JP2009123516A - Sealing method of metal container - Google Patents

Sealing method of metal container Download PDF

Info

Publication number
JP2009123516A
JP2009123516A JP2007296205A JP2007296205A JP2009123516A JP 2009123516 A JP2009123516 A JP 2009123516A JP 2007296205 A JP2007296205 A JP 2007296205A JP 2007296205 A JP2007296205 A JP 2007296205A JP 2009123516 A JP2009123516 A JP 2009123516A
Authority
JP
Japan
Prior art keywords
upper lid
laser beam
gasket
metal
sealing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007296205A
Other languages
Japanese (ja)
Other versions
JP5147365B2 (en
Inventor
Kinya Aota
欣也 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007296205A priority Critical patent/JP5147365B2/en
Publication of JP2009123516A publication Critical patent/JP2009123516A/en
Application granted granted Critical
Publication of JP5147365B2 publication Critical patent/JP5147365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing method capable of achieving high pressure resistance by sandwiching insulating resin between a metal container and an upper lid, and thermally fusing the insulating resin to seal. <P>SOLUTION: A gasket 4 is irradiated with a laser beam 14. An upper lid connection plate 5 is irradiated with the laser beam 14 transmitting the gasket 4 by irradiating with the laser beam 14, and the upper lid connection plate 5 is heated. The gasket 4 closely attached to the upper lid connection plate 5 is fused by heat conduction and is fuse-bonded. A flat part 6 of a width of 2 mm is provided on the upper lid connection plate 5, and the laser beam is irradiated to the flat part 6. Although the upper lid connection plate 5 is likely to have a curved surface because its outer circumference is folded, the flat part is purposefully provided to suppress fluctuation of an absorption rate of the laser beam upon irradiating the laser beam on the flat part. Thus, bonding quality can be stabilized irrespective of fluctuation factors such as irradiation target miss. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属製容器の開口部に、金属製上蓋を挿入して、かしめ加工により封止する封止方法に関するものである。   The present invention relates to a sealing method in which a metal upper lid is inserted into an opening of a metal container and sealed by caulking.

金属製容器と金属製上蓋とのあいだに絶縁樹脂をはさみ、この樹脂を熱融着して容器と上蓋とを封止する方法が知られている。   A method is known in which an insulating resin is sandwiched between a metal container and a metal upper lid and the container and the upper lid are sealed by heat-sealing the resin.

例えば、特許文献1では、加熱加圧治具により容器および上蓋を加熱して、それらの間の絶縁樹脂を溶融させて容器と上蓋とを封止する方法が示されている。   For example, Patent Document 1 discloses a method of sealing a container and an upper lid by heating the container and the upper lid with a heating and pressing jig to melt an insulating resin therebetween.

また、特許文献2には、高周波加熱装置により絶縁樹脂を溶融させて容器と上蓋とを封止する方法が示されている。   Patent Document 2 discloses a method of sealing an container and an upper lid by melting an insulating resin with a high-frequency heating device.

特開平3−01440号JP-A-3-01440 特開平7−73861号JP 7-73861 A

従来の技術では、封止部の強度は絶縁樹脂の強度に比例することになるが、絶縁樹脂の強度は金属より低くなる傾向がある。封止の信頼性を向上させるには耐圧性を向上させる必要がある。   In the conventional technology, the strength of the sealing portion is proportional to the strength of the insulating resin, but the strength of the insulating resin tends to be lower than that of the metal. In order to improve the reliability of sealing, it is necessary to improve pressure resistance.

また、従来の技術では、絶縁樹脂を溶融する際に、加熱加圧治具もしくは高周波加熱により絶縁樹脂を溶融しているため、容器の温度が上昇してしまう問題があった。   Further, in the conventional technology, when the insulating resin is melted, the insulating resin is melted by a heating / pressing jig or high-frequency heating, so that the temperature of the container rises.

これは、たとえば、リチウム二次電池等の電池の容器に関する場合には、電解液の温度も上昇してしまい電池特性が劣化する場合もある。   For example, in the case of a container for a battery such as a lithium secondary battery, the temperature of the electrolytic solution may increase and the battery characteristics may deteriorate.

そこで、本発明の目的は、金属製容器と金属製上蓋とのあいだに絶縁樹脂をはさみ、この絶縁樹脂を熱融着して封止する場合に、耐圧性を低下させない封止方法を提供することにある。   Accordingly, an object of the present invention is to provide a sealing method in which an insulating resin is sandwiched between a metal container and a metal top lid and the pressure resistance is not reduced when the insulating resin is sealed by thermal fusion. There is.

本発明の封止方法は、金属製容器の開口部に金属製上蓋を挿入した状態で、金属製容器の開口部の周縁部に、レーザ光を透過する熱可塑性樹脂製絶縁ガスケットを介して、金属製容器を、かしめ加工したのち、かしめ加工したかしめ加工部、および、絶縁ガスケットにレーザ光を照射することを特徴とする。   In the sealing method of the present invention, a metal top lid is inserted into the opening of the metal container, and a peripheral edge of the opening of the metal container is passed through an insulating gasket made of a thermoplastic resin that transmits laser light. After the caulking process is performed on the metal container, the caulking process part and the insulating gasket that have been caulked are irradiated with laser light.

そして、かしめ加工部に平坦部を設け、この平坦部にレーザ光を照射し、かつ、金属製上蓋の平坦部に接した前記絶縁ガスケットにレーザ光を照射することが好ましい。   It is preferable to provide a flat portion in the caulking portion, irradiate the flat portion with laser light, and irradiate the insulating gasket in contact with the flat portion of the metal upper lid with laser light.

そして、かしめ加工部へのレーザ光の照射により加熱して、熱伝導により、かしめ加工部と接触した前記絶縁ガスケットを加熱して溶融し、かつ、一部を分解気化させることが好ましい。   Then, it is preferable that the insulating gasket in contact with the caulking portion is heated and melted by heat conduction by laser beam irradiation to the caulking portion, and a part thereof is decomposed and vaporized.

そして、絶縁ガスケットへのレーザ光の照射により、絶縁ガスケットを透過したレーザ光は、金属製上蓋に吸収されて、金属製上蓋を加熱して、熱伝導により、金属製上蓋と接触した絶縁ガスケットを加熱して溶融し、かつ、一部を分解気化させることが好ましい。   Then, the laser beam that has passed through the insulating gasket by the irradiation of the insulating gasket with the laser beam is absorbed by the metal upper lid, the metal upper lid is heated, and the insulating gasket that is in contact with the metal upper lid is thermally conductive. It is preferable to melt by heating and to partially decompose and vaporize.

また、本発明の封止方法は、金属製容器の開口部に金属製上蓋を挿入した状態で、金属製容器の開口部の周縁部に、熱可塑性樹脂製絶縁ガスケットを介して、金属製容器を、かしめ加工したのち、かしめ加工したかしめ加工部、および、金属製上蓋にレーザ光を照射することを特徴とする。   Further, the sealing method of the present invention is a metal container having a metal upper lid inserted into the opening of the metal container, with an insulating gasket made of a thermoplastic resin around the periphery of the opening of the metal container. After the caulking process, the caulking process part that has been caulked and the metal upper lid are irradiated with laser light.

そして、かしめ加工部に平坦部を設け、この平坦部にレーザ光を照射し、かつ、金属製上蓋に平坦部を設け、この平坦部にもレーザ光を照射することが好ましい。   Then, it is preferable to provide a flat portion in the caulking portion, irradiate the flat portion with laser light, and provide a flat portion on the metal upper lid, and irradiate the flat portion with laser light.

そして、かしめ加工部へのレーザ光の照射により加熱して、熱伝導により、かしめ加工部と接触した絶縁ガスケットを加熱して溶融し、かつ、一部を気化分解させることが好ましい。   Then, it is preferable to heat the insulating gasket that is in contact with the caulking portion by heat conduction by heating the caulking portion with laser light irradiation, and to thermally vaporize and decompose a part thereof.

そして、金属製上蓋へのレーザ光の照射により、金属製上蓋を加熱して、熱伝導により、金属製上蓋と接触した絶縁ガスケットを加熱して溶融し、かつ、一部を分解気化させることが好ましい。   Then, by irradiating the metal upper lid with laser light, the metal upper lid is heated, and by heat conduction, the insulating gasket in contact with the metal upper lid is heated and melted, and a part thereof is decomposed and vaporized. preferable.

また、本発明の封止方法は、金属製容器の開口部に金属製上蓋を挿入した状態で、金属製容器の開口部の周縁部に、絶縁ゴムを介して、金属製容器を、かしめ加工したのち、かしめ加工したかしめ加工部、および、金属製上蓋にレーザ光を照射することを特徴とする。   Further, the sealing method of the present invention is a method in which a metal container is caulked through an insulating rubber on the peripheral edge of the opening of the metal container with a metal upper lid inserted in the opening of the metal container. After that, the caulking portion and the metal upper lid that have been caulked are irradiated with laser light.

このように本発明は、金属製容器の開口部に金属製上蓋を挿入した状態で、容器の開口部の周縁部においてレーザ光を透過する熱可塑性樹脂製絶縁ガスケットを介して容器をかしめ加工する。その後、かしめ加工部およびガスケットにレーザ光を照射して、ガスケットを透過したレーザ光は上蓋に照射され、上蓋を加熱することで、接触しているガスケットを加熱して溶融する。   As described above, in the present invention, a container is caulked through an insulating gasket made of a thermoplastic resin that transmits laser light at the peripheral edge of the opening of the container with the metal upper lid inserted into the opening of the metal container. . Thereafter, the caulking portion and the gasket are irradiated with laser light, the laser light transmitted through the gasket is irradiated onto the upper lid, and the upper lid is heated to heat and melt the gasket in contact therewith.

これにより、容器とガスケット、および、上蓋とガスケットを、それぞれ溶着して封止することができる。   Thereby, the container and the gasket, and the upper lid and the gasket can be welded and sealed, respectively.

この方法では、かしめ加工により封止の耐圧性を確保して、かつ、レーザ光により局部加熱が可能であり、容器の内部の温度を上昇させることなく封止することができる。   In this method, the pressure resistance of sealing is ensured by caulking, and local heating is possible with laser light, and sealing can be performed without increasing the temperature inside the container.

また、かしめ加工部に平坦部を設けて、この平坦部にレーザ光を照射し、かつ上蓋にも平坦部を設けて、この平坦部にもレーザ光を照射することにより、レーザ光の吸収率の変動がなく安定した封止が可能である。   Further, by providing a flat portion in the caulking portion, irradiating the flat portion with laser light, and also providing a flat portion on the upper lid and irradiating the flat portion with laser light, the laser light absorption rate Therefore, stable sealing is possible.

また、容器もしくは上蓋には表面粗さがあるため、ガスケットをかしめ加工で加圧して圧縮しても、容器とガスケット、もしくは、上蓋とガスケットとのあいだには表面粗さ以下ではあるが隙間が生じる。   In addition, since the container or the upper lid has a surface roughness, even if the gasket is pressed and compressed by caulking, there is a gap between the container and the gasket, or between the upper lid and the gasket, although it is less than the surface roughness. Arise.

これに対して、ガスケットを加熱して溶融させ、さらに加熱して一部を分解気化させる温度まで上昇させることで、体積膨張して溶融樹脂の圧力が高くなり、隙間のあいだにある空気を排出しながら溶着することができるため、すきまのない溶着が可能になる。   On the other hand, the gasket is heated and melted, and further heated to a temperature at which a part is decomposed and vaporized, so that the volume of the resin expands and the pressure of the molten resin increases, and the air in the gap is discharged. Therefore, welding without gaps is possible.

また、金属製容器の開口部に金属製上蓋を挿入した状態で、金属製容器の開口部の周縁部に、熱可塑性樹脂製絶縁ガスケットを介して、容器をかしめ加工したのち、かしめ加工部および上蓋にレーザ光を照射することによっても溶着可能である。   In addition, after the metal upper lid is inserted into the opening of the metal container, the container is caulked to the peripheral edge of the opening of the metal container via an insulating gasket made of thermoplastic resin, and the caulking portion and Welding is also possible by irradiating the upper lid with laser light.

容器とガスケットの溶接機構は、前述の通りである。   The container-gasket welding mechanism is as described above.

上蓋とガスケットの溶着は、レーザ光を上蓋に照射することで、上蓋を加熱して、その熱伝導により上蓋と接触しているガスケットを加熱溶融することで達成できる。この場合、ガスケットはレーザ光を透過しない樹脂でも融着可能である。   Welding of the upper lid and the gasket can be achieved by irradiating the upper lid with laser light to heat the upper lid and heat and melt the gasket in contact with the upper lid by heat conduction. In this case, the gasket can be fused even with a resin that does not transmit laser light.

また、ガスケットの材質は、熱可塑性樹脂でなくてもシリコーンゴム等でも同様の効果が可能である。   Further, the gasket material can be the same effect even if it is not thermoplastic resin but silicone rubber or the like.

本発明の効果は、金属製容器と金属製上蓋とのあいだに絶縁樹脂をはさみ、この絶縁樹脂を熱融着して封止する場合に、耐圧性を低下させない封止方法を提供することができる。   The effect of the present invention is to provide a sealing method in which an insulating resin is sandwiched between a metal container and a metal top lid and the pressure resistance is not reduced when the insulating resin is sealed by thermal fusion. it can.

以下、図面を用いて、実施例を説明する。   Hereinafter, examples will be described with reference to the drawings.

図1〜図4を用いて、第一の実施例を説明する。   The first embodiment will be described with reference to FIGS.

図2に、電池の断面図を示す。   FIG. 2 shows a cross-sectional view of the battery.

上蓋接続板5は、上蓋キャップ7の外周を折り曲げて一体化しており、これらを、ガスケット4を介して、グルービング2と折り曲げ部3とによりかしめ加工をすることにより封止している。   The upper lid connecting plate 5 is integrated by bending the outer periphery of the upper lid cap 7, and these are sealed by caulking with the groove 2 and the bent portion 3 via the gasket 4.

また、容器1の内部には、セパレータ10を介して、正極板11と負極板12が捲巻されている。負極板12は、負極集電板13を介して、容器1に接続されている。   In addition, a positive electrode plate 11 and a negative electrode plate 12 are wound inside the container 1 via a separator 10. The negative electrode plate 12 is connected to the container 1 via the negative electrode current collector plate 13.

一方、正極板11は、正極集電板9およびリード8を介して上蓋接続板5に接続されている。容器1の内部には電解液が注液されている。   On the other hand, the positive electrode plate 11 is connected to the upper lid connection plate 5 via the positive electrode current collector plate 9 and the leads 8. An electrolytic solution is injected into the container 1.

容器1は、厚さ0.5mmのステンレス製であり、上蓋接続板5は厚さ0.5mmのアルミニウム、上蓋キャップは厚さ0.5mmのステンレス鋼製である。   The container 1 is made of stainless steel having a thickness of 0.5 mm, the upper lid connecting plate 5 is made of aluminum having a thickness of 0.5 mm, and the upper lid cap is made of stainless steel having a thickness of 0.5 mm.

なお、これらの材質は、他にNiめっきした炭素鋼でも可能である。   These materials can also be Ni-plated carbon steel.

また、ガスケット4は、熱可塑性樹脂であるポリプロピレンを用いており、厚さは1.0mmである。ガスケット4の材質には、融着するため熱可塑性樹脂であり、かつ、かしめ加工をすることから弾力性も必要である。   The gasket 4 is made of polypropylene, which is a thermoplastic resin, and has a thickness of 1.0 mm. The material of the gasket 4 is a thermoplastic resin for fusing, and is also required to be elastic because it is caulked.

また、後述するがレーザ光14が、透過する材質である必要があるためガスケット4には透明のポリエチレンを用いている。   Further, as will be described later, transparent polyethylene is used for the gasket 4 because the laser beam 14 needs to be made of a transparent material.

図1に、ガスケットへのレーザ光の照射状況の断面図を示す。   FIG. 1 shows a cross-sectional view of the state of laser light irradiation on the gasket.

ガスケット4にレーザ光14を照射した。レーザ光14はYAGレーザを用い、出力1kW,レーザ加熱移動速度1m/minで照射することで、ガスケット4を透過したレーザ光14は、上蓋接続板5に照射され、上蓋接続板5を加熱する。上蓋接続板5と密着したガスケット4は、その熱伝導により溶融して融着される。   The gasket 4 was irradiated with a laser beam 14. The laser beam 14 uses a YAG laser and is irradiated at an output of 1 kW and a laser heating moving speed of 1 m / min, so that the laser beam 14 transmitted through the gasket 4 is irradiated to the upper lid connecting plate 5 and heats the upper lid connecting plate 5. . The gasket 4 in close contact with the upper lid connecting plate 5 is melted and fused by its heat conduction.

なお、このレーザ光14は、半導体レーザ,炭酸ガスレーザであっても同様の効果が得られる。   The same effect can be obtained even if the laser beam 14 is a semiconductor laser or a carbon dioxide gas laser.

また、上蓋接続板5には、2mm幅の平坦部6を設けており、この平坦部6に向けてレーザ光を照射した。   The upper lid connecting plate 5 is provided with a flat portion 6 having a width of 2 mm, and the flat portion 6 was irradiated with laser light.

上蓋接続板5は、外周を折り曲げるため曲面になりやすいが、平坦部をあえて設けて、そこに照射することで、レーザ光の吸収率の変動を抑えることが可能である。すなわち、照射狙いずれなどの変動要因に対しても溶着品質を安定化させることが可能である。   The upper lid connecting plate 5 tends to be curved because the outer periphery is bent, but it is possible to suppress fluctuations in the absorption rate of the laser light by providing a flat portion and irradiating it. That is, it is possible to stabilize the welding quality against any fluctuation factors such as the irradiation target.

図3に、折り曲げ部へのレーザ光の照射状況の断面図を示す。   FIG. 3 shows a cross-sectional view of the irradiation state of the laser beam to the bent portion.

折り曲げ部3にレーザ光14を照射する。これにより、折り曲げ部3を加熱して、その熱伝導により、密着しているガスケットを溶融して融着する。照射は、YAGレーザを用い、出力1.2kW,レーザ加熱移動速度1m/minである。   The bending portion 3 is irradiated with a laser beam 14. As a result, the bent portion 3 is heated, and the adhered gasket is melted and fused by the heat conduction. Irradiation is performed using a YAG laser with an output of 1.2 kW and a laser heating moving speed of 1 m / min.

図4に、レーザ照射部の断面図を示す。   FIG. 4 shows a cross-sectional view of the laser irradiation part.

平坦部6と接触したガスケット4には、外側溶融凝固領域15が形成され、その中に気泡16が形成される。さらに、折り曲げ部3と接触したガスケット4にも、内側溶融凝固領域17とその中に気泡16が形成される。   An outer melt-solidified region 15 is formed in the gasket 4 in contact with the flat portion 6, and bubbles 16 are formed therein. Further, the inner melt-solidified region 17 and the bubbles 16 are also formed in the gasket 4 in contact with the bent portion 3.

平坦部6および折り曲げ部3には、数μm程度の表面粗さを有している。そのため、ガスケット4をかしめ加工で加圧して圧縮しても、平坦部6とガスケット4、もしくは、折り曲げ部3とガスケット4とのあいだには、表面粗さ以下ではあるが隙間が生じる。   The flat portion 6 and the bent portion 3 have a surface roughness of about several μm. Therefore, even if the gasket 4 is pressed and compressed by caulking, a gap is generated between the flat portion 6 and the gasket 4 or between the bent portion 3 and the gasket 4 although it is less than the surface roughness.

これに対して、ガスケット4を加熱して溶融させ、さらに加熱して一部を分解気化させる温度まで上昇させることで、体積膨張して溶融樹脂の圧力が高くなり、隙間のあいだにある空気を排出しながら溶着することができるため、すきまのない溶着が可能になる。隙間があると長期的には少しずつ内部の電解液が漏れるため、この漏れの防止にも有効である。   On the other hand, the gasket 4 is heated and melted, and further heated to a temperature at which a part of the gasket 4 is decomposed and vaporized, whereby the volume of the molten resin is increased and the pressure of the molten resin is increased. Since welding can be performed while discharging, welding without gaps becomes possible. If there is a gap, the internal electrolyte leaks little by little in the long run, which is also effective in preventing this leakage.

以上述べたように、レーザ光14により局部加熱であるため電解液の温度上昇をさせることなくガスケット4を融着することができる。   As described above, since the local heating is performed by the laser beam 14, the gasket 4 can be fused without increasing the temperature of the electrolytic solution.

また、かしめ加工されているため耐圧性の高い封止が可能である。   Further, since it is caulked, sealing with high pressure resistance is possible.

また、ガスケット4の両面が融着しているためえき漏れのない良好な封止が可能である。   Moreover, since both surfaces of the gasket 4 are fused, it is possible to perform a good sealing without any leakage.

また、ガスケットの材質は熱可塑性樹脂でなくてもシリコーンゴム等でも同様の効果が可能である。   Further, the gasket can be made of the same effect even if it is not thermoplastic resin but silicone rubber or the like.

また、本実施例では円筒型の電池容器の封止に関して説明しているが、角型の電池に対しても同様の効果が得られる。   Further, in this embodiment, the sealing of the cylindrical battery container is described, but the same effect can be obtained for a square battery.

また、こうすることによって、本来の目的のほか、容器内部の物質の温度を上昇させることなく、絶縁樹脂を熱溶着して封止する方法を提供することもできる。   In addition to this, it is possible to provide a method for sealing the insulating resin by heat welding without increasing the temperature of the substance inside the container.

図5〜図7を用いて、第二の実施例を説明する。   A second embodiment will be described with reference to FIGS.

本実施例が、第一の実施例と異なる点は、ガスケット4にレーザ光14の透過しない黒色のポリプロピレンを用いた点である。   This embodiment is different from the first embodiment in that black gasket that does not transmit laser light 14 is used for the gasket 4.

図5に、第2の実施例における平坦部へのレーザ光の照射状況の断面図を示す。   FIG. 5 shows a cross-sectional view of the state of laser light irradiation on the flat portion in the second embodiment.

ガスケット4はレーザ光14を透過しないため、平坦部6にレーザ光14を照射することで、平坦部6を加熱して、その熱伝導により平坦部6と接触したガスケット4を溶融して融着する。   Since the gasket 4 does not transmit the laser beam 14, the flat portion 6 is irradiated with the laser beam 14 to heat the flat portion 6 and melt and fuse the gasket 4 in contact with the flat portion 6 by the heat conduction. To do.

図6に、第2の実施例における折り曲げ部へのレーザ光の照射状況の断面図を示す。   FIG. 6 shows a cross-sectional view of the state of laser light irradiation to the bent portion in the second embodiment.

図6は、第一の実施例の図3と同様である。   FIG. 6 is the same as FIG. 3 of the first embodiment.

図7に、第2の実施例におけるレーザ照射部の断面図を示す。   FIG. 7 shows a cross-sectional view of the laser irradiation part in the second embodiment.

第一の実施例と異なる点は、平坦部6にレーザ光14を照射しているため、その熱伝導によりガスケット4を溶融する点である。レーザ光14を透過しないガスケット4の材質の場合、第一の実施例ではなく、本実施例を用いる。本実施例によっても第一の実施例と同様の効果が得られる。   The difference from the first embodiment is that the gasket 4 is melted by heat conduction because the flat portion 6 is irradiated with the laser beam 14. In the case of the material of the gasket 4 that does not transmit the laser beam 14, this embodiment is used instead of the first embodiment. According to this embodiment, the same effect as that of the first embodiment can be obtained.

図8に、第3の実施例におけるレーザ光の照射状況の断面図を示す。   FIG. 8 shows a cross-sectional view of the state of laser light irradiation in the third embodiment.

第一の実施例と異なる点はレーザ光14の焦点位置をかえることで、照射ビーム径を大きくして折り曲げ部3とガスケット4に同時に照射することである。この実施例によっても、第一の実施例と同様の効果が得られる。   The difference from the first embodiment is to change the focal position of the laser beam 14 to increase the irradiation beam diameter and to irradiate the bent portion 3 and the gasket 4 simultaneously. According to this embodiment, the same effect as that of the first embodiment can be obtained.

図9に、第4の実施例におけるレーザ光の照射状況の断面図を示す。   FIG. 9 shows a cross-sectional view of the state of laser light irradiation in the fourth embodiment.

第三の実施例と異なる点は上蓋接続板5がなくなり、上蓋キャップ7とガスケットを溶着していることである。この実施例によっても、第一の実施例と同様の効果が得られる。   The difference from the third embodiment is that the upper lid connecting plate 5 is eliminated and the upper lid cap 7 and the gasket are welded. According to this embodiment, the same effect as that of the first embodiment can be obtained.

以上のいずれの実施例においても、耐圧性を低下させずに封止方法でき、かつ、容器内部の物質の温度を上昇させることなく絶縁樹脂を熱溶着して封止することができる。   In any of the above embodiments, the sealing method can be performed without lowering the pressure resistance, and the insulating resin can be sealed by thermal welding without increasing the temperature of the substance inside the container.

本発明は、金属製容器の開口部に、金属製上蓋を挿入して、かしめ加工により封止する、例えば、リチウム二次電池等の電解液が封入される電池に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a battery in which an electrolytic solution such as a lithium secondary battery is sealed by inserting a metal upper lid into an opening of a metal container and sealing it by caulking.

ガスケットへのレーザ光の照射状況の断面図を示す。Sectional drawing of the irradiation condition of the laser beam to a gasket is shown. 電池の断面図を示す。A cross-sectional view of the battery is shown. 折り曲げ部へのレーザ光の照射状況の断面図を示す。Sectional drawing of the irradiation condition of the laser beam to a bending part is shown. レーザ照射部の断面図を示す。Sectional drawing of a laser irradiation part is shown. 第2の実施例における平坦部へのレーザ光の照射状況の断面図を示す。Sectional drawing of the irradiation condition of the laser beam to the flat part in a 2nd Example is shown. 第2の実施例における折り曲げ部へのレーザ光の照射状況の断面図を示す。Sectional drawing of the irradiation condition of the laser beam to the bending part in a 2nd Example is shown. 第2の実施例におけるレーザ照射部の断面図を示す。Sectional drawing of the laser irradiation part in a 2nd Example is shown. 第3の実施例におけるレーザ光の照射状況の断面図を示す。Sectional drawing of the irradiation condition of the laser beam in a 3rd Example is shown. 第4の実施例におけるレーザ光の照射状況の断面図を示す。Sectional drawing of the irradiation condition of the laser beam in a 4th Example is shown.

符号の説明Explanation of symbols

1 容器
2 グルービング
3 折り曲げ部
4 ガスケット
5 上蓋接続板
6 平坦部
7 上蓋キャップ
8 リード
9 正極集電板
10 セパレータ
11 正極板
12 負極板
13 負極集電板
14 レーザ光
15 外側溶融凝固領域
16 気泡
17 内側溶融凝固領域
DESCRIPTION OF SYMBOLS 1 Container 2 Grooving 3 Bending part 4 Gasket 5 Upper lid connection plate 6 Flat part 7 Upper lid cap 8 Lead 9 Positive electrode current collecting plate 10 Separator 11 Positive electrode plate 12 Negative electrode plate 13 Negative electrode current collecting plate 14 Laser beam 15 Outer melt solidification region 16 Bubble 17 Inner melt solidification area

Claims (9)

金属製容器の開口部に金属製上蓋を挿入した状態で、前記金属製容器の開口部の周縁部に、レーザ光を透過する熱可塑性樹脂製絶縁ガスケットを介して、前記金属製容器を、かしめ加工したのち、前記かしめ加工したかしめ加工部、および、前記絶縁ガスケットにレーザ光を照射することを特徴とする封止方法。   With the metal top lid inserted into the opening of the metal container, the metal container is caulked to the peripheral edge of the opening of the metal container via a thermoplastic resin insulating gasket that transmits laser light. After processing, the sealing method characterized by irradiating the said crimping process part which carried out the crimping process, and the said insulation gasket with a laser beam. 前記かしめ加工部に平坦部を設け、この平坦部にレーザ光を照射し、かつ、前記金属製上蓋の平坦部に接した前記絶縁ガスケットにレーザ光を照射することを特徴とする請求項1記載の封止方法。   The flat portion is provided in the caulking portion, the laser beam is irradiated to the flat portion, and the insulating gasket in contact with the flat portion of the metal upper lid is irradiated with the laser beam. Sealing method. 前記かしめ加工部へのレーザ光の照射により加熱して、熱伝導により、前記かしめ加工部と接触した前記絶縁ガスケットを加熱して溶融し、かつ、一部を分解気化させることを特徴とする請求項1記載の封止方法。   The heat treatment is performed by irradiating the caulking portion with laser light, the insulating gasket in contact with the caulking portion is heated and melted by heat conduction, and a part thereof is decomposed and vaporized. Item 2. The sealing method according to Item 1. 前記絶縁ガスケットへのレーザ光の照射により、前記絶縁ガスケットを透過したレーザ光は、前記金属製上蓋に吸収されて、前記金属製上蓋を加熱して、熱伝導により、前記金属製上蓋と接触した前記絶縁ガスケットを加熱して溶融し、かつ、一部を分解気化させることを特徴とする請求項1記載の封止方法。   The laser beam transmitted through the insulating gasket by the irradiation of the insulating gasket with the laser beam is absorbed by the metallic upper lid, and the metallic upper lid is heated to come into contact with the metallic upper lid by heat conduction. The sealing method according to claim 1, wherein the insulating gasket is heated to melt and a part thereof is decomposed and vaporized. 金属製容器の開口部に金属製上蓋を挿入した状態で、前記金属製容器の開口部の周縁部に、熱可塑性樹脂製絶縁ガスケットを介して、前記金属製容器を、かしめ加工したのち、前記かしめ加工したかしめ加工部、および、前記金属製上蓋にレーザ光を照射することを特徴とする封止方法。   After the metal container is caulked to the peripheral edge of the opening of the metal container via an insulating gasket made of thermoplastic resin, with the metal upper lid inserted into the opening of the metal container, A sealing method comprising irradiating a laser beam to a caulked portion that has been caulked and the metal upper lid. 前記かしめ加工部に平坦部を設け、この平坦部にレーザ光を照射し、かつ、前記金属製上蓋に平坦部を設け、この平坦部にもレーザ光を照射することを特徴とする請求項5記載の封止方法。   6. A flat part is provided in the caulking part, a laser beam is irradiated on the flat part, a flat part is provided on the metal upper lid, and the flat part is also irradiated with a laser beam. The sealing method as described. 前記かしめ加工部へのレーザ光の照射により加熱して、熱伝導により、前記かしめ加工部と接触した前記絶縁ガスケットを加熱して溶融し、かつ、一部を気化分解させることを特徴とする請求項5記載の封止方法。   The heating is performed by irradiating the caulking portion with laser light, the insulating gasket in contact with the caulking portion is heated and melted by heat conduction, and a part thereof is vaporized and decomposed. Item 6. The sealing method according to Item 5. 前記金属製上蓋へのレーザ光の照射により、前記金属製上蓋を加熱して、熱伝導により、前記金属製上蓋と接触した前記絶縁ガスケットを加熱して溶融し、かつ、一部を分解気化させることを特徴とする請求項5記載の封止方法。   By irradiating the metal top lid with laser light, the metal top lid is heated, and by heat conduction, the insulating gasket in contact with the metal top lid is heated and melted, and a part thereof is decomposed and vaporized. The sealing method according to claim 5. 金属製容器の開口部に金属製上蓋を挿入した状態で、前記金属製容器の開口部の周縁部に、絶縁ゴムを介して、前記金属製容器を、かしめ加工したのち、前記かしめ加工したかしめ加工部、および、前記金属製上蓋にレーザ光を照射することを特徴とする封止方法。   With the metal top lid inserted into the opening of the metal container, the metal container is caulked to the periphery of the opening of the metal container via an insulating rubber, and then the caulking is performed. A sealing method comprising irradiating a laser beam onto a processing portion and the metal upper lid.
JP2007296205A 2007-11-15 2007-11-15 Metal container sealing method Expired - Fee Related JP5147365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296205A JP5147365B2 (en) 2007-11-15 2007-11-15 Metal container sealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007296205A JP5147365B2 (en) 2007-11-15 2007-11-15 Metal container sealing method

Publications (2)

Publication Number Publication Date
JP2009123516A true JP2009123516A (en) 2009-06-04
JP5147365B2 JP5147365B2 (en) 2013-02-20

Family

ID=40815454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296205A Expired - Fee Related JP5147365B2 (en) 2007-11-15 2007-11-15 Metal container sealing method

Country Status (1)

Country Link
JP (1) JP5147365B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130098532A1 (en) * 2011-10-20 2013-04-25 Front Edge Technology, Inc. Thin film battery packaging formed by localized heating
US8628645B2 (en) 2007-09-04 2014-01-14 Front Edge Technology, Inc. Manufacturing method for thin film battery
US8753724B2 (en) 2012-09-26 2014-06-17 Front Edge Technology Inc. Plasma deposition on a partially formed battery through a mesh screen
US8870974B2 (en) 2008-02-18 2014-10-28 Front Edge Technology, Inc. Thin film battery fabrication using laser shaping
US9077000B2 (en) 2012-03-29 2015-07-07 Front Edge Technology, Inc. Thin film battery and localized heat treatment
US9257695B2 (en) 2012-03-29 2016-02-09 Front Edge Technology, Inc. Localized heat treatment of battery component films
US9887429B2 (en) 2011-12-21 2018-02-06 Front Edge Technology Inc. Laminated lithium battery
US9905895B2 (en) 2012-09-25 2018-02-27 Front Edge Technology, Inc. Pulsed mode apparatus with mismatched battery
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
KR20180082776A (en) * 2017-01-11 2018-07-19 주식회사 엘지화학 Cylindrical Battery Cell Comprising Gasket Coupled by Welding
KR20190007210A (en) * 2017-07-12 2019-01-22 주식회사 엘지화학 Secondary battery
CN112543065A (en) * 2020-12-03 2021-03-23 中北大学 Wireless power transmission and communication device and communication method for sealed metal container

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290614B (en) * 2015-10-30 2017-08-29 屠威 A kind of mouth-sealing method of metal battery case
KR20220072503A (en) * 2020-11-25 2022-06-02 삼성에스디아이 주식회사 Rechargeable battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8628645B2 (en) 2007-09-04 2014-01-14 Front Edge Technology, Inc. Manufacturing method for thin film battery
US8870974B2 (en) 2008-02-18 2014-10-28 Front Edge Technology, Inc. Thin film battery fabrication using laser shaping
US20130098532A1 (en) * 2011-10-20 2013-04-25 Front Edge Technology, Inc. Thin film battery packaging formed by localized heating
US8865340B2 (en) * 2011-10-20 2014-10-21 Front Edge Technology Inc. Thin film battery packaging formed by localized heating
US9887429B2 (en) 2011-12-21 2018-02-06 Front Edge Technology Inc. Laminated lithium battery
US9257695B2 (en) 2012-03-29 2016-02-09 Front Edge Technology, Inc. Localized heat treatment of battery component films
US9077000B2 (en) 2012-03-29 2015-07-07 Front Edge Technology, Inc. Thin film battery and localized heat treatment
US9905895B2 (en) 2012-09-25 2018-02-27 Front Edge Technology, Inc. Pulsed mode apparatus with mismatched battery
US8753724B2 (en) 2012-09-26 2014-06-17 Front Edge Technology Inc. Plasma deposition on a partially formed battery through a mesh screen
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
KR20180082776A (en) * 2017-01-11 2018-07-19 주식회사 엘지화학 Cylindrical Battery Cell Comprising Gasket Coupled by Welding
KR102234221B1 (en) * 2017-01-11 2021-03-31 주식회사 엘지화학 Cylindrical Battery Cell Comprising Gasket Coupled by Welding
KR20190007210A (en) * 2017-07-12 2019-01-22 주식회사 엘지화학 Secondary battery
KR102295591B1 (en) * 2017-07-12 2021-08-31 주식회사 엘지에너지솔루션 Secondary battery
CN112543065A (en) * 2020-12-03 2021-03-23 中北大学 Wireless power transmission and communication device and communication method for sealed metal container

Also Published As

Publication number Publication date
JP5147365B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5147365B2 (en) Metal container sealing method
KR101250093B1 (en) Method of laser-welding and method of manufacturing battery including the same
WO2011016200A1 (en) Hermetically sealed battery and method for manufacturing the same
KR101213309B1 (en) Sealed secondary battery, and method for manufacturing the battery
JP5380985B2 (en) Capacitor manufacturing method and capacitor
JP2000090893A (en) Battery and manufacture thereof
US9508963B2 (en) Battery and method for producing same
JP4131553B2 (en) Sealed battery
TWI680551B (en) Steam room
JP2011204396A (en) Sealed battery and method for manufacturing the same
JP4923313B2 (en) Sealed battery and manufacturing method thereof
WO2001031719A1 (en) Method of producing lead storage batteries and jig for production thereof
JP5940284B2 (en) Secondary battery and method for manufacturing secondary battery
JP2012213789A (en) Laser welding method and battery made by the laser welding method
JP2005040853A (en) Laser welding method
JP2009129704A (en) Sealed battery
JPH1177347A (en) Laser welding method of aluminum sheet, manufacture of enclosed cell, and enclosed cell itself
JP2008084803A (en) Manufacturing method of gastight battery
JP6341054B2 (en) Storage element manufacturing method and storage element
JP2009048963A (en) Battery and its manufacturing method
JP2019129126A (en) Method for manufacturing battery
JPH11154506A (en) Sealed battery
JPH1147920A (en) Method for joining aluminum-made battery case
JP2006286972A (en) Capacitor and its manufacturing process
JP2005353503A (en) Thin electrochemical cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees