JP2009126142A - Tire vulcanizing mold, and pneumatic tire which is manufactured by tire vulcanizing mold - Google Patents

Tire vulcanizing mold, and pneumatic tire which is manufactured by tire vulcanizing mold Download PDF

Info

Publication number
JP2009126142A
JP2009126142A JP2007306005A JP2007306005A JP2009126142A JP 2009126142 A JP2009126142 A JP 2009126142A JP 2007306005 A JP2007306005 A JP 2007306005A JP 2007306005 A JP2007306005 A JP 2007306005A JP 2009126142 A JP2009126142 A JP 2009126142A
Authority
JP
Japan
Prior art keywords
tire
mold
lug groove
tread
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007306005A
Other languages
Japanese (ja)
Other versions
JP5371231B2 (en
Inventor
Yasuta Abe
康太 阿部
Teruo Shinto
照雄 新堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007306005A priority Critical patent/JP5371231B2/en
Publication of JP2009126142A publication Critical patent/JP2009126142A/en
Application granted granted Critical
Publication of JP5371231B2 publication Critical patent/JP5371231B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce a center slippage in a tire for which excavated grooves are formed before the vulcanization. <P>SOLUTION: At a starting point M, the height J of a frame 41 for a lower lug groove in a lower mold 38 starts becoming larger than the height H on the internal section in the axial direction of the frame 41 for the lower lug groove. The starting point M is made to locate at a position being away to the outside in the axial direction by 0.90 times or more of a distance L from the center C in the axial direction of a cavity, and therefore, the summit section 41a of the frame 41 for the lower lug groove, which is located on the outside in the axial direction more than the summit position B corresponding to the starting point M and greatly tilts to the axial direction, moves downward from the conventional position. Thus, the unvulcanized tire can be more pushed in downward by the distance by which the summit section 41a has moved downward from the conventional position. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、空気入りタイヤのトレッド部にラグ溝を成形するラグ溝用骨がトレッド部型付け面に設けられたタイヤ加硫モールドおよび該タイヤ加硫モールドにより製造された空気入りタイヤに関する。     The present invention relates to a tire vulcanization mold in which a lug groove bone for forming a lug groove in a tread portion of a pneumatic tire is provided on a tread portion molding surface, and a pneumatic tire manufactured by the tire vulcanization mold.

従来のタイヤ加硫モールドとしては、例えば以下の特許文献1に記載されているようなものが知られている。
特開2001−105511号公報
As conventional tire vulcanization molds, for example, those described in Patent Document 1 below are known.
JP 2001-105511 A

このものは、トレッド部型付け面に略軸方向に延びるラグ溝用骨がそれぞれ設けられた上、下モールドから構成され、未加硫タイヤのトレッド部外表面でタイヤ赤道の両側にそれぞれ形成された掘削溝に前記ラグ溝用骨を挿入した後、加硫を施すことで空気入りタイヤのトレッド部にラグ溝を成形するようにしたものである。   This is provided with lug groove bones extending substantially in the axial direction on the tread portion molding surface, and is composed of a lower mold, and is formed on both sides of the tire equator on the outer surface of the tread portion of the unvulcanized tire. After inserting the lug groove bone into the excavation groove, the lug groove is formed in the tread portion of the pneumatic tire by vulcanization.

ここで、前述した各ラグ溝は軸方向外端がサイドウォール部の外表面でその半径方向外端部に開口するが、このとき、前記ラグ溝の深さがいずれの位置においても一定であると、トレッドの体積が大となってタイヤ重量が増大するとともに、ショルダー部での放熱性が悪化する。また、この場合にはラグ溝のサイドウォール部側開口に、ラグ溝の溝底とサイドウォール部の外表面とによりエッジが成形されるが、ゴムシートを複数層積層することでトレッドを構成しているときには、前記エッジ部において前述のゴムシートの延在方向が急激に変化し、この結果、ゴムシートに剥がれ、浮きが生じてエア入り、ベアーが生じることがある。このような事態を改善するため、従来においては、ラグ溝の深さを軸方向外端部において徐々に深くし、タイヤ加硫モールドで考えれば、ラグ溝用骨の高さを軸方向外端部において徐々に高くしていた。   Here, each of the lug grooves described above has an outer end in the axial direction that opens to the outer end in the radial direction on the outer surface of the sidewall portion. At this time, the depth of the lug groove is constant at any position. And the volume of a tread will become large and a tire weight will increase, and the heat dissipation in a shoulder part will deteriorate. In this case, an edge is formed in the opening on the side wall portion side of the lug groove by the groove bottom of the lug groove and the outer surface of the side wall portion. A tread is formed by laminating a plurality of rubber sheets. When this occurs, the extending direction of the rubber sheet changes abruptly at the edge portion, and as a result, the rubber sheet may be peeled off, floated, and may enter air and bear. In order to improve such a situation, conventionally, the depth of the lug groove is gradually increased at the axially outer end, and considering the tire vulcanization mold, the height of the lug groove bone is set to the axially outer end. It gradually increased in the department.

ここで、従来においては、ラグ溝の溝底とサイドウォール部の外表面とを単純になだらかに変化する曲面で繋げばよいと考えてタイヤ(タイヤ加硫モールド)の設計を行っていたため、ラグ溝用骨の高さがラグ溝用骨の軸方向内側部における高さより大となり始めるトレッド部型付け面上での開始点は、タイヤ加硫モールドの閉止時におけるタイヤ加硫モールドのキャビティの軸方向中央から上、下モールドのトレッド部型付け面の軸方向外側端までの軸方向距離をLとしたとき、前記キャビティの軸方向中央から前記距離Lの0.82〜0.88倍だけ軸方向外側に離れた位置に位置していた。   Here, in the past, tires (tire vulcanization molds) were designed by simply thinking that the groove bottom of the lug groove and the outer surface of the sidewall portion should be connected with a gently changing curved surface. The starting point on the tread part molding surface where the height of the groove bone begins to be larger than the height at the axially inner side of the lug groove bone is the axial direction of the cavity of the tire vulcanization mold when the tire vulcanization mold is closed When the axial direction distance from the center to the axially outer end of the tread portion molding surface of the lower mold is L, a position that is 0.82 to 0.88 times as long as the distance L from the axial center of the cavity. Was located at.

しかしながら、このような従来のタイヤ加硫モールドにあっては、前述のような位置に開始点が位置しているため、未加硫タイヤを下モールドのラグ溝用骨と掘削溝とを合致させながら下モールド上に載置すると、図6に示すように、開始点Mに対応するラグ溝用骨11の頂上位置Bより軸方向外側に位置し軸方向に対し大きく傾斜したラグ溝用骨11の頂上部12に、掘削溝13の同様に大きく傾斜した溝底14が当接して、ラグ溝用骨11が掘削溝13内に充分に挿入されず、この結果、タイヤ加硫モールド15と未加硫タイヤ16との間に軸方向のセンターずれが生じ、即ち、未加硫タイヤ16のタイヤ赤道がタイヤ加硫モールド15のキャビティ17の軸方向中央Cから上方に多少浮き上がっていた。     However, in such a conventional tire vulcanization mold, since the starting point is located at the position as described above, the unvulcanized tire is aligned with the lag groove bone of the lower mold and the excavation groove. However, when it is placed on the lower mold, as shown in FIG. 6, the lug groove bone 11 is located on the outer side in the axial direction from the top position B of the lug groove bone 11 corresponding to the start point M and is greatly inclined with respect to the axial direction. Similarly, the groove bottom 14 which is greatly inclined as the excavation groove 13 comes into contact with the top portion 12 of the excavation groove 13 so that the lug groove bone 11 is not sufficiently inserted into the excavation groove 13. An axial misalignment occurred between the vulcanized tire 16 and the tire equator of the unvulcanized tire 16 slightly lifted upward from the axial center C of the cavity 17 of the tire vulcanized mold 15.

その後、タイヤ加硫モールドを閉止すると、未加硫タイヤは上モールドによって下方に若干押し込まれるものの、加硫済みの空気入りタイヤに許容値を超えるセンターずれが残留することがあり、トレッドゲージの分布に大きな不均一が生じるという課題があった。特に、ベルト層に埋設された非伸張性補強コードのタイヤ赤道に対する傾斜角が小さい(8度以下の)場合、および/または、未加硫タイヤがシェーピングユニットに装着されているような場合には、タイヤ加硫モールド内での未加硫タイヤの拡張率を非常に小さく(4%以下と)せざるを得ないため、前述の課題がより顕著となっていた。   After that, when the tire vulcanization mold is closed, the unvulcanized tire is slightly pushed downward by the upper mold, but the center deviation exceeding the allowable value may remain in the vulcanized pneumatic tire, and the distribution of the tread gauge There was a problem that a large non-uniformity occurred. Especially when the inclination angle of the non-extensible reinforcement cord embedded in the belt layer with respect to the tire equator is small (less than 8 degrees) and / or when an unvulcanized tire is mounted on the shaping unit Since the expansion rate of the unvulcanized tire in the tire vulcanization mold has to be very small (4% or less), the above-described problem has become more prominent.

このような課題を解決するため、例えば、未加硫タイヤに形成される掘削溝の溝深さを深くして前述したラグ溝用骨と掘削溝との当接を回避することも考えられるが、このようにすると、トレッドがベースゴムとキャップゴムとの2層構造であるときには、ベースゴムがラグ溝の溝底に露出してしまい、また、掘削量の増加により減少したトレッドのゴム量は未加硫タイヤにおけるトレッドのゴムゲージを厚くすることで対応せざるを得ないため、未加硫タイヤのトレッド部外表面が加硫モールドのトレッド部型付け面に接触してタイヤ加硫モールドと未加硫タイヤとの間にほぼ同量のセンターずれがやはり生じてしまい、現実的な解決手段とは言い難いものであった。   In order to solve such a problem, for example, it is conceivable to increase the depth of the excavation groove formed in the unvulcanized tire to avoid the contact between the lug groove bone and the excavation groove. In this way, when the tread has a two-layer structure of the base rubber and the cap rubber, the base rubber is exposed at the groove bottom of the lug groove, and the amount of rubber of the tread that has decreased due to the increase in the amount of excavation is Since it is unavoidable to increase the rubber gauge of the tread in the unvulcanized tire, the outer surface of the tread portion of the unvulcanized tire contacts the tread surface of the vulcanized mold and the tire vulcanized mold and The same amount of misalignment between the tires and the sulfur tires still occurred, which was difficult to say as a practical solution.

この発明は、加硫前に掘削溝を形成したタイヤにおけるセンターずれを効果的に減少させることができるタイヤ加硫モールドおよび該タイヤ加硫モールドにより製造された空気入りタイヤを提供することを目的とする。   An object of the present invention is to provide a tire vulcanization mold capable of effectively reducing the center shift in a tire in which a digging groove is formed before vulcanization, and a pneumatic tire manufactured by the tire vulcanization mold. To do.

このような目的は、トレッド部型付け面に略軸方向に延びるラグ溝用骨がそれぞれ設けられた上、下モールドから少なくとも構成され、未加硫タイヤのトレッド部外表面でタイヤ赤道Sの両側にそれぞれ形成された掘削溝に前記ラグ溝用骨を挿入した後、加硫を施すことで空気入りタイヤのトレッド部にラグ溝を成形するようにしたタイヤ加硫モールドにおいて、該タイヤ加硫モールドの閉止時におけるタイヤ加硫モールドのキャビティの軸方向中央Cから下モールドのトレッド部型付け面の軸方向外側端Dまでの軸方向距離をLとしたとき、前記下モールドにおけるラグ溝用骨の高さJが該ラグ溝用骨の軸方向内側部における高さHより大となり始めるトレッド部型付け面上での開始点Mを、前記キャビティの軸方向中央Cから前記距離Lの0.90〜1.00倍だけ軸方向外側に離れた位置に位置させるようにしたタイヤ加硫モールドにより、達成することができる。     The purpose of this is to provide lug groove bones extending substantially in the axial direction on the tread portion molding surface, and at least comprise a lower mold, on both sides of the tire equator S on the outer surface of the tread portion of the unvulcanized tire. In the tire vulcanization mold in which the lug groove is formed in the tread portion of the pneumatic tire by vulcanizing after inserting the lug groove bone into each formed excavation groove, When the axial distance from the axial center C of the cavity of the tire vulcanization mold at the time of closing to the axial outer end D of the tread portion molding surface of the lower mold is L, the height of the lug groove bone in the lower mold The starting point M on the tread portion molding surface where J starts to become greater than the height H at the axially inner side of the lug groove bone is set to the distance L from the axial center C of the cavity. The tire vulcanizing mold which is adapted to be positioned in only 0.90 to 1.00 times spaced axially outward position, can be achieved.

この発明においては、下モールドにおけるラグ溝用骨の高さJが該ラグ溝用骨の軸方向内側部における高さHより大となり始めるトレッド部型付け面上での開始点Mを、キャビティの軸方向中央Cから距離Lの0.90倍以上軸方向外側に離れた位置に位置させたので、開始点Mに対応するラグ溝用骨の頂上位置Bより軸方向外側に位置するとともに、軸方向に対し大きく傾斜したラグ溝用骨の頂上部が、従来の位置より下方に移動し、これにより、未加硫タイヤを前記大きく傾斜した頂上部が下方に移動した距離だけ下方にさらに押し込むことが可能となる。   In the present invention, the starting point M on the tread portion molding surface where the height J of the lug groove bone in the lower mold starts to become larger than the height H at the axially inner side portion of the lug groove bone is defined as the axis of the cavity. Since it is located at a position apart from the center C in the axial direction by 0.90 times the distance L or more outside in the axial direction, it is located outside in the axial direction from the apex position B of the lug groove bone corresponding to the starting point M, and The top part of the lug groove bone which is greatly inclined moves downward from the conventional position, and it is possible to push the unvulcanized tire further downward by the distance that the large inclined top part has moved downward. Become.

この結果、タイヤ加硫モールドの閉止時におけるタイヤ加硫モールドと未加硫タイヤとの間での軸方向のセンターずれ量を容易に許容値以下に減少させることができ、これにより、加硫済み空気入りタイヤにおけるトレッドゲージの分布を効果的に均一化することができる。しかも、既存のタイヤ加硫モールドのラグ溝用骨を部分的に切削、研削加工するだけで本願発明のタイヤ加硫モールドとすることができ、製作費を安価とすることができる。   As a result, the amount of axial misalignment between the tire vulcanization mold and the unvulcanized tire when the tire vulcanization mold is closed can be easily reduced to an allowable value or less. The distribution of the tread gauge in the pneumatic tire can be effectively made uniform. Moreover, the tire vulcanization mold of the present invention can be obtained simply by partially cutting and grinding the lug groove bone of the existing tire vulcanization mold, and the manufacturing cost can be reduced.

なお、前記開始点Mを軸方向中央Cから距離Lの1.00倍を超えた位置に位置させると、ラグ溝の溝底、特に軸方向外端部における溝底が盛り上がってトレッドの体積が増大し、タイヤ重量が増加するとともに、ショルダー部における放熱性が悪化する。しかも、トレッドがゴムシートを複数層積層することで構成されているときには、前記軸方向外端部においてゴムシートの延在方向が急激に変化するため、ゴムシートに剥がれ、浮きが生じてエア入り、ベアーが生じることがある。このため、前述の開始点Mは軸方向中央Cから距離Lの1.00倍以下の位置に位置させる必要がある。このようなことから前記開始点Mは軸方向中央Cから距離Lの0.90〜1.00倍の範囲内に位置していなければならない。   If the starting point M is positioned at a position exceeding 1.00 times the distance L from the center C in the axial direction, the groove bottom of the lug groove, particularly the groove bottom at the outer end in the axial direction rises and the volume of the tread increases. As the tire weight increases, the heat dissipation at the shoulder portion deteriorates. In addition, when the tread is configured by laminating a plurality of layers of rubber sheets, the extending direction of the rubber sheet changes abruptly at the outer end in the axial direction. , Bear may occur. For this reason, the aforementioned starting point M needs to be located at a position not more than 1.00 times the distance L from the axial center C. For this reason, the starting point M must be located within the range of 0.90 to 1.00 times the distance L from the axial center C.

また、請求項2に記載のように構成すれば、ラグ溝の溝底おける曲率半径をいずれの部位においても比較的大きな値に維持することができ、さらに、請求項3に記載のように構成すれば、空気入りタイヤにおける残留センターずれ量を比較的小さな範囲に収めることができ、空気入りタイヤの品質を向上させることができる。また、請求項4に記載のように構成すれば、ラグ溝間のトレッド部(陸部)に容易に所望の細溝を形成することができ、さらに、請求項5に記載のように構成すれば、製造された空気入りタイヤにおけるトレッドゲージの分布を効果的に均一化することができる。   Further, if configured as described in claim 2, the radius of curvature at the bottom of the lug groove can be maintained at a relatively large value in any part, and further, configured as described in claim 3. By doing so, the amount of residual center deviation in the pneumatic tire can be kept in a relatively small range, and the quality of the pneumatic tire can be improved. Further, if configured as described in claim 4, a desired narrow groove can be easily formed in the tread portion (land portion) between the lug grooves, and further configured as described in claim 5. Thus, the distribution of the tread gauge in the manufactured pneumatic tire can be effectively uniformed.

以下、この発明の実施形態1を図面に基づいて説明する。
図1、2において、21はタイヤ加硫装置であり、このタイヤ加硫装置21は大型建設車両あるいはトラック・バスに用いられる大型で重荷重用の空気入りラジアルタイヤ22を製造する。ここで、前記空気入りタイヤ22は一対のビード部23と、各ビード部23からそれぞれ略半径方向外側に向かって延びるサイドウォール部24と、これらサイドウォール部24の半径方向外端同士を連結するトレッド部25とから構成されている。
Embodiment 1 of the present invention will be described below with reference to the drawings.
1 and 2, reference numeral 21 denotes a tire vulcanizing device. The tire vulcanizing device 21 produces a large-sized heavy-duty pneumatic radial tire 22 used for a large construction vehicle or a truck / bus. Here, the pneumatic tire 22 connects a pair of bead portions 23, sidewall portions 24 extending from the bead portions 23 toward the outside in a substantially radial direction, and radially outer ends of the sidewall portions 24. It is composed of a tread portion 25.

また、前記空気入りタイヤ22は、前記ビード部23間をトロイダル状に延びてサイドウォール部24、トレッド部25を補強するカーカス層27を有し、このカーカス層27内には子午線方向(ラジアル方向)に延びる非伸張性の補強コード28が多数本埋設されている。また、前記カーカス層27の半径方向外側には少なくとも2枚、ここでは2枚のベルトプライ29からなるベルト層30が配置され、これらベルトプライ29内にはタイヤ赤道Sに対して所定角度で傾斜した非伸張性の補強コード31が多数本埋設されている。そして、これらの補強コード31は少なくとも隣接する2枚のベルトプライ29において逆方向に傾斜し互いに交差している。   The pneumatic tire 22 has a carcass layer 27 that extends between the bead portions 23 in a toroidal manner and reinforces the sidewall portions 24 and the tread portions 25. The carcass layer 27 has a meridian direction (radial direction). A large number of non-stretchable reinforcing cords 28 extending in the middle) are embedded. In addition, at least two, in this case, two belt plies 29 are disposed outside the carcass layer 27 in the radial direction, and the belt plies 29 are inclined at a predetermined angle with respect to the tire equator S. Many non-stretchable reinforcing cords 31 are embedded. These reinforcing cords 31 are inclined in opposite directions and intersect each other in at least two adjacent belt plies 29.

33は前記カーカス層27、ベルト層30の半径方向外側に配置されたトレッドであり、このトレッド33は、ここでは耐熱性、耐亀裂成長性に優れたベースゴムと、該ベースゴムの半径方向外側に配置され耐摩耗性に優れたキャップゴムの2層構造となっている。ここで、前述のトレッド33は、通常、薄肉で幅広のゴムシートを複数層積層することで構成している。そして、このトレッド33(トレッド部25)の外表面でタイヤ赤道Sの両側、詳しくは幅方向一端部および幅方向他端部には、略タイヤ幅方向に延び幅広の深溝である複数のラグ溝34a、34bがそれぞれ成形されている。   33 is a tread arranged radially outside the carcass layer 27 and the belt layer 30. This tread 33 is composed of a base rubber having excellent heat resistance and crack growth resistance, and a radially outer side of the base rubber. The cap rubber has a two-layer structure with excellent wear resistance. Here, the above-described tread 33 is usually configured by laminating a plurality of thin and wide rubber sheets. A plurality of lug grooves, which are wide deep grooves extending substantially in the tire width direction, are provided on both sides of the tire equator S on the outer surface of the tread 33 (tread portion 25), specifically at one end in the width direction and the other end in the width direction. 34a and 34b are respectively formed.

また、これらのラグ溝34a、34bは、トレッド部25の外表面(踏面)、および、サイドウォール部24の半径方向外端部外表面において開口するとともに、タイヤ赤道S側内端がタイヤ赤道Sからトレッド端側に所定距離離れた途中の位置で終了している。そして、これらのラグ溝34a、34bは周方向に等距離離れて配置されるとともに、ラグ溝34aとラグ溝34bとは周方向に半ピッチだけずれている。また、前記トレッド部25の幅方向中央部に位置する陸部には前記ラグ溝34a、34bのタイヤ赤道S側内端部同士を連結するとともに、タイヤ赤道Sに対して傾斜した複数の細溝35が形成されている。   The lug grooves 34a and 34b open on the outer surface (tread surface) of the tread portion 25 and the outer surface of the radially outer end portion of the sidewall portion 24, and the tire equator S side inner end is the tire equator S. It ends at a position in the middle of a predetermined distance away from the tread end side. The lug grooves 34a and 34b are arranged at an equal distance in the circumferential direction, and the lug groove 34a and the lug groove 34b are shifted by a half pitch in the circumferential direction. In addition, a plurality of narrow grooves inclined with respect to the tire equator S are connected to the land portion located in the center portion in the width direction of the tread portion 25 while connecting the inner ends of the lug grooves 34a and 34b on the tire equator S side. 35 is formed.

一方、前記タイヤ加硫装置21は下プラテンを含む略リング状の下モールド38を有し、この下モールド38上には未加硫タイヤ39が横置きで載置される。そして、この下モールド38の半径方向中央部上面には、主に未加硫タイヤ39の一側(下側)サイドウォール部24を型付けするサイドウォール部型付け面38aが形成されている。また、前記下モールド38はその半径方向外端部に上方に向かって延びるリング部40を有し、このリング部40の半径方向内側面には、主に前記未加硫タイヤ39のトレッド部25の幅方向一端部(下端部)を型付けするトレッド部型付け面40aが形成されている。   On the other hand, the tire vulcanizing apparatus 21 has a substantially ring-shaped lower mold 38 including a lower platen, and an unvulcanized tire 39 is placed horizontally on the lower mold 38. On the upper surface of the central portion in the radial direction of the lower mold 38, a sidewall portion molding surface 38a for mainly molding one side (lower side) sidewall portion 24 of the unvulcanized tire 39 is formed. Further, the lower mold 38 has a ring portion 40 extending upward at the radially outer end thereof, and the tread portion 25 of the unvulcanized tire 39 is mainly formed on the radially inner side surface of the ring portion 40. A tread part molding surface 40a for molding one end part (lower end part) in the width direction is formed.

また、リング部40の半径方向内側面(トレッド部型付け面40a)には下モールド38の略軸方向(横置きの未加硫タイヤ39では略幅方向)に延びる複数の下ラグ溝用骨41が設けられ、これら下ラグ溝用骨41は半径方向内側に向かって突出している。また、これら下ラグ溝用骨41は周方向に等距離離れて配置されるとともに、その軸方向外端(下端)はサイドウォール部型付け面38aの半径方向外端部に連続している。そして、これらの下ラグ溝用骨41は加硫時に未加硫タイヤ39のトレッド33の幅方向一端部に押し込まれ、空気入りタイヤ22のトレッド部25に前述したラグ溝34aを成形する。   Further, a plurality of lower lug groove bones 41 extending substantially in the axial direction of the lower mold 38 (substantially in the width direction in the horizontal unvulcanized tire 39) on the radially inner side surface (tread portion molding surface 40a) of the ring portion 40. These lower lug groove bones 41 protrude radially inward. Further, these lower lug groove bones 41 are arranged at equal distances in the circumferential direction, and their axial outer ends (lower ends) are continuous with the radial outer end portions of the sidewall portion molding surfaces 38a. These lower lug groove bones 41 are pushed into one end portion in the width direction of the tread 33 of the unvulcanized tire 39 during vulcanization, and the lug groove 34a described above is formed in the tread portion 25 of the pneumatic tire 22.

43は下モールド38の直上に設置され上プラテンを含む略リング状の上モールドであり、この上モールド43は該上モールド43に連結された連結ロッド42を含む昇降手段から上下方向の移動力が付与されることで昇降し、前記下モールド38に離隔、接近するとともに、回転力が付与されることで、軸線回りに回転する。そして、この上モールド43の半径方向中央部下面には、主に未加硫タイヤ39の他側(上側)サイドウォール部24を型付けするサイドウォール部型付け面43aが形成されている。また、前記上モールド43はその半径方向外端部に下方に向かって延びるリング部44を有し、このリング部44の半径方向内側面には、主に前記未加硫タイヤ39のトレッド部25の幅方向他端部(上端部)を型付けするトレッド部型付け面44aが形成されている。   43 is a substantially ring-shaped upper mold that is installed directly above the lower mold 38 and includes an upper platen. The upper mold 43 has a vertical moving force from an elevating means including a connecting rod 42 connected to the upper mold 43. By being applied, it moves up and down, moves away from and approaches the lower mold 38, and rotates around the axis by applying a rotational force. Further, a sidewall portion molding surface 43a for molding the other side (upper side) sidewall portion 24 of the unvulcanized tire 39 is formed on the lower surface of the central portion of the upper mold 43 in the radial direction. Further, the upper mold 43 has a ring portion 44 extending downward at the radially outer end thereof, and the tread portion 25 of the unvulcanized tire 39 is mainly formed on the radially inner side surface of the ring portion 44. A tread portion molding surface 44a for molding the other end portion (upper end portion) in the width direction is formed.

また、リング部44の半径方向内側面(トレッド部型付け面44a)には上モールド43の略軸方向に延びる複数の上ラグ溝用骨46が形成され、これら上ラグ溝用骨46は半径方向内側に向かって突出している。また、これら上ラグ溝用骨46は周方向に等距離離れて配置されるとともに、その軸方向外端(上端)はサイドウォール部型付け面43aの半径方向外端部に連続している。そして、これらの上ラグ溝用骨46は加硫時に未加硫タイヤ39のトレッド33の幅方向他端部に押し込まれ、空気入りタイヤ22のトレッド部25に前述したラグ溝34bを成形する。   Further, a plurality of upper lug groove bones 46 extending substantially in the axial direction of the upper mold 43 are formed on the radially inner side surface (tread portion molding surface 44a) of the ring portion 44. The upper lug groove bones 46 are formed in the radial direction. Projects inward. Further, these upper lug groove bones 46 are arranged equidistantly in the circumferential direction, and their axial outer ends (upper ends) are continuous with the radial outer end portions of the sidewall portion molding surfaces 43a. These upper lug groove bones 46 are pushed into the other end in the width direction of the tread 33 of the unvulcanized tire 39 during vulcanization, and the lug groove 34b described above is formed in the tread portion 25 of the pneumatic tire 22.

ここで、前述のようにラグ溝34a、34bは幅広の深溝であるため、下、上ラグ溝用骨41、46が未加硫タイヤ39のトレッド33に押し込まれたとき、カーカス層27、ベルト層30に波打ち等を生じさせるおそれがあるが、このような事態を効果的に抑制するため、図1、3に示すように、加硫に先立ってラグ溝34a、34bに近似した形状で従来と同程度の深さである掘削溝39a、39bをそれぞれ未加硫タイヤ39のトレッド部25の外表面でタイヤ赤道Sの両側、詳しくは幅方向一、他端部に複数個(ここではラグ溝34a、34bと同数個だけ)形成している。   Since the lug grooves 34a and 34b are wide deep grooves as described above, when the lower and upper lug groove bones 41 and 46 are pushed into the tread 33 of the unvulcanized tire 39, the carcass layer 27, the belt In order to effectively suppress such a situation, the layer 30 may have a shape approximate to the lug grooves 34a and 34b prior to vulcanization, as shown in FIGS. Excavation grooves 39a and 39b having the same depth as the outer surface of the tread portion 25 of the unvulcanized tire 39 are provided on both sides of the tire equator S, specifically in the width direction and at the other end (here, the lugs). (The same number as the grooves 34a and 34b).

この結果、これらの掘削溝39a、39bも、ラグ溝34a、34bと同様に未加硫タイヤ39のトレッド部25の外表面(踏面)、および、サイドウォール部24の半径方向外端部外表面の双方において開口する。なお、このような掘削溝39a、39bは、例えば、給電されることで加熱された略U字形の電熱カッターを基端部を中心に旋回させてトレッド33に喰い込ませた後、該電熱カッターをほぼタイヤ幅方向にトレッド端まで移動させてゴムを切除することで形成することができる。   As a result, these excavation grooves 39a and 39b are also the same as the lug grooves 34a and 34b, the outer surface (tread surface) of the tread portion 25 of the unvulcanized tire 39, and the outer surface in the radial direction outer end portion of the sidewall portion 24. Open in both. Such excavation grooves 39a and 39b are formed by, for example, turning a substantially U-shaped electric heating cutter heated by power feeding around the base end portion and biting into the tread 33, and then Can be formed by moving the rubber in the tire width direction to the tread end and cutting the rubber.

再び、図1、2において、50は下モールド38のリング部40上に載置された複数の弧状を呈するスライダであり、これらのスライダ50は周方向に並べて配置されるとともに、各スライダ50には下方に向かうに従い半径方向外側に向かうよう傾斜したガイド溝51が形成されている。一方、前記上モールド43のリング部44の下面には環状のガイド体52が一体形成され、このガイド体52は前記ガイド溝51と同一の傾斜角度で下方に向かうに従い半径方向外側に向かうよう傾斜するとともに、その肉厚はガイド溝51の幅と実質上同一である。   In FIGS. 1 and 2 again, reference numeral 50 denotes a plurality of arc-shaped sliders placed on the ring portion 40 of the lower mold 38. These sliders 50 are arranged side by side in the circumferential direction, and are attached to each slider 50. A guide groove 51 is formed so as to be inclined outward in the radial direction as it goes downward. On the other hand, an annular guide body 52 is integrally formed on the lower surface of the ring portion 44 of the upper mold 43, and the guide body 52 is inclined so as to go radially outward as it goes downward at the same inclination angle as the guide groove 51. In addition, the thickness of the guide groove 51 is substantially the same as the width of the guide groove 51.

また、各スライダ50の半径方向内側面にはセクターモールド55が固定され、これらセクターモールド55の半径方向内端に位置するトレッド部型付け面55aにはブレード56が設けられている。これにより、各スライダ50のガイド溝51にガイド体52が挿入されている状態で上モールド43が昇降すると、スライダ50、セクターモールド55は下モールド38上を同期して半径方向に移動することができる。このようにセクターモールド55は下、上モールド38、43間に周方向に複数個並べて配置されるとともに、半径方向に同期移動可能である。   A sector mold 55 is fixed to the inner surface in the radial direction of each slider 50, and a blade 56 is provided on the tread portion molding surface 55 a located at the inner end in the radial direction of the sector mold 55. As a result, when the upper mold 43 moves up and down with the guide body 52 inserted in the guide groove 51 of each slider 50, the slider 50 and the sector mold 55 can move in the radial direction in synchronization with the lower mold 38. it can. In this way, a plurality of sector molds 55 are arranged in the circumferential direction between the lower and upper molds 38 and 43 and can be moved synchronously in the radial direction.

そして、前記上モールド43が下降限まで移動するとともに、スライダ50、セクターモールド55が半径方向内側限まで移動すると、前記下、上モールド38、43およびセクターモールド55からなるタイヤ加硫モールド57は閉止して、内部に未加硫タイヤ39を収納する密閉されたキャビティ58を形成するとともに、前記ブレード56は未加硫タイヤ39のトレッド33の幅方向中央部に押し込まれて空気入りタイヤ22のトレッド部25に細溝35を形成する。   When the upper mold 43 moves to the lower limit and the slider 50 and the sector mold 55 move to the radially inner limit, the tire vulcanization mold 57 including the lower, upper molds 38 and 43 and the sector mold 55 is closed. Then, a sealed cavity 58 for accommodating the unvulcanized tire 39 is formed inside, and the blade 56 is pushed into the center portion in the width direction of the tread 33 of the unvulcanized tire 39 to be tread of the pneumatic tire 22 A narrow groove 35 is formed in the portion 25.

なお、この実施形態においては、タイヤ加硫モールド57を下、上モールド38、43およびセクターモールド55から構成したが、この発明においては、タイヤ加硫モールドを上下に2分割された下、上モールドのみから構成してもよく、上、下モールドから少なくとも構成されていればよい。そして、下、上モールドのみから構成されている場合には、タイヤ赤道Sより幅方向一側(下側)のトレッド部は下モールドにより、タイヤ赤道Sより幅方向他側(上側)のトレッド部は上モールドにより型付けが行われる。   In this embodiment, the tire vulcanization mold 57 is composed of the lower mold 38, 43 and the sector mold 55. However, in the present invention, the tire vulcanization mold is divided into two parts, the upper mold and the lower mold. It may be configured only from the upper mold and the lower mold. And when it comprises only lower and upper molds, the tread portion on the one side (lower side) in the width direction from the tire equator S is the tread portion on the other side (upper side) in the width direction from the tire equator S. Is molded by the upper mold.

60はシェーピングユニットであり、このシェーピングユニット60は未加硫タイヤ39の幅方向一側(下側)に位置するビード部23が着座される一側支持体61を有し、この一側支持体61は加硫時、前記幅方向一側のビード部23を主に型付けすることができる。62は未加硫タイヤ39の幅方向他側(上側)に位置するビード部23が着座される上側支持体であり、この他側支持体62は加硫時、前記幅方向他側のビード部23を主に型付けすることができる。そして、これら一側、他側支持体61、62は図示していない連結機構により脱着可能に連結される。63は前記一側、他側支持体61、62に幅方向両端、即ち、幅方向一端、他端がそれぞれ気密状態で係止された屈曲可能なブラダである。   Reference numeral 60 denotes a shaping unit, and this shaping unit 60 has a one-side support 61 on which a bead portion 23 positioned on one side (lower side) of the unvulcanized tire 39 is seated. 61 can mainly mold the bead portion 23 on one side in the width direction during vulcanization. 62 is an upper support on which a bead portion 23 positioned on the other side (upper side) of the unvulcanized tire 39 is seated, and this other side support 62 is the bead portion on the other side in the width direction during vulcanization. 23 can be mainly typed. And these one side and other side support bodies 61 and 62 are connected so that attachment or detachment is possible by the connection mechanism which is not shown in figure. Reference numeral 63 denotes a bendable bladder in which both ends in the width direction, that is, one end and the other end in the width direction are locked to the one side and the other side supports 61 and 62 in an airtight state.

そして、前記一側、他側支持体61、62に未加硫タイヤ39の一側、他側ビード部23がそれぞれ着座された後、これら一側、他側支持体61、62同士が前記連結機構により連結され、その後、ブラダ63内に内圧が充填されると、該未加硫タイヤ39は略トロイダル状に変形しながら、これら一側、他側支持体61、62、ブラダ63からなるシェーピングユニット60に支持される。次に、このようにしてシェーピングユニット60に装着された未加硫タイヤ39は、図示していない搬送手段により開放状態のタイヤ加硫モールド57に搬入された後、下ラグ溝用骨41と下ラグ溝用の掘削溝39aとを合致させながら下モールド38上に載置される。   Then, after one side of the unvulcanized tire 39 and the other side bead portion 23 are seated on the one side and the other side supports 61 and 62, respectively, the one side and the other side supports 61 and 62 are connected to each other. When the internal pressure is filled in the bladder 63 after being connected by the mechanism, the unvulcanized tire 39 is deformed into a substantially toroidal shape, and the shaping composed of these one side, other side support bodies 61 and 62, and the bladder 63 is formed. Supported by unit 60. Next, the unvulcanized tire 39 attached to the shaping unit 60 in this way is carried into the opened tire vulcanization mold 57 by a conveying means (not shown), and then the lower lug groove bone 41 and lower It is placed on the lower mold 38 while matching with the digging groove 39a for the lug groove.

このとき、図1、4、5に示すように、下、上ラグ溝用骨41、46の軸方向内側部における高さHは一定であるが、軸方向外端部における高さJは軸方向外側に向かうに従い前記高さHより徐々に高くなっている。ここで、下、上ラグ溝用骨41、46のある点Fにおける高さとは、トレッド部型付け面40a、44aに対する法線をGとしたとき、全ての下、上ラグ溝用骨41、46の頂上にそれぞれ内接するとともに前記ある点Fを通る円と前記法線Gとの交点から、前記トレッド部型付け面40a、44aと法線Gとの交点Kまでの直線距離をいう。   At this time, as shown in FIGS. 1, 4, and 5, the height H at the axially inner portions of the lower and upper lug groove bones 41 and 46 is constant, but the height J at the axially outer end portion is the axis. The height is gradually higher than the height H toward the outside in the direction. Here, the height at a certain point F of the lower and upper lug groove bones 41 and 46 means that when the normal to the tread portion molding surfaces 40a and 44a is G, all the lower and upper lug groove bones 41 and 46 are present. Is a linear distance from the intersection of the circle G passing through the point F and the normal G to the intersection K of the tread portion molding surfaces 40a, 44a and the normal G.

そして、前述のように下ラグ溝用骨41は軸方向外端部においてその高さJが徐々に高くなっているため、高さJが高さHより大となり始める点が存在するが、この点を通る法線Gとトレッド部型付け面40aとの交点、即ち高さJが高さHより大となり始めるトレッド部型付け面40a上での点を開始点Mとすると、該開始点Mを、この実施形態では、タイヤ加硫モールド57の閉止時におけるタイヤ加硫モールド57のキャビティ58の軸方向中央Cから距離Lの0.90〜1.00倍だけ軸方向外側に離した位置に位置させている。   And as mentioned above, since the height J of the lower lug groove bone 41 is gradually increased at the outer end in the axial direction, there is a point where the height J begins to become larger than the height H. Assuming that the intersection point between the normal G passing through the point and the tread part molding surface 40a, that is, the point on the tread part molding surface 40a where the height J starts to be larger than the height H, is the starting point M, the starting point M is In this embodiment, the tire vulcanization mold 57 is positioned at a position apart from the axial center C of the cavity 58 of the tire vulcanization mold 57 to the outside in the axial direction by 0.90 to 1.00 times the distance L when the tire vulcanization mold 57 is closed.

ここで、距離Lとは、前記キャビティ58の軸方向中央Cから、下モールド38のトレッド部型付け面40aの軸方向外側端D、即ち、トレッド部型付け面40aとサイドウォール部型付け面38aとの境界までの軸方向距離をいう。そして、前述のように開始点Mを距離Lの0.90倍以上軸方向外側に離れた位置に位置させるようにすれば、開始点Mに対応する下ラグ溝用骨41の頂上位置Bより軸方向外側に位置するとともに、軸方向に対し大きく傾斜した下ラグ溝用骨41の頂上部41aが、従来の位置より下方に移動する。   Here, the distance L refers to the axially outer end D of the tread portion molding surface 40a of the lower mold 38 from the axial center C of the cavity 58, that is, the tread portion molding surface 40a and the sidewall portion molding surface 38a. The axial distance to the boundary. As described above, if the starting point M is positioned at a position that is 0.90 times the distance L or more outward in the axial direction, the axial direction from the apex position B of the lower lug groove bone 41 corresponding to the starting point M. The top 41a of the lower lug groove bone 41 that is located outside and greatly inclined with respect to the axial direction moves downward from the conventional position.

この結果、未加硫タイヤ39を前述のような下モールド38上に載置すると、下ラグ溝用骨41の掘削溝39aに対する挿入は、従来と同様に図5に仮想線で示す位置まであるが、このとき、下ラグ溝用骨41の大きく傾斜した頂上部41aと、掘削溝39aの軸方向に対して大きく傾斜した溝底39cとの間に間隙が発生する。その後のタイヤ加硫モールド57の閉止時に、上モールド43によって未加硫タイヤ39を下方に押し込めば、該未加硫タイヤ39を前記頂上部41aが下方に移動した距離だけ、即ち図5に実線で示す位置までさらに下方に押し込むことができる。   As a result, when the unvulcanized tire 39 is placed on the lower mold 38 as described above, the lower lug groove bone 41 is inserted into the excavation groove 39a up to the position indicated by the phantom line in FIG. However, at this time, a gap is generated between the top 41a of the lower lug groove bone 41 that is largely inclined and the groove bottom 39c that is greatly inclined with respect to the axial direction of the excavation groove 39a. When the tire vulcanization mold 57 is subsequently closed, if the unvulcanized tire 39 is pushed downward by the upper mold 43, the unvulcanized tire 39 is moved by a distance moved by the top 41a downward, that is, a solid line in FIG. Can be pushed further down to the position indicated by.

この結果、タイヤ加硫モールド57の閉止時においてタイヤ加硫モールド57と未加硫タイヤ39との間での軸方向のセンターずれ量が容易に許容値以下に減少し、加硫済み空気入りタイヤ22におけるトレッドゲージの分布を効果的に均一化することができる。しかも、既存のタイヤ加硫モールド57の下ラグ溝用骨41を部分的に切削、研削加工するだけで、この実施形態のタイヤ加硫モールド57とすることができ、製作費を安価とすることができる。   As a result, when the tire vulcanization mold 57 is closed, the amount of axial misalignment between the tire vulcanization mold 57 and the unvulcanized tire 39 is easily reduced to an allowable value or less, and a vulcanized pneumatic tire is obtained. The distribution of the tread gauge in 22 can be made uniform effectively. Moreover, the tire vulcanization mold 57 of this embodiment can be obtained simply by partially cutting and grinding the lower lug groove bone 41 of the existing tire vulcanization mold 57, thereby reducing the production cost. Can do.

なお、前記下ラグ溝用骨41における開始点Mを前記軸方向中央Cから距離Lの1.00倍を超えた位置に位置させると、ラグ溝34aの溝底、特に軸方向外端部における溝底が盛り上がってトレッド33の体積が増大し、タイヤ重量が増加するとともに、ショルダー部における放熱性が悪化する。しかも、トレッド33がゴムシートを複数層積層することで構成されているときには、前記軸方向外端部においてゴムシートの延在方向が急激に変化するため、ゴムシートに剥がれ、浮きが生じてエア入り、ベアーが生じることがある。このため、前述の開始点Mは軸方向中央Cから距離Lの1.00倍以下の位置に位置させる必要がある。このようなことから前記開始点Mは軸方向中央Cから軸方向外側に距離Lの0.90〜1.00倍だけ離れた範囲に位置していなければならない。   When the starting point M of the lower lug groove bone 41 is positioned at a position exceeding 1.00 times the distance L from the axial center C, the groove bottom of the lug groove 34a, particularly the groove bottom at the axially outer end portion. As a result, the volume of the tread 33 increases, the tire weight increases, and the heat dissipation at the shoulder portion deteriorates. Moreover, when the tread 33 is formed by laminating a plurality of layers of rubber sheets, the extending direction of the rubber sheet changes abruptly at the outer end in the axial direction. Enter, bear may occur. For this reason, the aforementioned starting point M needs to be located at a position not more than 1.00 times the distance L from the axial center C. For this reason, the starting point M must be located in a range away from the axial center C by 0.90 to 1.00 times the distance L outward in the axial direction.

ここで、前記開始点Mは距離Lの0.92倍以上軸方向外側に離れた位置に位置させることが好ましい。その理由は、開始点Mを前述の位置に位置させると、後述の試験結果から理解されるように、空気入りタイヤ22における残留センターずれ量を比較的小さな範囲に収めることができ、空気入りタイヤ22の品質を容易に向上させることができるからである。   Here, it is preferable that the start point M is positioned at a position apart from the distance L by 0.92 times or more in the axial direction. The reason is that when the starting point M is located at the above-mentioned position, the residual center deviation amount in the pneumatic tire 22 can be kept within a relatively small range, as will be understood from the test results described later. This is because the quality of 22 can be easily improved.

また、前記開始点Mより軸方向内側における下ラグ溝用骨41の頂上部に、該下ラグ溝用骨41の長手方向に沿ってなだらかに深さが変化するとともに、軸方向外端が前記開始点M上に位置する弧状凹み65を形成すると、ラグ溝34aの溝底おける曲率半径をいずれの部位においても比較的大きな値に維持することができるので、好ましい。   In addition, the depth gradually changes along the longitudinal direction of the lower lug groove bone 41 at the top of the lower lug groove bone 41 on the axially inner side from the start point M, and the axial outer end is Forming the arcuate recess 65 located on the starting point M is preferable because the radius of curvature at the bottom of the lug groove 34a can be maintained at a relatively large value in any part.

一方、上ラグ溝用骨46に関しては、タイヤ赤道Sの両側でのトレッドパターンの対称性を維持する意味から下ラグ溝用骨41と同一形状とすることが好ましいが、前述の対称性を維持する必要がない場合には、例えば、従来技術と同様の形状としてもよい。また、前記セクターモールド55の軸方向長Nは前記距離Lの0.90倍以下とすると、ラグ溝34a、34b間のトレッド部(陸部)25に容易に所望の細溝35を形成することができるので、好ましい。   On the other hand, the upper lug groove bone 46 is preferably the same shape as the lower lug groove bone 41 in order to maintain the symmetry of the tread pattern on both sides of the tire equator S, but the aforementioned symmetry is maintained. If there is no need to do this, for example, the shape may be the same as that of the prior art. Further, if the axial length N of the sector mold 55 is 0.90 times the distance L or less, a desired narrow groove 35 can be easily formed in the tread portion (land portion) 25 between the lug grooves 34a and 34b. Therefore, it is preferable.

次に、前記実施形態1の作用について説明する。
前述のような空気入りタイヤ22を製造する場合には、まず、一側、他側支持体61、62に未加硫タイヤ39の一側、他側ビード部23を着座させた後、これら一側、他側支持体61、62同士を連結機構により連結し、その後、ブラダ63内に内圧を充填する。この結果、未加硫タイヤ39は略トロイダル状に変形しながらシェーピングユニット60に装着される。
Next, the operation of the first embodiment will be described.
When manufacturing the pneumatic tire 22 as described above, first, one side of the unvulcanized tire 39 and the other side bead portion 23 are seated on the one side, other side support members 61, 62, and then one of these side tires is supported. The side and other side supports 61, 62 are connected to each other by a connecting mechanism, and then the bladder 63 is filled with internal pressure. As a result, the unvulcanized tire 39 is attached to the shaping unit 60 while being deformed in a substantially toroidal shape.

次に、略U字形をした電熱カッターを旋回させて未加硫タイヤ39のトレッド33に喰い込ませた後、該カッターをほぼタイヤ幅方向にトレッド端を越えるまで移動させてゴムを切除し、トレッド部25の外表面でその幅方向一、他端部にそれぞれラグ溝34a、34bに近似した形状の掘削溝39a、39bを複数個形成する。ここで、前記掘削溝39a、39bはラグ溝34a、34bと完全に同一の形状であってもよいが、溝幅、溝深さ、折れ曲がり具合等が若干異なっていてもよい。   Next, after turning a substantially U-shaped electric heating cutter to bite into the tread 33 of the unvulcanized tire 39, the rubber is cut by moving the cutter in the tire width direction almost beyond the tread end, A plurality of excavation grooves 39a and 39b having shapes similar to the lug grooves 34a and 34b are formed on the outer surface of the tread portion 25 at one end in the width direction and at the other end, respectively. Here, the excavation grooves 39a and 39b may have the same shape as the lug grooves 34a and 34b, but the groove width, the groove depth, the degree of bending, etc. may be slightly different.

次に、このようなシェーピングユニット60、未加硫タイヤ39を、搬送手段により開放状態のタイヤ加硫モールド57に搬入して、下ラグ溝用骨41と下ラグ溝用の掘削溝39aとを合致させながら、具体的には、掘削溝39aに下ラグ溝用骨41を挿入しながら下モールド38上に載置する。ここで、前述した掘削溝39a、39bの形成は、未加硫タイヤ39をシェーピングユニット60に装着する前に行ってもよく、未加硫タイヤ39の成形後で下モールド38上への載置前であれば、いつ行ってもよい。   Next, the shaping unit 60 and the unvulcanized tire 39 are carried into the opened tire vulcanization mold 57 by the conveying means, and the lower lug groove bone 41 and the lower lug groove excavation groove 39a are formed. Specifically, the lower lug groove bone 41 is placed on the lower mold 38 while being inserted into the excavation groove 39a. Here, the above-described excavation grooves 39a and 39b may be formed before the unvulcanized tire 39 is mounted on the shaping unit 60, and after the unvulcanized tire 39 is molded, it is placed on the lower mold 38. You can go anytime before.

このとき、前述のように下ラグ溝用骨41の高さJが高さHより大となり始める開始点Mを、前記キャビティ58の軸方向中央Cから距離Lの0.90倍以上軸方向外側に離れた位置に位置させたので、タイヤ加硫モールド57の閉止時に上モールド43によって未加硫タイヤ39を前述の位置からさらに下方に押し込むことができ、これにより、閉止されたタイヤ加硫モールド57と未加硫タイヤ39との間での軸方向のセンターずれ量を容易に許容値以下に減少させることができる。   At this time, as described above, the starting point M at which the height J of the lower lug groove bone 41 starts to be larger than the height H is separated from the axial center C of the cavity 58 to the outside in the axial direction by 0.90 times the distance L or more. Therefore, when the tire vulcanization mold 57 is closed, the unvulcanized tire 39 can be pushed further downward from the aforementioned position by the upper mold 43, so that the closed tire vulcanization mold 57 and The amount of axial misalignment with the unvulcanized tire 39 can be easily reduced below the allowable value.

そして、前述した軸方向のセンターずれは、前述のようにベルト層30内の補強コード31がタイヤ赤道Sに対して 8度以下で交差する場合、および/または、未加硫タイヤ39がシェーピングユニット60に装着された状態でタイヤ加硫モールド57に搬入されたような場合に、大きくなることが多いが、このような大きなセンターずれに対しても有効に機能し、効果的に減少させることができる。また、大型建設車両用空気入りラジアルタイヤではラグ溝34a、34bの溝幅、溝深さが共に広く深いため、大きなセンターずれが生じ易いが、このような空気入りタイヤ22に対してこの実施形態は特に好適である。   The axial misalignment described above may occur when the reinforcing cord 31 in the belt layer 30 intersects the tire equator S at 8 degrees or less as described above, and / or when the unvulcanized tire 39 is a shaping unit. It is often large when it is carried into the tire vulcanization mold 57 in a state where it is attached to 60, but it effectively functions even for such a large center deviation and can be effectively reduced. it can. Further, in the pneumatic radial tire for large construction vehicles, since the groove width and groove depth of the lug grooves 34a and 34b are both wide and deep, a large center deviation is likely to occur. Is particularly preferred.

次に、昇降手段により上モールド43を下降させて上、下モールド43、38を互いに接近させるが、この下降時に上モールド43に対して昇降手段から回転力が与えられ、この結果、上ラグ溝用骨46は、前述した下降と回転との合成により、上ラグ溝用の掘削溝39bの延在方向に移動しながら該掘削溝39b内に挿入される。このようにして掘削溝39a、39bに対して前記下、上ラグ溝用骨41、46がそれぞれ挿入される。   Next, the upper mold 43 is lowered by the elevating means, and the upper molds 43 and 38 are brought close to each other. At this time, the upper mold 43 is given a rotational force from the elevating means. As a result, the upper lug groove The bone 46 is inserted into the excavation groove 39b while moving in the extending direction of the excavation groove 39b for the upper lug groove by the above-described combination of lowering and rotation. In this way, the lower and upper lug groove bones 41 and 46 are inserted into the excavation grooves 39a and 39b, respectively.

また、前述の下降の途中でスライダ50のガイド溝51にガイド体52が挿入されるが、その後も、上モールド43が下降を継続するため、スライダ50、セクターモールド55は下モールド38上を同期して半径方向内側に移動する。そして、上モールド43が下降限まで、一方、スライダ50、セクターモールド55が半径方向内側限まで移動すると、前記タイヤ加硫モールド57は閉止して該タイヤ加硫モールド57内のキャビティ58に未加硫タイヤ39を収納するとともに、前記ブレード56がトレッド33の幅方向中央部に押し込まれて細溝35を形成する。   In addition, the guide body 52 is inserted into the guide groove 51 of the slider 50 in the middle of the above-described lowering. However, since the upper mold 43 continues to descend thereafter, the slider 50 and the sector mold 55 are synchronized on the lower mold 38. And move inward in the radial direction. When the upper mold 43 is moved to the lower limit, and the slider 50 and the sector mold 55 are moved to the inner limit in the radial direction, the tire vulcanization mold 57 is closed and is not added to the cavity 58 in the tire vulcanization mold 57. While storing the sulfur tire 39, the blade 56 is pushed into the center of the tread 33 in the width direction to form the narrow groove 35.

次に、下、上モールド38、43の下、上プラテン内およびブラダ63内に高温、高圧の加硫媒体を供給し、タイヤ加硫モールド57に収納された未加硫タイヤ39を加硫して、トレッド部25にラグ溝34a、34bが成形された空気入りタイヤ22を製造する。そして、このようにして製造された空気入りタイヤ22は前述した理由からトレッドゲージの分布が効果的に均一化される。   Next, a high-temperature and high-pressure vulcanizing medium is supplied under the upper and lower molds 38 and 43, into the upper platen and the bladder 63, and the unvulcanized tire 39 stored in the tire vulcanizing mold 57 is vulcanized. Thus, the pneumatic tire 22 in which the lug grooves 34a and 34b are formed in the tread portion 25 is manufactured. In the pneumatic tire 22 manufactured in this way, the distribution of the tread gauge is effectively uniformed for the reasons described above.

このようにして加硫が終了すると、昇降手段により上モールド43を上昇させるが、このとき、上モールド43は昇降手段によって前述と逆方向に回転される。この回転と前記上昇との合成により上ラグ溝用骨46はラグ溝34bの延在方向に移動しながら空気入りタイヤ22から離脱する。このとき、スライダ50およびセクターモールド55はガイド体52により同期して半径方向外側限まで移動する。このようにしてタイヤ加硫モールド57が開放されると、加硫済みの空気入りタイヤ22およびシェーピングユニット60が下モールド38から取り出され、搬送手段により次工程に搬出される。   When vulcanization is completed in this manner, the upper mold 43 is raised by the elevating means. At this time, the upper mold 43 is rotated in the reverse direction by the elevating means. The upper lug groove bone 46 is detached from the pneumatic tire 22 while moving in the extending direction of the lug groove 34b by the combination of the rotation and the rise. At this time, the slider 50 and the sector mold 55 are moved by the guide body 52 to the outer limit in the radial direction. When the tire vulcanization mold 57 is thus opened, the vulcanized pneumatic tire 22 and the shaping unit 60 are taken out from the lower mold 38 and carried out to the next process by the conveying means.

次に、試験例について説明する。この試験に当たっては、開始点Mが軸方向中央Cから距離Lの0.82倍だけ離れた上、下ラグ溝用骨を有する従来モールド1と、開始点Mが軸方向中央Cから距離Lの0.84倍だけ離れた上、下ラグ溝用骨を有する従来モールド2と、開始点Mが軸方向中央Cから距離Lの0.89倍だけ離れた上、下ラグ溝用骨を有する比較モールドと、開始点Mが軸方向中央Cから距離Lの0.90倍だけ離れた上、下ラグ溝用骨を有する実施モールド1と、開始点Mが軸方向中央Cから距離Lの0.92倍だけ離れた上、下ラグ溝用骨を有する実施モールド2と、開始点Mが軸方向中央Cから距離Lの0.97倍だけ離れた上、下ラグ溝用骨を有する実施モールド3とを準備した。     Next, test examples will be described. In this test, the start point M is separated from the axial center C by 0.82 times the distance L, and the conventional mold 1 having the lower lug groove bone and the starting point M is 0.84 times the distance L from the axial center C. A conventional mold 2 having a lower lug groove bone, a comparative mold having a lower lug groove bone, and a starting point M being 0.89 times the distance L from the axial center C, and a starting point M Is separated from the axial center C by 0.90 times the distance L, and the implementation mold 1 has the bone for the lower lug groove, and the starting point M is separated from the axial center C by 0.92 times the distance L, and the lower lug groove An execution mold 2 having a bone for preparation and an execution mold 3 having a starting lug M separated from the center C in the axial direction by 0.97 times the distance L and having a bone for the lower lug groove were prepared.

次に、前述の各タイヤ加硫モールドを用いて未加硫タイヤをそれぞれ10本ずつ加硫して空気入りタイヤを製造した。ここで、各タイヤのサイズはいずれも46/90R57であり、その構造は図2に示すようなものと同様である。次に、前述の空気入りタイヤにおけるトレッド部での残留センターずれ量を測定した後、そのずれ量を許容値(前述のタイヤサイズでは±13mm)と比較したが、従来モールド1、2および比較モールドにより加硫された空気入りタイヤでは、それぞれ4本、3本および3本の空気入りタイヤが許容値を超えていた。これに対し、実施モールド1、2、3により加硫された空気入りタイヤではずれ量が許容値を超えた空気入りタイヤは皆無であり、センターずれを効果的に抑制することが確認できた。   Next, 10 unvulcanized tires were each vulcanized using the tire vulcanization molds described above to produce pneumatic tires. Here, the size of each tire is 46 / 90R57, and its structure is the same as that shown in FIG. Next, after measuring the amount of residual center deviation in the tread portion of the pneumatic tire described above, the deviation was compared with an allowable value (± 13 mm for the tire size described above). In the pneumatic tires vulcanized by the above, four, three, and three pneumatic tires exceeded the allowable values, respectively. On the other hand, in the pneumatic tires vulcanized by the execution molds 1, 2, and 3, there is no pneumatic tire in which the deviation amount exceeds the allowable value, and it has been confirmed that the center deviation is effectively suppressed.

また、前記従来モールド1、2および比較モールドにより加硫された空気入りタイヤにおける残留センターずれ量の実測値は、それぞれ+ 6〜+24mm、+ 4〜+22mm、+ 1〜+19mmの範囲内にあり、一方、 実施モールド1、2、3により加硫された空気入りタイヤにおけるセンターずれ量の実測値は、それぞれ− 4〜+13mm、− 2〜+12mm、− 5〜10mmの範囲内にあった。ここで、+は幅方向他側(上方)へのずれである。このように開始点Mを軸方向中央Cから距離Lの0.92倍以上離すと、残留センターずれ量を比較的小さな範囲に収めることができる。   Moreover, the actual measured values of residual center deviations in the pneumatic tires vulcanized by the conventional molds 1 and 2 and the comparative mold are in the ranges of +6 to +24 mm, +4 to +22 mm, and +1 to +19 mm, respectively. On the other hand, the measured values of the center deviation in the pneumatic tires vulcanized by the working molds 1, 2, and 3 were in the ranges of −4 to +13 mm, −2 to +12 mm, and −5 to 10 mm, respectively. Here, + is a shift to the other side (upward) in the width direction. Thus, if the starting point M is separated from the axial center C by 0.92 times or more of the distance L, the residual center deviation amount can be kept in a relatively small range.

この発明は、ラグ溝成形用の骨が設けられたタイヤ加硫モールドの産業分野に適用できる。   The present invention can be applied to the industrial field of a tire vulcanization mold provided with bones for forming lug grooves.

この発明の実施形態1を示す一部破断正面図である。It is a partially broken front view which shows Embodiment 1 of this invention. 空気入りタイヤの一部破断斜視図である。It is a partially broken perspective view of a pneumatic tire. 掘削溝へのラグ溝用骨の侵入状態を説明する説明図である。It is explanatory drawing explaining the penetration | invasion state of the bone for lug grooves to a digging groove. 下ラグ溝用骨近傍の断面図である。It is sectional drawing of the bone vicinity for a lower lug groove. 未加硫タイヤ載置時における下ラグ溝用骨近傍の断面図である。It is sectional drawing of the bone vicinity for a lower lug groove at the time of an unvulcanized tire mounting. 従来の未加硫タイヤ載置時における下ラグ溝用骨近傍の断面図である。It is sectional drawing of the bone | frame for lower lug groove | channels at the time of the conventional unvulcanized tire mounting.

符号の説明Explanation of symbols

22…空気入りタイヤ 25…トレッド部
34a、34b…ラグ溝 35…細溝
38…下モールド 39…未加硫タイヤ
39a、39b…掘削溝 40a、44a…トレッド部型付け面
41、46…ラグ溝用骨 55…セクターモールド
55a…トレッド部型付け面 56…ブレード
57…タイヤ加硫モールド 58…キャビティ
65…弧状凹み
22 ... Pneumatic tire 25 ... Tread
34a, 34b ... lug groove 35 ... narrow groove
38 ... Lower mold 39 ... Unvulcanized tire
39a, 39b ... excavation groove 40a, 44a ... tread part molding surface
41, 46 ... Bone for lug groove 55 ... Sector mold
55a ... Tread part mounting surface 56 ... Blade
57 ... Tire vulcanization mold 58 ... Cavity
65… Arc dent

Claims (5)

トレッド部型付け面に略軸方向に延びるラグ溝用骨がそれぞれ設けられた上、下モールドから少なくとも構成され、未加硫タイヤのトレッド部外表面でタイヤ赤道Sの両側にそれぞれ形成された掘削溝に前記ラグ溝用骨を挿入した後、加硫を施すことで空気入りタイヤのトレッド部にラグ溝を成形するようにしたタイヤ加硫モールドにおいて、該タイヤ加硫モールドの閉止時におけるタイヤ加硫モールドのキャビティの軸方向中央Cから下モールドのトレッド部型付け面の軸方向外側端Dまでの軸方向距離をLとしたとき、前記下モールドにおけるラグ溝用骨の高さJが該ラグ溝用骨の軸方向内側部における高さHより大となり始めるトレッド部型付け面上での開始点Mを、前記キャビティの軸方向中央Cから前記距離Lの0.90〜1.00倍だけ軸方向外側に離れた位置に位置させるようにしたことを特徴とするタイヤ加硫モールド。     Excavation grooves formed on the outer surface of the tread part of the unvulcanized tire on both sides of the tire equator S, each having a lug groove bone extending substantially in the axial direction on the tread part molding surface In the tire vulcanization mold in which the lug groove is formed in the tread portion of the pneumatic tire by inserting the lug groove bone into the tire and then vulcanizing the tire vulcanization when the tire vulcanization mold is closed When the axial distance from the axial center C of the mold cavity to the axially outer end D of the tread portion molding surface of the lower mold is L, the height J of the lug groove bone in the lower mold is for the lug groove. The starting point M on the tread portion molding surface, which starts to be greater than the height H at the axially inner side of the bone, is axisd by 0.90 to 1.00 times the distance L from the axial center C of the cavity. Tire vulcanizing mold, characterized in that so as to position at a position spaced toward the outside. 前記開始点Mより軸方向内側におけるラグ溝用骨の頂上部に、該ラグ溝用骨の長手方向に沿ってなだらかに深さが変化するとともに、軸方向外端が前記開始点M上に位置する弧状凹みを形成した請求項1記載のタイヤ加硫モールド。     At the apex of the lug groove bone on the inner side in the axial direction from the start point M, the depth gradually changes along the longitudinal direction of the lug groove bone, and the axial outer end is positioned on the start point M. The tire vulcanization mold according to claim 1, wherein an arcuate recess is formed. 前記開始点Mを軸方向中央Cから距離Lの0.92倍以上軸方向外側に離れた位置に位置させた請求項1記載のタイヤ加硫モールド。     2. The tire vulcanization mold according to claim 1, wherein the starting point M is located at a position apart from the center C in the axial direction by 0.92 times the distance L to the outside in the axial direction. 前記上、下モールド間に、未加硫タイヤのトレッド部に対し細溝を成形するブレードがトレッド部型付け面に設けられ半径方向に同期移動可能なセクターモールドを、複数個周方向に並べて配置するとともに、該セクターモールドの軸方向長Nを前記距離Lの0.90倍以下とした請求項1〜3のいずれかに記載のタイヤ加硫モールド。     Between the upper and lower molds, a plurality of sector molds arranged in the circumferential direction are arranged in the tread part molding surface with blades for forming a narrow groove with respect to the tread part of the unvulcanized tire. The tire vulcanization mold according to any one of claims 1 to 3, wherein an axial length N of the sector mold is 0.90 times or less of the distance L. 前記請求項1記載のタイヤ加硫モールドを用いて未加硫タイヤを加硫することで製造したことを特徴とするタイヤ加硫モールドにより製造された空気入りタイヤ。     A pneumatic tire manufactured by a tire vulcanization mold manufactured by vulcanizing an unvulcanized tire using the tire vulcanization mold according to claim 1.
JP2007306005A 2007-11-27 2007-11-27 Tire vulcanization mold Expired - Fee Related JP5371231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306005A JP5371231B2 (en) 2007-11-27 2007-11-27 Tire vulcanization mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306005A JP5371231B2 (en) 2007-11-27 2007-11-27 Tire vulcanization mold

Publications (2)

Publication Number Publication Date
JP2009126142A true JP2009126142A (en) 2009-06-11
JP5371231B2 JP5371231B2 (en) 2013-12-18

Family

ID=40817522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306005A Expired - Fee Related JP5371231B2 (en) 2007-11-27 2007-11-27 Tire vulcanization mold

Country Status (1)

Country Link
JP (1) JP5371231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056546A (en) * 2010-09-13 2012-03-22 Bridgestone Corp Method, device and program for simulating tire performance

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210914U (en) * 1988-07-06 1990-01-24
JP2001096538A (en) * 1999-10-04 2001-04-10 Bridgestone Corp Method and apparatus for vulcanizing large tire
JP2001105511A (en) * 1999-08-04 2001-04-17 Bridgestone Corp Method and apparatus for producing pneumatic tire
JP2004155335A (en) * 2002-11-07 2004-06-03 Bridgestone Corp Pneumatic tire
JP2005193525A (en) * 2004-01-07 2005-07-21 Bridgestone Corp Method for producing radial-ply pneumatic tire for heavy load and radial-ply pneumatic tire for heavy load produced by the method
JP2005193454A (en) * 2004-01-05 2005-07-21 Bridgestone Corp Tire mold
JP2006168090A (en) * 2004-12-15 2006-06-29 Bridgestone Corp Tire vulcanizing mold
JP2007050825A (en) * 2005-08-19 2007-03-01 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2007106167A (en) * 2005-10-11 2007-04-26 Bridgestone Corp Pneumatic tire
JP2007118205A (en) * 2005-10-25 2007-05-17 Bridgestone Corp Tire vulcanizing mold

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210914U (en) * 1988-07-06 1990-01-24
JP2001105511A (en) * 1999-08-04 2001-04-17 Bridgestone Corp Method and apparatus for producing pneumatic tire
JP2001096538A (en) * 1999-10-04 2001-04-10 Bridgestone Corp Method and apparatus for vulcanizing large tire
JP2004155335A (en) * 2002-11-07 2004-06-03 Bridgestone Corp Pneumatic tire
JP2005193454A (en) * 2004-01-05 2005-07-21 Bridgestone Corp Tire mold
JP2005193525A (en) * 2004-01-07 2005-07-21 Bridgestone Corp Method for producing radial-ply pneumatic tire for heavy load and radial-ply pneumatic tire for heavy load produced by the method
JP2006168090A (en) * 2004-12-15 2006-06-29 Bridgestone Corp Tire vulcanizing mold
JP2007050825A (en) * 2005-08-19 2007-03-01 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2007106167A (en) * 2005-10-11 2007-04-26 Bridgestone Corp Pneumatic tire
JP2007118205A (en) * 2005-10-25 2007-05-17 Bridgestone Corp Tire vulcanizing mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056546A (en) * 2010-09-13 2012-03-22 Bridgestone Corp Method, device and program for simulating tire performance

Also Published As

Publication number Publication date
JP5371231B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
EP2228190B1 (en) Tire vulcanizing bladder, tire vulcanizing-forming method, and pneumatic tire
CN109789603B (en) Tire vulcanizing mold, tire vulcanizing device, and tire manufacturing method
CN101797778B (en) Vulcanizing mold of tire
JP2013103478A (en) Raw cover
JP4851562B2 (en) Pneumatic tire manufacturing method
JP5210144B2 (en) Tire curing bladder
JP5371231B2 (en) Tire vulcanization mold
JP5787732B2 (en) Tire vulcanizing bladder
JP4912640B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP2010023324A (en) Tire vulcanizing mold and method for producing pneumatic tire
US20220134696A1 (en) Method of manufacturing pneumatic tire
JP2014113742A (en) Method for producing pneumatic tire
JP2016097505A (en) Method of manufacturing pneumatic tire and pneumatic tire
JP2008221719A (en) Manufacturing method of pneumatic tire and green tire molding apparatus
JPWO2014073678A1 (en) Tire vulcanizing bladder and method for manufacturing pneumatic tire
JP6159235B2 (en) Tire vulcanization mold and tire manufacturing method
JP2008173777A (en) Manufacturing method of pneumatic tire
JP5026900B2 (en) Vulcanized bladder manufacturing method and vulcanized bladder
JP5608397B2 (en) Tire vulcanizer and tire
US20170157986A1 (en) Tire and manufacturing method of tire
JPWO2006006461A1 (en) Tire holding unit, mold mold having the same, and tire vulcanizing method
JP2010023325A (en) Mold for vulcanizing tire and method for producing tire
EP3409506A1 (en) Pneumatic tire and pneumatic tire manufacturing method
US20230302850A1 (en) Heavy duty tire and production method for heavy duty tire
JP2008173778A (en) Manufacturing method of pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees