JP2009127520A - Injector - Google Patents

Injector Download PDF

Info

Publication number
JP2009127520A
JP2009127520A JP2007303295A JP2007303295A JP2009127520A JP 2009127520 A JP2009127520 A JP 2009127520A JP 2007303295 A JP2007303295 A JP 2007303295A JP 2007303295 A JP2007303295 A JP 2007303295A JP 2009127520 A JP2009127520 A JP 2009127520A
Authority
JP
Japan
Prior art keywords
valve
pressure
back pressure
chamber
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007303295A
Other languages
Japanese (ja)
Other versions
JP4674603B2 (en
Inventor
Kenji Date
健治 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007303295A priority Critical patent/JP4674603B2/en
Priority to DE200810043985 priority patent/DE102008043985A1/en
Publication of JP2009127520A publication Critical patent/JP2009127520A/en
Application granted granted Critical
Publication of JP4674603B2 publication Critical patent/JP4674603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • F02M63/0029Valves characterised by the valve actuating means hydraulic using a pilot valve controlling a hydraulic chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0043Two-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To conduct stable close control without being influenced by the fluctuation of nozzle back pressure and improve the controllability of an injection amount with respect to a command pulse in an injector having a two-control valve structure. <P>SOLUTION: There is provided a hydraulic servo valve 4 comprising a valve 41 and a servo piston 42 formed integrally with the valve 41. The valve is disposed in a first back pressure chamber 6 arranged between a nozzle back pressure chamber 12 and a low pressure source 3. The servo piston has on its one end face side a volume chamber 8 communicating with a high pressure source and on the other end face side a second back pressure chamber 7 the pressure of which is controlled by a two-way electromagnetic valve 5. The hydraulic servo valve 4 is operated by the application of the hydraulic pressure of the second back pressure chamber 7 controlled by the two-way electromagnetic valve 5, the hydraulic pressure of the first back pressure chamber 6, and the hydraulic pressure of the volume chamber 8. The stable operation of the hydraulic servo valve is enabled by the application of the hydraulic pressure of one of the second back pressure chamber 7 and the volume chamber 8 in the same direction as the hydraulic pressure of the first back pressure chamber 6 without being influenced by the pressure fluctuation of the nozzle back pressure chamber 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はインジェクタに関し、特に燃料の噴射と停止とを切替えるノズルニードルの制御構造に関する。   The present invention relates to an injector, and more particularly to a nozzle needle control structure for switching between fuel injection and stoppage.

ディーゼルエンジン用のコモンレール式燃料噴射装置に用いられるインジェクタは、ノズルニードルの背面側にノズル背圧室を設け、制御弁にてノズル背圧室と低圧源の間の連通・遮断を切替えることで、ノズルニードルを昇降させて、噴射時期や噴射量を高度に制御している。また、制御弁に油圧サーボ弁を用い、サーボ弁に作用する油圧力を、ソレノイド等のアクチュエータと開閉弁を用いた他の制御弁により制御する2バルブ式のインジェクタが、特許文献1に提案されている。
特開2006−257874号公報
An injector used in a common rail fuel injection device for a diesel engine is provided with a nozzle back pressure chamber on the back side of the nozzle needle, and by switching between communication and blocking between the nozzle back pressure chamber and the low pressure source with a control valve, The nozzle needle is moved up and down to highly control the injection timing and the injection amount. Patent Document 1 proposes a two-valve injector that uses a hydraulic servo valve as a control valve and controls the hydraulic pressure acting on the servo valve by another control valve using an actuator such as a solenoid and an on-off valve. ing.
JP 2006-257874 A

特許文献1のインジェクタの主要部を図13(a)に示す。図中、ノズル背圧室101の圧力を低圧源に開放するための開放通路102へ至る通路の途中には、第1背圧室103が形成され、油圧サーボ弁を構成するサーボピストン104の弁部が配置されている。サーボピストン104の弁部は、第1背圧室103の上下面に対向して設けた高圧源側シート106または低圧源側シート105のいずれかに着座して、第1背圧室103に連通するノズル背圧室101の圧力を増減するようになっている。サーボピストン104には、弁部と反対側の端部に接して第2背圧室107が形成され、低圧源側シート105を閉鎖する方向に油圧力を作用させている。   The main part of the injector of Patent Document 1 is shown in FIG. In the drawing, a first back pressure chamber 103 is formed in the middle of the passage leading to the open passage 102 for releasing the pressure in the nozzle back pressure chamber 101 to the low pressure source, and the valve of the servo piston 104 constituting the hydraulic servo valve. The part is arranged. The valve portion of the servo piston 104 is seated on either the high pressure source side seat 106 or the low pressure source side seat 105 provided facing the upper and lower surfaces of the first back pressure chamber 103 and communicates with the first back pressure chamber 103. The pressure in the nozzle back pressure chamber 101 is increased or decreased. A second back pressure chamber 107 is formed on the servo piston 104 in contact with the end opposite to the valve portion, and oil pressure is applied in a direction to close the low pressure source side seat 105.

第2背圧室107の圧力は、ソレノイド108を駆動源とする開閉弁にて制御される。開閉弁は、低圧源に連通するポート109を開閉する弁体110を有し、ソレノイド108が弁体110と一体的に設けられたアーマチャ111を吸引すると、スプリング力に抗して弁体110がリフトする。これに伴い、第2背圧室107の圧力が低下して、サーボピストン104が高圧源側シート106を閉鎖する位置に移動し、ノズル背圧室101を低圧源側シート105に連通させる。ノズル背圧室101の圧力が開弁圧以下となると、ノズルニードルがリフトを開始して燃料が噴射される。   The pressure in the second back pressure chamber 107 is controlled by an on-off valve that uses a solenoid 108 as a drive source. The on-off valve has a valve body 110 that opens and closes a port 109 communicating with a low pressure source. When the solenoid 108 sucks an armature 111 provided integrally with the valve body 110, the valve body 110 resists the spring force. Lift. Along with this, the pressure in the second back pressure chamber 107 decreases, the servo piston 104 moves to a position where the high pressure source side sheet 106 is closed, and the nozzle back pressure chamber 101 communicates with the low pressure source side sheet 105. When the pressure in the nozzle back pressure chamber 101 becomes equal to or lower than the valve opening pressure, the nozzle needle starts to lift and fuel is injected.

この構成では、サーボピストン104の駆動力が油圧によって得られ、弁部のリフト量をソレノイド108の駆動力に依存することなく十分な大きさに設定することができるので、アクチュエータを小型化することができる。   In this configuration, the driving force of the servo piston 104 is obtained by hydraulic pressure, and the lift amount of the valve portion can be set to a sufficient size without depending on the driving force of the solenoid 108, so that the actuator can be downsized. Can do.

図13(b)、(c)に示すように、従来構成では、油圧サーボ弁に印加される圧力は、サーボピストン104の弁部が配置される第1背圧室103の油圧力と、開閉弁により制御される第2背圧室107の油圧力とがある。このうち第2背圧室107の油圧は、サーボピストン104が低圧源側シート105を閉鎖する方向に作用し(閉弁力)、第1背圧室103の油圧はこれを阻害する方向に作用する(阻害力)。すなわち、閉弁力(Fc)と阻害力(Fi)が1対1でつりあい、このつりあいが崩れる(Fc>Fi)ことで、サーボ弁の閉弁が開始する。   As shown in FIGS. 13B and 13C, in the conventional configuration, the pressure applied to the hydraulic servo valve is determined by the oil pressure in the first back pressure chamber 103 in which the valve portion of the servo piston 104 is arranged, and the opening and closing. And the oil pressure of the second back pressure chamber 107 controlled by a valve. Of these, the hydraulic pressure in the second back pressure chamber 107 acts in a direction in which the servo piston 104 closes the low pressure source side seat 105 (valve closing force), and the hydraulic pressure in the first back pressure chamber 103 acts in a direction that impedes this. Yes (inhibitory power). That is, the valve closing force (Fc) and the inhibition force (Fi) are balanced on a one-to-one basis, and when this balance is lost (Fc> Fi), the servo valve starts to close.

ところで、阻害力(Fi)となる第1背圧室103の油圧力は、ノズル背圧室101に連通し、ほぼ同じ圧力挙動を示す。ところが、ノズル背圧室101は、ノズルニードルの開弁およびその後のリフト挙動に応じて圧力が大きく変動するため、阻害力(Fi)が、この圧力変動の影響を受けて時間変動する。このため、油圧サーボ弁を閉制御する際、閉弁力(Fc)とのつりあい点が時間に応じて変化することになり、サーボピストン104の動作が不安定になりやすい。その結果、指令パルスに対する噴射量の制御性(直線応答性)が悪化し、エンジン気筒間のトルクばらつきやエミッションばらつきを生じるおそれがあった。   By the way, the oil pressure in the first back pressure chamber 103 which becomes the inhibition force (Fi) communicates with the nozzle back pressure chamber 101 and exhibits substantially the same pressure behavior. However, since the pressure of the nozzle back pressure chamber 101 varies greatly depending on the opening of the nozzle needle and the subsequent lift behavior, the inhibition force (Fi) fluctuates over time due to the influence of this pressure variation. For this reason, when the hydraulic servo valve is controlled to close, the balance point with the valve closing force (Fc) changes with time, and the operation of the servo piston 104 tends to become unstable. As a result, the controllability (linear responsiveness) of the injection amount with respect to the command pulse is deteriorated, and there is a possibility of causing torque variation and emission variation between engine cylinders.

本発明はこのような実情に鑑みなされたもので、アクチュエータを用いた開閉弁と油圧サーボ弁を備える構成において、開閉弁により第2背圧室の圧力を制御することで、ノズル背圧変動の影響を受けることなく、安定して、油圧サーボ弁の閉制御を可能とすること、その結果として、指令パルスに対する噴射量の制御性(直線応答性)を向上させ、エンジン気筒間のトルクばらつきやエミッションばらつきを低減することのできるインジェクタを提供することを目的とする。   The present invention has been made in view of such circumstances, and in a configuration including an on-off valve using an actuator and a hydraulic servo valve, the pressure of the second back pressure chamber is controlled by the on-off valve, so that the fluctuation of the nozzle back pressure can be reduced. Enables stable control of the hydraulic servo valve without being affected, and as a result, improves the controllability (linear response) of the injection amount with respect to the command pulse, It is an object of the present invention to provide an injector capable of reducing emission variation.

請求項1記載の発明では、燃料噴射用の噴孔を開閉するノズルニードルの背面側に設けられ、高圧源に連通してノズルニードルの背圧を発生するノズル背圧室と、
該ノズル背圧室と低圧源の間の連通・遮断を切替える第1の制御弁と、
該第1の制御弁を駆動する第2の制御弁と、を有するインジェクタにおいて、
上記第1の制御弁を、上記ノズル背圧室と低圧源の間に設けた第1背圧室に配置される弁部と、該弁部と一体に移動可能に設けられたサーボピストンを備え、該サーボピストンの一方の端面側に高圧源に連通する容積室を、他方の端面側に上記駆動手段にて圧力制御される第2背圧室を形成した油圧サーボ弁とする。
また、上記第2の制御弁は、アクチュエータにより駆動されて上記第2背圧室と上記低圧源との連通・遮断を切替える開閉弁であり、
上記油圧サーボ弁には、上記開閉弁により制御される上記第2背圧室の油圧力と、上記第1背圧室の油圧力および上記容積室の油圧力が作用し、かつ上記第1背圧室の油圧力と同一方向に、上記第2背圧室と上記容積室のうちいずれか一方の油圧力を作用させた構成とする。
該制御弁を駆動する駆動手段と、を有するインジェクタにおいて、
上記制御弁が、上記ノズル背圧室と低圧源の間に設けた第1背圧室に配置される弁部と、該弁部と一体に移動可能に設けられたサーボピストンを備え、該サーボピストンの一方の端面側に高圧源に連通する容積室を、他方の端面側に上記駆動手段にて圧力制御される第2背圧室を形成してなり、
上記駆動手段が、アクチュエータにより駆動されて上記第2背圧室と上記低圧源との連通・遮断を切替える開閉弁を備える。
上記サーボピストンと弁部は、この開閉弁により制御される上記第2背圧室の油圧力と、上記第1背圧室および上記容積室の油圧力との差圧で変位し、かつ上記第1背圧室の油圧力が作用する方向を、上記第2背圧室および上記容積室のいずれか一方の油圧力が作用する方向と一致させている。
In the first aspect of the present invention, a nozzle back pressure chamber that is provided on the back side of the nozzle needle that opens and closes the injection hole for fuel injection and that generates a back pressure of the nozzle needle in communication with a high pressure source;
A first control valve for switching communication / blocking between the nozzle back pressure chamber and the low pressure source;
An injector having a second control valve for driving the first control valve;
The first control valve includes a valve portion arranged in a first back pressure chamber provided between the nozzle back pressure chamber and a low pressure source, and a servo piston provided so as to be movable integrally with the valve portion. A volume servo chamber communicating with a high pressure source on one end face side of the servo piston is a hydraulic servo valve in which a second back pressure chamber whose pressure is controlled by the driving means is formed on the other end face side.
The second control valve is an on-off valve that is driven by an actuator to switch communication between the second back pressure chamber and the low pressure source.
The hydraulic servo valve is acted on by the oil pressure of the second back pressure chamber, the oil pressure of the first back pressure chamber, and the oil pressure of the volume chamber controlled by the on-off valve, and the first back pressure chamber. The oil pressure of any one of the second back pressure chamber and the volume chamber is applied in the same direction as the oil pressure of the pressure chamber.
An injector having drive means for driving the control valve;
The control valve includes a valve portion disposed in a first back pressure chamber provided between the nozzle back pressure chamber and a low pressure source, and a servo piston provided to be movable integrally with the valve portion. A volume chamber communicating with a high pressure source is formed on one end face side of the piston, and a second back pressure chamber whose pressure is controlled by the driving means is formed on the other end face side,
The driving means includes an on-off valve that is driven by an actuator to switch communication / blocking between the second back pressure chamber and the low pressure source.
The servo piston and the valve portion are displaced by a differential pressure between the oil pressure of the second back pressure chamber controlled by the on-off valve and the oil pressure of the first back pressure chamber and the volume chamber, and the first The direction in which the oil pressure of one back pressure chamber acts is made to coincide with the direction in which either one of the second back pressure chamber and the volume chamber acts.

上記構成において、開閉弁が開閉して第2背圧室の圧力を増減するのに伴い、油圧サーボ弁が第1背圧室、第2背圧室および容積室の油圧力の差圧で変位し、第1背圧室に配置される弁部がノズル背圧室と低圧源の間を連通または遮断する位置に切替えられる。ここで、ノズル背圧室に連通する第1背圧室の油圧力は、ノズルニードルのリフトに応じて変動し、弁部が低圧源を閉鎖する際の阻害力となるが、本発明では、阻害力と同一方向に、別の作用力として第2背圧室または容積室の油圧力を作用させるので、圧力変動の影響を緩和できる。したがって、油圧サーボ弁の動作を安定させ、指令パルスに対する噴射量の制御性を向上させて、エンジン気筒間のトルクばらつきやエミッションばらつきを低減することができる。   In the above configuration, as the on-off valve opens and closes to increase or decrease the pressure in the second back pressure chamber, the hydraulic servo valve is displaced by the differential pressure of the oil pressure in the first back pressure chamber, the second back pressure chamber, and the volume chamber. Then, the valve unit arranged in the first back pressure chamber is switched to a position where the nozzle back pressure chamber and the low pressure source communicate or are blocked. Here, the oil pressure in the first back pressure chamber communicating with the nozzle back pressure chamber fluctuates according to the lift of the nozzle needle, and becomes an impeding force when the valve portion closes the low pressure source. Since the oil pressure of the second back pressure chamber or the volume chamber acts as another acting force in the same direction as the inhibition force, the influence of pressure fluctuation can be mitigated. Therefore, it is possible to stabilize the operation of the hydraulic servo valve, improve the controllability of the injection amount with respect to the command pulse, and reduce the torque variation and the emission variation between the engine cylinders.

請求項2記載の発明では、上記第2背圧室は、上記開閉弁に至る通路とオリフィスを介して連通するとともに、他のオリフィスを介して高圧源と連通する構成とする。   According to a second aspect of the present invention, the second back pressure chamber communicates with a passage leading to the on-off valve via an orifice, and communicates with a high pressure source via another orifice.

具体的には、第2背圧室を高圧源および低圧源とオリフィスによって連通させ、低圧源側を開閉することで、容易に圧力制御することができる。開閉弁を開くと第2背圧室が低圧源に連通して圧力低下し、2つのオリフィスによる流入量と流出量のバランスする圧力で一定となる。開閉弁を閉じると高圧源からの流入のみとなり圧力上昇して安定する。   Specifically, the second back pressure chamber can be communicated with a high pressure source and a low pressure source through an orifice, and the pressure can be easily controlled by opening and closing the low pressure source side. When the on-off valve is opened, the second back pressure chamber communicates with the low pressure source and the pressure drops, and becomes constant at a pressure that balances the inflow and outflow by the two orifices. When the on-off valve is closed, only the inflow from the high pressure source becomes possible and the pressure rises and stabilizes.

請求項3記載の発明では、上記第1背圧室の対向する壁面に、低圧源に連通する低圧シートと高圧源に連通する高圧シートをそれぞれ設け、上記油圧サーボ弁を、上記開閉弁の駆動に伴い上記弁部が上記低圧シートおよび上記高圧シートのいずれか一方に着座して、上記ノズル背圧室を低圧源または高圧源に選択的に接続させる3方弁とする。   According to a third aspect of the present invention, a low-pressure sheet communicating with the low-pressure source and a high-pressure sheet communicating with the high-pressure source are respectively provided on the opposing wall surfaces of the first back pressure chamber, and the hydraulic servo valve is driven by the on-off valve. Accordingly, the valve section is seated on one of the low-pressure seat and the high-pressure seat to form a three-way valve that selectively connects the nozzle back pressure chamber to a low-pressure source or a high-pressure source.

具体的には、油圧サーボ弁を3方弁構造とし、第1背圧室に配置した弁部が位置切替えすることでノズル背圧室を高圧源または低圧源と連通させて、ノズルニードルの背圧を容易に制御することができる。   Specifically, the hydraulic servo valve has a three-way valve structure, and the position of the valve portion disposed in the first back pressure chamber is switched so that the nozzle back pressure chamber communicates with a high pressure source or a low pressure source and the back of the nozzle needle. The pressure can be easily controlled.

請求項4記載の発明では、上記第1背圧室の壁面に低圧源に連通する低圧シートを設け、上記油圧サーボ弁を、上記開閉弁の駆動に伴い上記弁部が上記低圧シートを開閉する2方弁とする。   According to a fourth aspect of the present invention, a low-pressure seat communicating with a low-pressure source is provided on the wall of the first back pressure chamber, and the valve portion opens and closes the low-pressure seat as the on-off valve is driven. Use a two-way valve.

具体的には、油圧サーボ弁を2方弁構造とし、第1背圧室に配置した弁部が低圧源を開閉することで、ノズル背圧室と低圧源の連通・遮断を切替え、ノズルニードルの背圧を制御することもできる。   Specifically, the hydraulic servo valve has a two-way valve structure, and the valve portion arranged in the first back pressure chamber opens and closes the low pressure source, thereby switching the communication between the nozzle back pressure chamber and the low pressure source. It is also possible to control the back pressure.

請求項5記載の発明では、上記サーボピストンは、上記弁部が配置される上記第1背圧室と同軸上に位置するシリンダ内に摺動自在に配置され、上記シリンダの上記弁部側の端部に上記第2背圧室を、他端側に上記容積室を設けて、上記第2背圧室の油圧力と上記容積室の油圧力を反対方向に作用させるとともに、
上記低圧シートを上記第1背圧室の上記サーボピストン側の壁面に設けて、上記弁部が上記低圧シートに着座する時に、上記第2背圧室の油圧力を上記第1背圧室の油圧力と同一方向に作用させる。
According to a fifth aspect of the present invention, the servo piston is slidably disposed in a cylinder located coaxially with the first back pressure chamber in which the valve portion is disposed, and is disposed on the valve portion side of the cylinder. The second back pressure chamber is provided at the end, the volume chamber is provided at the other end, and the oil pressure of the second back pressure chamber and the oil pressure of the volume chamber act in opposite directions,
The low pressure seat is provided on the servo piston side wall surface of the first back pressure chamber, and when the valve portion is seated on the low pressure seat, the oil pressure of the second back pressure chamber is set to the first back pressure chamber. Acts in the same direction as the oil pressure.

具体的には、サーボピストンと弁部を同軸上に一体的に設け、弁部に阻害力として作用する第1背圧室の油圧力と、サーボピストンに閉弁方向に作用する第2背圧室の油圧力が同一方向となるように配置することができる。これにより、第1背圧室の圧力変動の影響を小さくして、制御性を向上させる上記効果が得られる。   Specifically, the servo piston and the valve portion are integrally provided on the same axis, and the oil pressure in the first back pressure chamber acting as an obstruction force on the valve portion and the second back pressure acting on the servo piston in the valve closing direction. It can arrange | position so that the oil pressure of a chamber may become the same direction. Thereby, the effect of reducing the influence of the pressure fluctuation of the first back pressure chamber and improving the controllability can be obtained.

請求項6記載の発明では、上記サーボピストンは、上記弁部が配置される上記第1背圧室と同軸上に位置するシリンダ内に摺動自在に配置され、上記シリンダの上記弁部側の端部に上記容積室を、他端側に上記第2背圧室を設けて、上記第2背圧室の油圧力と上記容積室の油圧力を反対方向に作用させるとともに、
上記低圧シートを上記第1背圧室の上記サーボピストンと反対側の壁面に設けて、上記弁部が上記低圧シートに着座する時に、上記容積室の油圧力を上記第1背圧室の油圧力と同一方向に作用させる。
According to a sixth aspect of the present invention, the servo piston is slidably disposed in a cylinder located coaxially with the first back pressure chamber in which the valve portion is disposed, and is disposed on the valve portion side of the cylinder. The volume chamber is provided at the end, the second back pressure chamber is provided at the other end, and the oil pressure of the second back pressure chamber and the oil pressure of the volume chamber are applied in opposite directions,
When the low pressure seat is provided on the wall surface of the first back pressure chamber opposite to the servo piston and the valve portion is seated on the low pressure seat, the oil pressure in the volume chamber is changed to the oil in the first back pressure chamber. Act in the same direction as the pressure.

具体的には、サーボピストンと弁部を同軸上に一体的に設け、弁部に阻害力として作用する第1背圧室の油圧力と、安定した圧力の容積室の油圧力が同一方向となるように配置することができる。このようにしても、第1背圧室の圧力変動の影響を小さくして、制御性を向上させる上記効果が得られる。   Specifically, the servo piston and the valve part are integrally provided on the same axis, and the oil pressure of the first back pressure chamber acting as a blocking force on the valve part and the oil pressure of the volume chamber of stable pressure are in the same direction. Can be arranged as follows. Even if it does in this way, the said effect which makes the influence of the pressure fluctuation of a 1st back pressure chamber small, and improves controllability is acquired.

請求項7記載の発明では、上記アクチュエータが、上記開閉弁と一体に変位するアーマチャを吸引駆動するソレノイドとする。   According to a seventh aspect of the present invention, the actuator is a solenoid that sucks and drives an armature that is displaced integrally with the on-off valve.

具体的には、アクチュエータとしてソレノイドを用い、アーマチャとともに開閉弁を駆動して、低圧源への通路を開閉する構成とすることができる。   Specifically, a solenoid can be used as an actuator, and an open / close valve can be driven together with an armature to open and close a passage to a low pressure source.

(第1実施形態)
以下、本発明に基づくインジェクタについて図面により説明する。
図1は、本発明の第1実施形態におけるインジェクタの全体概略構成を示すブロック図、図2は、その具体的構成を示す主要部拡大図である。本発明のインジェクタは、例えば、コモンレール式の燃料噴射システムを備えたディーゼルエンジンに好適に使用される。コモンレールシステムにおいて、インジェクタは、エンジンの各気筒に1対1に対応して設けられ、ECUによる制御で、所定の期間にコモンレールが供給する燃料を噴射し、所望の運転状態を維持する。
(First embodiment)
Hereinafter, an injector according to the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an overall schematic configuration of an injector according to a first embodiment of the present invention, and FIG. 2 is an enlarged view of a main part showing a specific configuration thereof. The injector of the present invention is suitably used in, for example, a diesel engine equipped with a common rail fuel injection system. In the common rail system, the injectors are provided in a one-to-one correspondence with the cylinders of the engine, and the fuel supplied by the common rail is injected during a predetermined period under the control of the ECU to maintain a desired operation state.

図1において、インジェクタは、燃料噴射用の噴孔11を開閉するノズルニードル1を有し、その背面側に、高圧源2(コモンレール)から供給される燃料の圧力でノズルニードル1の背圧を発生するノズル背圧室12を設けている。ノズル背圧室12は、高圧源2に接続する一方で低圧源3(燃料タンク)と接続され、第1の制御弁となる3方弁構造の油圧サーボ弁4を介して、これらの間の連通・遮断を切替えるようになっている。油圧サーボ弁4は、第2の制御弁となる電磁2方弁5によって駆動される。高圧源2の燃料は、高圧ライン21からノズルニードル1の下半細径部周りに形成される燃料溜まり13を経由して、噴孔11に供給される。   In FIG. 1, the injector has a nozzle needle 1 that opens and closes an injection hole 11 for fuel injection, and the back pressure of the nozzle needle 1 is applied to the back side of the nozzle needle 1 by the pressure of fuel supplied from a high pressure source 2 (common rail). A nozzle back pressure chamber 12 is provided. The nozzle back pressure chamber 12 is connected to a high pressure source 2 while being connected to a low pressure source 3 (fuel tank), and a hydraulic servo valve 4 having a three-way valve structure serving as a first control valve is interposed between them. It is designed to switch between communication and disconnection. The hydraulic servo valve 4 is driven by an electromagnetic two-way valve 5 serving as a second control valve. The fuel of the high pressure source 2 is supplied from the high pressure line 21 to the nozzle hole 11 via the fuel reservoir 13 formed around the lower half narrow diameter portion of the nozzle needle 1.

油圧サーボ弁4は、切替位置によりノズル背圧室12を高圧源2および低圧源3のいずれかと連通させる弁部41と、該弁部41と一体に移動可能なサーボピストン42を備える。サーボピストン42は、一方の端面側(弁部41と反対側)に高圧ライン21と常時連通する容積室8を、他方の端面側(弁部41側)に第2背圧室7を有している。第2背圧室7は、第1オリフィス32を介して低圧ライン31と、第2オリフィス22を介して高圧ライン21と接続し、第1オリフィス32下流に設けた電磁2方弁5により、低圧源3との連通・遮断を切替えて、圧力を制御する。なお、油圧サーボ弁4と低圧源3との間には、第3オリフィス33が形成される。   The hydraulic servo valve 4 includes a valve portion 41 that allows the nozzle back pressure chamber 12 to communicate with either the high pressure source 2 or the low pressure source 3 at a switching position, and a servo piston 42 that can move integrally with the valve portion 41. The servo piston 42 has a volume chamber 8 that is always in communication with the high-pressure line 21 on one end surface side (opposite the valve portion 41), and a second back pressure chamber 7 on the other end surface side (valve portion 41 side). ing. The second back pressure chamber 7 is connected to the low pressure line 31 via the first orifice 32 and the high pressure line 21 via the second orifice 22, and is low pressure by the electromagnetic two-way valve 5 provided downstream of the first orifice 32. The pressure is controlled by switching between connection and disconnection with the source 3. A third orifice 33 is formed between the hydraulic servo valve 4 and the low pressure source 3.

図2に、第1実施形態におけるインジェクタの油圧サーボ弁4および電磁2方弁5の具体的構成例を示す。
インジェクタは、ノズルボディB1、ディスタンスピースB2、第1のバルブボディB3、第2のバルブボディB4、ソレノイドボディB5、およびリテーニングナットB6により、略丸棒状の全体形状を有する基体が構成される。ノズルボディB1、ディスタンスピースB2、第1のバルブボディB3、第2のバルブボディB4、ソレノイドボディB5は対向端面で当接し、リテーニングナットB6により互いに結合している。基体を構成する各ボディ部材には、内部に種々の凹所や孔が形成されて、これに構成部材が収容されるとともに、燃料の流路が形成される。
FIG. 2 shows a specific configuration example of the hydraulic servo valve 4 and the electromagnetic two-way valve 5 of the injector in the first embodiment.
In the injector, the nozzle body B1, the distance piece B2, the first valve body B3, the second valve body B4, the solenoid body B5, and the retaining nut B6 constitute a base body having a substantially round bar shape. The nozzle body B1, the distance piece B2, the first valve body B3, the second valve body B4, and the solenoid body B5 are in contact with each other at the opposing end surfaces and are connected to each other by a retaining nut B6. Each body member constituting the base body has various recesses and holes formed therein, in which the constituent members are accommodated and a fuel flow path is formed.

ノズルボディB1には、基体の軸方向に形成した縦孔に、ノズルニードル1が収容されている。ノズルニードル1は、その上端部がシリンダ14内に摺動自在に保持されて、ノズルニードル1上端面とシリンダ14内壁面およびディスタンスピースB2下端面とでノズル背圧室12を画成している。ノズルニードル1外周の空間は、燃料溜まり13となり、図示を略すノズルボディB1先端部の噴孔に燃料を供給する。ノズルニードル1は、外周に配置されるノズルスプリング15により、噴孔を閉鎖する着座方向に付勢されている。   In the nozzle body B1, the nozzle needle 1 is accommodated in a vertical hole formed in the axial direction of the base. The upper end of the nozzle needle 1 is slidably held in the cylinder 14, and the nozzle back pressure chamber 12 is defined by the upper end surface of the nozzle needle 1, the inner wall surface of the cylinder 14, and the lower end surface of the distance piece B2. . The space around the outer periphery of the nozzle needle 1 serves as a fuel reservoir 13 and supplies fuel to the nozzle hole at the tip of the nozzle body B1 (not shown). The nozzle needle 1 is urged in a seating direction for closing the nozzle hole by a nozzle spring 15 disposed on the outer periphery.

ディスタンスピースB2、第1のバルブボディB3、第2のバルブボディB4、ソレノイドボディB5を貫通して、高圧燃料通路23が形成され、その下端は燃料溜まり13に接続している。高圧燃料通路23は、図1の高圧源2に連通し高圧ライン21の一部をなすもので、ノズルニードル1が離座すると高圧燃料が噴孔から噴射される。   A high pressure fuel passage 23 is formed through the distance piece B 2, the first valve body B 3, the second valve body B 4, and the solenoid body B 5, and the lower end thereof is connected to the fuel reservoir 13. The high pressure fuel passage 23 communicates with the high pressure source 2 of FIG. 1 and forms a part of the high pressure line 21. When the nozzle needle 1 is separated, the high pressure fuel is injected from the injection hole.

ノズル背圧室12は、ディスタンスピースB2に貫設したオリフィス通路16にて、第1のバルブボディB3に設けた第1背圧室6と、常時連通している。油圧サーボ弁4は、第1背圧室6に弁部41を収容して、流路切替えを行う。第1背圧室6は、下面中央部にディスタンスピースB2を貫通して燃料溜まり13に連通する高圧ポート61が開口し、開口の周縁部を下シート(高圧シート)62としている。一方、高圧ポート61に対向する上面中央部には低圧ポート63が開口し、開口の周縁部に上シート(低圧シート)64を形成する。低圧ポート63は、第3オリフィス33および図1の低圧ライン31の一部をなす低圧通路34を介して、図1の低圧源3に連通している。   The nozzle back pressure chamber 12 is always in communication with the first back pressure chamber 6 provided in the first valve body B3 through an orifice passage 16 penetrating the distance piece B2. The hydraulic servo valve 4 accommodates the valve portion 41 in the first back pressure chamber 6 and performs flow path switching. In the first back pressure chamber 6, a high pressure port 61 that passes through the distance piece B <b> 2 and communicates with the fuel reservoir 13 is opened at the center of the lower surface, and a peripheral portion of the opening is a lower seat (high pressure seat) 62. On the other hand, a low pressure port 63 is opened at the center of the upper surface facing the high pressure port 61, and an upper sheet (low pressure sheet) 64 is formed at the periphery of the opening. The low pressure port 63 communicates with the low pressure source 3 of FIG. 1 via the third orifice 33 and a low pressure passage 34 that forms part of the low pressure line 31 of FIG.

油圧サーボ弁4の弁部41は略茸状で、上部円錐面が上シート64に着座すると、高圧ポート61が開放されてノズル背圧室12を高圧源2に連通させ、円柱状の下部底面が下シート62に着座すると、低圧ポート63が開放されてノズル背圧室12を低圧源3に連通させる。円柱状の下部周囲にはバルブスプリング43が配置されて、弁部41の上部テーパ面が上シート64に着座する方向に付勢している。   The valve portion 41 of the hydraulic servo valve 4 is substantially bowl-shaped, and when the upper conical surface is seated on the upper seat 64, the high-pressure port 61 is opened, and the nozzle back pressure chamber 12 is communicated with the high-pressure source 2 to form a cylindrical lower bottom surface. Is seated on the lower seat 62, the low pressure port 63 is opened, and the nozzle back pressure chamber 12 is communicated with the low pressure source 3. A valve spring 43 is disposed around the lower portion of the columnar shape, and the upper tapered surface of the valve portion 41 is biased in the direction in which the valve seat 41 is seated on the upper seat 64.

油圧サーボ弁4のサーボピストン42は、第2のバルブボディB4に設けたシリンダ44内に、大径ピストン部45を摺動可能に収容し、その下面から突出する軸部46が、第1のバルブボディB3の低圧ポート63内に延びて、弁部41の頂面に連結している。これにより弁部41とサーボピストン42は一体的に移動可能である。第2のバルブボディB4には、サーボピストン42の上端面側に、通路24にて高圧燃料通路23と常時連通する容積室8を形成し、下端面側に第2背圧室7が形成される。第2背圧室7は、第1オリフィス32を介して電磁2方弁5へ至る通路35に連通し、第2オリフィス22を介して高圧燃料通路23と常時連通する。第2背圧室7内には、スプリング47が配設されて、大径ピストン部45を容積室8側へ付勢している。   The servo piston 42 of the hydraulic servo valve 4 slidably accommodates a large-diameter piston portion 45 in a cylinder 44 provided in the second valve body B4, and a shaft portion 46 projecting from the lower surface thereof has a first piston 46. It extends into the low pressure port 63 of the valve body B3 and is connected to the top surface of the valve portion 41. Thereby, the valve part 41 and the servo piston 42 can move integrally. In the second valve body B4, a volume chamber 8 that always communicates with the high-pressure fuel passage 23 in the passage 24 is formed on the upper end surface side of the servo piston 42, and a second back pressure chamber 7 is formed on the lower end surface side. The The second back pressure chamber 7 communicates with a passage 35 that reaches the electromagnetic two-way valve 5 via the first orifice 32, and always communicates with the high-pressure fuel passage 23 via the second orifice 22. A spring 47 is disposed in the second back pressure chamber 7 to urge the large-diameter piston portion 45 toward the volume chamber 8 side.

電磁2方弁5は、ソレノイドボディB5に、アクチュエータとなるソレノイド51により駆動されるアーマチャ53および開閉弁52を収容してなる。開閉弁52は、ソレノイド51に対向するアーマチャ53と一体の軸状部とその下端部に保持される弁体を有し、弁体の平坦な下端面が、通路34に連通し第2のバルブボディB4の上端面中央に開口する低圧ポート36に対向位置している。低圧ポート36の周囲には、開閉弁52が着座する低圧シート37が設けられ、さらにその周囲をリング状に凹陥させて、低圧源3に連通する低圧通路31が形成される。開閉弁52は、円筒状のソレノイド51内空間に収容したスプリング54にて、低圧ポート36を閉鎖する方向に付勢される。ソレノイド51がアーマチャ53を吸引すると、これと一体の開閉弁52が引き上げられて、低圧ポート36を開放する。   The electromagnetic two-way valve 5 includes an armature 53 and an on-off valve 52 that are driven by a solenoid 51 serving as an actuator in a solenoid body B5. The on-off valve 52 has a shaft-like portion integral with the armature 53 facing the solenoid 51 and a valve body held at the lower end thereof, and the flat lower end surface of the valve body communicates with the passage 34 and is a second valve. Opposite the low pressure port 36 that opens to the center of the upper end surface of the body B4. A low-pressure seat 37 on which the on-off valve 52 is seated is provided around the low-pressure port 36, and the low-pressure passage 31 communicating with the low-pressure source 3 is formed by recessing the periphery thereof in a ring shape. The on-off valve 52 is urged in a direction to close the low-pressure port 36 by a spring 54 housed in a cylindrical solenoid 51 internal space. When the solenoid 51 sucks the armature 53, the open / close valve 52 integrated therewith is pulled up, and the low pressure port 36 is opened.

上記構成のインジェクタの作動と各背圧室の挙動を、図3、4を参照しながら説明する。
図1、2は、電磁2方弁5の非通電時の状態を示しており、開閉弁52は低圧シート37に着座して低圧ポート36を閉鎖する位置にある。第2背圧室7と低圧源3との間は遮断され、第2背圧室7は、第2オリフィス22および高圧燃料通路23を介して高圧源2から供給される高圧燃料により、高圧となっている。この時、第2背圧室7の油圧力とスプリングと47の付勢力が、サーボピストン42の大径ピストン部45の一方の面に、高圧源2に連通する容積室8の油圧力が大径ピストン部45の他方の面に作用し、第1背圧室6の油圧力とバルブスプリング43の付勢力が、弁部41に作用している。第1背圧室6の油圧力は第2背圧室7の油圧力と同一方向に作用し、容積室8の油圧力はこれらと反対方向に作用しており、これら作用力のつりあいで、油圧サーボ弁4は、弁部41が上シート64に着座して低圧通路34に至る低圧ポート63を閉鎖する位置に保持される。
The operation of the injector configured as described above and the behavior of each back pressure chamber will be described with reference to FIGS.
1 and 2 show a state in which the electromagnetic two-way valve 5 is not energized, and the on-off valve 52 is in a position to be seated on the low pressure seat 37 and close the low pressure port 36. The second back pressure chamber 7 and the low pressure source 3 are disconnected from each other, and the second back pressure chamber 7 has a high pressure by the high pressure fuel supplied from the high pressure source 2 via the second orifice 22 and the high pressure fuel passage 23. It has become. At this time, the oil pressure in the second back pressure chamber 7 and the biasing force of the spring 47 are large on the one surface of the large-diameter piston portion 45 of the servo piston 42 and the oil pressure in the volume chamber 8 communicating with the high-pressure source 2 is large. Acting on the other surface of the diameter piston portion 45, the hydraulic pressure of the first back pressure chamber 6 and the urging force of the valve spring 43 act on the valve portion 41. The oil pressure in the first back pressure chamber 6 acts in the same direction as the oil pressure in the second back pressure chamber 7, and the oil pressure in the volume chamber 8 acts in the opposite direction. The hydraulic servo valve 4 is held at a position where the valve portion 41 is seated on the upper seat 64 and the low pressure port 63 reaching the low pressure passage 34 is closed.

これを図3に状態(A)として示す。この状態では、弁部41が上シート64に着座し、下シート62から離座して高圧ポート61を開放するために、第1背圧室6は、燃料溜まり13および高圧燃料通路23を介して高圧源2と接続し、高圧となっている。第1背圧室6とオリフィス通路16を介して連通するノズル背圧室12も高圧となっており、図中に模式図で示すように、ノズル背圧室12の油圧力とノズルスプリング13の付勢力が閉弁方向に作用して、ノズルニードル1をノズルシート17に着座させる。   This is shown as state (A) in FIG. In this state, the first back pressure chamber 6 passes through the fuel reservoir 13 and the high-pressure fuel passage 23 so that the valve portion 41 is seated on the upper seat 64 and is separated from the lower seat 62 to open the high-pressure port 61. The high pressure source 2 is connected to the high pressure source. The nozzle back pressure chamber 12 communicating with the first back pressure chamber 6 via the orifice passage 16 is also at a high pressure. As shown schematically in the figure, the oil pressure in the nozzle back pressure chamber 12 and the nozzle spring 13 The urging force acts in the valve closing direction to seat the nozzle needle 1 on the nozzle seat 17.

この状態から、電磁2方弁5のソレノイド51に通電すると、アーマチャ53が吸引されて開閉弁52が低圧シート37から離座し、低圧ポート36を開放する。図4に示すように、第2背圧室7は、第1オリフィス32を介して低圧源3に至る低圧系と連通し、通路35、低圧ポート36、低圧通路34を経て、第2背圧室7から燃料が流出するのに伴い、圧力が徐々に低下する。第2背圧室7の圧力が所定の圧力(図中点線)まで低下すると、油圧サーボ弁4に作用する容積室8の油圧力と、第1背圧室6および第2背圧室7の油圧力とのつりあいが崩れ、弁部41は上シート64から離座して低圧ポート63を開放する。   From this state, when the solenoid 51 of the electromagnetic two-way valve 5 is energized, the armature 53 is sucked, the open / close valve 52 is separated from the low pressure seat 37, and the low pressure port 36 is opened. As shown in FIG. 4, the second back pressure chamber 7 communicates with the low pressure system that reaches the low pressure source 3 through the first orifice 32, and passes through the passage 35, the low pressure port 36, and the low pressure passage 34, and then passes through the second back pressure chamber 7. As the fuel flows out of the chamber 7, the pressure gradually decreases. When the pressure in the second back pressure chamber 7 decreases to a predetermined pressure (dotted line in the figure), the oil pressure in the volume chamber 8 acting on the hydraulic servo valve 4, the first back pressure chamber 6 and the second back pressure chamber 7 The balance with the oil pressure is lost, and the valve portion 41 is separated from the upper seat 64 to open the low pressure port 63.

その後も、第2背圧室7の圧力は低下を続ける。第2背圧室7は、上流の高圧系と第2オリフィス22を介して接続され、下流の低圧系と第1オリフィス32を介して接続されており、それぞれ第2背圧室7との圧力差と絞り径で定まる流量の出入りがバランスする圧力で一定となる。その一定となる圧力が、第2背圧室圧の安定圧(一定圧)よりも低くなるように、絞り径が設計されている。なお、油圧サーボ弁4のリフト時にサーボピストン42が第2背圧室7内の燃料を押し込み、圧力が一瞬上昇するが(図中の囲み部分)、油圧サーボ弁4のリフト量・質量がノズルニードル1に比べて非常に小さいことから、ほとんど無視できる。   Thereafter, the pressure in the second back pressure chamber 7 continues to decrease. The second back pressure chamber 7 is connected to the upstream high pressure system via the second orifice 22, and is connected to the downstream low pressure system via the first orifice 32. It becomes constant at the pressure that balances the flow of flow determined by the difference and the diameter of the throttle. The throttle diameter is designed so that the constant pressure is lower than the stable pressure (constant pressure) of the second back pressure chamber pressure. When the hydraulic servo valve 4 is lifted, the servo piston 42 pushes the fuel in the second back pressure chamber 7 and the pressure rises momentarily (the enclosed portion in the figure), but the lift amount / mass of the hydraulic servo valve 4 is the nozzle. Since it is very small compared to the needle 1, it can be almost ignored.

一方、図3に状態(B)として示すように、油圧サーボ弁4がリフトして、弁部41が下シート62に着座する位置に切替ると、低圧ポート63が開放される。第1背圧室6は、第3オリフィス33および低圧通路34を介して低圧源3に接続し、燃料が流出するために、徐々に圧力低下する。第1背圧室6およびこれと連通するノズル背圧室12の圧力が、ノズル開弁圧まで低下するとノズルニードル1がリフトを開始し、燃料が噴射される。   On the other hand, as shown in FIG. 3 as the state (B), when the hydraulic servo valve 4 is lifted and the valve portion 41 is switched to the position where it is seated on the lower seat 62, the low pressure port 63 is opened. The first back pressure chamber 6 is connected to the low pressure source 3 through the third orifice 33 and the low pressure passage 34, and the pressure gradually decreases because the fuel flows out. When the pressure in the first back pressure chamber 6 and the nozzle back pressure chamber 12 communicating with the first back pressure chamber 6 decreases to the nozzle opening pressure, the nozzle needle 1 starts to lift and fuel is injected.

ところが、この時、図示するように第1背圧室6の圧力が変動する。この理由は、次のように説明される。まず、第1背圧室6とノズル背圧室12は、管路で接続されており、ほぼ同じ圧力挙動を示す1つの部屋と考えられる。そしてノズルニードル1の開弁に伴い、ノズルニードル1を持上げる力が急激に上昇し、ノズルニードル1が上昇する。その慣性力とノズル背圧室12および第1背圧室6内の燃料の弾性(体積弾性係数)の影響で、ノズル背圧室12および第1背圧室6内の圧力は、変動(振動)することになる。時間経過に伴い、低圧系への流出量とニードル上昇による燃料押し込み量とがバランスすることで、変動(振動)は収まる。その時点で、圧力が一定値となる。   However, at this time, the pressure in the first back pressure chamber 6 varies as shown in the figure. The reason for this is explained as follows. First, the first back pressure chamber 6 and the nozzle back pressure chamber 12 are connected by a pipe line, and can be considered as one room exhibiting substantially the same pressure behavior. As the nozzle needle 1 is opened, the force for lifting the nozzle needle 1 is rapidly increased, and the nozzle needle 1 is raised. The pressure in the nozzle back pressure chamber 12 and the first back pressure chamber 6 fluctuates (vibrates) due to the inertial force and the elasticity (volume elastic modulus) of the fuel in the nozzle back pressure chamber 12 and the first back pressure chamber 6. ). As time passes, the fluctuation (vibration) is reduced by the balance between the amount of outflow to the low pressure system and the amount of fuel pushed in by the needle rise. At that time, the pressure becomes a constant value.

従来構成では、この圧力変動の影響で、状態(B)から再び状態(A)に切替え、噴射を停止する時につりあい点が変化して不安定となるが、本実施形態の構成では、容積室8を設けて補助力として作用させることで、圧力変動の影響を極力小さくすることができる。これについて、以下に説明する。   In the conventional configuration, due to the influence of the pressure fluctuation, the balance point changes and becomes unstable when switching from the state (B) to the state (A) again to stop the injection, but in the configuration of the present embodiment, the volume chamber By providing 8 and acting as an auxiliary force, the influence of pressure fluctuations can be minimized. This will be described below.

図5(a)は、図13(b)、(c)に示した従来の油圧サーボ弁に作用する力を示したもので、低圧源側シート105の閉弁力となる第2背圧室107の油圧力(図中下向きの矢印)に対して、阻害力となる第1背圧室103の圧力(図中上向きの矢印)が1対1でのつりあいで成立する。このため、圧力変動により力のバランス点が変化しやすく、油圧サーボ弁の閉弁開始が変動する。例えば、図6のA点挙動として示すように、第1背圧室103の圧力が大きく低下したところで、第2背圧室107の圧力とバランスすると、所望特性よりも早い時点で、油圧サーボ弁の弁部が低圧源側シート105に着座する閉位置へ移動し始める。このために、ノズルニードルが早期に下降を開始し、所望特性よりも噴射量が少なくなる。   FIG. 5A shows the force acting on the conventional hydraulic servo valve shown in FIGS. 13B and 13C, and the second back pressure chamber serving as the valve closing force of the low pressure source side seat 105 is shown. For the oil pressure 107 (downward arrow in the figure), the pressure (upward arrow in the figure) of the first back pressure chamber 103 that becomes an inhibition force is established by a one-to-one balance. For this reason, the force balance point is likely to change due to pressure fluctuation, and the valve closing start of the hydraulic servo valve fluctuates. For example, as shown as point A behavior in FIG. 6, when the pressure in the first back pressure chamber 103 is greatly reduced and the pressure in the second back pressure chamber 107 balances with the pressure in the second back pressure chamber 107, the hydraulic servo valve at a time earlier than desired characteristics. Starts to move to the closed position where the valve portion is seated on the low pressure source side seat 105. For this reason, the nozzle needle starts to descend early, and the injection amount becomes smaller than the desired characteristic.

逆に、図7のB点挙動として示すように、第1背圧室103の圧力が再上昇したところで、第2背圧室107の圧力とバランスすると、所望特性よりも遅い時点で、油圧サーボ弁の弁部が低圧源側シート105に着座する閉位置へ移動し始める。このために、ノズルニードルの下降開始が遅れ、所望特性よりも噴射量が多くなる。   Conversely, as shown as point B behavior in FIG. 7, when the pressure in the first back pressure chamber 103 rises again and balances with the pressure in the second back pressure chamber 107, the hydraulic servo is at a point later than the desired characteristic. The valve portion of the valve starts to move to the closed position where the valve portion is seated on the low pressure source side seat 105. For this reason, the lowering start of the nozzle needle is delayed, and the injection amount becomes larger than the desired characteristic.

これに対して、本実施形態では、図5(b)のように、低圧源3に至る上シート64の閉弁力となる第2背圧室7の油圧力が、阻害力となる第1背圧室6の圧力と同一方向に作用し(図中上向きの矢印)、これらと反対方向に、安定した圧力源である高圧源3に連通する容積室8からの油圧力が、補助力として作用している(図中下向きの矢印)。このように、阻害力と同一方向に別の作用力を作用させ、3つの作用力のつりあいで油圧サーボ弁4を駆動することで、阻害力の変動の影響を緩和できる。すなわち、図示するように、閉弁力+阻害力の和は、圧力の時間変動が小さくなっており、油圧サーボ弁4の閉弁開始点となる、補助力との力のバランス点が変動しにくくなる。   On the other hand, in the present embodiment, as shown in FIG. 5B, the oil pressure in the second back pressure chamber 7 that becomes the valve closing force of the upper seat 64 reaching the low pressure source 3 becomes the inhibition force. The oil pressure from the volume chamber 8 that acts in the same direction as the pressure in the back pressure chamber 6 (upward arrow in the figure) and communicates with the high pressure source 3 that is a stable pressure source in the opposite direction is an auxiliary force. It works (downward arrow in the figure). In this way, by exerting another acting force in the same direction as the inhibiting force and driving the hydraulic servo valve 4 by balancing the three acting forces, the influence of the fluctuation of the inhibiting force can be alleviated. That is, as shown in the figure, the sum of the valve closing force and the inhibition force has a small pressure fluctuation over time, and the balance point of the force with the auxiliary force that becomes the valve closing start point of the hydraulic servo valve 4 varies. It becomes difficult.

したがって、閉弁時期の変動が抑制されるので、図6、図7に示した所望特性が得られ、指令パルスに応じた噴射量の制御性増加の直線性が保持できる。その結果、エンジン気筒間のトルクばらつきやエミッションばらつきを防止して、燃料噴射性能を向上させることができる。   Accordingly, since fluctuations in the valve closing timing are suppressed, the desired characteristics shown in FIGS. 6 and 7 can be obtained, and the linearity of the increase in controllability of the injection amount according to the command pulse can be maintained. As a result, torque variation and emission variation between engine cylinders can be prevented and fuel injection performance can be improved.

(第2実施形態)
図8、9に本発明の第2実施形態になるインジェクタを示す。本実施形態は、第1実施形態の構成において、制御弁となる油圧サーボ弁4の一部を別の構成に変えたもので、第1実施形態と実質的に同じ作動をする部分には同じ番号を付している。以下、第1実施形態との相違点を中心に説明する。
(Second Embodiment)
8 and 9 show an injector according to a second embodiment of the present invention. In the present embodiment, a part of the hydraulic servo valve 4 serving as a control valve is changed to another configuration in the configuration of the first embodiment, and the same operation is performed on portions that perform substantially the same operation as the first embodiment. It is numbered. Hereinafter, the difference from the first embodiment will be mainly described.

図8において、インジェクタは、ノズル背圧室12と低圧源3との間の連通・遮断を切替える油圧サーボ弁4を、電磁2方弁5によって駆動し、ノズルニードル1のリフトを制御する。本実施形態では、油圧サーボ弁4の弁部41が、ノズル背圧室12を高圧源2または低圧源3と連通させる2位置3方弁であり、サーボピストン42は、弁部41側に高圧ライン21と常時連通する容積室8を、弁部41と反対側に第2背圧室7を有する構成となっている。第2背圧室7が、第1オリフィス32を介して低圧ライン31と、第2オリフィス22を介して高圧ライン21と接続し、第1オリフィス32下流に設けた電磁2方弁5により、圧力制御される構成は、第1実施形態と同様である。   In FIG. 8, the injector drives a hydraulic servo valve 4 that switches communication / blocking between the nozzle back pressure chamber 12 and the low pressure source 3 by an electromagnetic two-way valve 5 to control the lift of the nozzle needle 1. In the present embodiment, the valve portion 41 of the hydraulic servo valve 4 is a two-position three-way valve that allows the nozzle back pressure chamber 12 to communicate with the high pressure source 2 or the low pressure source 3, and the servo piston 42 has a high pressure on the valve portion 41 side. The volume chamber 8 that is always in communication with the line 21 is configured to have the second back pressure chamber 7 on the side opposite to the valve portion 41. The second back pressure chamber 7 is connected to the low pressure line 31 via the first orifice 32 and the high pressure line 21 via the second orifice 22, and the pressure is reduced by the electromagnetic two-way valve 5 provided downstream of the first orifice 32. The configuration to be controlled is the same as in the first embodiment.

図9は、第2実施形態におけるインジェクタの油圧サーボ弁4の具体的構成例を示す図である。インジェクタは、ノズルボディB1、ディスタンスピースB2、第1のバルブボディB3、第2のバルブボディB4およびソレノイドボディB5を、リテーニングナットB6により互いに結合し、ノズルニードル1等の構成部材を収容してなる。ノズルボディB1に設けられたノズル背圧室12は、ディスタンスピースB2を貫通するオリフィス通路16にて、第1のバルブボディB3に設けられた第1背圧室6と、常時連通している。   FIG. 9 is a diagram illustrating a specific configuration example of the hydraulic servo valve 4 of the injector according to the second embodiment. In the injector, the nozzle body B1, the distance piece B2, the first valve body B3, the second valve body B4, and the solenoid body B5 are coupled to each other by a retaining nut B6, and the components such as the nozzle needle 1 are accommodated. Become. The nozzle back pressure chamber 12 provided in the nozzle body B1 is always in communication with the first back pressure chamber 6 provided in the first valve body B3 through the orifice passage 16 penetrating the distance piece B2.

油圧サーボ弁4は、第1背圧室6に収容される弁部41と、第2のバルブボディB4に設けたシリンダ44内に大径ピストン部45が収容されるサーボピストン42を有している。第1背圧室6は、下面中央部に低圧ポート63が開口し、開口の周縁部に下シート(低圧シート)66を形成する。ディスタンスピースB2には、低圧ポート63に続く第3オリフィス33が形成され、低圧通路34を介して図1の低圧源3に連通している。一方、低圧ポート63に対向する上面中央部には、高圧ポート61が開口し、開口の周縁部にテーパ状の上シート(高圧シート)65が設けられる。高圧ポート61は、通路25を介して高圧燃料通路23に連通している。   The hydraulic servo valve 4 has a valve portion 41 accommodated in the first back pressure chamber 6 and a servo piston 42 in which a large-diameter piston portion 45 is accommodated in a cylinder 44 provided in the second valve body B4. Yes. In the first back pressure chamber 6, a low pressure port 63 is opened at the center of the lower surface, and a lower seat (low pressure seat) 66 is formed at the periphery of the opening. A third orifice 33 is formed in the distance piece B2 following the low pressure port 63, and communicates with the low pressure source 3 of FIG. On the other hand, a high pressure port 61 is opened at the center of the upper surface facing the low pressure port 63, and a tapered upper sheet (high pressure sheet) 65 is provided at the peripheral edge of the opening. The high pressure port 61 communicates with the high pressure fuel passage 23 via the passage 25.

油圧サーボ弁4の弁部41は、上下端部にテーパ面を有するブロック状で、上端テーパ面が上シート67に、底面が下シート66に対向している。サーボピストン42は、大径ピストン部45の下面から突出する軸部46が、高圧ポート61内に延びて、弁部41の頂面に連結し一体的に移動する。サーボピストン42が下降すると、弁部41が低圧側の下シート66に着座して、ノズル背圧室12と低圧ポート63との連通を遮断し、高圧ポート61に連通させる。サーボピストン42が上昇すると、弁部41が高圧側の上シート65に着座して高圧ポート61を閉鎖し、ノズル背圧室12と低圧ポート63とを連通させる。   The valve portion 41 of the hydraulic servo valve 4 has a block shape having tapered surfaces at the upper and lower end portions, and the upper end tapered surface faces the upper seat 67 and the bottom surface faces the lower seat 66. The servo piston 42 has a shaft portion 46 protruding from the lower surface of the large-diameter piston portion 45 extending into the high-pressure port 61 and is connected to the top surface of the valve portion 41 so as to move integrally. When the servo piston 42 is lowered, the valve portion 41 is seated on the lower seat 66 on the low pressure side, the communication between the nozzle back pressure chamber 12 and the low pressure port 63 is cut off, and the high pressure port 61 is communicated. When the servo piston 42 is raised, the valve portion 41 is seated on the upper seat 65 on the high pressure side to close the high pressure port 61, and the nozzle back pressure chamber 12 and the low pressure port 63 are communicated.

本実施形態においては、サーボピストン42の上端面側に第2背圧室7が形成され下端面側に、通路25にて高圧燃料通路23と常時連通する容積室8が形成される。第2背圧室7は、第2のバルブボディB4の上端面に開口する低圧ポート36と、第1オリフィス32を介して連通する一方、第2オリフィス22を介して高圧燃料通路23と常時連通している。第2背圧室7内には、スプリング47が配設されて、大径ピストン部45を容積室8側へ付勢している。低圧ポート36を開閉する電磁2方弁5は、第1実施形態と同様の構成である。   In the present embodiment, the second back pressure chamber 7 is formed on the upper end surface side of the servo piston 42, and the volume chamber 8 that is always in communication with the high-pressure fuel passage 23 is formed in the passage 25 on the lower end surface side. The second back pressure chamber 7 communicates with the low pressure port 36 opened at the upper end surface of the second valve body B4 via the first orifice 32, and always communicates with the high pressure fuel passage 23 via the second orifice 22. is doing. A spring 47 is disposed in the second back pressure chamber 7 to urge the large-diameter piston portion 45 toward the volume chamber 8 side. The electromagnetic two-way valve 5 that opens and closes the low-pressure port 36 has the same configuration as in the first embodiment.

上記構成のインジェクタの基本作動は、第1実施形態とほぼ同様であり、電磁2方弁5により第2背圧室7の圧力を増減して、油圧サーボ弁4のシート位置を切替え、燃料噴射を制御する。電磁2方弁5に通電しない図示の状態において、開閉弁52は低圧シート37に着座して低圧ポート36を閉鎖し、第2背圧室7と低圧源3との間は遮断される。第2背圧室7は、第2オリフィス22を介して高圧燃料通路23から供給される燃料により、高圧となっている。この油圧力とスプリング47の付勢力が、サーボピストン42の一端側(弁部41と反対側)に作用し、サーボピストン42の他端側(弁部41側)には、容積室8の圧力が作用している。また、第1背圧室6の圧力が弁部41に作用し、これらのつりあいで、弁部41を下シート66の着座位置に保持して低圧ポート63を閉鎖している。この時、容積室8および第1背圧室6は、高圧ポート61を介して高圧燃料通路23と連通し、いずれも高圧となっている。   The basic operation of the injector having the above configuration is almost the same as that of the first embodiment. The electromagnetic two-way valve 5 increases or decreases the pressure in the second back pressure chamber 7 to switch the seat position of the hydraulic servo valve 4 to thereby inject fuel. To control. In a state in which the electromagnetic two-way valve 5 is not energized, the on-off valve 52 is seated on the low pressure seat 37 to close the low pressure port 36 and the second back pressure chamber 7 and the low pressure source 3 are disconnected. The second back pressure chamber 7 is at a high pressure by the fuel supplied from the high pressure fuel passage 23 through the second orifice 22. This oil pressure and the urging force of the spring 47 act on one end side of the servo piston 42 (opposite the valve portion 41), and on the other end side of the servo piston 42 (valve portion 41 side) Is working. Further, the pressure in the first back pressure chamber 6 acts on the valve portion 41, and these balances hold the valve portion 41 at the seating position of the lower seat 66 and close the low pressure port 63. At this time, the volume chamber 8 and the first back pressure chamber 6 communicate with the high-pressure fuel passage 23 via the high-pressure port 61, and both are at high pressure.

電磁2方弁5のソレノイド51に通電すると、開閉弁52が低圧シート37から離座し、低圧ポート36を開放する。第2背圧室7が、低圧ポート36および第1オリフィス32を介して低圧源3に連通し、圧力が低下するために、油圧サーボ弁4に作用する力のつりあいが崩れる。そして、弁部41が下シート66から離座し低圧ポート63を開放し、次いで上シート65に着座して高圧ポート61を閉鎖する。   When the solenoid 51 of the electromagnetic two-way valve 5 is energized, the on-off valve 52 is separated from the low pressure seat 37 and the low pressure port 36 is opened. The second back pressure chamber 7 communicates with the low pressure source 3 via the low pressure port 36 and the first orifice 32, and the pressure decreases, so that the balance of the force acting on the hydraulic servo valve 4 is lost. Then, the valve portion 41 is separated from the lower seat 66 to open the low pressure port 63, and then is seated on the upper seat 65 to close the high pressure port 61.

すなわち、本実施形態では、図10(b)に示すように、油圧サーボ弁4に対し、低圧ポート63を閉鎖する方向に第2背圧室7の油圧力が作用し(閉弁力:図中下向きの矢印)、これと反対方向に、容積室8の油圧力(補助力)と第1背圧室6の油圧力(阻害力)が作用する(図中上向きの矢印)。この場合も、安定した圧力源である高圧源3に連通する容積室8からの油圧力(補助力)が、圧力変動しやすい第1背圧室6の油圧力(阻害力)と同一方向に作用しているので、図10(a)に示す従来構成に比べて、阻害力の変動の影響を緩和する効果が得られる。よって、阻害力+補助力の和と、閉弁力との力のバランス点が変動しにくく、油圧サーボ弁4の閉弁開始点の制御が安定するので、噴射制御性が向上する。   That is, in this embodiment, as shown in FIG. 10B, the hydraulic pressure of the second back pressure chamber 7 acts on the hydraulic servo valve 4 in the direction of closing the low pressure port 63 (valve closing force: FIG. In the opposite direction, the oil pressure (auxiliary force) of the volume chamber 8 and the oil pressure (inhibitory force) of the first back pressure chamber 6 act in the opposite direction (upward arrow in the figure). Also in this case, the oil pressure (auxiliary force) from the volume chamber 8 communicating with the high-pressure source 3 that is a stable pressure source is in the same direction as the oil pressure (inhibition force) of the first back pressure chamber 6 that is likely to fluctuate. As a result, the effect of mitigating the influence of the fluctuation of the inhibition force can be obtained as compared with the conventional configuration shown in FIG. Therefore, the balance point between the sum of the inhibition force + the assisting force and the valve closing force is unlikely to fluctuate, and the control of the valve closing start point of the hydraulic servo valve 4 is stabilized, so that the injection controllability is improved.

(第3実施形態)
図11、12に本発明の第3実施形態になるインジェクタを示す。本実施形態は、第2実施形態の構成において、制御弁となる油圧サーボ弁4を2方弁として構成したもので、第1、2実施形態と実質的に同じ作動をする部分には同じ番号を付している。以下、第2実施形態との相違点を中心に説明する。
(Third embodiment)
11 and 12 show an injector according to a third embodiment of the present invention. In the present embodiment, the hydraulic servo valve 4 serving as a control valve is configured as a two-way valve in the configuration of the second embodiment, and the same number is assigned to a portion that operates substantially the same as the first and second embodiments. Is attached. Hereinafter, the difference from the second embodiment will be mainly described.

図11において、インジェクタは、油圧サーボ弁4を電磁2方弁5によって駆動し、ノズルニードル1のリフトを制御する。本実施形態では、油圧サーボ弁4の弁部41が、ノズル背圧室12と低圧源3との間の連通・遮断を切替える2位置2方弁であり、ノズル背圧室12は第4オリフィス26を介して高圧源2に至る高圧ライン21と接続している。サーボピストン42は、弁部41側に高圧ライン21と常時連通する容積室8を、弁部41と反対側に第2背圧室7を有する構成とする。第2背圧室7が、第1オリフィス32を介して低圧ライン31と、第2オリフィス22を介して高圧ライン21と接続し、第1オリフィス32下流に設けた電磁2方弁5により、圧力制御される構成は、第1、2実施形態と同様である。   In FIG. 11, the injector controls the lift of the nozzle needle 1 by driving the hydraulic servo valve 4 by the electromagnetic two-way valve 5. In the present embodiment, the valve portion 41 of the hydraulic servo valve 4 is a two-position two-way valve that switches communication / shutoff between the nozzle back pressure chamber 12 and the low pressure source 3, and the nozzle back pressure chamber 12 has a fourth orifice. 26 is connected to a high-pressure line 21 leading to the high-pressure source 2 through 26. The servo piston 42 includes a volume chamber 8 that is always in communication with the high pressure line 21 on the valve portion 41 side, and a second back pressure chamber 7 on the opposite side of the valve portion 41. The second back pressure chamber 7 is connected to the low pressure line 31 via the first orifice 32 and the high pressure line 21 via the second orifice 22, and the pressure is reduced by the electromagnetic two-way valve 5 provided downstream of the first orifice 32. The configuration to be controlled is the same as in the first and second embodiments.

図12は、第3実施形態におけるインジェクタの油圧サーボ弁4の具体的構成例を示す図である。油圧サーボ弁4は、第1背圧室6に収容される弁部41と、第2のバルブボディB4に設けたシリンダ44内に収容される大径のサーボピストン42を有している。第1背圧室6は、下面中央部に低圧ポート63が開口し、開口の周縁部に下シート(低圧シート)66を形成する。ディスタンスピースB2には、低圧ポート63に続く第3オリフィス33が形成され、低圧通路34を介して図1の低圧源3に連通している。一方、第1背圧室6の側面には、高圧燃料通路23に連通する第4オリフィス26が開口して、高圧源2と常時連通している。   FIG. 12 is a diagram illustrating a specific configuration example of the hydraulic servo valve 4 of the injector according to the third embodiment. The hydraulic servo valve 4 has a valve portion 41 accommodated in the first back pressure chamber 6 and a large-diameter servo piston 42 accommodated in a cylinder 44 provided in the second valve body B4. In the first back pressure chamber 6, a low pressure port 63 is opened at the center of the lower surface, and a lower seat (low pressure seat) 66 is formed at the periphery of the opening. A third orifice 33 is formed in the distance piece B2 following the low pressure port 63, and communicates with the low pressure source 3 of FIG. On the other hand, a fourth orifice 26 communicating with the high pressure fuel passage 23 is opened on the side surface of the first back pressure chamber 6, and is always in communication with the high pressure source 2.

油圧サーボ弁4の弁部41は円柱状で、その上端が第2のバルブボディB4のシリンダ44内に延出してサーボピストン42の下面に直接連結し、一体的に移動可能となっている。サーボピストン42が下降すると、弁部41が低圧側の下シート66に着座して、ノズル背圧室12と低圧ポート63との連通を遮断する。サーボピストン42が上昇すると、弁部41が下シート66を開放し、ノズル背圧室12と低圧ポート63とを連通させる。   The valve portion 41 of the hydraulic servo valve 4 has a cylindrical shape, and its upper end extends into the cylinder 44 of the second valve body B4 and is directly connected to the lower surface of the servo piston 42 so that it can move integrally. When the servo piston 42 is lowered, the valve portion 41 is seated on the lower seat 66 on the low pressure side, and the communication between the nozzle back pressure chamber 12 and the low pressure port 63 is blocked. When the servo piston 42 is lifted, the valve portion 41 opens the lower seat 66 and allows the nozzle back pressure chamber 12 and the low pressure port 63 to communicate with each other.

本実施形態では、第2実施形態と同様に、サーボピストン42の上端面側に第2背圧室7が形成され下端面側に、通路25にて高圧燃料通路23と常時連通する容積室8が形成される。第2背圧室7は、第2のバルブボディB4の上端面に開口する低圧ポート36と第1オリフィス32を介して連通し、第2オリフィス22を介して高圧燃料通路23と常時連通する。第2背圧室7内には、スプリング47が配設されて、大径ピストン部45を容積室8側へ付勢している。   In the present embodiment, similarly to the second embodiment, the second back pressure chamber 7 is formed on the upper end surface side of the servo piston 42 and the volume chamber 8 is always in communication with the high pressure fuel passage 23 through the passage 25 on the lower end surface side. Is formed. The second back pressure chamber 7 communicates with the low pressure port 36 opened at the upper end surface of the second valve body B4 via the first orifice 32 and constantly communicates with the high pressure fuel passage 23 via the second orifice 22. A spring 47 is disposed in the second back pressure chamber 7 to urge the large-diameter piston portion 45 toward the volume chamber 8 side.

本実施形態においても、図10(b)に示すように、油圧サーボ弁4に対し、低圧ポート63を閉鎖する方向に第2背圧室7の油圧力が作用し(閉弁力)、これと反対方向に、容積室8の油圧力(補助力)と第1背圧室6の油圧力(阻害力)が作用する(図中上向きの矢印)する。よって、阻害力の変動の影響を緩和する効果が得られ、閉弁力との力のバランス点が変動しにくくなるので、油圧サーボ弁4の閉制御が安定し、噴射制御性が向上する。   Also in the present embodiment, as shown in FIG. 10B, the hydraulic pressure of the second back pressure chamber 7 acts on the hydraulic servo valve 4 in the direction of closing the low pressure port 63 (valve closing force). The oil pressure (auxiliary force) in the volume chamber 8 and the oil pressure (inhibition force) in the first back pressure chamber 6 act in the opposite direction (upward arrow in the figure). Therefore, an effect of reducing the influence of the fluctuation of the inhibition force is obtained, and the balance point of the force with the valve closing force is less likely to fluctuate, so that the closing control of the hydraulic servo valve 4 is stabilized and the injection controllability is improved.

以上のように、本発明によれば、油圧サーボ弁4に作用する力のうち、ノズル背圧室の圧力変動による影響を受けやすい方向の作用力を、2つの圧力室から供給することにより、一方が圧力変動した場合でも油圧サーボ弁4の動作を安定させることができる。したがって、指令パルスに対する噴射量の制御性(直線応答性)が向上し、ばらつきを低減して高性能なインジェクタが実現できる。   As described above, according to the present invention, among the forces acting on the hydraulic servo valve 4, by supplying the acting force in the direction that is easily influenced by the pressure fluctuation of the nozzle back pressure chamber from the two pressure chambers, Even when one of the pressures fluctuates, the operation of the hydraulic servo valve 4 can be stabilized. Therefore, the controllability (linear response) of the injection amount with respect to the command pulse is improved, and a high-performance injector can be realized with reduced variations.

本発明の第1実施形態になるインジェクタのブロック図である。It is a block diagram of the injector which becomes 1st Embodiment of this invention. 第1実施形態のインジェクタの主要部の断面図である。It is sectional drawing of the principal part of the injector of 1st Embodiment. 第1背圧室圧の挙動を説明するためのインジェクタ要部の模式図とタイミングチャートである。It is the schematic diagram and timing chart of an injector principal part for demonstrating the behavior of a 1st back pressure chamber pressure. 第2背圧室圧の挙動を説明するためのインジェクタ要部の模式図とタイミングチャートである。It is the schematic diagram and timing chart of an injector principal part for demonstrating the behavior of a 2nd back pressure chamber pressure. (a)は従来のインジェクタに作用する力を説明するための模式図と油圧力の変化を示す図であり、(b)は本発明のインジェクタに作用する力を説明するための模式図と油圧力の変化を示す図である。(A) is the schematic diagram for demonstrating the force which acts on the conventional injector, and a figure which shows the change of an oil pressure, (b) is the schematic diagram and oil for demonstrating the force which acts on the injector of this invention It is a figure which shows the change of a pressure. 第1背圧室圧の変動による噴射量のばらつきを所望特性と比較して示す図である。It is a figure which shows the dispersion | variation in the injection amount by the fluctuation | variation of a 1st back pressure chamber pressure compared with a desired characteristic. 第1背圧室圧の変動による噴射量のばらつきを所望特性と比較して示す図である。制御油としての燃料の流れを示す前記インジェクタと比較する従来のインジェクタの代表例の概略図である。It is a figure which shows the dispersion | variation in the injection amount by the fluctuation | variation of a 1st back pressure chamber pressure compared with a desired characteristic. It is the schematic of the typical example of the conventional injector compared with the said injector which shows the flow of the fuel as control oil. 本発明の第2実施形態になるインジェクタのブロック図である。It is a block diagram of the injector which becomes 2nd Embodiment of this invention. 第2実施形態のインジェクタの主要部の断面図である。It is sectional drawing of the principal part of the injector of 2nd Embodiment. 本発明の第2実施形態になるインジェクタの作動を説明する図である。It is a figure explaining the action | operation of the injector which becomes 2nd Embodiment of this invention. 本発明の第3実施形態になるインジェクタのブロック図である。It is a block diagram of the injector which becomes 3rd Embodiment of this invention. 第3実施形態になるインジェクタの主要部の断面図である。It is sectional drawing of the principal part of the injector which becomes 3rd Embodiment. (a)は従来のインジェクタの要部断面図、(b)は(a)の部分拡大図であり、(c)は従来のインジェクタの挙動を説明するためのタイミングチャートである。(A) is principal part sectional drawing of the conventional injector, (b) is the elements on larger scale of (a), (c) is a timing chart for demonstrating the behavior of the conventional injector.

符号の説明Explanation of symbols

1 ノズルニードル
11 噴孔
12 ノズル背圧室
13 燃料溜まり
14 シリンダ
15 ノズルスプリング
2 高圧源
21 高圧ライン
22 第1オリフィス
23 高圧燃料通路
24〜26 通路
3 低圧源
31 低圧ライン
32 第2オリフィス
33 第3オリフィス
34 低圧通路
35 通路
4 油圧サーボ弁(制御弁)
41 弁部
42 サーボピストン
43 バルブスプリング
44 シリンダ
45 大径ピストン部
47 スプリング
5 電磁2方弁
51 ソレノイド
52 開閉弁
53 アーマチャ
54 スプリング
6 第1背圧室
61 低圧ポート
62 上シート(低圧シート)
63 高圧ポート
64 下シート(高圧シート)
65 スプリング
7 第2背圧室
8 容積室
DESCRIPTION OF SYMBOLS 1 Nozzle needle 11 Injection hole 12 Nozzle back pressure chamber 13 Fuel pool 14 Cylinder 15 Nozzle spring 2 High pressure source 21 High pressure line 22 First orifice 23 High pressure fuel passages 24-26 Passage 3 Low pressure source 31 Low pressure line 32 Second orifice 33 Third Orifice 34 Low pressure passage 35 Passage 4 Hydraulic servo valve (control valve)
41 Valve part 42 Servo piston 43 Valve spring 44 Cylinder 45 Large diameter piston part 47 Spring 5 Electromagnetic two-way valve 51 Solenoid 52 On-off valve 53 Armature 54 Spring 6 First back pressure chamber 61 Low pressure port 62 Upper seat (low pressure seat)
63 High pressure port 64 Lower seat (high pressure seat)
65 Spring 7 Second back pressure chamber 8 Volume chamber

Claims (7)

燃料噴射用の噴孔を開閉するノズルニードルの背面側に設けられ、高圧源に連通してノズルニードルの背圧を発生するノズル背圧室と、
該ノズル背圧室と低圧源の間の連通・遮断を切替える第1の制御弁と、
該第1の制御弁を駆動する第2の制御弁と、を有するインジェクタにおいて、
上記第1の制御弁が、上記ノズル背圧室と低圧源の間に設けた第1背圧室に配置される弁部と、該弁部と一体に移動可能に設けられたサーボピストンを備え、該サーボピストンの一方の端面側に高圧源に連通する容積室を、他方の端面側に上記駆動手段にて圧力制御される第2背圧室を形成した油圧サーボ弁であり、
上記第2の制御弁が、アクチュエータにより駆動されて上記第2背圧室と上記低圧源との連通・遮断を切替える開閉弁であり、
上記油圧サーボ弁には、上記開閉弁により制御される上記第2背圧室の油圧力と、上記第1背圧室の油圧力および上記容積室の油圧力が作用し、かつ上記第1背圧室の油圧力と同一方向に、上記第2背圧室と上記容積室のうちいずれか一方の油圧力を作用させたことを特徴とするインジェクタ。
A nozzle back pressure chamber that is provided on the back side of the nozzle needle that opens and closes the nozzle hole for fuel injection, and that communicates with a high pressure source to generate the back pressure of the nozzle needle;
A first control valve for switching communication / blocking between the nozzle back pressure chamber and the low pressure source;
An injector having a second control valve for driving the first control valve;
The first control valve includes a valve portion disposed in a first back pressure chamber provided between the nozzle back pressure chamber and a low pressure source, and a servo piston provided to be movable integrally with the valve portion. A hydraulic servo valve in which a volume chamber communicating with a high pressure source is formed on one end face side of the servo piston, and a second back pressure chamber whose pressure is controlled by the driving means is formed on the other end face side;
The second control valve is an on-off valve that is driven by an actuator to switch communication / interruption between the second back pressure chamber and the low pressure source;
The hydraulic servo valve is acted on by the oil pressure of the second back pressure chamber, the oil pressure of the first back pressure chamber, and the oil pressure of the volume chamber controlled by the on-off valve, and the first back pressure chamber. An injector characterized in that the oil pressure of one of the second back pressure chamber and the volume chamber is applied in the same direction as the oil pressure of the pressure chamber.
上記第2背圧室は、上記開閉弁に至る通路とオリフィスを介して連通するとともに、他のオリフィスを介して高圧源と連通する請求項1記載のインジェクタ。   The injector according to claim 1, wherein the second back pressure chamber communicates with a passage leading to the on-off valve via an orifice and communicates with a high pressure source via another orifice. 上記第1背圧室の対向する壁面に、低圧源に連通する低圧シートと高圧源に連通する高圧シートをそれぞれ設け、上記油圧サーボ弁を、上記開閉弁の駆動に伴い上記弁部が上記低圧シートおよび上記高圧シートのいずれか一方に着座して、上記ノズル背圧室を低圧源または高圧源に選択的に接続させる3方弁とした請求項1または2記載のインジェクタ。   A low-pressure sheet communicating with a low-pressure source and a high-pressure sheet communicating with a high-pressure source are respectively provided on opposite wall surfaces of the first back pressure chamber, and the hydraulic servo valve is connected to the valve portion when the on-off valve is driven. 3. The injector according to claim 1, wherein the injector is a three-way valve that is seated on one of the seat and the high-pressure seat to selectively connect the nozzle back pressure chamber to a low-pressure source or a high-pressure source. 上記第1背圧室の壁面に低圧源に連通する低圧シートを設け、上記油圧サーボ弁を、上記開閉弁の駆動に伴い上記弁部が上記低圧シートを開閉する2方弁とした請求項1または2記載のインジェクタ。   2. A low-pressure seat communicating with a low-pressure source is provided on a wall surface of the first back pressure chamber, and the hydraulic servo valve is a two-way valve that opens and closes the low-pressure seat as the valve is driven. Or the injector of 2. 上記サーボピストンは、上記弁部が配置される上記第1背圧室と同軸上に位置するシリンダ内に摺動自在に配置され、上記シリンダの上記弁部側の端部に上記第2背圧室を、他端側に上記容積室を設けて、上記第2背圧室の油圧力と上記容積室の油圧力を反対方向に作用させるとともに、
上記低圧シートを上記第1背圧室の上記サーボピストン側の壁面に設けて、上記弁部が上記低圧シートに着座する時に、上記第2背圧室の油圧力を上記第1背圧室の油圧力と同一方向に作用させる請求項3または4記載のインジェクタ。
The servo piston is slidably disposed in a cylinder located coaxially with the first back pressure chamber in which the valve portion is disposed, and the second back pressure is provided at an end of the cylinder on the valve portion side. The chamber is provided with the volume chamber on the other end side, and the oil pressure of the second back pressure chamber and the oil pressure of the volume chamber act in opposite directions,
The low pressure seat is provided on the servo piston side wall surface of the first back pressure chamber, and when the valve portion is seated on the low pressure seat, the oil pressure of the second back pressure chamber is set to the first back pressure chamber. The injector according to claim 3 or 4, wherein the injector acts in the same direction as the oil pressure.
上記サーボピストンは、上記弁部が配置される上記第1背圧室と同軸上に位置するシリンダ内に摺動自在に配置され、上記シリンダの上記弁部側の端部に上記容積室を、他端側に上記第2背圧室を設けて、上記第2背圧室の油圧力と上記容積室の油圧力を反対方向に作用させるとともに、
上記低圧シートを上記第1背圧室の上記サーボピストンと反対側の壁面に設けて、上記弁部が上記低圧シートに着座する時に、上記容積室の油圧力を上記第1背圧室の油圧力と同一方向に作用させる請求項3または4記載のインジェクタ。
The servo piston is slidably disposed in a cylinder located coaxially with the first back pressure chamber in which the valve portion is disposed, and the volume chamber is provided at an end of the cylinder on the valve portion side. The second back pressure chamber is provided on the other end side, and the oil pressure of the second back pressure chamber and the oil pressure of the volume chamber act in opposite directions,
When the low pressure seat is provided on the wall surface of the first back pressure chamber opposite to the servo piston and the valve portion is seated on the low pressure seat, the oil pressure in the volume chamber is changed to the oil in the first back pressure chamber. The injector according to claim 3 or 4, wherein the injector is applied in the same direction as the pressure.
上記アクチュエータが、上記開閉弁と一体に変位するアーマチャを吸引駆動するソレノイドである請求項1ないし6いずれか記載のインジェクタ。   7. The injector according to claim 1, wherein the actuator is a solenoid that sucks and drives an armature that is displaced integrally with the on-off valve.
JP2007303295A 2007-11-22 2007-11-22 Injector Expired - Fee Related JP4674603B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007303295A JP4674603B2 (en) 2007-11-22 2007-11-22 Injector
DE200810043985 DE102008043985A1 (en) 2007-11-22 2008-11-21 Injector for use in injector system of diesel engine of vehicle, has servo valve, which produces and breaks connection between nozzle counter pressure chamber and low-pressure source and is controlled by on-/off-valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007303295A JP4674603B2 (en) 2007-11-22 2007-11-22 Injector

Publications (2)

Publication Number Publication Date
JP2009127520A true JP2009127520A (en) 2009-06-11
JP4674603B2 JP4674603B2 (en) 2011-04-20

Family

ID=40577253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007303295A Expired - Fee Related JP4674603B2 (en) 2007-11-22 2007-11-22 Injector

Country Status (2)

Country Link
JP (1) JP4674603B2 (en)
DE (1) DE102008043985A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK177456B1 (en) * 2011-06-27 2013-06-17 Man Diesel & Turbo Deutschland A fuel valve for large turbocharged two stroke diesel engines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257874A (en) * 2004-04-30 2006-09-28 Denso Corp Injector
JP2007506888A (en) * 2003-07-24 2007-03-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303295A (en) 2006-05-09 2007-11-22 Hino Motors Ltd Method and device for controlling turbo compound engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506888A (en) * 2003-07-24 2007-03-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection device
JP2006257874A (en) * 2004-04-30 2006-09-28 Denso Corp Injector

Also Published As

Publication number Publication date
DE102008043985A1 (en) 2009-05-28
JP4674603B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP2006257874A (en) Injector
JP4793315B2 (en) Fuel injection device
JP2001355534A (en) Fuel injection valve
JP2008309015A (en) Fuel injection control device for internal combustion engine
EP1837515A1 (en) Damping arrangement for a fuel injector
US7568634B2 (en) Injection nozzle
JP6015398B2 (en) Fuel injection valve
JP2016050564A (en) Fuel injection valve
JP4674603B2 (en) Injector
JP4023804B2 (en) Injector for internal combustion engine
JP6376988B2 (en) Fuel injection valve
JP4107277B2 (en) Fuel injection device for internal combustion engine
JP2002349383A (en) Fuel injection valve
JP2008202417A (en) Fuel injection control device of internal combustion engine
JP4670878B2 (en) Control valves and injectors
JP2007205324A (en) Fuel injection valve
JP2002221117A (en) Fuel injection valve
JP2004176656A (en) Fuel injection valve
JP5002023B2 (en) Fuel injector with coupler
JP4218630B2 (en) Fuel injection device for internal combustion engine
JP2009041508A (en) Fuel injection nozzle
JP2016050561A (en) Fuel injection valve
JP4227965B2 (en) Electromagnetic control fuel injection device
JP3903927B2 (en) Injector
JP2006194192A (en) Control valve and fuel injection valve provided with control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110110

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20140204

LAPS Cancellation because of no payment of annual fees