、小型で安価に構成するためにも、冷媒冷却回路の圧縮機の冷却能力は冷却水槽でのアイスバンクの形成あるいはオーガ式製氷機での製氷の何れか一方のみを行える能力に抑えられていて、アイスバンク形成の要求が生じたときには冷水冷媒弁を開き、製氷冷媒弁は閉じたままで圧縮機と送風装置を運転するようにし、製氷の要求が生じたときには冷水冷媒弁は閉じたままで製氷冷媒弁を開いて圧縮機と送風装置を運転して製氷するようにしている。   The cup-type vending machine needs to suppress the maximum power consumption from the viewpoint of power supply capacity and energy saving, and the cooling capacity of the compressor of the refrigerant cooling circuit is the ice bank in the cooling water tank in order to make it compact and inexpensive. When the demand for ice bank formation arises, the chilled water refrigerant valve is opened and the ice making refrigerant valve is kept closed while the ice making refrigerant valve is closed. The apparatus is operated, and when ice making is requested, the cold water refrigerant valve is kept closed and the ice making refrigerant valve is opened to operate the compressor and the blower to make ice.

例えば、オーガ式製氷機の貯氷量が所定量以上で冷却水槽のアイスバンク量が所定量以下になると、圧縮機と送風装置を始動すると同時に製氷冷媒弁は閉じたままで冷水冷媒弁を開くことで、圧縮機で圧縮された冷媒は冷水蒸発器で蒸発し、その蒸発潜熱でアイスバンク量を増量する。このようにして、アイスバンク量が所定量以上になると圧縮機と送風装置を停止すると同時に冷水冷媒弁を閉じる。また、オーガ式製氷機の貯氷量が所定量以下になると、圧縮機と送風装置を始動すると同時に冷水冷媒弁は閉じたままで製氷冷媒弁を開くことで、製氷冷媒弁を通過した冷媒は製氷蒸発器で蒸発し、その蒸発潜熱で飲用水タンクから供給された飲用水を製氷筒内壁面に着氷させ、この製氷筒内壁面の薄氷をオーガを回転させて掻き取りながら押し上げて押出しヘッドで圧縮して製氷を行い、貯氷量が所定量以上になると圧縮機と送風装置を停止すると同時に製氷冷媒弁も閉じる。   For example, if the ice storage amount of the auger type ice maker exceeds the predetermined amount and the ice bank amount of the cooling water tank becomes less than the predetermined amount, the compressor and the air blower are started and at the same time the ice making refrigerant valve is closed and the cold water refrigerant valve is opened. The refrigerant compressed by the compressor is evaporated by the cold water evaporator, and the ice bank amount is increased by the latent heat of evaporation. In this way, when the ice bank amount exceeds a predetermined amount, the compressor and the blower are stopped and simultaneously the cold water refrigerant valve is closed. Also, when the ice storage amount of the auger type ice maker becomes less than the predetermined amount, the compressor and the air blower are started and at the same time the chilled water refrigerant valve is closed and the ice making refrigerant valve is opened, so that the refrigerant passing through the ice making refrigerant valve is evaporated. The evaporation water is evaporated from the pot, and the drinking water supplied from the potable water tank is iced on the inner wall surface of the ice making cylinder, and the thin ice on the inner wall surface of the ice making cylinder is pushed up while rotating with an auger and compressed by the extrusion head. Then, ice making is performed, and when the amount of stored ice exceeds a predetermined amount, the compressor and the air blower are stopped and the ice making refrigerant valve is also closed.

また、アイスバンク形成要求と製氷要求とが同時に生じたときには、圧縮機と送風装置を運転して冷水冷媒弁と製氷冷媒弁とを交互に開き、冷却水槽のアイスバンク形成とオーガ式製氷機の製氷とを交互に行い、アイスバンク量と貯氷量が所定量以上になると圧縮機と送風装置を停止すると同時に冷媒弁も閉じるようにしている(例えば、特許文献1参照)。   Also, when an ice bank formation request and an ice making request occur simultaneously, the compressor and the air blower are operated to open the cold water refrigerant valve and the ice making refrigerant valve alternately, and the ice bank formation of the cooling water tank and the auger type ice making machine are opened. Ice making is performed alternately, and when the amount of ice bank and the amount of stored ice exceeds a predetermined amount, the compressor and the air blower are stopped and the refrigerant valve is also closed (see, for example, Patent Document 1).

このように、冷却水槽でのアイスバンクの形成、あるいはオーガ式製氷機での製氷を行うための冷媒冷却回路で使用されていた冷媒には特定フロン冷媒(CFC)が使われていたが、オゾン層を破壊することから生産、使用が禁止され、その後、HFCなどの代替フロン冷媒が使用されてきたが、これらはオゾン層を破壊することはないが地球温暖化係数が高く、環境問題が指摘されている。そこで近年、オゾン層破壊係数がゼロで、地球温暖化係数も小さい冷媒を用いた冷却装置が多くの分野で開発されており、二酸化炭素などの自然冷媒を用いたものがある。
特開平8−287345号公報
As described above, a specific chlorofluorocarbon refrigerant (CFC) is used as a refrigerant used in a refrigerant cooling circuit for forming an ice bank in a cooling water tank or making ice in an auger type ice making machine. Production and use are prohibited because the layer is destroyed, and alternative chlorofluorocarbon refrigerants such as HFC have been used since then, but these do not destroy the ozone layer, but have a high global warming potential and point out environmental problems Has been. Therefore, in recent years, cooling devices using refrigerants having a zero ozone depletion coefficient and a small global warming coefficient have been developed in many fields, and some use natural refrigerants such as carbon dioxide.
JP-A-8-287345

製氷蒸発器は、製氷待機中に製氷部に熱が侵入して温度が上昇している場合があるが(特に夏季)、二酸化炭素冷媒は臨界温度が略31℃と低いため、オーガ式製氷機周囲温度が二酸化炭素冷媒の臨界温度以上になり易く、この状態でオーガ式製氷機を起動すると、製氷蒸発器内の冷媒が超臨界状態となり、起動してから製氷蒸発器が冷却されるまでに時間がかかる。このような状態で、膨張弁開度を小さくして蒸発温度を下げようとすると、高圧側から低圧側への冷媒流量が絞られるため、低圧側冷媒が減少し、高圧側冷媒が増加することとなり、冷媒冷却回路の高圧側圧力の増加、低圧側圧力の低下という過負荷状態を生じ、場合によっては圧縮機の保護回路が作動して起動ができなくなる虞が生じる。   In the ice making evaporator, the temperature may rise due to heat entering the ice making unit during ice making standby (particularly in summer), but the carbon dioxide refrigerant has a low critical temperature of about 31 ° C., so an auger type ice making machine. When the auger ice maker is started in this state, the ambient temperature tends to be higher than the critical temperature of the carbon dioxide refrigerant, the refrigerant in the ice making evaporator becomes supercritical, and the time from the start until the ice making evaporator is cooled. take time. In this state, if the expansion valve opening is reduced to lower the evaporation temperature, the refrigerant flow from the high pressure side to the low pressure side is throttled, so the low pressure side refrigerant decreases and the high pressure side refrigerant increases. Thus, an overload state in which the high-pressure side pressure of the refrigerant cooling circuit increases and the low-pressure side pressure decreases occurs, and in some cases, the protection circuit of the compressor may be activated and cannot be started.

また、オーガ式製氷機周囲温度が高い場合には、製氷蒸発器は製氷待機中の熱侵入により製氷部の温度が上昇しているため、起動時に製氷蒸発器に流入してくる冷媒が急速に蒸発し、製氷蒸発器から帰還した冷媒が圧縮機により圧縮されて急速に高圧側へ送出される。そのため、低圧側冷媒が減少し、冷媒冷却回路の低圧側圧力の低下、高圧側圧力の増加、という過負荷状態を生じ、圧縮機の保護回路が作動して運転が継続できなくなる虞もある。   Also, when the ambient temperature of the auger type ice maker is high, the ice making evaporator has a high temperature in the ice making section due to heat intrusion during ice making standby, so that the refrigerant flowing into the ice making evaporator at the time of startup rapidly The refrigerant that has evaporated and returned from the ice making evaporator is compressed by the compressor and rapidly sent to the high pressure side. For this reason, the low-pressure side refrigerant is reduced, and an overload state in which the low-pressure side pressure of the refrigerant cooling circuit is reduced and the high-pressure side pressure is increased may occur.

さらに、夏季などのカップ式自動販売機周囲温度が高いときには、放熱器を冷却する空気の温度も高くなるが、二酸化炭素を冷媒として用いた冷媒冷却回路は、周囲温度が二酸化炭素の臨界温度を超えると超臨界状態となり、相変化を起こさなくなるため、放熱器での熱交換効率が低下して冷却能力が低下することにより、冷媒冷却回路の運転率増加による消費電力の増加、また、製氷量の減少となる。このような夏季の氷を大量に必要とする時に製氷量が減少し、または冷媒冷却回路の運転停止が生じると、飲料販売機会の喪失といった問題を生じる。   Furthermore, when the ambient temperature of a cup-type vending machine is high, such as in summer, the temperature of the air that cools the radiator also increases, but the refrigerant cooling circuit that uses carbon dioxide as the refrigerant has an ambient temperature that is less than the critical temperature of carbon dioxide. If it exceeds, it becomes a supercritical state and phase change does not occur, so the heat exchange efficiency in the radiator decreases and the cooling capacity decreases, so the power consumption increases due to the increase in the operating rate of the refrigerant cooling circuit, and the amount of ice making Decrease. When the amount of ice making is reduced when such a large amount of ice in the summer is required, or the operation of the refrigerant cooling circuit is stopped, a problem such as loss of beverage sales opportunities arises.

本発明は、上記実情に鑑みて、地球環境に対する影響の少ない冷媒を用いて、冷却能力を確保することが可能な冷媒冷却回路を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a refrigerant cooling circuit capable of securing a cooling capacity using a refrigerant having little influence on the global environment.

上記目的を達成するため、本発明の請求項1に係る冷媒冷却回路は、冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を超臨界圧力の状態で放熱させる放熱器と、前記放熱器から供給される冷媒を絞り膨張させる膨張機構と、前記膨張機構から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と、を有する冷媒冷却回路において、
製氷機および冷却水槽それぞれを独立して冷却可能な態様で並列接続させた製氷蒸発器および冷水蒸発器各々の冷媒の流入および停止をさせる製氷冷媒弁および冷水冷媒弁と、庫内温度を計測して温度信号を出力する庫内温度検知手段と、前記製氷蒸発器の冷媒入口管温度を計測して温度信号を出力する製氷冷媒入口管温度検知手段と、前記製氷冷媒弁および前記冷水冷媒弁を開閉制御する制御手段と、を備え、
前記制御手段は、前記製氷機を起動する際は、前記庫内温度検知手段および前記製氷冷媒入口管温度検知手段が出力する温度信号に基づいて、前記製氷冷媒弁および前記冷水冷媒弁を開閉制御し、前記冷水蒸発器に滞留している低温の冷媒で前記製氷蒸発器へ供給される冷媒を冷却することを特徴とする。
To achieve the above object, a refrigerant cooling circuit according to claim 1 of the present invention includes a compressor that compresses a refrigerant, a radiator that dissipates heat in a supercritical pressure state of the refrigerant supplied from the compressor, and In a refrigerant cooling circuit having an expansion mechanism that squeezes and expands a refrigerant supplied from a radiator, and an evaporator that evaporates the refrigerant supplied from the expansion mechanism and returns the refrigerant to the compressor.
The ice-making and chilled water refrigerant valves that allow the refrigerant to flow in and out of the ice-making evaporator and the chilled water evaporator, which are connected in parallel in a manner that allows the ice maker and the cooling water tank to be independently cooled, and the internal temperature of the refrigerator are measured. An internal temperature detecting means for outputting a temperature signal, an ice making refrigerant inlet pipe temperature detecting means for measuring a refrigerant inlet pipe temperature of the ice making evaporator and outputting a temperature signal, the ice making refrigerant valve and the cold water refrigerant valve. Control means for controlling opening and closing,
When the ice making machine is started, the control means controls opening and closing of the ice making refrigerant valve and the cold water refrigerant valve based on temperature signals output from the internal temperature detecting means and the ice making refrigerant inlet pipe temperature detecting means. The refrigerant supplied to the ice making evaporator is cooled by a low-temperature refrigerant staying in the cold water evaporator.

また、本発明の請求項2に係る冷媒冷却回路は、上述した請求項1において、前記冷水蒸発器の冷媒出口管に冷水冷媒出口弁を備え、冷媒を冷水蒸発器に貯留することを特徴とする。
また、本発明の請求項3に係る冷媒冷却回路は、上述した請求項1において、前記製氷蒸発器を冷却する製氷蒸発器冷却器と、前記製氷蒸発器の冷媒管温度を計測して温度信号を出力する製氷蒸発器温度検知手段とを備え、当該製氷蒸発器温度検知手段が出力する温度信号に基づいて、前記冷却水槽に貯留している冷却水を前記製氷蒸発器冷却器に供給して前記製氷蒸発器を冷却することを特徴とする。
A refrigerant cooling circuit according to a second aspect of the present invention is the refrigerant cooling circuit according to the first aspect, wherein the refrigerant outlet pipe of the cold water evaporator is provided with a cold water refrigerant outlet valve, and the refrigerant is stored in the cold water evaporator. To do.
According to a third aspect of the present invention, there is provided a refrigerant cooling circuit according to the first aspect, wherein the ice making evaporator cooler for cooling the ice making evaporator and the temperature of the refrigerant pipe of the ice making evaporator are measured and the temperature signal is measured. An ice making evaporator temperature detecting means for outputting the cooling water stored in the cooling water tank to the ice making evaporator cooler based on a temperature signal output by the ice making evaporator temperature detecting means. The ice making evaporator is cooled.

また、本発明の請求項4に係る冷媒冷却回路は、上述した請求項1において、前記圧縮機と前記膨張機構とを連通する冷媒管路周囲に、前記冷却水槽に貯留している冷却水を送水して前記冷媒管路を通流する冷媒を冷却することを特徴とする。
また、本発明の請求項5に係る冷媒冷却回路は、上述した請求項1乃至4の何れかにおいて、前記冷媒は、二酸化炭素であることを特徴とする。
A refrigerant cooling circuit according to a fourth aspect of the present invention is the refrigerant cooling circuit according to the first aspect, wherein the cooling water stored in the cooling water tank is disposed around a refrigerant pipe line that communicates the compressor and the expansion mechanism. It cools the refrigerant | coolant which sends water and flows through the said refrigerant | coolant pipeline.
A refrigerant cooling circuit according to a fifth aspect of the present invention is the refrigerant cooling circuit according to any one of the first to fourth aspects described above, wherein the refrigerant is carbon dioxide.

請求項1の発明によれば、オーガ式製氷機の起動初期に庫内温度が二酸化炭素冷媒臨界温度以上のときには、製氷冷媒弁と冷水冷媒弁を開き、圧縮機を運転駆動して膨張機構の弁開閉量を可変制御することにより、冷却水槽に貯留している冷却水に浸漬されている冷水蒸発器内の低温(略0℃)に保持されている冷媒が冷媒管路に循環され、この低温の冷媒が内部熱交換器に流入して放熱器から内部熱交換器に流入してくる高圧側の高温冷媒と熱交換することにより膨張機構に送られる高温冷媒の温度を下げることができるので、高圧側冷媒の急激な温度上昇を防止することができ、高温になっている製氷蒸発器内の冷媒量低下および高圧側への過度の冷媒移動による圧力上昇を防止することができ、過負荷状態、あるいは起動不能に陥るのを防ぐことができるので、地球環境に対する影響の少ない二酸化炭素冷媒を用いて、冷却能力を確保することが可能な冷媒冷却回路を提供することが可能となる。   According to the first aspect of the present invention, when the internal temperature is equal to or higher than the carbon dioxide refrigerant critical temperature at the initial stage of starting the auger type ice making machine, the ice making refrigerant valve and the cold water refrigerant valve are opened, and the compressor is operated to drive the expansion mechanism. By variably controlling the valve opening / closing amount, the refrigerant held at a low temperature (approximately 0 ° C.) in the cold water evaporator immersed in the cooling water stored in the cooling water tank is circulated through the refrigerant pipe. Since the low-temperature refrigerant flows into the internal heat exchanger and exchanges heat with the high-pressure side high-temperature refrigerant flowing from the radiator to the internal heat exchanger, the temperature of the high-temperature refrigerant sent to the expansion mechanism can be lowered. , It can prevent rapid temperature rise of the high-pressure side refrigerant, can prevent the pressure rise due to the refrigerant amount drop in the ice making evaporator being hot and excessive refrigerant movement to the high-pressure side, and overload State or get stuck It is possible to prevent, using less carbon dioxide refrigerant influence on the global environment, it is possible to provide a refrigerant cooling circuit capable of ensuring the cooling capacity.

また、請求項2の発明によれば、オーガ式製氷機の起動初期に庫内温度が二酸化炭素冷媒臨界温度以上のときには、低圧・低温に保持された冷水蒸発器内の冷媒が開放されることにより、内部熱交換器において高圧側の高温冷媒がただちに冷却され、迅速に通常の運転状態にできるようになる。
また、請求項3の発明によれば、製氷蒸発器冷媒管温度に基づき、冷水ポンプを駆動して冷却水槽に貯留している略0℃の冷却水を冷水循環路で製氷蒸発器冷却器に送水して製氷蒸発器の冷媒を冷却することにより、この略0℃に冷却されている冷却水により製氷蒸発器内の二酸化炭素冷媒が臨界温度以下に冷やされるので、冷媒による製氷蒸発器およびオーガ式製氷機の製氷筒内の製氷水の温度低下が速やかに進み、二酸化炭素冷媒高圧側への過度の冷媒移動による圧力上昇を防止することができ、過負荷状態に陥るのを避けることができる。
According to the second aspect of the present invention, when the internal temperature is equal to or higher than the carbon dioxide refrigerant critical temperature at the initial stage of starting the auger type ice making machine, the refrigerant in the cold water evaporator held at low pressure and low temperature is released. As a result, the high-temperature refrigerant on the high-pressure side is immediately cooled in the internal heat exchanger, and the normal operation state can be quickly achieved.
According to the invention of claim 3, based on the ice making evaporator refrigerant pipe temperature, the cooling water pump is driven to store the cooling water of approximately 0 ° C. stored in the cooling water tank into the ice making evaporator cooler through the cooling water circulation path. By sending water and cooling the refrigerant of the ice making evaporator, the carbon dioxide refrigerant in the ice making evaporator is cooled below the critical temperature by the cooling water cooled to approximately 0 ° C. Therefore, the ice making evaporator and the auger using the refrigerant are cooled. The temperature drop of the ice making water in the ice making cylinder of the type ice making machine can proceed rapidly, preventing an increase in pressure due to excessive refrigerant movement to the high pressure side of the carbon dioxide refrigerant, and avoiding an overload condition .

また、請求項4の発明によれば、熱交換器冷媒管温度に基づき、冷水ポンプを駆動して冷却水槽に貯留している略0℃の冷却水を冷水循環路で内部熱交換器冷却器に送水して内部熱交換器に流入する冷媒を冷却することにより、内部熱交換器から製氷蒸発器に流入する二酸化炭素冷媒が臨界温度以下に冷やされるので、冷媒による製氷蒸発器およびオーガ式製氷機の製氷筒内の製氷水の温度低下が速やかに進み、二酸化炭素冷媒の高圧側への過度の冷媒移動による圧力上昇を防止することができ、過負荷状態に陥るのを避けることができる。   According to a fourth aspect of the present invention, based on the heat exchanger refrigerant tube temperature, the cooling water pump is driven to store the cooling water at approximately 0 ° C. stored in the cooling water tank in the cooling water circulation path. By cooling the refrigerant flowing into the internal heat exchanger and cooling the refrigerant flowing into the internal heat exchanger, the carbon dioxide refrigerant flowing from the internal heat exchanger to the ice making evaporator is cooled below the critical temperature. Therefore, the ice making evaporator and the auger type ice making using the refrigerant The temperature drop of the ice making water in the ice making cylinder of the machine quickly proceeds, the pressure increase due to excessive refrigerant movement of the carbon dioxide refrigerant to the high pressure side can be prevented, and the overload state can be avoided.

また、請求項5の発明によれば、冷媒が二酸化炭素であることにより、地球環境に対する影響の少ない冷媒を用いた冷媒冷却回路を提供することが可能となる。   According to the invention of claim 5, since the refrigerant is carbon dioxide, it is possible to provide a refrigerant cooling circuit using a refrigerant having little influence on the global environment.

以下に添付図面を参照して、本発明に係る冷媒冷却回路の好適な実施の形態について詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
(実施の形態1)
図1は本発明の実施の形態1である冷媒冷却回路をカップ式自動販売機に備えた概念図である。図1に示すように、冷媒冷却回路10は、2段式圧縮機(圧縮機)11、中間熱交換器12、ガスクーラ(放熱器)13、送風装置14、内部熱交換器15、電子膨張弁(膨張機構)16、製氷冷媒弁17、製氷蒸発器18、冷水冷媒弁19、冷水蒸発器20、ならびにこれらを接続する冷媒管路Lにより構成され、冷媒を循環させて冷却を行うものである。ここで、冷媒としては、不燃性、安全性、不腐食性を有し、更にオゾン層を破壊することがない地球環境に対する影響の少ない二酸化炭素を用いている。
Exemplary embodiments of a refrigerant cooling circuit according to the present invention will be explained below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
(Embodiment 1)
FIG. 1 is a conceptual view in which a cup-type vending machine is provided with a refrigerant cooling circuit according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigerant cooling circuit 10 includes a two-stage compressor (compressor) 11, an intermediate heat exchanger 12, a gas cooler (heat radiator) 13, a blower 14, an internal heat exchanger 15, and an electronic expansion valve. (Expansion mechanism) 16, ice making refrigerant valve 17, ice making evaporator 18, cold water refrigerant valve 19, cold water evaporator 20, and refrigerant pipe L connecting them, and cooling by circulating the refrigerant. . Here, as the refrigerant, carbon dioxide having non-flammability, safety, and non-corrosive properties and further having no influence on the global environment that does not destroy the ozone layer is used.

2段式圧縮機11は、内部熱交換器15から帰還した低温低圧の冷媒(二酸化炭素)を圧縮して高温高圧の超臨界状態の冷媒にするものである。この2段式圧縮機11は、2回に分けて冷媒圧縮を行う圧縮機であり、1回目の冷媒圧縮を行う第1圧縮機11aと、2回目の冷媒圧縮を行う第2圧縮機11bとからなり、第1圧縮機11aと第2圧縮機11bとの間に中間熱交換器12を設けている。中間熱交換器12は、第1圧縮機11aで圧縮された高温高圧の冷媒を放熱させて第2圧縮機11bに供給するものである。このように、冷媒を2回に分けて圧縮を行う2段式圧縮機11の第1圧縮機11aと第2圧縮機11bとの間に中間熱交換器12を設け、第1圧縮機11aで圧縮された高温高圧(例えば80℃、6MPa)の冷媒を中間熱交換器12で放熱させて冷却(例えば80℃から60℃まで20度冷却する)し、第2圧縮機11bで圧縮すると、第2圧縮機11bの冷媒圧縮の負荷が軽減されて冷却効率の向上を図ることができるので、消費電力を低減して所望の高温高圧(例えば90〜100℃、10MPa)の超臨界状態の冷媒にすることが可能となる。この2段式圧縮機11には電源の周波数を変換するインバータ11cが接続してあり、冷媒冷却回路10の熱負荷に見合った適切な電源周波数で2段式圧縮機11を運転する。この2段式圧縮機11としては、レシプロ圧縮機、ロータリー圧縮機、スクロール圧縮機などが適宜適用される。   The two-stage compressor 11 compresses the low-temperature and low-pressure refrigerant (carbon dioxide) returned from the internal heat exchanger 15 into a high-temperature and high-pressure supercritical refrigerant. The two-stage compressor 11 is a compressor that compresses refrigerant in two steps, a first compressor 11a that performs first refrigerant compression, and a second compressor 11b that performs second refrigerant compression. The intermediate heat exchanger 12 is provided between the first compressor 11a and the second compressor 11b. The intermediate heat exchanger 12 radiates the high-temperature and high-pressure refrigerant compressed by the first compressor 11a and supplies it to the second compressor 11b. In this way, the intermediate heat exchanger 12 is provided between the first compressor 11a and the second compressor 11b of the two-stage compressor 11 that compresses the refrigerant in two steps, and the first compressor 11a When the compressed high-temperature and high-pressure (for example, 80 ° C., 6 MPa) refrigerant is radiated by the intermediate heat exchanger 12 and cooled (for example, cooled by 20 degrees from 80 ° C. to 60 ° C.) and compressed by the second compressor 11b, Since the refrigerant compression load of the two-compressor 11b can be reduced and the cooling efficiency can be improved, the power consumption is reduced to a supercritical refrigerant having a desired high temperature and high pressure (for example, 90 to 100 ° C., 10 MPa). It becomes possible to do. The two-stage compressor 11 is connected to an inverter 11 c that converts the frequency of the power source, and the two-stage compressor 11 is operated at an appropriate power source frequency corresponding to the heat load of the refrigerant cooling circuit 10. As the two-stage compressor 11, a reciprocating compressor, a rotary compressor, a scroll compressor, or the like is appropriately applied.

ガスクーラ13は、2段式圧縮機11から供給された冷媒をその周囲温度に近い温度(例えば40℃)まで冷却(放熱)させるものであり、送風装置14で機外から取り込まれた空気で冷やされる。
内部熱交換器15は、ガスクーラ13から供給された周囲温度に近い温度まで冷却された冷媒(例えば40℃、10MPa)と、製氷蒸発器18または冷水蒸発器20から2段式圧縮機11に帰還する低温低圧の冷媒(例えば0℃、3MPa)とを熱交換させるものであり、その内部には、ガスクーラ13から供給された冷媒が通流する冷媒管路15aと、製氷蒸発器18または冷水蒸発器20で蒸発させた冷媒が通流する冷媒管路15bとが、互いに熱交換可能な態様で配設してあり、冷媒管路15aを通流した冷媒は冷却されて(例えば35℃、10MPa)電子膨張弁16に供給され、冷媒管路15bを通流した冷媒は温められて(例えば25〜30℃、3MPa)2段式圧縮機11に帰還する。
The gas cooler 13 cools (dissipates heat) the refrigerant supplied from the two-stage compressor 11 to a temperature (for example, 40 ° C.) close to the ambient temperature, and is cooled by the air taken in from the outside by the blower 14. It is.
The internal heat exchanger 15 returns to the two-stage compressor 11 from the refrigerant (for example, 40 ° C., 10 MPa) cooled to a temperature close to the ambient temperature supplied from the gas cooler 13 and the ice making evaporator 18 or the cold water evaporator 20. Heat exchange with a low-temperature and low-pressure refrigerant (for example, 0 ° C., 3 MPa) to be performed, and inside thereof, a refrigerant pipe 15a through which the refrigerant supplied from the gas cooler 13 flows, and an ice making evaporator 18 or cold water evaporation The refrigerant pipe 15b through which the refrigerant evaporated in the vessel 20 flows is arranged in such a manner that heat can be exchanged with each other, and the refrigerant flowing through the refrigerant pipe 15a is cooled (for example, 35 ° C., 10 MPa). ) The refrigerant supplied to the electronic expansion valve 16 and flowing through the refrigerant line 15b is warmed (for example, 25 to 30 ° C., 3 MPa) and returned to the two-stage compressor 11.

電子膨張弁16は、内部熱交換器15で熱交換させた冷媒を絞り膨張させて減圧して低温低圧(例えば−10℃、3MPa)の状態に調整して製氷蒸発器18または冷水蒸発器20に供給するものである。
製氷蒸発器18は、オーガ式製氷機21の製氷筒の外周面に巻装され、製氷冷媒弁17が開放されると、電子膨張弁16から供給される低温低圧の冷媒が蒸発するときに発生させる蒸発潜熱で飲用水タンクから供給された飲用水を製氷筒内壁面に着氷させ、この製氷筒内壁面の薄氷をオーガを回転させて掻き取りながら押し上げて押出しヘッドで圧縮して氷を製造する。また、製氷蒸発器18は、冷媒管路Lと自己シール型のクイックカップリング22で着脱可能に結合されている。
The electronic expansion valve 16 squeezes and expands the refrigerant heat-exchanged by the internal heat exchanger 15 to reduce the pressure and adjust it to a low-temperature and low-pressure (for example, −10 ° C., 3 MPa) state to adjust the ice making evaporator 18 or the cold water evaporator 20. To supply.
The ice making evaporator 18 is wound around the outer peripheral surface of the ice making cylinder of the auger type ice making machine 21 and is generated when the low temperature and low pressure refrigerant supplied from the electronic expansion valve 16 evaporates when the ice making refrigerant valve 17 is opened. Drinking water supplied from the potable water tank is caused to accumulate on the inner wall surface of the ice-making cylinder by the latent heat of evaporation, and the ice inside the ice-making cylinder wall surface is pushed up while scraping it by rotating the auger and compressed by the extrusion head to produce ice. To do. Further, the ice making evaporator 18 is detachably coupled to the refrigerant line L by a self-sealing quick coupling 22.

冷水蒸発器20は、金属パイプをコイル状に巻回させて冷却水槽23に貯留している冷却水Wに浸漬され、冷水冷媒弁19が開放されると、電子膨張弁16から供給される低温低圧の冷媒が蒸発するときに発生させる蒸発潜熱でその周囲にアイスバンク(氷塊)Bを形成し、このアイスバンクBの蓄熱を利用して冷却水Wの温度を略0℃に保ち、同じく冷却水Wに浸漬されているカーボネータ(図示せず)とシロップや希釈水の冷却パイプ24を冷却し、通流するシロップや希釈水およびカーボネータ内の炭酸水を冷却する。   The cold water evaporator 20 is wound at a cooling water W stored in the cooling water tank 23 by winding a metal pipe in a coil shape. When the cold water refrigerant valve 19 is opened, the low temperature supplied from the electronic expansion valve 16 is reduced. An ice bank (ice block) B is formed around the latent heat of evaporation generated when the low-pressure refrigerant evaporates, and the temperature of the cooling water W is maintained at approximately 0 ° C. by using the heat stored in the ice bank B. A carbonator (not shown) immersed in the water W and the cooling pipe 24 for syrup and dilution water are cooled, and the syrup and dilution water flowing through and the carbonated water in the carbonator are cooled.

また、冷媒冷却回路10には、カップ式自動販売機庫内温度を計測して温度信号を出力する庫内温度センサ(庫内温度検知手段)25と、製氷蒸発器18の冷媒入口管温度を計測して温度信号を出力する製氷冷媒入口管温度センサ(製氷冷媒入口管温度検知手段)26と、を備えている。
図2は、冷媒冷却回路10の制御系を示したブロック図である。同図に示すように制御部(制御手段)90にはメモリ96やタイマー97が付設されている。制御部90は、メモリ96に格納しているプログラムやデータ、タイマー97、および、カップ式自動販売機庫内温度を計測して温度信号を出力する庫内温度センサ25、製氷蒸発器18の冷媒入口管温度を計測して温度信号を出力する製氷冷媒入口管温度センサ26からの入力信号に基づいて信号を出力して、二段式圧縮機11、送風装置14、オーガ式製氷機21を運転駆動し、電子膨張弁16の弁開閉量を可変制御し、製氷冷媒弁17、冷水冷媒弁19を開閉制御する。
The refrigerant cooling circuit 10 also includes an internal temperature sensor (internal temperature detecting means) 25 that measures the internal temperature of the cup type vending machine and outputs a temperature signal, and the refrigerant inlet pipe temperature of the ice making evaporator 18. And an ice making refrigerant inlet pipe temperature sensor (ice making refrigerant inlet pipe temperature detecting means) 26 for measuring and outputting a temperature signal.
FIG. 2 is a block diagram showing a control system of the refrigerant cooling circuit 10. As shown in the figure, the control unit (control means) 90 is provided with a memory 96 and a timer 97. The control unit 90 includes a program and data stored in the memory 96, a timer 97, an internal temperature sensor 25 that measures the internal temperature of the cup type vending machine and outputs a temperature signal, and the refrigerant of the ice making evaporator 18. A signal is output based on an input signal from an ice making refrigerant inlet pipe temperature sensor 26 that measures the inlet pipe temperature and outputs a temperature signal, and operates the two-stage compressor 11, the blower 14, and the auger type ice maker 21. It is driven to variably control the opening / closing amount of the electronic expansion valve 16, and to open / close the ice making refrigerant valve 17 and the cold water refrigerant valve 19.

係る構成で、本発明の冷媒冷却回路10の庫内温度センサ25および製氷冷媒入口管温度センサ26が出力する温度信号に基づいて制御部90が実行する処理の内容を図3のフローチャート、図4の冷媒循環図、図5のタイミングチャートを用いて説明する。
制御部90は、オーガ式製氷機21の貯氷量が所定量以下を示すと(ステップS101:Y)庫内温度センサ25が出力する庫内温度と二酸化炭素冷媒臨界温度とを比較する(ステップS102)。
With this configuration, the contents of the processing executed by the control unit 90 based on the temperature signals output from the internal temperature sensor 25 and the ice making refrigerant inlet pipe temperature sensor 26 of the refrigerant cooling circuit 10 of the present invention are shown in the flowchart of FIG. This will be described with reference to the refrigerant circulation diagram and the timing chart of FIG.
When the ice storage amount of the auger type ice making machine 21 indicates a predetermined amount or less (step S101: Y), the controller 90 compares the internal temperature output from the internal temperature sensor 25 with the carbon dioxide refrigerant critical temperature (step S102). ).

<庫内温度≧冷媒臨界温度>
庫内温度センサ25が出力する庫内温度が二酸化炭素冷媒臨界温度(略31℃)以上のときには(ステップS102:Y)製氷冷媒弁17と冷水冷媒弁19を開き(ステップS103)、二段式圧縮機11、送風装置14を運転駆動して電子膨張弁16の弁開閉量を可変制御する(ステップS104)。このように製氷冷媒弁17を開くとともに冷水冷媒弁19も開いて冷媒を図4矢印で示す方向に循環させると、冷却水槽23に貯留している冷却水Wに浸漬されている冷水蒸発器20内に滞留している低温(略0℃)の冷媒が冷媒管路Lに循環され、この低温の冷媒が内部熱交換器15に流入してガスクーラ13から内部熱交換器15に流入してくる高圧側の高温冷媒と熱交換することにより電子膨張弁16に送られる高温冷媒の温度が低下するので、高圧側冷媒の急激な温度上昇を防止することができる。
<Inside temperature> Refrigerant critical temperature>
When the internal temperature output from the internal temperature sensor 25 is equal to or higher than the carbon dioxide refrigerant critical temperature (approximately 31 ° C.) (step S102: Y), the ice-making refrigerant valve 17 and the cold water refrigerant valve 19 are opened (step S103), and the two-stage type The compressor 11 and the air blower 14 are driven to variably control the valve opening / closing amount of the electronic expansion valve 16 (step S104). When the ice-making refrigerant valve 17 is opened and the chilled water refrigerant valve 19 is also opened and the refrigerant is circulated in the direction indicated by the arrow in FIG. 4, the chilled water evaporator 20 immersed in the cooling water W stored in the cooling water tank 23. The low-temperature (approximately 0 ° C.) refrigerant staying in the refrigerant is circulated through the refrigerant pipe L, and this low-temperature refrigerant flows into the internal heat exchanger 15 and flows into the internal heat exchanger 15 from the gas cooler 13. By exchanging heat with the high-pressure side high-temperature refrigerant, the temperature of the high-temperature refrigerant sent to the electronic expansion valve 16 is lowered, so that a rapid temperature rise of the high-pressure side refrigerant can be prevented.

次に、製氷蒸発器18の冷媒入口管温度を計測して温度信号を出力する製氷冷媒入口管温度センサ26が出力する冷媒入口管温度と実験結果などから予め定めている温度(To)とを比較する(ステップS105)。
<製氷蒸発器冷媒入口管温度<予め定めている温度(To)>
冷媒入口管温度が予め定めている温度(To)より高いときには(ステップS105:N)冷水冷媒弁19を開き続けて電子膨張弁16の弁開閉量を可変制御して冷媒入口管温度を下げていく。そして、図5に示すように、冷媒入口管温度が予め定めている温度(To)より低くなると(ステップS105:Y)冷水冷媒弁19を閉じて製氷冷媒弁17を開き続け(ステップS106)、電子膨張弁16の弁開閉量を可変制御してオーガ式製氷機21の運転を継続する(ステップS107)。オーガ式製氷機21の貯氷量が所定量に達すると制御部90による製氷運転を終了する(ステップS108:Y)。
Next, the refrigerant inlet pipe temperature output from the ice making refrigerant inlet pipe temperature sensor 26 which measures the refrigerant inlet pipe temperature of the ice making evaporator 18 and outputs a temperature signal, and the temperature (To) determined in advance from the experimental results and the like are obtained. Compare (step S105).
<Ice-making evaporator refrigerant inlet pipe temperature <predetermined temperature (To)>
When the refrigerant inlet pipe temperature is higher than a predetermined temperature (To) (step S105: N), the chilled water refrigerant valve 19 is kept open to variably control the valve opening / closing amount of the electronic expansion valve 16 to lower the refrigerant inlet pipe temperature. Go. Then, as shown in FIG. 5, when the refrigerant inlet pipe temperature becomes lower than a predetermined temperature (To) (step S105: Y), the cold water refrigerant valve 19 is closed and the ice-making refrigerant valve 17 is kept open (step S106). The operation of the auger type ice making machine 21 is continued by variably controlling the valve opening / closing amount of the electronic expansion valve 16 (step S107). When the ice storage amount of the auger type ice making machine 21 reaches a predetermined amount, the ice making operation by the control unit 90 is terminated (step S108: Y).

また、庫内温度センサ25が出力する庫内温度が二酸化炭素冷媒臨界温度(略31℃)を下回っているときには(ステップS102:N)製氷冷媒弁17のみを開いて(ステップS109)二段式圧縮機11、送風装置14を運転駆動して電子膨張弁16の弁開閉量を可変制御する(ステップS110)。そして、電子膨張弁16の弁開閉量を可変制御してオーガ式製氷機21の運転を継続する(ステップS111)。オーガ式製氷機21の貯氷量が所定量に達すると制御部90による製氷運転を終了する(ステップS112:Y)。   When the internal temperature output from the internal temperature sensor 25 is lower than the carbon dioxide refrigerant critical temperature (approximately 31 ° C.) (step S102: N), only the ice-making refrigerant valve 17 is opened (step S109). The compressor 11 and the air blower 14 are driven to variably control the valve opening / closing amount of the electronic expansion valve 16 (step S110). Then, the operation of the auger type ice making machine 21 is continued by variably controlling the valve opening / closing amount of the electronic expansion valve 16 (step S111). When the ice storage amount of the auger type ice making machine 21 reaches a predetermined amount, the ice making operation by the control unit 90 is terminated (step S112: Y).

このように、オーガ式製氷機21の起動初期に庫内温度センサ25が出力する庫内温度が二酸化炭素冷媒臨界温度(略31℃)以上のときには、製氷冷媒弁17と冷水冷媒弁19を開き、二段式圧縮機11、送風装置14を運転駆動して電子膨張弁16の弁開閉量を可変制御することにより、冷却水槽23に貯留している冷却水Wに浸漬されている冷水蒸発器20内の低温(略0℃)に保持されている冷媒が冷媒管路Lに循環され、この低温の冷媒が内部熱交換器15に流入してガスクーラ13から内部熱交換器15に流入してくる高圧側の高温冷媒と熱交換することにより電子膨張弁16に送られる高温冷媒の温度が低下するので、高圧側冷媒の急激な温度上昇を防止することができ、高温になっている製氷蒸発器18内の冷媒量低下および高圧側への過度の冷媒移動による圧力上昇を防止することができ、過負荷状態、あるいは起動不能に陥るのを防ぐことができるので、地球環境に対する影響の少ない二酸化炭素冷媒を用いて、冷却能力を確保することが可能な冷媒冷却回路を提供することが可能となる。
(実施の形態2)
つぎに、本発明の実施の形態2に係る冷媒冷却回路30について図6を用いて説明する。なお、実施の形態1で説明した冷媒冷却回路10と同一構成に関しては同一符号を用いる。
As described above, when the internal temperature output from the internal temperature sensor 25 at the initial start of the auger type ice making machine 21 is equal to or higher than the carbon dioxide refrigerant critical temperature (approximately 31 ° C.), the ice making refrigerant valve 17 and the cold water refrigerant valve 19 are opened. The chilled water evaporator immersed in the cooling water W stored in the cooling water tank 23 by operating and driving the two-stage compressor 11 and the blower 14 to variably control the valve opening / closing amount of the electronic expansion valve 16. The refrigerant kept at a low temperature (approximately 0 ° C.) in the refrigerant 20 is circulated through the refrigerant pipe L, and this low-temperature refrigerant flows into the internal heat exchanger 15 and flows into the internal heat exchanger 15 from the gas cooler 13. Since the temperature of the high-temperature refrigerant sent to the electronic expansion valve 16 is reduced by exchanging heat with the high-temperature side high-temperature refrigerant, it is possible to prevent a rapid increase in the temperature of the high-pressure side refrigerant, and the ice making evaporation that is at a high temperature The amount of refrigerant in the vessel 18 The pressure rise due to excessive refrigerant movement to the high-pressure side can be prevented, and it can be prevented from overloading or becoming unable to start, so the cooling capacity is reduced by using carbon dioxide refrigerant that has little impact on the global environment. It is possible to provide a refrigerant cooling circuit capable of ensuring the above.
(Embodiment 2)
Next, the refrigerant cooling circuit 30 according to the second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is used regarding the same structure as the refrigerant cooling circuit 10 demonstrated in Embodiment 1. FIG.

この実施の形態2で説明する冷媒冷却回路30は、図6に示すように、冷却水槽23に貯留している冷却水Wに浸漬されている冷水蒸発器20の冷媒出口管に冷水冷媒出口弁31を備え、冷水蒸発器20の冷媒入口管温度を計測して温度信号を出力する冷水冷媒入口管温度センサ(冷水冷媒入口管温度検知手段)32を設けている点で冷媒冷却回路10と相違している。   As shown in FIG. 6, the refrigerant cooling circuit 30 described in the second embodiment includes a cold water refrigerant outlet valve in the refrigerant outlet pipe of the cold water evaporator 20 immersed in the cooling water W stored in the cooling water tank 23. 31 is different from the refrigerant cooling circuit 10 in that a cold water refrigerant inlet pipe temperature sensor (cold water refrigerant inlet pipe temperature detecting means) 32 that measures the refrigerant inlet pipe temperature of the cold water evaporator 20 and outputs a temperature signal is provided. is doing.

図7は、冷媒冷却回路30の制御系を示したブロック図である。制御部(制御手段)91は、メモリ96に格納しているプログラムやデータ、タイマー97、および、カップ式自動販売機庫内温度を計測して温度信号を出力する庫内温度センサ25、製氷蒸発器18の冷媒入口管温度を計測して温度信号を出力する製氷冷媒入口管温度センサ26、冷水蒸発器20の冷媒入口管温度を計測して温度信号を出力する冷水冷媒入口管温度センサ32からの入力信号に基づいて信号を出力して、二段式圧縮機11、送風装置14、オーガ式製氷機21を運転駆動し、電子膨張弁16の弁開閉量を可変制御し、製氷冷媒弁17、冷水冷媒弁19および冷水冷媒出口弁31を開閉制御する。そして、サイクル運転時には、オーガ式製氷機21での製氷動作と冷却水槽23でのアイスバンクの形成を順に行い、冷媒冷却回路30運転終了時に冷水蒸発器20側に冷媒を流すモードにしておく。より詳細には、冷却水槽23でのアイスバンク形成終了時に二段式圧縮機11を運転停止すると同時に冷水冷媒弁19および冷水冷媒出口弁31を閉じ、冷水蒸発器20に低温・低圧の冷媒を滞留させておくようにする。また、同時に製氷冷媒弁17を開き、冷媒冷却回路30が低圧側で閉塞するのを防ぎ、高圧・低圧側の冷媒圧力を平衡させるようにする。   FIG. 7 is a block diagram showing a control system of the refrigerant cooling circuit 30. The control unit (control means) 91 includes a program and data stored in the memory 96, a timer 97, an internal temperature sensor 25 that measures the internal temperature of the cup-type vending machine and outputs a temperature signal, ice making evaporation From the ice making refrigerant inlet pipe temperature sensor 26 that measures the refrigerant inlet pipe temperature of the cooler 18 and outputs a temperature signal, and from the cold water refrigerant inlet pipe temperature sensor 32 that measures the refrigerant inlet pipe temperature of the cold water evaporator 20 and outputs the temperature signal Based on the input signal, the two-stage compressor 11, the air blower 14, and the auger type ice making machine 21 are driven to operate, the valve opening / closing amount of the electronic expansion valve 16 is variably controlled, and the ice making refrigerant valve 17 is operated. The cold water refrigerant valve 19 and the cold water refrigerant outlet valve 31 are controlled to open and close. During the cycle operation, the ice making operation in the auger type ice making machine 21 and the formation of the ice bank in the cooling water tank 23 are sequentially performed, and a mode is set in which the refrigerant flows into the cold water evaporator 20 side when the operation of the refrigerant cooling circuit 30 is completed. More specifically, at the end of the ice bank formation in the cooling water tank 23, the operation of the two-stage compressor 11 is stopped, and at the same time, the cold water refrigerant valve 19 and the cold water refrigerant outlet valve 31 are closed, and low temperature / low pressure refrigerant is supplied to the cold water evaporator 20. Try to stay. At the same time, the ice-making refrigerant valve 17 is opened to prevent the refrigerant cooling circuit 30 from being blocked on the low pressure side, so that the refrigerant pressure on the high pressure / low pressure side is balanced.

係る構成で、冷媒冷却回路30の庫内温度センサ25、冷媒入口管温度センサ26および冷水冷媒入口管温度センサ32が出力する温度信号に基づいて制御部91が実行する処理の内容を図8、図9のフローチャート、図10のタイミングチャートを用いて説明する。
制御部91は、オーガ式製氷機21の貯氷量が所定量以下を示すと(ステップS201:Y)庫内温度センサ25が出力する庫内温度と二酸化炭素冷媒臨界温度とを比較する(ステップS202)。
FIG. 8 shows the contents of the processing executed by the control unit 91 based on the temperature signals output from the internal temperature sensor 25, the refrigerant inlet pipe temperature sensor 26, and the cold water refrigerant inlet pipe temperature sensor 32 of the refrigerant cooling circuit 30 in this configuration. This will be described with reference to the flowchart of FIG. 9 and the timing chart of FIG.
When the ice storage amount of the auger type ice making machine 21 indicates a predetermined amount or less (step S201: Y), the controller 91 compares the internal temperature output from the internal temperature sensor 25 with the carbon dioxide refrigerant critical temperature (step S202). ).

<庫内温度≧冷媒臨界温度>
庫内温度センサ25が出力する庫内温度が二酸化炭素冷媒臨界温度(略31℃)以上のときには(ステップS202:Y)冷水冷媒弁19と冷水冷媒出口弁31を閉じた状態で製氷冷媒弁17を開き(ステップS203)、二段式圧縮機11、送風装置14を運転駆動して電子膨張弁16の弁開閉量を可変制御する(ステップS204)。
<Inside temperature> Refrigerant critical temperature>
When the internal temperature output from the internal temperature sensor 25 is equal to or higher than the carbon dioxide refrigerant critical temperature (approximately 31 ° C.) (step S202: Y), the ice-making refrigerant valve 17 is closed with the cold water refrigerant valve 19 and the cold water refrigerant outlet valve 31 closed. Is opened (step S203), and the two-stage compressor 11 and the blower 14 are driven to variably control the opening / closing amount of the electronic expansion valve 16 (step S204).

次に、製氷蒸発器18の冷媒入口管温度を計測して温度信号を出力する製氷冷媒入口管温度センサ26が出力する冷媒入口管温度と実験結果などから予め定めている温度(θo)とを比較する(ステップS205)。
<製氷蒸発器冷媒入口管温度<予め定めている温度(θo)>
冷媒入口管温度が予め定めている温度(θo)より高いときには(ステップS205:N)製氷冷媒弁17を開き続けて電子膨張弁16の弁開閉量を可変制御して冷媒入口管温度を下げていく。そして、図10に示すように、冷媒入口管温度が予め定めている温度(θo)より低くなると(ステップS205:Y)冷水冷媒弁19と冷水冷媒出口弁31を開き、冷却水槽23に貯留している冷却水Wに浸漬されている冷水蒸発器20内に滞留している低温(略0℃)の冷媒を冷媒管路Lに循環させ、電子膨張弁16の弁開閉量を可変制御してオーガ式製氷機21の運転を継続する(ステップS206)。このようにオーガ式製氷機21起動時にただちに冷水冷媒弁19と冷水冷媒出口弁31を開放しないのは、冷水蒸発器20内の冷媒圧力が低い状態であるため、起動時に冷媒低圧側圧力が十分低くないと冷却蒸発器20側に冷媒の逆流を起こすためである。従い、予め定めている温度(θo)は冷媒低圧側圧力が冷水蒸発器20内の冷媒圧力以下になる製氷蒸発器18の冷媒入口管温度とする必要がある。そして、製氷蒸発器18の冷媒入口管温度を計測して温度信号を出力する製氷冷媒入口管温度センサ26が出力する冷媒入口管温度と実験結果などから予め定めている温度(θ1)とを比較する(ステップS207)。
Next, the refrigerant inlet pipe temperature output from the ice making refrigerant inlet pipe temperature sensor 26 that measures the refrigerant inlet pipe temperature of the ice making evaporator 18 and outputs a temperature signal, and the temperature (θo) determined in advance from the experimental results, etc. Compare (step S205).
<Ice-making evaporator refrigerant inlet pipe temperature <predetermined temperature (θo)>
When the refrigerant inlet pipe temperature is higher than a predetermined temperature (θo) (step S205: N), the ice making refrigerant valve 17 is kept open to variably control the valve opening / closing amount of the electronic expansion valve 16 to lower the refrigerant inlet pipe temperature. Go. Then, as shown in FIG. 10, when the refrigerant inlet pipe temperature becomes lower than the predetermined temperature (θo) (step S205: Y), the cold water refrigerant valve 19 and the cold water refrigerant outlet valve 31 are opened and stored in the cooling water tank 23. A low-temperature (substantially 0 ° C.) refrigerant staying in the cold water evaporator 20 immersed in the cooling water W is circulated through the refrigerant pipe L, and the opening / closing amount of the electronic expansion valve 16 is variably controlled. The operation of the auger type ice making machine 21 is continued (step S206). The reason why the chilled water refrigerant valve 19 and the chilled water refrigerant outlet valve 31 are not immediately opened at the time of starting the auger type ice making machine 21 is that the refrigerant pressure in the chilled water evaporator 20 is low. This is because if it is not low, the refrigerant flows back to the cooling evaporator 20 side. Therefore, the predetermined temperature (θo) needs to be the refrigerant inlet pipe temperature of the ice making evaporator 18 at which the refrigerant low-pressure side pressure becomes equal to or lower than the refrigerant pressure in the cold water evaporator 20. Then, the refrigerant inlet pipe temperature output from the ice making refrigerant inlet pipe temperature sensor 26, which measures the refrigerant inlet pipe temperature of the ice making evaporator 18 and outputs a temperature signal, is compared with the temperature (θ1) determined in advance from the experimental results. (Step S207).

<製氷蒸発器冷媒入口管温度<予め定めている温度(θ1)>
そして、冷媒入口管温度が予め定めている温度(θ1)より低くなると(ステップS207:Y)冷水冷媒弁19を閉じて冷水冷媒出口弁31と製氷冷媒弁17を開き続け(ステップS208)、電子膨張弁16の弁開閉量を可変制御してオーガ式製氷機21の運転を継続する(ステップS209)。オーガ式製氷機21の貯氷量が所定量に達すると制御部91による製氷運転を終了する(ステップS210:Y)。
<Ice-making evaporator refrigerant inlet pipe temperature <predetermined temperature (θ1)>
When the refrigerant inlet pipe temperature becomes lower than the predetermined temperature (θ1) (step S207: Y), the cold water refrigerant valve 19 is closed and the cold water refrigerant outlet valve 31 and the ice making refrigerant valve 17 are kept open (step S208). The operation of the auger type ice making machine 21 is continued by variably controlling the valve opening / closing amount of the expansion valve 16 (step S209). When the ice storage amount of the auger type ice making machine 21 reaches a predetermined amount, the ice making operation by the control unit 91 is terminated (step S210: Y).

次に図9を参照して製氷運転終了時に制御部91が実行する冷水蒸発器20に冷媒を滞留させる処理を説明する。製氷冷媒弁17を閉じると同時に冷水冷媒弁17、冷水冷媒出口弁31を開き(ステップS216)、冷水蒸発器20に冷媒を流入させる。そして、冷水蒸発器20の冷媒入口管温度を計測して温度信号を出力する冷水冷媒入口管温度センサ32が出力する冷媒入口管温度と実験結果などから予め定めている温度(θ2)とを比較する(ステップS217)。   Next, referring to FIG. 9, a process for retaining the refrigerant in the cold water evaporator 20 executed by the controller 91 at the end of the ice making operation will be described. At the same time as the ice-making refrigerant valve 17 is closed, the cold water refrigerant valve 17 and the cold water refrigerant outlet valve 31 are opened (step S216), and the refrigerant is caused to flow into the cold water evaporator 20. Then, the refrigerant inlet pipe temperature output from the cold water refrigerant inlet pipe temperature sensor 32 that measures the refrigerant inlet pipe temperature of the chilled water evaporator 20 and outputs a temperature signal is compared with the temperature (θ2) determined in advance from the experimental results. (Step S217).

<冷水蒸発器冷媒入口管温度<予め定めている温度(θ2)>
そして、冷媒入口管温度が予め定めている温度(θ2)より低くなると(ステップS217:Y)、二段式圧縮機11を停止し、冷水冷媒弁17、冷水冷媒出口弁31を閉じ、製氷冷媒弁17を一時開放する(ステップS218)。
また、庫内温度センサ25が出力する庫内温度が二酸化炭素冷媒臨界温度(略31℃)を下回っているときには(ステップS202:N)製氷冷媒弁17のみを開いて(ステップS212)二段式圧縮機11、送風装置14を運転駆動して電子膨張弁16の弁開閉量を可変制御する(ステップS213)。そして、電子膨張弁16の弁開閉量を可変制御してオーガ式製氷機21の運転を継続する(ステップS214)。オーガ式製氷機21の貯氷量が所定量に達すると制御部91による製氷運転を終了する(ステップS215:Y)。
<Cold water evaporator refrigerant inlet pipe temperature <predetermined temperature (θ2)>
When the refrigerant inlet pipe temperature becomes lower than the predetermined temperature (θ2) (step S217: Y), the two-stage compressor 11 is stopped, the cold water refrigerant valve 17 and the cold water refrigerant outlet valve 31 are closed, and the ice making refrigerant The valve 17 is temporarily opened (step S218).
When the internal temperature output from the internal temperature sensor 25 is lower than the carbon dioxide refrigerant critical temperature (approximately 31 ° C.) (step S202: N), only the ice-making refrigerant valve 17 is opened (step S212). The compressor 11 and the air blower 14 are driven to variably control the valve opening / closing amount of the electronic expansion valve 16 (step S213). Then, the operation of the auger type ice making machine 21 is continued by variably controlling the valve opening / closing amount of the electronic expansion valve 16 (step S214). When the ice storage amount of the auger type ice making machine 21 reaches a predetermined amount, the ice making operation by the control unit 91 is terminated (step S215: Y).

このように、オーガ式製氷機21の起動初期に庫内温度センサ25が出力する庫内温度が二酸化炭素冷媒臨界温度(略31℃)以上のときには、冷水冷媒弁19と冷水冷媒出口弁31を閉じた状態で製氷冷媒弁17を開き、二段式圧縮機11、送風装置14を運転駆動して電子膨張弁16の弁開閉量を可変制御して製氷を開始し、冷媒入口管温度が予め定めている温度(θo)より低くなると冷水冷媒弁19と冷水冷媒出口弁31を開くのは、オーガ式製氷機21起動初期において冷媒管路Lを循環する冷媒量は、冷水蒸発器20内に冷媒を低温・低圧で滞留させている分減少しているため、高圧側圧力の上昇は抑えられ、過負荷状態に陥るのを避けることができる。さらに、低圧・低温に保持された冷水蒸発器20内の冷媒が開放されることにより、内部熱交換器15において高圧側の高温冷媒がただちに冷却され、迅速に通常の運転状態にできるようにするためである。
(実施の形態3)
つぎに、本発明の実施の形態3に係る冷媒冷却回路40について図11を用いて説明する。なお、実施の形態1で説明した冷媒冷却回路10と同一構成に関しては同一符号を用いる。
As described above, when the internal temperature output from the internal temperature sensor 25 at the initial start of the auger type ice making machine 21 is equal to or higher than the carbon dioxide refrigerant critical temperature (approximately 31 ° C.), the cold water refrigerant valve 19 and the cold water refrigerant outlet valve 31 are set. In the closed state, the ice-making refrigerant valve 17 is opened, the two-stage compressor 11 and the air blower 14 are operated and controlled to variably control the valve opening / closing amount of the electronic expansion valve 16, and ice making is started. When the temperature becomes lower than the set temperature (θo), the chilled water refrigerant valve 19 and the chilled water refrigerant outlet valve 31 are opened because the amount of the refrigerant circulating in the refrigerant pipe L at the beginning of the auger type ice making machine 21 starts up in the chilled water evaporator 20. Since the refrigerant is reduced by being retained at a low temperature and a low pressure, an increase in the high-pressure side pressure can be suppressed, and an overload state can be avoided. Further, the refrigerant in the chilled water evaporator 20 held at a low pressure and a low temperature is released, so that the high-temperature refrigerant on the high-pressure side is immediately cooled in the internal heat exchanger 15 so that the normal operation state can be quickly achieved. Because.
(Embodiment 3)
Next, the refrigerant cooling circuit 40 according to Embodiment 3 of the present invention will be described with reference to FIG. In addition, the same code | symbol is used regarding the same structure as the refrigerant cooling circuit 10 demonstrated in Embodiment 1. FIG.

この実施の形態3で説明する冷媒冷却回路40は、図11に示すように、製氷蒸発器18を冷却する製氷蒸発器冷却器41、および、冷水ポンプ42、水抜き弁43、冷水循環路44、製氷蒸発器18の冷媒管温度を計測して温度信号を出力する製氷蒸発器温度センサ(製氷蒸発器温度検知手段)45を備え、製氷蒸発器温度センサ45が出力する製氷蒸発器冷媒管温度に基づき、冷水ポンプ42を駆動し、略0℃に冷却して冷却水槽23に貯留されている冷却水Wを冷水循環路44で製氷蒸発器冷却器41に送水し、製氷蒸発器18の冷媒を冷却するようにしている点で冷媒冷却回路10と相違している。   As shown in FIG. 11, the refrigerant cooling circuit 40 described in the third embodiment includes an ice making evaporator cooler 41 for cooling the ice making evaporator 18, a cold water pump 42, a drain valve 43, and a cold water circulation path 44. The ice making evaporator 18 includes an ice making evaporator temperature sensor (ice making evaporator temperature detecting means) 45 that measures the temperature of the refrigerant pipe of the ice making evaporator 18 and outputs a temperature signal, and the ice making evaporator temperature sensor 45 outputs the ice making evaporator temperature pipe. The cooling water pump 42 is driven, the cooling water W cooled to approximately 0 ° C. and stored in the cooling water tank 23 is sent to the ice making evaporator cooler 41 through the cooling water circulation path 44, and the refrigerant of the ice making evaporator 18 is sent. This is different from the refrigerant cooling circuit 10 in that it is cooled.

図12は、冷媒冷却回路40の制御系を示したブロック図である。同図に示すように制御部(制御手段)92にはメモリ96やタイマー97が付設されている。制御部92は、メモリ96に格納しているプログラムやデータ、タイマー97、および、製氷蒸発器18の冷媒管温度を計測して温度信号を出力する製氷蒸発器温度センサ45からの入力信号に基づいて信号を出力して、二段式圧縮機11、送風装置14、オーガ式製氷機21、冷水ポンプ42を運転駆動し、電子膨張弁16の弁開閉量を可変制御し、製氷冷媒弁17、冷水冷媒弁19、水抜き弁43を開閉制御する。   FIG. 12 is a block diagram showing a control system of the refrigerant cooling circuit 40. As shown in the figure, the control unit (control means) 92 is provided with a memory 96 and a timer 97. The control unit 92 is based on a program and data stored in the memory 96, a timer 97, and an input signal from the ice making evaporator temperature sensor 45 that measures the refrigerant pipe temperature of the ice making evaporator 18 and outputs a temperature signal. The two-stage compressor 11, the blower 14, the auger type ice making machine 21, and the cold water pump 42 are driven to control the opening / closing amount of the electronic expansion valve 16, and the ice making refrigerant valve 17, The cold water refrigerant valve 19 and the drain valve 43 are controlled to open and close.

係る構成で、本発明の冷媒冷却回路40の製氷蒸発器温度センサ45が出力する製氷蒸発器18の冷媒管温度信号に基づいて制御部92が実行する処理の内容を図13のフローチャートを用いて説明する。
制御部92は、オーガ式製氷機21の貯氷量が所定量以下を示すと(ステップS301:Y)製氷蒸発器18の冷媒管温度を計測して温度信号を出力する製氷蒸発器温度センサ45が出力する製氷蒸発器冷媒管温度と実験結果などから予め定めている温度(To)とを比較する(ステップS302)。
With this configuration, the contents of the processing executed by the control unit 92 based on the refrigerant pipe temperature signal of the ice making evaporator 18 output from the ice making evaporator temperature sensor 45 of the refrigerant cooling circuit 40 of the present invention are shown in the flowchart of FIG. explain.
When the ice storage amount of the auger type ice making machine 21 is equal to or less than a predetermined amount (step S301: Y), the controller 92 measures the refrigerant pipe temperature of the ice making evaporator 18 and outputs a temperature signal to the ice making evaporator temperature sensor 45. The ice making evaporator refrigerant tube temperature to be output is compared with a temperature (To) determined in advance based on the experimental results and the like (step S302).

<製氷蒸発器冷媒管温度≧予め定めている温度(To)>
製氷蒸発器冷媒管温度が予め定めている温度(To)以上のときには(ステップS302:Y)水抜き弁43を閉じ(ステップS303)、冷水ポンプ42を駆動して(ステップS304)冷却水槽23に貯留している略0℃の冷却水Wを冷水循環路44で製氷蒸発器冷却器41に送水して製氷蒸発器18に流入する冷媒を冷却し、製氷蒸発器冷媒管温度と実験結果などから予め定めている温度(To)とを比較する(ステップS305)。
<Ice-making evaporator refrigerant tube temperature ≧ predetermined temperature (To)>
When the ice-making evaporator refrigerant pipe temperature is equal to or higher than a predetermined temperature (To) (step S302: Y), the water drain valve 43 is closed (step S303), and the cold water pump 42 is driven (step S304). The stored cooling water W at approximately 0 ° C. is supplied to the ice making evaporator cooler 41 through the cold water circulation path 44 to cool the refrigerant flowing into the ice making evaporator 18, and the ice making evaporator refrigerant tube temperature and the experimental results are used. The temperature is compared with a predetermined temperature (To) (step S305).

<製氷蒸発器冷媒管温度<予め定めている温度(To)>
製氷蒸発器冷媒管温度が予め定めている温度(To)より低くなると(ステップS305:Y)水抜き弁43を開いて(ステップS306)製氷蒸発器冷却器41から冷却水Wを抜き、冷水ポンプ42を停止する(ステップS307)。そして、製氷冷媒弁17を開き(ステップS308)、二段式圧縮機11を起動して(ステップS309)、オーガ式製氷機21を運転駆動して電子膨張弁16の弁開閉量を可変制御して製氷する(ステップS310)。オーガ式製氷機21の貯氷量が所定量に達すると制御部92による製氷運転を終了する(ステップS311:Y)。
<Ice-making evaporator refrigerant tube temperature <predetermined temperature (To)>
When the ice making evaporator refrigerant tube temperature becomes lower than a predetermined temperature (To) (step S305: Y), the water drain valve 43 is opened (step S306), the cooling water W is drawn from the ice making evaporator cooler 41, and the cold water pump 42 is stopped (step S307). Then, the ice making refrigerant valve 17 is opened (step S308), the two-stage compressor 11 is started (step S309), and the auger ice making machine 21 is driven to variably control the valve opening / closing amount of the electronic expansion valve 16. To make ice (step S310). When the ice storage amount of the auger type ice making machine 21 reaches a predetermined amount, the ice making operation by the control unit 92 is terminated (step S311: Y).

このように、製氷蒸発器18の冷媒管温度を計測して温度信号を出力する製氷蒸発器温度センサ45が出力する製氷蒸発器冷媒管温度に基づき、冷水ポンプ42を駆動して冷却水槽23に貯留している略0℃の冷却水Wを冷水循環路44で製氷蒸発器冷却器41に送水して製氷蒸発器18の冷媒を冷却することにより、この略0℃に冷却されている冷却水Wにより製氷蒸発器18内の二酸化炭素冷媒は臨界温度(略31℃)以下に冷やされ、冷媒による製氷蒸発器18およびオーガ式製氷機21の製氷筒内の製氷水の温度低下が速やかに進み、二酸化炭素冷媒高圧側への過度の冷媒移動による圧力上昇を防止することができ、過負荷状態に陥るのを避けることができる。カップ式自動販売機周囲温度が高い場合でも、高圧冷媒温度を下げることができ、製氷量の減少を防止することができるため、夏季に氷の需要が増加した場合でも対応が可能となる。
(実施の形態4)
つぎに、本発明の実施の形態4に係る冷媒冷却回路50について図14を用いて説明する。なお、実施の形態3で説明した冷媒冷却回路40と同一構成に関しては同一符号を用いる。
Thus, based on the ice-making evaporator refrigerant pipe temperature output from the ice-making evaporator temperature sensor 45 that measures the refrigerant pipe temperature of the ice-making evaporator 18 and outputs a temperature signal, the chilled water pump 42 is driven to the cooling water tank 23. The stored cooling water W at approximately 0 ° C. is supplied to the ice making evaporator cooler 41 through the cold water circulation path 44 to cool the refrigerant in the ice making evaporator 18, thereby cooling the cooling water to approximately 0 ° C. The carbon dioxide refrigerant in the ice making evaporator 18 is cooled to a critical temperature (approximately 31 ° C.) or less by W, and the temperature drop of the ice making water in the ice making evaporator 18 and the auger type ice making machine 21 quickly proceeds. Further, it is possible to prevent an increase in pressure due to excessive refrigerant movement to the high pressure side of the carbon dioxide refrigerant, and to avoid falling into an overload state. Even when the cup-type vending machine ambient temperature is high, the high-pressure refrigerant temperature can be lowered and the decrease in ice making can be prevented, so that even when the demand for ice increases in the summer, it is possible to cope with it.
(Embodiment 4)
Next, a refrigerant cooling circuit 50 according to Embodiment 4 of the present invention will be described with reference to FIG. In addition, the same code | symbol is used regarding the same structure as the refrigerant cooling circuit 40 demonstrated in Embodiment 3. FIG.

この実施の形態4で説明する冷媒冷却回路50は、図14に示すように、内部熱交換器15の冷媒配管を冷却する内部熱交換器冷却器51、内部熱交換器15の冷媒管路15a温度を計測して温度信号を出力する内部熱交換器温度センサ(内部熱交換器温度検知手段)52、冷水循環路54、冷水ポンプ42、水抜き弁43を備え、内部熱交換器温度センサ52が出力する熱交換器冷媒管温度に基づき、冷水ポンプ42を駆動して冷却水槽23に貯留している略0℃の冷却水Wを冷水循環路54で内部熱交換器冷却器51に送水し、冷媒管路15aを通流する冷媒を冷却する点で冷媒冷却回路40と相違している。   As shown in FIG. 14, the refrigerant cooling circuit 50 described in the fourth embodiment includes an internal heat exchanger cooler 51 that cools a refrigerant pipe of the internal heat exchanger 15, and a refrigerant pipe 15 a of the internal heat exchanger 15. An internal heat exchanger temperature sensor (internal heat exchanger temperature detecting means) 52 that measures temperature and outputs a temperature signal, a chilled water circulation path 54, a chilled water pump 42, and a drain valve 43 are provided, and the internal heat exchanger temperature sensor 52 Based on the temperature of the heat exchanger refrigerant pipe output by the chilled water, the chilled water pump 42 is driven to feed the cooling water W at approximately 0 ° C. stored in the cooling water tank 23 to the internal heat exchanger cooler 51 through the chilled water circulation path 54. The refrigerant cooling circuit 40 is different from the refrigerant cooling circuit 40 in that the refrigerant flowing through the refrigerant pipe 15a is cooled.

図15は、冷媒冷却回路50の制御系を示したブロック図である。同図に示すように制御部(制御手段)93にはメモリ96やタイマー97が付設されている。制御部93は、メモリ96に格納しているプログラムやデータ、タイマー97、および、内部熱交換器15の冷媒管路15a温度を計測して温度信号を出力する内部熱交換器温度センサ52が出力する熱交換器冷媒管温度に基づいて信号を出力して、二段式圧縮機11、送風装置14、オーガ式製氷機21、冷水ポンプ42を運転駆動し、電子膨張弁16の弁開閉量を可変制御し、製氷冷媒弁17、冷水冷媒弁19、水抜き弁43を開閉制御する。   FIG. 15 is a block diagram showing a control system of the refrigerant cooling circuit 50. As shown in the figure, the control unit (control means) 93 is provided with a memory 96 and a timer 97. The controller 93 outputs the program and data stored in the memory 96, the timer 97, and the internal heat exchanger temperature sensor 52 that measures the temperature of the refrigerant pipe 15a of the internal heat exchanger 15 and outputs a temperature signal. A signal is output based on the temperature of the refrigerant pipe of the heat exchanger, and the two-stage compressor 11, the blower 14, the auger ice maker 21, and the cold water pump 42 are operated and driven, and the opening / closing amount of the electronic expansion valve 16 is increased The ice making refrigerant valve 17, the cold water refrigerant valve 19, and the water drain valve 43 are controlled to be opened and closed.

係る構成で、本発明の冷媒冷却回路50の内部熱交換器温度センサ52が出力する熱交換器冷媒管温度に基づいて制御部93が実行する処理の内容を図16のフローチャートを用いて説明する。
制御部93は、オーガ式製氷機21の貯氷量が所定量以下を示すと(ステップS401:Y)内部熱交換器15の冷媒管路15a温度を計測して温度信号を出力する内部熱交換器温度センサ52が出力する熱交換器冷媒管温度と実験結果などから予め定めている温度(To)とを比較する(ステップS402)。
The content of the process which the control part 93 performs based on the heat exchanger refrigerant pipe temperature which the internal heat exchanger temperature sensor 52 of the refrigerant | coolant cooling circuit 50 of this invention outputs with the structure which concerns is demonstrated using the flowchart of FIG. .
When the ice storage amount of the auger type ice making machine 21 is equal to or less than a predetermined amount (step S401: Y), the controller 93 measures the temperature of the refrigerant pipe 15a of the internal heat exchanger 15 and outputs a temperature signal. The heat exchanger refrigerant tube temperature output from the temperature sensor 52 is compared with a temperature (To) determined in advance based on the experimental results (step S402).

<熱交換器冷媒管温度≧予め定めている温度(To)>
熱交換器冷媒管温度が予め定めている温度(To)以上のときには(ステップS402:Y)水抜き弁43を閉じ(ステップS403)、冷水ポンプ42を駆動して(ステップS404)冷却水槽23に貯留している略0℃の冷却水Wを冷水循環路54で内部熱交換器冷却器51に送水し、内部熱交換器15に流入する冷媒を冷却し、熱交換器冷媒管温度と実験結果などから予め定めている温度(To)とを比較する(ステップS405)。
<Heat exchanger refrigerant tube temperature ≧ predetermined temperature (To)>
When the heat exchanger refrigerant pipe temperature is equal to or higher than a predetermined temperature (To) (step S402: Y), the water drain valve 43 is closed (step S403), and the cold water pump 42 is driven (step S404). The stored cooling water W at approximately 0 ° C. is sent to the internal heat exchanger cooler 51 through the cold water circulation path 54, the refrigerant flowing into the internal heat exchanger 15 is cooled, and the heat exchanger refrigerant tube temperature and experimental results are obtained. And the like (step S405).

<熱交換器冷媒管温度<予め定めている温度(To)>
熱交換器冷媒管温度が予め定めている温度(To)より低くなると(ステップS405:Y)水抜き弁43を開いて(ステップS406)内部熱交換器冷却器51から冷却水Wを抜き、冷水ポンプ42を停止する(ステップS407)。そして、製氷冷媒弁17を開き(ステップS408)、二段式圧縮機11を起動する(ステップS409)。さらに、熱交換器冷媒管温度と実験結果などから予め定めている温度(To)とを比較する(ステップS410)。
<Heat exchanger refrigerant tube temperature <predetermined temperature (To)>
When the heat exchanger refrigerant pipe temperature becomes lower than the predetermined temperature (To) (step S405: Y), the water drain valve 43 is opened (step S406), the cooling water W is extracted from the internal heat exchanger cooler 51, and the cold water The pump 42 is stopped (step S407). Then, the ice making refrigerant valve 17 is opened (step S408), and the two-stage compressor 11 is started (step S409). Further, the heat exchanger refrigerant tube temperature is compared with a temperature (To) determined in advance based on the experimental results (step S410).

<熱交換器冷媒管温度≧予め定めている温度(To)>
熱交換器冷媒管温度が予め定めている温度(To)以上のときには(ステップS410:Y)水抜き弁43を閉じ(ステップS411)、冷水ポンプ42を駆動して(ステップS412)冷却水槽23に貯留している略0℃の冷却水Wを冷水循環路54で内部熱交換器冷却器51に送水し、内部熱交換器15に流入する冷媒を冷却する。オーガ式製氷機21の貯氷量が所定量に達すると(ステップS413:Y)水抜き弁43を開いて(ステップS414)内部熱交換器冷却器51から冷却水Wを抜き、冷水ポンプ42を停止して(ステップS415)製氷運転を終了する。製氷が完了していないときには(ステップS413:N)、オーガ式製氷機21を運転駆動して電子膨張弁16の弁開閉量を可変制御して製氷する(ステップS417)。また、熱交換器冷媒管温度が予め定めている温度(To)より低くなると(ステップS416:Y)水抜き弁43を開いて(ステップS418)内部熱交換器冷却器51から冷却水Wを抜き、冷水ポンプ42を停止して(ステップS419)オーガ式製氷機21を運転駆動して電子膨張弁16の弁開閉量を可変制御して製氷し(ステップS420)、オーガ式製氷機21の貯氷量が所定量に達すると(ステップS421:Y)二段式圧縮機11の運転を停止して(ステップS422)制御部93による製氷運転を終了する。
<Heat exchanger refrigerant tube temperature ≧ predetermined temperature (To)>
When the heat exchanger refrigerant pipe temperature is equal to or higher than a predetermined temperature (To) (step S410: Y), the water drain valve 43 is closed (step S411), and the cold water pump 42 is driven (step S412). The stored cooling water W at approximately 0 ° C. is sent to the internal heat exchanger cooler 51 through the cold water circulation path 54 to cool the refrigerant flowing into the internal heat exchanger 15. When the ice storage amount of the auger type ice making machine 21 reaches a predetermined amount (step S413: Y), the water drain valve 43 is opened (step S414), the cooling water W is drained from the internal heat exchanger cooler 51, and the cold water pump 42 is stopped. Then (step S415) the ice making operation is finished. When the ice making is not completed (step S413: N), the auger type ice making machine 21 is driven to variably control the opening / closing amount of the electronic expansion valve 16 to make ice (step S417). When the heat exchanger refrigerant tube temperature becomes lower than the predetermined temperature (To) (step S416: Y), the water drain valve 43 is opened (step S418), and the cooling water W is drained from the internal heat exchanger cooler 51. Then, the cold water pump 42 is stopped (step S419), and the auger type ice making machine 21 is operated and driven to variably control the opening / closing amount of the electronic expansion valve 16 to make ice (step S420). Reaches a predetermined amount (step S421: Y), the operation of the two-stage compressor 11 is stopped (step S422), and the ice making operation by the controller 93 is terminated.

このように、内部熱交換器15の冷媒管路15a温度を計測して温度信号を出力する内部熱交換器温度センサ52が出力する熱交換器冷媒管温度に基づき、冷水ポンプ42を駆動して冷却水槽23に貯留している略0℃の冷却水Wを冷水循環路54で内部熱交換器冷却器51に送水して内部熱交換器15に流入する冷媒を冷却することにより、内部熱交換器15から製氷蒸発器18に流入する二酸化炭素冷媒は臨界温度(略31℃)以下に冷やされるので、冷媒による製氷蒸発器18およびオーガ式製氷機21の製氷筒内の製氷水の温度低下が速やかに進み、二酸化炭素冷媒の高圧側への過度の冷媒移動による圧力上昇を防止することができ、過負荷状態に陥るのを避けることができる。カップ式自動販売機周囲温度が高い場合でも、高圧冷媒温度を下げることができ、製氷量の減少を防止することができるため、夏季に氷の需要が増加した場合でも対応が可能となる。   In this way, the chilled water pump 42 is driven based on the heat exchanger refrigerant pipe temperature output from the internal heat exchanger temperature sensor 52 that measures the temperature of the refrigerant pipe 15a of the internal heat exchanger 15 and outputs a temperature signal. The cooling water W stored in the cooling water tank 23 is supplied to the internal heat exchanger cooler 51 through the cold water circulation path 54 and the refrigerant flowing into the internal heat exchanger 15 is cooled, thereby internal heat exchange. Since the carbon dioxide refrigerant flowing from the vessel 15 into the ice making evaporator 18 is cooled to a critical temperature (approximately 31 ° C.) or less, the temperature of the ice making water in the ice making tubes of the ice making evaporator 18 and the auger type ice making machine 21 is lowered by the refrigerant. Proceeding quickly, it is possible to prevent an increase in pressure due to excessive refrigerant movement of the carbon dioxide refrigerant to the high-pressure side, and it is possible to avoid falling into an overload state. Even when the cup-type vending machine ambient temperature is high, the high-pressure refrigerant temperature can be lowered and the decrease in ice making can be prevented, so that even when the demand for ice increases in the summer, it is possible to cope with it.

本発明の実施の形態1における冷媒冷却回路を示す概略図である。It is the schematic which shows the refrigerant cooling circuit in Embodiment 1 of this invention. 図1に示した冷媒冷却回路の制御系を示すブロック図である。It is a block diagram which shows the control system of the refrigerant cooling circuit shown in FIG. 図1に示した冷媒冷却回路の制御を示すフローチャートである。It is a flowchart which shows control of the refrigerant cooling circuit shown in FIG. 図1に示した冷媒冷却回路の冷媒循環図である。FIG. 2 is a refrigerant circulation diagram of the refrigerant cooling circuit shown in FIG. 1. 図1に示した冷媒冷却回路の制御を示すタイミングチャートである。It is a timing chart which shows control of the refrigerant cooling circuit shown in FIG. 本発明の実施の形態2における冷媒冷却回路を示す概略図である。It is the schematic which shows the refrigerant | coolant cooling circuit in Embodiment 2 of this invention. 図6に示した冷媒冷却回路の制御系を示すブロック図である。It is a block diagram which shows the control system of the refrigerant cooling circuit shown in FIG. 図6に示した冷媒冷却回路の制御を示すフローチャートである。It is a flowchart which shows control of the refrigerant cooling circuit shown in FIG. 図6に示した冷媒冷却回路の制御を示すフローチャートである。It is a flowchart which shows control of the refrigerant cooling circuit shown in FIG. 図6に示した冷媒冷却回路の制御を示すタイミングチャートである。It is a timing chart which shows control of the refrigerant cooling circuit shown in FIG. 本発明の実施の形態3における冷媒冷却回路を示す概略図である。It is the schematic which shows the refrigerant cooling circuit in Embodiment 3 of this invention. 図11に示した冷媒冷却回路の制御系を示すブロック図である。It is a block diagram which shows the control system of the refrigerant | coolant cooling circuit shown in FIG. 図11に示した冷媒冷却回路の制御を示すフローチャートである。It is a flowchart which shows control of the refrigerant cooling circuit shown in FIG. 本発明の実施の形態4における冷媒冷却回路を示す概略図である。It is the schematic which shows the refrigerant cooling circuit in Embodiment 4 of this invention. 図14に示した冷媒冷却回路の制御系を示すブロック図である。It is a block diagram which shows the control system of the refrigerant cooling circuit shown in FIG. 図14に示した冷媒冷却回路の制御を示すフローチャートである。It is a flowchart which shows control of the refrigerant cooling circuit shown in FIG.

符号の説明Explanation of symbols

10 冷媒冷却回路
11 二段式圧縮機(圧縮機)
12 中間熱交換器
13 ガスクーラ(放熱器)
14 送風装置
15 内部熱交換器
16 電子膨張弁(膨張機構)
17 製氷冷媒弁
18 製氷蒸発器
19 冷水冷媒弁
20 冷水蒸発器
21 オーガ式製氷機(製氷機)
23 冷水水槽
25 庫内温度センサ(庫内温度検知手段)
26 製氷冷媒入口管温度センサ(製氷冷媒入口管温度検知手段)
30 冷媒冷却回路
31 冷水冷媒出口弁
32 冷水冷媒入口管温度センサ(冷水冷媒入口管温度検知手段)
40 冷媒冷却回路
41 製氷蒸発器冷却器
42 冷水ポンプ
43 水抜き弁
44 冷水循環路
45 製氷蒸発器温度センサ(製氷蒸発器温度検知手段)
50 冷媒冷却回路
51 内部熱交換器冷却器
52 内部熱交換器温度センサ(内部熱交換器温度検知手段)
54 冷水循環路
90 制御部(制御手段)
91 制御部(制御手段)
92 制御部(制御手段)
93 制御部(制御手段)
B アイスバンク
L 冷媒管路
W 冷却水
10 Refrigerant cooling circuit 11 Two-stage compressor (compressor)
12 Intermediate heat exchanger 13 Gas cooler (radiator)
14 Blower 15 Internal heat exchanger 16 Electronic expansion valve (expansion mechanism)
17 Ice making refrigerant valve 18 Ice making evaporator 19 Cold water refrigerant valve 20 Cold water evaporator 21 Auger type ice making machine (ice making machine)
23 Chilled water tank 25 Internal temperature sensor (Internal temperature detection means)
26 Ice making refrigerant inlet pipe temperature sensor (ice making refrigerant inlet pipe temperature detecting means)
30 Refrigerant Cooling Circuit 31 Chilled Water Refrigerant Outlet Valve 32 Chilled Water Refrigerant Inlet Tube Temperature Sensor (Cold Water Refrigerant Inlet Tube Temperature Detection Means)
40 Refrigerant Cooling Circuit 41 Ice Maker Evaporator Cooler 42 Chilled Water Pump 43 Drain Valve 44 Chilled Water Circulation Channel 45 Ice Maker Evaporator Temperature Sensor (Ice Maker Evaporator Temperature Detection Means)
50 Refrigerant Cooling Circuit 51 Internal Heat Exchanger Cooler 52 Internal Heat Exchanger Temperature Sensor (Internal Heat Exchanger Temperature Detection Means)
54 Chilled water circuit 90 Control unit (control means)
91 Control unit (control means)
92 Control unit (control means)
93 Control unit (control means)
B Ice bank L Refrigerant pipeline W Cooling water

Claims (5)

冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を超臨界圧力の状態で放熱させる放熱器と、前記放熱器から供給される冷媒を絞り膨張させる膨張機構と、前記膨張機構から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と、を有する冷媒冷却回路において、
製氷機および冷却水槽それぞれを独立して冷却可能な態様で並列接続させた製氷蒸発器および冷水蒸発器各々の冷媒の流入および停止をさせる製氷冷媒弁および冷水冷媒弁と、庫内温度を計測して温度信号を出力する庫内温度検知手段と、前記製氷蒸発器の冷媒入口管温度を計測して温度信号を出力する製氷冷媒入口管温度検知手段と、前記製氷冷媒弁および前記冷水冷媒弁を開閉制御する制御手段と、を備え、
前記制御手段は、前記製氷機を起動する際は、前記庫内温度検知手段および前記製氷冷媒入口管温度検知手段が出力する温度信号に基づいて、前記製氷冷媒弁および前記冷水冷媒弁を開閉制御し、前記冷水蒸発器に滞留している低温の冷媒で前記製氷蒸発器へ供給される冷媒を冷却することを特徴とする冷媒冷却回路。
A compressor that compresses the refrigerant, a radiator that dissipates the refrigerant supplied from the compressor in a supercritical pressure state, an expansion mechanism that squeezes and expands the refrigerant supplied from the radiator, and a supply from the expansion mechanism An evaporator for evaporating the refrigerant to be returned to the compressor, and a refrigerant cooling circuit comprising:
The ice-making and chilled water refrigerant valves that allow the refrigerant to flow in and out of the ice-making evaporator and the chilled water evaporator, which are connected in parallel in a manner that allows the ice maker and the cooling water tank to be independently cooled, and the internal temperature of the refrigerator are measured. An internal temperature detecting means for outputting a temperature signal, an ice making refrigerant inlet pipe temperature detecting means for measuring a refrigerant inlet pipe temperature of the ice making evaporator and outputting a temperature signal, the ice making refrigerant valve and the cold water refrigerant valve. Control means for controlling opening and closing,
When the ice making machine is started, the control means controls opening and closing of the ice making refrigerant valve and the cold water refrigerant valve based on temperature signals output from the internal temperature detecting means and the ice making refrigerant inlet pipe temperature detecting means. And the refrigerant | coolant cooling circuit characterized by cooling the refrigerant | coolant supplied to the said ice-making evaporator with the low-temperature refrigerant | coolant which has stayed in the said cold water evaporator.
前記冷水蒸発器の冷媒出口管に冷水冷媒出口弁を備え、冷媒を冷水蒸発器に貯留することを特徴とする請求項1に記載の冷媒冷却回路。   The refrigerant cooling circuit according to claim 1, wherein a refrigerant outlet pipe of the cold water evaporator is provided with a cold water refrigerant outlet valve, and the refrigerant is stored in the cold water evaporator. 前記製氷蒸発器を冷却する製氷蒸発器冷却器と、前記製氷蒸発器の冷媒管温度を計測して温度信号を出力する製氷蒸発器温度検知手段とを備え、当該製氷蒸発器温度検知手段が出力する温度信号に基づいて、前記冷却水槽に貯留している冷却水を前記製氷蒸発器冷却器に供給して前記製氷蒸発器を冷却することを特徴とする請求項1に記載の冷媒冷却回路。   An ice making evaporator cooler for cooling the ice making evaporator; and an ice making evaporator temperature detecting means for measuring a temperature of a refrigerant pipe of the ice making evaporator and outputting a temperature signal. The ice making evaporator temperature detecting means outputs 2. The refrigerant cooling circuit according to claim 1, wherein cooling water stored in the cooling water tank is supplied to the ice making evaporator cooler based on a temperature signal to cool the ice making evaporator. 前記圧縮機と前記膨張機構とを連通する冷媒管路周囲に、前記冷却水槽に貯留している冷却水を送水して前記冷媒管路を通流する冷媒を冷却することを特徴とする請求項1に記載の冷媒冷却回路。   The cooling water stored in the cooling water tank is sent around the refrigerant pipe that communicates the compressor and the expansion mechanism to cool the refrigerant flowing through the refrigerant pipe. The refrigerant cooling circuit according to 1. 前記冷媒は、二酸化炭素であることを特徴とする請求項1乃至4の何れかに記載の冷媒冷却回路。   The refrigerant cooling circuit according to claim 1, wherein the refrigerant is carbon dioxide.
JP2008186125A 2008-07-17 2008-07-17 Refrigerant cooling circuit Expired - Fee Related JP5024210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186125A JP5024210B2 (en) 2008-07-17 2008-07-17 Refrigerant cooling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186125A JP5024210B2 (en) 2008-07-17 2008-07-17 Refrigerant cooling circuit

Publications (2)

Publication Number Publication Date
JP2010025410A JP2010025410A (en) 2010-02-04
JP5024210B2 true JP5024210B2 (en) 2012-09-12

Family

ID=41731423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186125A Expired - Fee Related JP5024210B2 (en) 2008-07-17 2008-07-17 Refrigerant cooling circuit

Country Status (1)

Country Link
JP (1) JP5024210B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807902B2 (en) * 2011-06-22 2015-11-10 ケミカルグラウト株式会社 Heat exchange system
US9739519B2 (en) 2011-07-26 2017-08-22 Carrier Corporation Startup logic for refrigeration system
KR102676672B1 (en) * 2018-11-19 2024-06-20 엘지전자 주식회사 Ice maker and refrigerator
US20220268504A1 (en) * 2021-02-23 2022-08-25 True Manufacturing Co., Ltd. Ice maker

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333145A (en) * 1993-05-24 1994-12-02 Kubota Corp Refrigerating cycle of automatic vending machine
JP3053782B2 (en) * 1997-03-13 2000-06-19 サンデン株式会社 Vending machine cooling system
JP2007309579A (en) * 2006-05-18 2007-11-29 Fuji Electric Retail Systems Co Ltd Refrigerant circuit of beverage supply device
JP2008040657A (en) * 2006-08-03 2008-02-21 Matsushita Electric Ind Co Ltd Cup type beverage automatic vending machine

Also Published As

Publication number Publication date
JP2010025410A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5248190B2 (en) Beverage dispenser
JP2010175106A (en) Refrigerating apparatus
JP2006213345A (en) Beverage feeding apparatus
JP2008119282A (en) Beverage dispenser
JP5024210B2 (en) Refrigerant cooling circuit
JP2008101833A (en) Hot water tank for beverage supply device
JP5140398B2 (en) Refrigeration equipment
JP5338299B2 (en) Beverage supply equipment
JP5194619B2 (en) Cooling and heating device
JP5705070B2 (en) Cooling system
JP2010277225A (en) Beverage providing device
JP2002081772A (en) Refrigerant circuit and vending machine using the same
JP5458730B2 (en) Beverage supply equipment
JP2007309579A (en) Refrigerant circuit of beverage supply device
JP5901775B2 (en) Refrigeration equipment
JP2007293756A (en) Cup-type vending machine
JP2007303790A (en) Beer dispenser
JP4922843B2 (en) Cooling system
JP5219356B2 (en) Cold water supply device
JP2009144933A (en) Refrigerant circuit
JP4396457B2 (en) Cooling system
JP2010134509A (en) Vending machine
KR101799444B1 (en) Water cooler having a function of maintaining fixed temperature of cold water in high efficiency
JP2004176931A (en) Ice thermal storage refrigerating device with secondary carbon dioxide cooling medium
JP2006275384A (en) Drink supply device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5024210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees