JP2009123850A - Method of measuring surface temperature of substrate - Google Patents

Method of measuring surface temperature of substrate Download PDF

Info

Publication number
JP2009123850A
JP2009123850A JP2007294943A JP2007294943A JP2009123850A JP 2009123850 A JP2009123850 A JP 2009123850A JP 2007294943 A JP2007294943 A JP 2007294943A JP 2007294943 A JP2007294943 A JP 2007294943A JP 2009123850 A JP2009123850 A JP 2009123850A
Authority
JP
Japan
Prior art keywords
substrate
surface temperature
oxidation
light
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007294943A
Other languages
Japanese (ja)
Inventor
Naoto Kameda
直人 亀田
Tetsuya Nishiguchi
哲也 西口
Hidehiko Nonaka
秀彦 野中
Shingo Ichimura
信吾 一村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Meidensha Corp
Priority to JP2007294943A priority Critical patent/JP2009123850A/en
Publication of JP2009123850A publication Critical patent/JP2009123850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure an uppermost surface temperature of a substrate supplied to an oxidation process system using an oxidation treatment gas and light irradiation. <P>SOLUTION: The uppermost surface temperature of the substrate is measured based on a measured result of a film thickness of an oxide film formed on the substrate supplied to the oxidation process system using the oxidation treatment gas and the light irradiation. The oxidation treatment gas is an oxidative gas such as oxygen gas. The film thickness of the oxide film is instantiated by an elliptic polarization analytical method or an X-ray photoelectron spectroscopy. This method is applicable for measuring a surface temperature of a substrate surface not irradiated directly with the light, when the substrate is arranged in midair in the oxidation process system. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は半導体ポリシリコンTFT、FET素子におけるゲート酸化膜の作製技術関連、その他、オゾン酸化を用いる半導体製造プロセス技術に関する。   The present invention relates to a semiconductor polysilicon TFT, a technique for producing a gate oxide film in an FET element, and a semiconductor manufacturing process technique using ozone oxidation.

近年の半導体分野において、量産性及び低コスト化の観点から半導体製造プロセス温度の低温化が要求されている。オゾンは強い酸化力を持つことが知られており、半導体製造プロセスの低温化にオゾン技術へ注目が集まっている。一例として、TFT(薄膜トランジスタ)素子におけるゲート酸化膜作製(Si酸化技術)においては、オゾンを用いることにより、従来1000℃以上必要だった製膜温度が、400℃にまで低減可能となっている(特許文献1参照)。ここでオゾンによる強い酸化力は、実際にはオゾン分解の際に生じる原子状酸素(O*)が担っていることが知られている。 In the semiconductor field in recent years, there has been a demand for lowering the semiconductor manufacturing process temperature from the viewpoint of mass productivity and cost reduction. Ozone is known to have strong oxidizing power, and attention is being focused on ozone technology to lower the temperature of semiconductor manufacturing processes. As an example, in the production of a gate oxide film (Si oxidation technology) in a TFT (thin film transistor) element, the film forming temperature, which conventionally required 1000 ° C. or more, can be reduced to 400 ° C. by using ozone ( Patent Document 1). Here, it is known that the strong oxidizing power by ozone is actually borne by atomic oxygen (O * ) generated during ozonolysis.

オゾンの分解反応は(1)式によって与えられえる。   The decomposition reaction of ozone can be given by equation (1).

3→O*+O2 …(1)
オゾンの熱分解が400℃以上で確率が高いことが、Si酸化温度の下限を決めている。オゾン分解は熱以外に光によっても誘起されることが知られている。オゾン分子は200−300nmの波長帯に大きな吸収端(ハートリーバンド)を有し、この波長帯の光によって、分解反応が起きる。この光分解を用いることによりSi酸化温度を室温近くまで低減可能としている(特許文献2参照)。室温近くまで低温化が行えることは、オゾン技術が将来、半導体素子の量産化・低コスト化に寄与できるのみならず、フレキシブル・ディスプレイ等の次世代機器の製造プロセスへの寄与も多くできることが期待される。
O 3 → O * + O 2 (1)
The lower the Si oxidation temperature, the higher the probability that the thermal decomposition of ozone is 400 ° C. or higher. It is known that ozonolysis is induced not only by heat but also by light. Ozone molecules have a large absorption edge (Hartley band) in the wavelength band of 200 to 300 nm, and a decomposition reaction occurs due to light in this wavelength band. By using this photolysis, the Si oxidation temperature can be reduced to near room temperature (see Patent Document 2). The ability to reduce the temperature to near room temperature is expected to not only contribute to the mass production and cost reduction of semiconductor devices in the future, but also contribute to the manufacturing process of next-generation devices such as flexible displays. Is done.

オゾン技術は、以上述べたようなプロセス製膜技術だけでなくエッチング、表面改質、クリーニングなどにも適用可能であり広く利用されることが期待されている。
特開2003−209108号公報(段落0117〜0123) 特開2006−080474号公報(段落0011〜0034)
The ozone technique can be applied not only to the process film forming technique as described above but also to etching, surface modification, cleaning, and the like, and is expected to be widely used.
JP 2003-209108 A (paragraphs 0117 to 0123) JP 2006-080474 A (paragraphs 0011 to 0034)

紫外光を用いてオゾン分解させる場合、オゾンから光分解し生成した励起状酸素原子は、極めて反応性が高いがすぐに失活して酸素になることが知られている(特許公開2004−085407号公報参照)。このためオゾン光酸化処理では、紫外光を処理基板表面に当たるような配置で行うのが一般的である。これは対象試料の表面ごく近傍で励起状酸素原子を生成させるためである。一方でこのような光源の配置では、紫外光が基板の表面にも到達する。このとき基板の表面は光吸収により温度上昇が起きているものと推測される。このような表面加熱効果は、酸化速度を決めるのに重要な要因である一方、低温作製の観点からはこの熱が下地の基板に影響を与える懸念が生じる。したがって、基板の表面温度を知ることが、プロセス制御に欠かせない。しかしながら、加熱は基板表面の近傍で起きているために基板内の厚み方向に対して大きな熱勾配があり、従来の温度計を近くに置いた方法では基板の最表面の温度を調べることはできない。   In the case of ozonolysis using ultraviolet light, excited oxygen atoms generated by photolysis from ozone are known to be extremely reactive but immediately deactivated to become oxygen (patent publication 2004-085407). No. publication). For this reason, the ozone photo-oxidation treatment is generally performed in such an arrangement that the ultraviolet light strikes the surface of the treatment substrate. This is because excited oxygen atoms are generated very close to the surface of the target sample. On the other hand, with such a light source arrangement, ultraviolet light reaches the surface of the substrate. At this time, it is presumed that the temperature of the substrate surface has risen due to light absorption. While such a surface heating effect is an important factor in determining the oxidation rate, there is a concern that this heat affects the underlying substrate from the viewpoint of low temperature fabrication. Therefore, knowing the surface temperature of the substrate is essential for process control. However, since heating occurs in the vicinity of the substrate surface, there is a large thermal gradient with respect to the thickness direction in the substrate, and the temperature of the outermost surface of the substrate cannot be examined by a method in which a conventional thermometer is placed nearby. .

そこで、前記課題を解決するための基板表面温度測定方法は酸化処理ガスと光照射とを用いた酸化プロセス系に供されている基板に形成された酸化膜の膜厚の測定結果に基づき基板の表面温度を測定する。酸化処理ガスと光照射とを用いた酸化プロセス系に供されている基板に形成された酸化膜の膜厚は前記基板の最表面温度と相関性を有しているので、前記基板の表面温度を測定できる。評価可能温度範囲は室温〜1000℃と幅広い。また、測定された膜厚の分布によって基板の表面方向の温度分布を把握できるので基板表面方向の空間分解能が得られる。   Therefore, a substrate surface temperature measurement method for solving the above problems is based on the measurement result of the thickness of the oxide film formed on the substrate provided in the oxidation process system using the oxidation treatment gas and light irradiation. Measure the surface temperature. Since the film thickness of the oxide film formed on the substrate used in the oxidation process system using the oxidation treatment gas and light irradiation has a correlation with the outermost surface temperature of the substrate, the surface temperature of the substrate Can be measured. The evaluable temperature range is as wide as room temperature to 1000 ° C. Further, since the temperature distribution in the surface direction of the substrate can be grasped from the distribution of the measured film thickness, the spatial resolution in the substrate surface direction can be obtained.

前記基板表面温度測定方法において、前記酸化膜の膜厚の測定法としては楕円偏光解析法またはX線光電子分光法が例示される。前記酸化処理ガスは酸素ガスに例示される酸化性ガスである。   In the substrate surface temperature measuring method, the method for measuring the film thickness of the oxide film includes elliptical ellipsometry or X-ray photoelectron spectroscopy. The oxidation treatment gas is an oxidizing gas exemplified by oxygen gas.

前記基板表面温度測定方法においては、前記膜厚測定に用いる装置をチャンバ内に設けると、酸化プロセス中のその場で表面温度を測定できる。   In the substrate surface temperature measurement method, when a device used for the film thickness measurement is provided in the chamber, the surface temperature can be measured in situ during the oxidation process.

前記基板表面温度測定方法においては、前記表面温度を測定することでプロセス光照射量のフィードバックをかけることが可能なる。   In the substrate surface temperature measuring method, the process light irradiation amount can be fed back by measuring the surface temperature.

前記光照射に係る光の周波数は紫外光から可視光の領域であるとすると、基板表面の損傷を引き起こすことなく基板表面温度を測定できる。   Assuming that the frequency of light associated with the light irradiation is in the range from ultraviolet light to visible light, the substrate surface temperature can be measured without causing damage to the substrate surface.

前記酸化プロセス系内では基板を中空に配置させると、光が直接当たらない基板表面の表面温度測定に適用できる。   If the substrate is disposed in the oxidation process system, the substrate can be applied to the surface temperature measurement of the substrate surface that is not directly exposed to light.

したがって、以上の発明によれば酸化処理ガスと光照射を用いた酸化プロセス系に供されている基板の最表面温度を測れる。   Therefore, according to the above invention, the outermost surface temperature of the substrate used in the oxidation process system using the oxidation treatment gas and light irradiation can be measured.

発明に係る基板表面温度測定方法は光照射された試料の最表面温度を測るにあたり酸化膜の酸化速度と温度の関係に基づき算出する。図1は発明に係る基板表面温度測定の手順を示したフローチャート図である。   The substrate surface temperature measuring method according to the invention is calculated based on the relationship between the oxidation rate of the oxide film and the temperature when measuring the outermost surface temperature of the sample irradiated with light. FIG. 1 is a flowchart showing a procedure for measuring a substrate surface temperature according to the invention.

先ず、酸化試料を準備する(S1)。ここでは酸化できるものに限る(例えば、アルミ、Siなど)。予め洗浄を行い、自然酸化膜を除去する。次に、酸化チャンバ内で光照射を用いた酸化処理を行う(S2)。前記光照射に係る光の周波数は紫外光から可視光の領域であるとよい。200nm以下の波長光は望ましくはない。200nm以下の波長光は下地の試料(基板(Si))を損傷させる。酸化膜厚の酸化温度依存性を利用して、膜厚から酸化試料の表面温度を知る。つまり、光照射された場所は表面温度に応じた速度で酸化が進行することを利用する。酸化処理を終えたら、膜厚評価する(S3)。膜厚測定としてはエリプソメーター(楕円偏光解析法)等による光学測定法やXPS(X線光電子分光法)等のX線測定法があげられる。得られた膜厚を基本データ(リファレンス)と比較する(S4)。そして、酸化試料の表面温度を推定する。前記リファレンスは光を用いずホットプレート等で加熱された状態で酸化(熱酸化)して得られた酸化膜厚である。熱酸化による酸化膜厚をリファレンスとした理由はホットプレートで加熱された試料は試料内で温度が均一であり、前記試料の表面温度も同じであるとみなさせるからである。以下の紫外光(波長248nm)照射を適用したSi(100)基板の表面温度を推定した実施例を参照しながら発明の実施形態について説明する。また膜厚測定プローブをチャンバ内に設けることにより、その場測定が可能となる。その場解析により光照射量のフィードバックが可能となる。   First, an oxidized sample is prepared (S1). Here, it is limited to those that can be oxidized (for example, aluminum, Si, etc.). Cleaning is performed in advance to remove the natural oxide film. Next, an oxidation process using light irradiation is performed in the oxidation chamber (S2). The frequency of light related to the light irradiation is preferably in the range from ultraviolet light to visible light. Light having a wavelength of 200 nm or less is not desirable. Light having a wavelength of 200 nm or less damages the underlying sample (substrate (Si)). Utilizing the oxidation temperature dependence of the oxide film thickness, the surface temperature of the oxidized sample is known from the film thickness. That is, the place irradiated with light utilizes the fact that oxidation proceeds at a rate corresponding to the surface temperature. When the oxidation process is finished, the film thickness is evaluated (S3). Examples of the film thickness measurement include an optical measurement method using an ellipsometer (elliptical ellipsometry) and an X-ray measurement method such as XPS (X-ray photoelectron spectroscopy). The obtained film thickness is compared with basic data (reference) (S4). Then, the surface temperature of the oxidized sample is estimated. The reference is an oxide film thickness obtained by oxidation (thermal oxidation) in a state heated by a hot plate or the like without using light. The reason why the oxide film thickness by thermal oxidation is used as a reference is that the sample heated by the hot plate has a uniform temperature in the sample, and the surface temperature of the sample is regarded as the same. An embodiment of the present invention will be described with reference to an example in which the surface temperature of a Si (100) substrate to which irradiation of ultraviolet light (wavelength 248 nm) is applied is estimated. In-situ measurement can be performed by providing a film thickness measurement probe in the chamber. In-situ analysis enables feedback of the amount of light irradiation.

(第一の実施形態)
本実施形態ではKrFエキシマレーザー(波長:248nm)照射によるシリコン(100)の表面温度も求めている。図1の基板表面温度の推定に供される酸化処理用基板としてSi(100)を準備した。Siは表面の平坦に優れ、きわめて薄い膜(<1nm)でも精密に測定できることから表面温度測定に適する。また、光源のKrFエキシマレーザーは、オゾンを光励起するのに最適な波長を有する光源である。したがって、オゾンの低温酸化に対する表面温度を知ることを想定しており、以下の実施例は光による表面加熱の影響を観測できたというものである。
(First embodiment)
In the present embodiment, the surface temperature of silicon (100) by KrF excimer laser (wavelength: 248 nm) irradiation is also obtained. Si (100) was prepared as an oxidation substrate used for estimation of the substrate surface temperature in FIG. Si is suitable for surface temperature measurement because it has excellent surface flatness and can measure even a very thin film (<1 nm) precisely. The light source KrF excimer laser is a light source having an optimum wavelength for photoexciting ozone. Therefore, it is assumed that the surface temperature for low-temperature oxidation of ozone is known, and the following examples were able to observe the effect of surface heating by light.

[1]光酸化処理
図2は発明の実施形態に係る酸化処理装置1の概略構成図である。酸化処理装置1は酸化処理ガス供給装置11とチャンバ12と排気ポンプ13とを備える。図示された矢印はガス流を表す。酸化処理ガス供給装置11とチャンバ12とを連結する配管系及びチャンバ12と排気ポンプ13とを連結する配管系は室温が望ましい。
[1] Photo-oxidation treatment FIG. 2 is a schematic configuration diagram of an oxidation treatment apparatus 1 according to an embodiment of the invention. The oxidation treatment apparatus 1 includes an oxidation treatment gas supply device 11, a chamber 12, and an exhaust pump 13. The arrows shown represent gas flow. The piping system that connects the oxidizing gas supply device 11 and the chamber 12 and the piping system that connects the chamber 12 and the exhaust pump 13 preferably have room temperature.

酸化処理ガス供給装置11は酸化処理ガスボンベまたは発生装置である。酸化処理ガスとしては酸素混合ガス等の酸化性ガスが用いられる。実施例では純度100%の酸素ガスを使用した。リファレンスでも熱酸化に酸素100%ガスが用いられ熱酸化速度が算出されているからである。酸素濃度は酸化速度に影響を与えるのでそろえる必要がある。   The oxidation treatment gas supply device 11 is an oxidation treatment gas cylinder or a generator. An oxidizing gas such as an oxygen mixed gas is used as the oxidizing gas. In the examples, oxygen gas having a purity of 100% was used. This is because even in the reference, 100% oxygen gas is used for thermal oxidation, and the thermal oxidation rate is calculated. Since the oxygen concentration affects the oxidation rate, it must be aligned.

チャンバ12は図3に示されたように酸化処理に供される基板20を格納する。チャンバ12には酸化処理ガス供給装置11から酸化処理ガスが供給される配管21と排気ポンプ13によって吸引されたガスが排出される配管22が接続されている。配管21,22の態様は特開2006−080474に開示された光励起オゾン酸化に係る酸化膜形成装置の配管系に準ずればよい。チャンバ12内の基板20はサセプタ23上に載置される。サセプタ23は移動機構24によってチャンバ12内を移動できるようになっている。移動機構24は半導体製造技術に採用される基板の移動手段を適用すればよい。   The chamber 12 stores a substrate 20 to be subjected to an oxidation process as shown in FIG. Connected to the chamber 12 are a pipe 21 through which the oxidizing gas is supplied from the oxidizing gas supply device 11 and a pipe 22 through which the gas sucked by the exhaust pump 13 is discharged. The form of the pipes 21 and 22 may be in accordance with the pipe system of the oxide film forming apparatus related to photoexcited ozone oxidation disclosed in JP-A-2006-080474. The substrate 20 in the chamber 12 is placed on the susceptor 23. The susceptor 23 can be moved in the chamber 12 by a moving mechanism 24. The moving mechanism 24 may be a substrate moving means employed in semiconductor manufacturing technology.

チャンバ12には圧力計25が具備される。圧力計25は圧力範囲が0.1Pa−100000Paである仕様のものが採用される。   The chamber 12 is provided with a pressure gauge 25. The pressure gauge 25 has a pressure range of 0.1 Pa-100,000 Pa.

また、チャンバ12の天井部には紫外線の光源26から発せされた紫外光を導入するための照射窓27が設けられている。照射窓27は光源24の光を透過する材料から成る。実施例では光源24としてKrFエキシマレーザーが適用されているので、200nm−300nmの波長帯の光を透過する材料からなるもの(例えば合成石英)が用いられる。尚、光源26の光は基板20表面に照射されるように設定されるのであれば、光源26はレーザータイプに限定されずランプタイプのものでもよい。   Further, an irradiation window 27 for introducing ultraviolet light emitted from an ultraviolet light source 26 is provided on the ceiling of the chamber 12. The irradiation window 27 is made of a material that transmits light from the light source 24. In the embodiment, since a KrF excimer laser is applied as the light source 24, a material (for example, synthetic quartz) made of a material that transmits light in a wavelength band of 200 nm to 300 nm is used. The light source 26 is not limited to the laser type and may be a lamp type as long as the light from the light source 26 is set so as to be irradiated on the surface of the substrate 20.

排気処理対応のために、チャンバ12の材質は、アルミ金属、SUS金属または石英ガラスによる真空対応のものに限定される。また、減圧の際、チャンバ12の材質から汚染物質を排出しないようチャンバ12内の表面は電界研磨処理等の加工処理が施される。   In order to cope with the exhaust treatment, the material of the chamber 12 is limited to a vacuum-compatible material made of aluminum metal, SUS metal, or quartz glass. Further, during decompression, the surface in the chamber 12 is subjected to processing such as electropolishing so as not to discharge contaminants from the material of the chamber 12.

図4は基板表面の酸化処理に供される酸化処理ガス(酸素)のガス流と紫外光の照射領域の位置関係を示した斜視図である。図示された矢印は酸化処理ガス流の方向を示す。光源の光波長は200nm以上のものを用いる。Si基板にダメージを与えないためである。照射方式は連続光方式、パルス光方式のいずれに限定されない。実施例では、光源26には例えばKrFエキシマレーザー(波長:248nm)が使用される。光源26からの紫外光は例えば照射面積1cm×20cmの照射領域28のように長方形状に照射される。酸化処理ガスのガス流は照射領域28の長辺と垂直方向となるように制御される。基板20及びサセプタ23は大きさが8インチウエハに対応できるものが使用される。   FIG. 4 is a perspective view showing the positional relationship between the gas flow of an oxidation treatment gas (oxygen) used for the oxidation treatment of the substrate surface and the ultraviolet light irradiation region. The arrows shown indicate the direction of the oxidation process gas flow. The light wavelength of the light source is 200 nm or more. This is because the Si substrate is not damaged. The irradiation method is not limited to either the continuous light method or the pulsed light method. In the embodiment, for example, a KrF excimer laser (wavelength: 248 nm) is used as the light source 26. The ultraviolet light from the light source 26 is irradiated in a rectangular shape like an irradiation region 28 having an irradiation area of 1 cm × 20 cm, for example. The gas flow of the oxidation treatment gas is controlled so as to be perpendicular to the long side of the irradiation region 28. As the substrate 20 and the susceptor 23, those that can accommodate an 8-inch wafer are used.

[2]酸化膜厚測定
酸化処理ガスによって基板20に形成される酸化膜の膜厚測定法はリファレンスと整合できれば特に限定しない。例えば、Si(100)基板のSiO2膜の場合、膜厚2nmの場合は分光エリプソメーターを用いた楕円偏光解析法、膜厚2nm以下の場合はX線光電子分光法(XPS)を用いる。
[2] Measurement of oxide film thickness The method of measuring the film thickness of the oxide film formed on the substrate 20 by the oxidation treatment gas is not particularly limited as long as it can be matched with the reference. For example, in the case of a SiO 2 film of a Si (100) substrate, elliptical ellipsometry using a spectroscopic ellipsometer is used when the film thickness is 2 nm, and X-ray photoelectron spectroscopy (XPS) is used when the film thickness is 2 nm or less.

図5はSi(100)を酸化した試料のXPSの測定結果を示した特性図である。膜厚2つの場合について測定しており、分光エリプソメーター(SOPRA製 GESP5 )で測定した膜厚3.1nm、4.9nmに対し、それぞれのXPS測定装置(PHI製 ESCA model 5800)の測定データの曲線形が異なる。具体的にはSiと記した99eV付近のピーク強度とSi4+(SiO2)と記したピーク強度との比が異なる。一般に、膜が厚くなる程Si4+(SiO2)のピーク強度が増加する。このように強度比から膜厚を求めることができる。また、本実施例では表面温度が500℃以下の範囲を対象にしたので、評価用酸化膜が薄い(<1nm)のでXPSの測定結果によって膜厚を求めた。 FIG. 5 is a characteristic diagram showing the XPS measurement result of a sample obtained by oxidizing Si (100). Measurements are made for two film thicknesses. For the film thicknesses of 3.1 nm and 4.9 nm measured with a spectroscopic ellipsometer (GESP5 made by SOPRA), the measurement data of each XPS measurement device (ESC model 5800 made by PHI) The curve shape is different. Specifically, the ratio of the peak intensity in the vicinity of 99 eV indicated as Si and the peak intensity indicated as Si 4+ (SiO 2 ) is different. In general, the peak intensity of Si 4+ (SiO 2 ) increases as the film becomes thicker. Thus, the film thickness can be obtained from the intensity ratio. In this example, since the surface temperature was in the range of 500 ° C. or less, the evaluation oxide film was thin (<1 nm), and the film thickness was obtained from the XPS measurement result.

[3]リファレンス
発明に係る基板表面温度測定法では温度推定にリファレンスデータが必要である。Si(100)の酸化速度は古くから研究されておりリファレンスが得やすい。図6はSi基板の熱酸化時間に対する膜厚を示した特性図である。同じ熱酸化時間でも温度ごとに膜厚が異なる。図7は酸化時間が1時間に固定された場合の基板の温度と前記基板に形成されている酸化膜の膜厚の関係を示した特性図である。この特性図に示されたように低温域のデータは高温域のデータからの延長線で予想できる。実施例では600℃以下の温度域のデータを用いた。また、図6ではSi(100)の酸化膜厚の他にSi(111)の酸化膜厚の結果(破線)が開示されている。同一の温度でもSi(100)基板とSi(111)基板とでは形成されている酸化膜の膜厚が異なる。したがって、SiウエハでもSi基板の結晶方位面が同一のもの(実施例ではSi(100))を使用することが重要である。
[3] Reference In the substrate surface temperature measurement method according to the present invention, reference data is required for temperature estimation. The oxidation rate of Si (100) has been studied for a long time and it is easy to obtain a reference. FIG. 6 is a characteristic diagram showing the film thickness with respect to the thermal oxidation time of the Si substrate. The film thickness varies with temperature even during the same thermal oxidation time. FIG. 7 is a characteristic diagram showing the relationship between the temperature of the substrate and the thickness of the oxide film formed on the substrate when the oxidation time is fixed at 1 hour. As shown in this characteristic diagram, the low temperature data can be predicted by an extension from the high temperature data. In the examples, data in a temperature range of 600 ° C. or lower was used. FIG. 6 discloses the result (broken line) of the Si (111) oxide film thickness in addition to the Si (100) oxide film thickness. Even at the same temperature, the thickness of the oxide film formed differs between the Si (100) substrate and the Si (111) substrate. Therefore, it is important to use a Si wafer having the same crystal orientation plane of the Si substrate (Si (100) in the embodiment).

[4]Si低温酸化での適用例
Si基板(100)に対してSiO2製膜したプロセスから表面加熱温度を用いる。
[4] Application Example in Si Low Temperature Oxidation The surface heating temperature is used from the process of forming the SiO 2 film on the Si substrate (100).

図3に示された光源26には以下の仕様のKrFエキシマレーザーを用いた。   As the light source 26 shown in FIG. 3, a KrF excimer laser having the following specifications was used.

波長 248nm
繰り返し周波数 15−100Hz
照射パルス時間 〜10ns
照射強度 100−5mJ/cm2
照射面積 1cm × 3−20cm
光源26からKrF光をチャンバ12(容積〜5000cm3)に入射する。酸素ガスは、前記KrF光の光路に対して垂直方向に流れるように制御した。チャンバ12に供給された酸素ガスは紫外光の光路を通過して排気される。チャンバ12の壁は室温に保持された。基板20及びサセプタ23は室温に保持した。光酸化処理に用いた酸素ガスは〜100%濃度を使用した。膜厚はXPS測定装置(PHI製 ESCA model 5800)を用いて評価した。
Wavelength 248nm
Repetition frequency 15-100Hz
Irradiation pulse time -10ns
Irradiation intensity: 100-5 mJ / cm 2
Irradiation area 1cm x 3-20cm
KrF light is incident from the light source 26 into the chamber 12 (volume up to 5000 cm 3 ). The oxygen gas was controlled to flow in a direction perpendicular to the optical path of the KrF light. The oxygen gas supplied to the chamber 12 passes through the optical path of ultraviolet light and is exhausted. The wall of chamber 12 was kept at room temperature. The substrate 20 and the susceptor 23 were kept at room temperature. The oxygen gas used for the photo-oxidation treatment was used at a concentration of ˜100%. The film thickness was evaluated using an XPS measurement apparatus (ESCA model 5800 manufactured by PHI).

[5]結果
(1)リファレンス
図8は熱酸化での実施例を示したものである。20℃、150℃、320℃の温度のもとで1時間酸化した場合のSi(100)基板に対するXPSによる膜厚の評価結果を示した特性図である。試料の加熱温度の増加に伴い形成されている酸化膜の膜厚が増えており、XPSによって膜厚評価ができているとみなせる。
[5] Results (1) Reference FIG. 8 shows an example of thermal oxidation. It is the characteristic view which showed the evaluation result of the film thickness by XPS with respect to Si (100) board | substrate when it oxidizes for 1 hour under the temperature of 20 degreeC, 150 degreeC, and 320 degreeC. As the heating temperature of the sample increases, the thickness of the oxide film formed increases, and it can be considered that the film thickness can be evaluated by XPS.

(2)光照射エネルギー依存性
図9は光照射の入射エネルギーに対するSi(100)基板の表面温度依存性を示した特性図である。下地の基板は加熱なし(室温)、酸化時間は1時間である。照射エネルギーの増加に伴い表面温度は上昇する。また、表面温度は室温よりもはるかに高い温度を示しており、このことから光吸収にともなう表面の局所加熱効果が起きていることが実証された。
(2) Light Irradiation Energy Dependency FIG. 9 is a characteristic diagram showing the surface temperature dependence of the Si (100) substrate with respect to incident energy of light irradiation. The underlying substrate is not heated (room temperature), and the oxidation time is 1 hour. As the irradiation energy increases, the surface temperature increases. In addition, the surface temperature was much higher than room temperature, and this proved that a local heating effect on the surface accompanying light absorption occurred.

(3)照射位置依存性
図10はSi(100)基板B上の一部に光を照射した場合の表面温度の分布を示した特性図である。横軸は照射領域Iの一端側からの距離Rを示す。横軸0mmが光照射を受けた場所を意味し、距離Rが増えるほど、照射領域Iから遠い場所であることを意味する。
(3) Irradiation Position Dependence FIG. 10 is a characteristic diagram showing the distribution of surface temperature when a part of the Si (100) substrate B is irradiated with light. The horizontal axis indicates the distance R from one end side of the irradiation region I. A horizontal axis of 0 mm means a place where light irradiation is applied, and as the distance R increases, it means a place farther from the irradiation region I.

図10に示された測定結果によると、基板Bの表面温度Tは照射領域Iで最も高く、照射領域Iの一端から離れるにつれて表面温度Tが低くなることが確認できる。但し、照射領域Iの一端からの距離Rが15mmの場所でも表面温度Tがベースの室温よりも遥かに高い。これは照射領域Iから熱が拡散しているためと考えられる。このように基板表面の温度分布を測ることができることが確認された。   According to the measurement result shown in FIG. 10, it can be confirmed that the surface temperature T of the substrate B is highest in the irradiation region I, and the surface temperature T decreases as the distance from one end of the irradiation region I increases. However, even when the distance R from one end of the irradiation region I is 15 mm, the surface temperature T is much higher than the base room temperature. This is considered because heat is diffusing from the irradiation region I. Thus, it was confirmed that the temperature distribution on the substrate surface can be measured.

以上述べた実施例から本実施形態に係る基板表面温度測定法によれば基板の再表面温度を測れることが明らかである。   From the examples described above, it is apparent that the resurface temperature of the substrate can be measured by the substrate surface temperature measuring method according to the present embodiment.

(第二の実施形態)
本実施形態に係る基板表面温度測定法は光照射された領域の裏面の表面温度を測る。本測定法は試料準備工程及び酸化処理工程以外は図1の第一の実施形態に係る測定法と同じである。
(Second embodiment)
The substrate surface temperature measurement method according to the present embodiment measures the surface temperature of the back surface of the region irradiated with light. This measurement method is the same as the measurement method according to the first embodiment of FIG. 1 except for the sample preparation step and the oxidation treatment step.

図11は本実施形態に係る基板表面温度測定に供される試料の配置形態を示した斜視図である。先ず準備する評価試料は光が当たる面の裏面に酸化膜が形成できる材質が析出しているもの(例えば両面研磨Siウエハ、Si層体積ガラスなど)である。これは光が当たらない面の酸化速度を調べることで裏面の温度を知るためである。また、評価試料は照射光が裏面まで透過しない材料から成るものに限る。なぜなら照射光が透過してしまうと試料裏面の酸化する材質で光吸収が起きてしまうためである。   FIG. 11 is a perspective view showing an arrangement of samples used for substrate surface temperature measurement according to the present embodiment. First, an evaluation sample to be prepared is one in which a material capable of forming an oxide film is deposited on the back side of the surface that is exposed to light (for example, double-side polished Si wafer, Si layer volume glass, etc.). This is because the temperature of the back surface is known by examining the oxidation rate of the surface not exposed to light. Moreover, the evaluation sample is limited to a material made of a material that does not transmit the irradiated light to the back surface. This is because if the irradiated light is transmitted, light absorption occurs in the material that oxidizes on the back surface of the sample.

したがって、本実施形態における光酸化の形態は図11に示したように評価試料30が中空に配置された状態となっている。すなわち、評価試料30がジグ31によってサセプタ23から浮いた状態で保持されている。ジグ31は系を汚さないクリーンな材質からなり、評価試料30の熱をサセプタ23に伝えない断熱材が望ましい。例えば前記材質としては合成石英を挙げることができる。評価試料30はサセプタ23から浮いた状態となっているので、酸化処理ガスが点線で示した光照射領域の評価試料30の裏面にも迂回してくるようになっている。したがって、評価試料30の表面に酸化膜3aが形成されるばかりでなくその裏面にも前記酸化処理ガスによって酸化膜30bが形成される。そして、酸化膜30bの膜厚を測定することにより、前記裏面の表面温度を知ることが可能となる。   Therefore, the form of photooxidation in the present embodiment is such that the evaluation sample 30 is arranged in a hollow state as shown in FIG. That is, the evaluation sample 30 is held in a state of being lifted from the susceptor 23 by the jig 31. The jig 31 is made of a clean material that does not contaminate the system, and is preferably a heat insulating material that does not transmit the heat of the evaluation sample 30 to the susceptor 23. For example, the material can be synthetic quartz. Since the evaluation sample 30 is in a state of floating from the susceptor 23, the oxidation treatment gas bypasses the back surface of the evaluation sample 30 in the light irradiation region indicated by the dotted line. Therefore, not only the oxide film 3a is formed on the surface of the evaluation sample 30, but also the oxide film 30b is formed on the back surface thereof by the oxidation treatment gas. Then, by measuring the thickness of the oxide film 30b, the surface temperature of the back surface can be known.

以上のように本実施形態の基板表面温度測定方法は低温酸化技術において基板の下地の熱ダメージを調べるのに有用な手法となりうる。   As described above, the substrate surface temperature measuring method of the present embodiment can be a useful technique for examining the thermal damage of the substrate base in the low temperature oxidation technique.

発明に係る基板表面温度測定の手順を示したフローチャート図。The flowchart figure which showed the procedure of the substrate surface temperature measurement which concerns on invention. 発明の実施形態に係る酸化処理装置の概略構成図。The schematic block diagram of the oxidation processing apparatus which concerns on embodiment of invention. 酸化処理チャンバの概略構成図。The schematic block diagram of an oxidation treatment chamber. 酸化処理ガスのガス流と紫外光の照射領域の位置関係を示した斜視図。The perspective view which showed the positional relationship of the gas flow of oxidation process gas, and the irradiation area | region of an ultraviolet light. Si(100)を酸化した試料のXPSの測定結果を示した特性図。The characteristic view which showed the measurement result of XPS of the sample which oxidized Si (100). Si基板の熱酸化時間に対する膜厚を示した特性図。The characteristic view which showed the film thickness with respect to the thermal oxidation time of Si substrate. 酸化時間が1時間である場合の基板の温度と前記基板に形成されている酸化膜の膜厚の関係を示した特性図。The characteristic view which showed the relationship between the temperature of a board | substrate in case oxidation time is 1 hour, and the film thickness of the oxide film currently formed in the said board | substrate. 20℃、150℃、320℃の温度のもとで1時間酸化した場合のSi(100)に対するXPSによる膜厚の評価結果を示した特性図。The characteristic view which showed the evaluation result of the film thickness by XPS with respect to Si (100) at the time of oxidizing at the temperature of 20 degreeC, 150 degreeC, and 320 degreeC for 1 hour. 光照射の入射エネルギーに対するSi(100)の表面温度依存性を示した特性図。The characteristic view which showed the surface temperature dependence of Si (100) with respect to the incident energy of light irradiation. Si(100)基板上の一部に光を照射した場合の表面温度の分布を示した特性図。The characteristic view which showed distribution of the surface temperature at the time of irradiating light to a part on Si (100) board | substrate. 発明の第二の実施形態に係る基板表面温度測定に供される試料の配置形態を示した斜視図。The perspective view which showed the arrangement | positioning form of the sample used for the substrate surface temperature measurement which concerns on 2nd embodiment of invention.

符号の説明Explanation of symbols

1…酸化処理装置
11…酸化処理ガス供給装置、12…チャンバ、13…排気ポンプ
20…基板、21,22…配管、23…サセプタ、24…移動機構、25…圧力計、26…光源、27…照射窓
28…照射領域
30…評価試料、31…ジグ、30a,30b…酸化膜
DESCRIPTION OF SYMBOLS 1 ... Oxidation processing apparatus 11 ... Oxidation process gas supply apparatus, 12 ... Chamber, 13 ... Exhaust pump 20 ... Substrate, 21, 22 ... Pipe, 23 ... Susceptor, 24 ... Moving mechanism, 25 ... Pressure gauge, 26 ... Light source, 27 ... Irradiation window 28 ... Irradiation region 30 ... Evaluation sample, 31 ... Jig, 30a, 30b ... Oxide film

Claims (6)

酸化処理ガスと光照射とを用いた酸化プロセス系に供されている基板に形成された酸化膜の膜厚の測定結果に基づき基板の表面温度を測定すること
を特徴とする基板表面温度測定方法。
A substrate surface temperature measuring method, comprising: measuring a surface temperature of a substrate based on a measurement result of a film thickness of an oxide film formed on a substrate used in an oxidation process system using an oxidation treatment gas and light irradiation .
前記酸化膜の膜厚を楕円偏光解析法またはX線光電子分光法によって測定することを特徴とする請求項1に記載の基板表面温度測定方法。   2. The substrate surface temperature measuring method according to claim 1, wherein the thickness of the oxide film is measured by ellipsometry or X-ray photoelectron spectroscopy. 前記酸化処理ガスは酸素ガスであることを特徴とする請求項1または2に記載の基板表面温度測定方法。   3. The substrate surface temperature measuring method according to claim 1, wherein the oxidation treatment gas is oxygen gas. 前記酸化プロセス系内で基板を中空に配置させたことで光が直接当たらない基板表面の表面温度測定に適用できることを特徴とする請求項1から3のいずれか1項に記載の基板表面温度測定方法。   4. The substrate surface temperature measurement according to claim 1, wherein the substrate surface temperature measurement according to claim 1 can be applied to a surface temperature measurement of a substrate surface that is not directly exposed to light by disposing the substrate in a hollow state in the oxidation process system. 5. Method. 前記膜厚測定に用いる装置をチャンバ内に設けることにより、酸化プロセス中のその場で表面温度を測定すること特徴とする請求項1または2に記載の基板表面温度測定方法。   3. The substrate surface temperature measuring method according to claim 1, wherein a surface temperature is measured in-situ during an oxidation process by providing an apparatus used for measuring the film thickness in a chamber. 前記表面温度を測定することでプロセス光照射量のフィードバックをかけることが可能なことを特徴とする請求項1または2に記載の基板表面温度測定方法。   3. The substrate surface temperature measuring method according to claim 1, wherein the process light irradiation amount can be fed back by measuring the surface temperature.
JP2007294943A 2007-11-13 2007-11-13 Method of measuring surface temperature of substrate Pending JP2009123850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294943A JP2009123850A (en) 2007-11-13 2007-11-13 Method of measuring surface temperature of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007294943A JP2009123850A (en) 2007-11-13 2007-11-13 Method of measuring surface temperature of substrate

Publications (1)

Publication Number Publication Date
JP2009123850A true JP2009123850A (en) 2009-06-04

Family

ID=40815703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294943A Pending JP2009123850A (en) 2007-11-13 2007-11-13 Method of measuring surface temperature of substrate

Country Status (1)

Country Link
JP (1) JP2009123850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024677A1 (en) * 2009-08-28 2011-03-03 独立行政法人産業技術総合研究所 Electrode member, electron energy analyzer, photoelectron energy analyzer, and temperature measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024677A1 (en) * 2009-08-28 2011-03-03 独立行政法人産業技術総合研究所 Electrode member, electron energy analyzer, photoelectron energy analyzer, and temperature measuring apparatus
JP5545577B2 (en) * 2009-08-28 2014-07-09 独立行政法人産業技術総合研究所 Electrode member, electron energy analyzer, photoelectron energy analyzer, and temperature measuring device
US8944679B2 (en) 2009-08-28 2015-02-03 National Institute Of Advanced Industrial Science And Technology Electrode member, electron energy analyzer, photoelectron energy analyzer, and temperature measuring apparatus

Similar Documents

Publication Publication Date Title
KR100265583B1 (en) Selective removal method and apparatus of material by irradiation
US7159599B2 (en) Method and apparatus for processing a wafer
US7585686B2 (en) Method and apparatus for processing a wafer
US7572482B2 (en) Photo-patterned carbon electronics
JP2005012218A (en) Method and system for monitoring etch process
TW200834778A (en) Integrated vacuum metrology for cluster tool
CZ378297A3 (en) Removal of material by polarized radiation and due to the action of radiation on the bottom side
JP6085079B2 (en) Pattern forming method, temperature control method for member in processing container, and substrate processing system
JP2006287228A (en) Semiconductor processor capable of self-cleaning
JP5022708B2 (en) In-situ substrate temperature monitoring method and apparatus
JP7265493B2 (en) Apparatus and method for measuring information
Li et al. Photochemical template removal and spatial patterning of zeolite MFI thin films using UV/ozone treatment
JP2009123850A (en) Method of measuring surface temperature of substrate
JP4986054B2 (en) Oxide film forming method and apparatus
JP2009234815A (en) Method and apparatus for processing graphene sheet-based material
Kameda et al. High quality gate dielectric film on poly-silicon grown at room temperature using UV light excited ozone
JP2002535833A (en) Surface passivation system and method
WO2000042644A9 (en) System and method for surface passivation
JP6212092B2 (en) Substrate processing system, focus ring temperature control method, and substrate etching method
CN105009297A (en) Pinhole evaluation method of dielectric films for metal oxide semiconductor TFT
JP5510522B2 (en) Method for processing graphene sheet material
JP6681061B2 (en) Resist stripping method and resist stripping apparatus
JP2007189083A (en) Composition evaluating method and physical property evaluating method of nitriding silicon oxide film
Kuk et al. Low temperature deposition of inorganic films by excimer laser assisted chemical vapor deposition
Nishiguchi et al. Rapid and uniform SiO2 film growth on 4 inch si wafer using 100%-O3 gas

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821