JP2009125215A - Roller type pitching machine - Google Patents

Roller type pitching machine Download PDF

Info

Publication number
JP2009125215A
JP2009125215A JP2007301892A JP2007301892A JP2009125215A JP 2009125215 A JP2009125215 A JP 2009125215A JP 2007301892 A JP2007301892 A JP 2007301892A JP 2007301892 A JP2007301892 A JP 2007301892A JP 2009125215 A JP2009125215 A JP 2009125215A
Authority
JP
Japan
Prior art keywords
roller
ball
pitching machine
rollers
pitching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007301892A
Other languages
Japanese (ja)
Other versions
JP4911719B2 (en
Inventor
Juhachi Oda
十八 尾田
Shinobu Sakai
忍 酒井
Yuichiro Kitagawa
勇一郎 北河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2007301892A priority Critical patent/JP4911719B2/en
Publication of JP2009125215A publication Critical patent/JP2009125215A/en
Application granted granted Critical
Publication of JP4911719B2 publication Critical patent/JP4911719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a robust roller-type pitching machine hardly affected by the variation in the posture of the seam of balls fed into the machine and the position of the posture. <P>SOLUTION: The pitching machine includes three rollers around in the shooting direction of the ball. Three rollers have rotational drive units for controlling their rotation, and a holding interval control unit which controls a distance between the ball center to be held and shot by the three rollers and the roller surface. The surface of the roller is formed in a convex shape. The radius of curvature of the surface of the convex roller is preferably in the range of R=40-120 mm. Preferably, the circumference part of the roller is made of elastic rubber material, and Young's modulus of the elastic rubber material is in the range of E=30-80 MPa. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はボールを発射するローラ式ピッチングマシンに関し、特に投球精度の向上に効果的なローラ構造に係る。   The present invention relates to a roller-type pitching machine that launches a ball, and particularly relates to a roller structure that is effective in improving pitching accuracy.

現在、野球用ピッチングマシンとしてはアーム式とローラ式が市販されている。
アーム式は、速度を可変できるが、カーブなどの変化球を投げることは難しく、2つの回転ローラを持つ2ローラ式では、変化球も投球可能であるが、瞬時にそれを変更することは難しい。
また、いずれのタイプも任意のボールを希望するコースに投げ分けることは極めて困難である。
そこで、発明者らは3つのローラを用いた3ローラ式ピッチングマシンを発案し、各ローラの制御法にニューラルネットワーク(NN)を用いることで、任意の速度や変化球のボールを打者が希望するコースに投球可能なピッチングマシンを研究開発し、提案している。
しかしながら、開発したマシンを実用化するためにはコストを始めとした、いくつかの問題がある。
特に重要なこととして、打者にデットボール(死球)を絶対に投げない高い投球精度を有することである。
他方、プロ野球などで使用される硬式ボールには、特有の縫い目が付いている。
ボールとローラの摩擦力を用いて投球するローラ式ピッチングマシンでは、同じ投球条件下でもローラと接触する縫い目の位置や向きによってボールの回転や投射角度が微妙に変化し、その結果、投球精度が悪化することが一般に言われている。
本発明者の予備実験にても、硬式ボールの縫い目がローラと接触する仕方によって、ボールの回転や投射角が微妙に変化し、その結果、投球精度が低下することが実験的にわかってきた。
そこで、有限要素法(FEM)を用いて3ローラ式ピッチングマシンの投球シミュレーション解析を行い、投球時のボールの速度や自転回転数(スピン)などのボールの動的挙動を明らかにし、マシンに投入されるボールの姿勢によって投球精度がどのように変化するのかを調べた。
また、それらの解析結果から最適なローラ形状および材質の検討を行った結果本発明に至った。
Currently, arm type and roller type are commercially available as pitching machines for baseball.
The arm type can change the speed, but it is difficult to throw a changing ball such as a curve. The two-roller type with two rotating rollers can also throw a changing ball, but it is difficult to change it instantly. .
In addition, it is extremely difficult for any type to throw any ball into the desired course.
Therefore, the inventors have devised a three-roller pitching machine using three rollers, and the batter wants a ball with an arbitrary speed or changing ball by using a neural network (NN) as a control method for each roller. Researching and developing pitching machines that can be thrown on courses.
However, there are several problems, including cost, in order to put the developed machine into practical use.
It is particularly important to have a high pitching accuracy that never throws a dead ball to the batter.
On the other hand, hardballs used in professional baseball have special seams.
In a roller-type pitching machine that uses the friction force between the ball and the roller, the rotation and projection angle of the ball slightly change depending on the position and orientation of the seam that contacts the roller even under the same throwing conditions. It is generally said that it gets worse.
Even in the preliminary experiment of the present inventor, it has been experimentally found that the rotation and the projection angle of the ball slightly change depending on the manner in which the seam of the hard ball contacts the roller, and as a result, the pitching accuracy is lowered. .
Therefore, a throwing simulation analysis of a three-roller pitching machine was performed using the finite element method (FEM), and the dynamic behavior of the ball such as the speed of the ball and the rotation speed (spin) during the pitching was clarified and put into the machine. We investigated how the pitching accuracy changes depending on the ball posture.
In addition, as a result of examining the optimum roller shape and material from the analysis results, the present invention has been achieved.

特許第3936539号公報Japanese Patent No. 3936539 特開2006−61231号公報JP 2006-61231 A

本発明は、ローラ式ピッチングマシンにおいて、マシンに投入されるボールの縫い目姿勢の位置変化の影響を受けにくいロバストなピッチングマシンの提供を目的とする。   An object of the present invention is to provide a robust pitching machine that is not easily affected by a change in the position of a seam posture of a ball thrown into the roller-type pitching machine.

本発明に係るピッチングマシンは、ボールの発射方向周りに3つのローラを配置したピッチングマシンであって、3つのローラは、それぞれの回転を制御する回転駆動装置と、3つのローラで挟持及び発射するボール中心とローラ表面との距離を制御する挟持間隔制御装置を有し、ローラの表面は凸曲面形状に形成してあることを特徴とする。
ここで、ローラの表面の凸曲面形状の曲率半径は、40〜120mmの範囲であるとよく、ローラは、外周部をゴム弾性材で製作してあり、当該ゴム弾性材のヤング率が30〜80MPaの範囲であるのが好ましい。
The pitching machine according to the present invention is a pitching machine in which three rollers are arranged around the ball firing direction, and the three rollers are sandwiched and fired by the rotation driving device that controls the respective rotations and the three rollers. It has a clamping interval control device for controlling the distance between the center of the ball and the roller surface, and the surface of the roller is formed in a convex curve shape.
Here, the curvature radius of the convex curved surface shape of the surface of the roller is preferably in the range of 40 to 120 mm, and the roller has an outer peripheral portion made of a rubber elastic material, and the rubber elastic material has a Young's modulus of 30 to 30 mm. The range is preferably 80 MPa.

本発明においては、3ローラ式ピッチングマシンのローラの表面を凸曲面形状にしたことによりボールの投入姿勢が2シーム、4シームにかかわらず投球精度が向上する。
特に、ローラ外周のゴム材のヤング率を30〜80MPaにしてやや柔く設定し、ローラ表面の曲率半径をR=40〜120mmの範囲にすると、投球の精度がさらに向上する。
これは、柔いローラ表面凸部がへこむようにボールを挟持しながら、その回転摩擦力で発射させるためであると推定される。
In the present invention, the surface of the roller of the three-roller pitching machine has a convex curved surface, so that the pitching accuracy is improved regardless of whether the ball is thrown in two or four seams.
In particular, when the Young's modulus of the rubber material on the outer periphery of the roller is set to be slightly soft by setting it to 30 to 80 MPa and the radius of curvature of the roller surface is set to a range of R = 40 to 120 mm, the pitching accuracy is further improved.
This is presumed to be caused by firing with the rotational friction force while holding the ball so that the convex surface of the soft roller is recessed.

次に、本発明に至った解析経過を説明する。
発明者らは、これまで開発してきた3ローラ式ピッチングを用いてFEMシミュレーション解析を行った。
まず、図1に解析に用いたマシンの概要を説明する。
ボールは発射位置周りに120°間隔で設置されたゴム製ローラ(1,2,3)との摩擦力を利用して発射される。
各ローラにはそれぞれモータ(M1,M2,M3)を設置し、マシン下部にはマシン全体の仰角θ、偏角φを可変する機構(M4,M5)を付加し、それらはすべてPCによって独立に制御可能である。
なお、各ローラの制御方法にはNN(ニューラルネットワーク)を用い、ローラの回転数などの各種パラメータを決定している。
ここで、NNの具体的な内容は特許文献1,2の内容を取り込むことができる。
これより、本マシンは任意の球速、変化球(球種)のボールを広範囲のコースに精度良く投球できる。
また、室内で行った投球実験の結果から、一般に2シームと呼ばれる、ボールが1回転する間に縫い目が2回現れる状態で投球されたものが、4シーム(縫い目が4回現れる状態)とランダム(2シーム、4シーム以外の状態)に比べて目標点と到達点の距離のバラツキが小さく投球精度の高いこともわかっている。
Next, the analysis process leading to the present invention will be described.
The inventors conducted FEM simulation analysis using the three-roller pitching that has been developed so far.
First, an outline of the machine used for analysis will be described with reference to FIG.
The balls are fired using frictional force with rubber rollers (1, 2, 3) installed at intervals of 120 ° around the firing position.
A motor (M1, M2, M3) is installed on each roller, and a mechanism (M4, M5) that changes the elevation angle θ and declination φ of the entire machine is added to the lower part of the machine. It can be controlled.
In addition, NN (neural network) is used for the control method of each roller, and various parameters such as the number of rotations of the roller are determined.
Here, the specific contents of NN can incorporate the contents of Patent Documents 1 and 2.
As a result, this machine can accurately throw a ball of any ball speed and changing ball (ball type) on a wide range of courses.
Also, from the results of a pitching experiment conducted in a room, what is generally thrown in a state where the seam appears twice during one rotation of the ball, called a 2 seam, is randomly called 4 seams (a state where the seam appears 4 times). It is also known that the pitch accuracy is high with less variation in the distance between the target point and the destination point compared to (states other than 2 seams and 4 seams).

実験から得られた結果の確認および投球精度向上の検討を目的として、3ローラ式ピッチングマシンによって投球されたボールの動的挙動シミュレーションを、汎用動的有限要素解析ソフトANSYS/LS−DYNAを用いて行った。
3ローラ式ピッチングマシンのローラ部およびボールの有限要素モデルを図2に示す。
なお、本解析では、アルミフランジ部(外径φ280mm)は他の材料に比べて剛性が高く変形が微小であるため剛体とし、ボールはその動的特性を考慮し、粘弾性体とした。
解析条件は、ボールの姿勢を図3に示すように2シームおよび4シームとし、ボールとウレタン製のゴムローラ(外径φ320mm、厚み20mm、ローラ幅55mm)の接触摩擦係数μを0.5、解析時間0.1秒で行い,ボールには初期並進速度Vを1m/s,初期角速度ωを28.56rad/sとして与えた。
この初期速度は、実際にピッチングマシンに投入されるボールの状態を基にして算出した。
なお、比較のため縫い目のないボール(真球モデル)も同様に解析を行った。
そのときのボールの投射角の定義を図4に示し、ローラ1の回転数N1,ローラ2の回転数N2,ローラ3の回転数N3の解析条件を図5に示す。
For the purpose of confirming the result obtained from the experiment and examining the improvement of pitching accuracy, the dynamic behavior simulation of the ball thrown by the three-roller pitching machine was performed using the general-purpose dynamic finite element analysis software ANSYS / LS-DYNA. went.
FIG. 2 shows a finite element model of a roller portion and a ball of a three-roller pitching machine.
In this analysis, the aluminum flange portion (outer diameter φ280 mm) is a rigid body because the rigidity and deformation are minute compared to other materials, and the ball is a viscoelastic body considering its dynamic characteristics.
The analysis conditions are as follows: the ball posture is 2 seam and 4 seam as shown in FIG. 3, and the contact friction coefficient μ of the ball and urethane rubber roller (outer diameter φ320 mm, thickness 20 mm, roller width 55 mm) is 0.5. The time was 0.1 seconds, and the ball was given an initial translation velocity V 0 of 1 m / s and an initial angular velocity ω 0 of 28.56 rad / s.
This initial speed was calculated based on the state of the ball actually put into the pitching machine.
For comparison, a seamless ball (true sphere model) was also analyzed.
The definition of the ball projection angle at that time is shown in FIG. 4, and the analysis conditions of the rotational speed N1, the rotational speed N2 of the roller 2, and the rotational speed N3 of the roller 3 are shown in FIG.

投球されたボールの挙動を把握するための指標として、解析値から、ボールの平均球速V、自転数ω、発射仰角θ、発射偏角φをそれぞれ算出した。
解析結果より、仰角θと偏角φにおいては2シームが4シームに比べて縫い目の影響が小さいことが確認できた。
次に、ボールの初期姿勢に関わらず投球精度を安定させるため、ローラの表面形状変更の検討を行った。
作成したローラのモデルは図6に示すように表面が盛り上がった形状の凸型ローラ(convex roller)と、逆に窪んだ形状の凹型ローラ(concave roller)の2パターンである。
曲率半径Rはともに100mmとし、ボール中心からローラ表面幅中心までの距離は一定である。
また、これまで用いていたローラは平板ローラ(flat roller)と呼ぶこととした。
発射角の比較を行った結果、ボールの初期姿勢(縫い目の有無)の違いによる影響が大きいことがわかった。
仰角θは図7に示すように平板ローラの2シームが真球モデル(seamless)との差が最も小さく、偏角φは図8に示すように凸型ローラの2シームが真球モデルとの差が最も小さい。
真球モデルの値との差が小さいということは、縫い目の影響が小さく投球精度が良いと考えられる。
また図9に各球種による2シームと4シームの差(Δθ、Δφ)を示し、ストレート、カーブのいずれの場合においても凹型ローラ形状よりも凸型ローラ形状の方が仰角θ、偏角φともそれらの差(Δθ、Δφ)が小さい。
特に、偏角の値はデッドボールに直接的要因につながることから投球精度の面では重要な因子となるため、凸型ローラは他のローラよりも良い傾向があるといえる。
As indices for grasping the behavior of the pitched ball, the average ball speed V, the number of rotations ω, the launch elevation angle θ, and the launch deflection angle φ were calculated from the analysis values.
From the analysis results, it was confirmed that the effect of the seam is smaller in the two seams than in the four seams at the elevation angle θ and the deflection angle φ.
Next, in order to stabilize the pitching accuracy regardless of the initial posture of the ball, the surface shape of the roller was examined.
As shown in FIG. 6, the created roller model has two patterns: a convex roller having a raised surface and a concave roller having a concave shape.
The curvature radii R are both 100 mm, and the distance from the ball center to the roller surface width center is constant.
The roller used so far is called a flat roller.
As a result of comparing the firing angles, it was found that the effect of the difference in the initial posture of the ball (the presence or absence of seams) was great.
As shown in FIG. 7, the elevation angle θ has the smallest difference between the two seams of the flat roller and the true spherical model (seamless), and the deflection angle φ is the difference between the two seams of the convex roller and the true spherical model as shown in FIG. The difference is the smallest.
A small difference from the value of the true ball model is considered to have a small pitch effect and a good pitch accuracy.
FIG. 9 shows the difference (Δθ, Δφ) between 2 seams and 4 seams for each ball type. In both straight and curved cases, the convex roller shape is higher in the elevation angle θ and the declination angle φ than the concave roller shape. In both cases, the difference (Δθ, Δφ) is small.
In particular, the value of the declination is an important factor in terms of pitching accuracy because it directly affects the dead ball, so it can be said that the convex roller tends to be better than the other rollers.

シミュレーションによる結果から、凸型ローラに発射角を安定させる効果が期待できるので、凸型ローラの最適化を行うことにした。
設計条件は、図6に示すボール中心からローラ表面幅中心までの距離(中心間距離)rとローラ表面の曲率半径Rを可変寸法とし、ローラのゴム部分のヤング率Eも変化させた。
なお、これまで用いていた寸法は、r=25.1mm、R=100mm、ヤング率はE=100MPaである。
最適設計を行うために、設計変数に対するローラ最適性の評価として初期姿勢別発射角差を用いることにした。
まず、この推定式を応答曲面法によって導くことにする。
目的となる式は投球精度において最も重要であると考えられる偏角差に関する式(1)と、仰角差と偏角差の両者の影響を考慮した式(2)の2つの式を考案した。
これらの値が小さいほど初期姿勢間の発射角差が小さく、縫い目の影響が小さいことを示す。
ここで、θとφの添字の2、4はボールの初期姿勢(2が2シームおよび4が4シームに対応)を表す。
ηは極端にボールの自転数(スピン)が少なく、期待された球種で投球されていないと考えられる場合を最適解からはずすための項であり次のように決めた。
ω≧400min−1かつω≧400min−1⇒η=0,
ω<400min−1またはω<400min−1⇒η=1
また、式(2)のαは偏角差の項と仰角差の項の影響を均等にするための重み係数であり、選択した設計点の平均値の比で決定する。
球種はカーブ(N=1325min−1,N=1750 min−1,N=1425min−1)とした。
今回は設計変数を図10のようにそれぞれ3水準に離散化し、その全ての場合を実行して応答曲面を求める全因子計画と呼ばれる実験計画法を用いた。
なお、応答曲面の構築には応答曲面作成ツールRSMaker for Excel を用い、3次多項式による近似を行った。
図11にヤング率E=50MPaのときのR−r曲面図を示す。
この結果から、ローラ表面の曲率半径はR=60〜120mmの間に、またヤング率はE=50MPa付近に最適値があると推定された。
そこで、R=100mmとし、rとEを図12に示す解析条件にて、さらに最適条件近傍の解析を実施した。
その結果を図13に示す。
また、図14はヤング率E=50,60,100MPaにおけるローラ中心間距離rと投球精度の関係を示す。
以上の結果より、ローラのヤング率をE=40〜60MPaに設定し、ローラ表面の曲率はR=80〜120mmのレベルに設定し、ボール中心とローラ中心間距離rを挟持間隔制御装置で適宣に調整すればボール姿勢が2シーム、4シーム、あるいはランダムに変化しても投球精度が高くなることが明らかになった。
なお、今回のボール直径70mmの場合には、r=25.4mmが最適点であった。
図15に、発射口から見た投球解析連続画像を示し、図16に、側面方向から見た投球解析連続画像を示す。
From the simulation results, the convex roller can be expected to stabilize the firing angle, so we decided to optimize the convex roller.
Design conditions were such that the distance (center distance) r from the ball center to the roller surface width center and the radius of curvature R of the roller surface shown in FIG. 6 were variable dimensions, and the Young's modulus E of the rubber part of the roller was also changed.
The dimensions used so far are r = 25.1 mm, R = 100 mm, and the Young's modulus is E = 100 MPa.
In order to perform the optimum design, we decided to use the launch angle difference for each initial posture as an evaluation of the roller optimum for the design variable.
First, this estimation formula is derived by the response surface method.
The target formulas were devised as two formulas: Formula (1) for declination difference considered to be the most important in pitching accuracy and Formula (2) considering the effects of both elevation angle and declination differences.
The smaller these values, the smaller the firing angle difference between the initial postures, indicating that the effect of the seam is small.
Here, the subscripts 2 and 4 of θ and φ represent the initial posture of the ball (2 corresponds to 2 seams and 4 corresponds to 4 seams).
η is a term for removing from the optimal solution the case where the ball's rotation number (spin) is extremely small and it is considered that the ball is not thrown with the expected ball type, and was determined as follows.
ω 2 ≧ 400 min −1 and ω 4 ≧ 400 min −1 → η = 0,
ω 2 <400 min −1 or ω 4 <400 min −1 → η = 1
Further, α in the equation (2) is a weighting coefficient for equalizing the influence of the deviation angle difference term and the elevation angle difference term, and is determined by the ratio of the average values of the selected design points.
Pitch type is curve (N 1 = 1325min -1, N 2 = 1750 min -1, N 3 = 1425min -1) was.
This time, the design variables are discretized into three levels as shown in FIG. 10, and an experimental design called all factor design is used to obtain a response surface by executing all the cases.
The response surface was constructed using a response surface creation tool RSMaker for Excel and approximated by a cubic polynomial.
FIG. 11 shows an R-r curved surface diagram when Young's modulus E = 50 MPa.
From this result, it was estimated that the radius of curvature of the roller surface is between R = 60 and 120 mm, and the Young's modulus has an optimum value near E = 50 MPa.
Thus, R = 100 mm, and r and E were analyzed under the analysis conditions shown in FIG.
The result is shown in FIG.
FIG. 14 shows the relationship between the roller center distance r and the pitching accuracy at Young's modulus E = 50, 60, 100 MPa.
From the above results, the Young's modulus of the roller is set to E = 40 to 60 MPa, the curvature of the roller surface is set to a level of R = 80 to 120 mm, and the distance r between the center of the ball and the center of the roller is suitable for the clamping interval control device. It has been clarified that if the ball posture is changed by 2 seams, 4 seams, or randomly, the pitching accuracy will be improved by adjusting it.
In the case of the ball diameter of 70 mm this time, r = 25.4 mm was the optimum point.
FIG. 15 shows a pitching analysis continuous image viewed from the launch port, and FIG. 16 shows a pitching analysis continuous image viewed from the side surface direction.

本発明に係るピッチングマシンの構成の模式図を示す。The schematic diagram of the structure of the pitching machine which concerns on this invention is shown. 解析モデルを示す。An analysis model is shown. ボールの投入口に投入される姿勢において2シームと4シームの例を示す。An example of 2 seams and 4 seams in the posture to be thrown into the ball slot is shown. 本解析においてのボールの投射角の定義を示す。The definition of the ball projection angle in this analysis is shown. ボールの投球条件を示す。Indicates the ball throwing conditions. ローラの表面形状の解析モデルを示す。An analysis model of the roller surface shape is shown. 真球モデルとの仰角θ比較を示す。The elevation angle θ comparison with the true sphere model is shown. 真球モデルとの偏角φ比較を示す。A declination φ comparison with the true sphere model is shown. 球種による差を示す。The difference by the ball type is shown. 第1次解析条件を示す。The primary analysis conditions are shown. R−r曲面図を示す。An Rr curved surface view is shown. 最適点近傍の解析条件を示す。The analysis conditions near the optimal point are shown. E−r曲面図を示す。An Er curved view is shown. ローラ中心間距離と投球精度の関係を示す。The relationship between the roller center distance and pitching accuracy is shown. 発射口から見た解析連続画像を示す。The analysis continuous image seen from the launch port is shown. 側面からみた解析連続画像を示す。The analysis continuous image seen from the side is shown.

Claims (3)

ボールの発射方向周りに3つのローラを配置したピッチングマシンであって、
3つのローラは、それぞれの回転を制御する回転駆動装置と、3つのローラで挟持及び発射するボール中心とローラ表面との距離を制御する挟持間隔制御装置を有し、
ローラの表面は凸曲面形状に形成してあることを特徴とするピッチングマシン。
A pitching machine in which three rollers are arranged around the ball firing direction,
The three rollers have a rotation driving device that controls the rotation of each roller, and a pinching interval control device that controls the distance between the center of the ball that is pinched and fired by the three rollers and the roller surface,
A pitching machine characterized in that the surface of the roller is formed in a convex curved surface shape.
ローラの表面の凸曲面形状の曲率半径は、R=40〜120mmの範囲であることを特徴とする請求項1記載のピッチングマシン。   2. The pitching machine according to claim 1, wherein a radius of curvature of the convex curved surface shape of the roller surface is in a range of R = 40 to 120 mm. ローラは、外周部をゴム弾性材で製作してあり、当該ゴム弾性材のヤング率がE=30〜80MPaの範囲であることを特徴とする請求項1又は2記載のピッチングマシン。   3. The pitching machine according to claim 1, wherein the roller has an outer peripheral portion made of a rubber elastic material, and a Young's modulus of the rubber elastic material is in a range of E = 30 to 80 MPa.
JP2007301892A 2007-11-21 2007-11-21 Roller type pitching machine Active JP4911719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301892A JP4911719B2 (en) 2007-11-21 2007-11-21 Roller type pitching machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301892A JP4911719B2 (en) 2007-11-21 2007-11-21 Roller type pitching machine

Publications (2)

Publication Number Publication Date
JP2009125215A true JP2009125215A (en) 2009-06-11
JP4911719B2 JP4911719B2 (en) 2012-04-04

Family

ID=40816729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301892A Active JP4911719B2 (en) 2007-11-21 2007-11-21 Roller type pitching machine

Country Status (1)

Country Link
JP (1) JP4911719B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5959299B2 (en) * 2012-05-14 2016-08-02 株式会社西野製作所 Pitching machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416244A (en) * 1977-07-07 1979-02-06 Sanyoo Jiyaianto Kk Method of controlling operation of pitching of pitching machine
JPS6377080A (en) * 1986-09-19 1988-04-07 星 初男 Music performer
JP2006061231A (en) * 2004-08-25 2006-03-09 Kanazawa Univ Pitching machine and breaking ball control method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416244A (en) * 1977-07-07 1979-02-06 Sanyoo Jiyaianto Kk Method of controlling operation of pitching of pitching machine
JPS6377080A (en) * 1986-09-19 1988-04-07 星 初男 Music performer
JP2006061231A (en) * 2004-08-25 2006-03-09 Kanazawa Univ Pitching machine and breaking ball control method therefor

Also Published As

Publication number Publication date
JP4911719B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
DK2844498T3 (en) SPHERICAL WHEEL AND VEHICLE IMPLEMENTING THE WHEEL
EP2325714A3 (en) Control method of performing rotational traveling of robot cleaner
CN106796420A (en) Image stabilizing device control method and image stabilizing device
JP2004167676A5 (en)
JP4883516B2 (en) Pitching machine and method for controlling its changing sphere
JP2016168651A5 (en)
JP2007533880A (en) Finishing trowel device
JP2006325695A5 (en)
JP6344523B2 (en) Ball riding robot
Adhyapak et al. Zipping and entanglement in flagellar bundle of E. coli: Role of motile cell body
JP4911719B2 (en) Roller type pitching machine
JP2017023638A5 (en)
JP2017023639A5 (en)
JP2008254076A5 (en)
JP2016157841A5 (en)
KR20210151326A (en) Moving robot
JP5415985B2 (en) In-pipe moving device
JP3936539B2 (en) Pitching machine, its control system and control method
WO2020000423A1 (en) Control method for gimbal, gimbal, aerial vehicle, and computer-readable storage medium
JP6329396B2 (en) Shuttlecock
JP5999616B2 (en) Throwing machine
JP5162281B2 (en) Throwing device
US20220161113A1 (en) Pitching training aid
JP2012100989A (en) Grip structure of golf trial hitting machine
JP5378990B2 (en) Pitching machine control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

R150 Certificate of patent or registration of utility model

Ref document number: 4911719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250