JP2009122093A - Electrochemical cell and oxygen enrichment machine - Google Patents

Electrochemical cell and oxygen enrichment machine Download PDF

Info

Publication number
JP2009122093A
JP2009122093A JP2008268689A JP2008268689A JP2009122093A JP 2009122093 A JP2009122093 A JP 2009122093A JP 2008268689 A JP2008268689 A JP 2008268689A JP 2008268689 A JP2008268689 A JP 2008268689A JP 2009122093 A JP2009122093 A JP 2009122093A
Authority
JP
Japan
Prior art keywords
electrode film
electrochemical cell
electrode
oxygen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008268689A
Other languages
Japanese (ja)
Inventor
Akihiro Hasegawa
昭宏 長谷川
Yoshio Kanda
義雄 神田
Ryoichi Sugimoto
良市 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008268689A priority Critical patent/JP2009122093A/en
Publication of JP2009122093A publication Critical patent/JP2009122093A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide reliable electrochemical cell which can inhibit peeling of each electrode film under high temperature atmosphere during cell operation to stably obtain high level of transmitted gas. <P>SOLUTION: The electrochemical cell comprises an ionic-conductive electrolyte substrate 1 equipped with electrodes 2 and 3 on its both side faces. The electrodes 2 and 3 consist of reaction electrode films 21, 31 used as gas transmitting section formed on the above electrolyte substrate, porous electrode films for power feeding 22a, 32a formed so as to cover those reaction electrode films, and dense electrode films for wiring 22b, 32b extracted from the above porous electrode films outside the above reaction electrode films. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酸素富化器等に用いられ、電子の授受に伴って電気化学反応を行う電気化学セルに関し、特に、電気化学セルの電極構造に関するものである。   The present invention relates to an electrochemical cell that is used in an oxygen enricher or the like and performs an electrochemical reaction as electrons are transferred, and particularly relates to an electrode structure of an electrochemical cell.

従来より、電気化学反応によって空気等の酸素含有混合ガス中から酸素を分離して選択的に取り出す酸素富化器が知られており、近年、エアコン等の家電機器に上記酸素富化器を搭載して室内に簡易な酸素富化雰囲気を作る試みが為されている。   Conventionally, an oxygen enricher that separates and selectively extracts oxygen from an oxygen-containing mixed gas such as air by an electrochemical reaction has been known. In recent years, the above-mentioned oxygen enricher has been installed in home appliances such as air conditioners. Attempts have been made to create a simple oxygen-enriched atmosphere in the room.

酸素富化器は、酸素イオン伝導性を有する固体電解質の表裏両面に正極と負極の一対の電極を配した電気化学セル(酸素透過電気化学セル)を備え、所定の高温雰囲気下において、この電気化学セルの正負極間に直流電圧を印加することにより、上記固体電解質が、その一方の面(負電圧が印加される負極側)から他方の面(正電圧が印加される正極側)に酸素を透過させる酸素透過膜として機能することを利用している。
すなわち、上記構成の電気化学セルでは、負極側に酸素含有混合ガス(例えば、空気)を供給することにより、負極側において空気中の酸素分子(O2)が電子を受け取って酸素イオン(O2-)にイオン化され、この酸素イオン(O2-)が電流として固体電解質中を正極側に移動し、正極側において電子を放出して再び酸素分子に戻る現象が生じている。
このような固体電解質の性質を利用して酸素含有混合ガス中から酸素を分離して選択的に取り出すことにより、高酸素濃度の空気を得ることができる。
The oxygen enricher includes an electrochemical cell (oxygen permeable electrochemical cell) in which a pair of positive and negative electrodes are arranged on both the front and back surfaces of a solid electrolyte having oxygen ion conductivity. By applying a DC voltage between the positive and negative electrodes of the chemical cell, the solid electrolyte becomes oxygen from one side (negative electrode side to which negative voltage is applied) to the other side (positive side to which positive voltage is applied). It functions to function as an oxygen permeable membrane that allows permeation.
That is, in the electrochemical cell having the above configuration, by supplying an oxygen-containing mixed gas (for example, air) to the negative electrode side, oxygen molecules (O 2 ) in the air receive electrons on the negative electrode side and receive oxygen ions (O 2 - ) Is ionized, and this oxygen ion (O 2− ) moves as a current in the solid electrolyte to the positive electrode side, where electrons are emitted on the positive electrode side to return to oxygen molecules again.
By utilizing such a property of the solid electrolyte and separating oxygen selectively from the oxygen-containing mixed gas, air with a high oxygen concentration can be obtained.

図3は、電気化学セルの一般的な電極構造を示し、各電極(正極、負極)は、イオン伝導性の電解質基板1上に形成され、電気化学反応の場となる反応電極膜21と、給電用としてこの反応電極膜21上に形成された多孔質電極膜22aと、配線用としてこの多孔質電極膜22a上から電解質基板1に引き出された緻密質電極膜22bとで構成されている。
ここで、電解質基板1には、例えば、LSGMC:(LaSr)(GaMgCo)O3が用いられ、反応電極21には、例えば、SSC:(SmSr)CoO3が用いられ、多孔質電極膜22aおよび緻密質電極膜22bには、例えば、Ag粒が用いられている。
FIG. 3 shows a general electrode structure of an electrochemical cell, and each electrode (positive electrode, negative electrode) is formed on an ion conductive electrolyte substrate 1 and a reaction electrode film 21 serving as an electrochemical reaction field; A porous electrode film 22a formed on the reaction electrode film 21 for power supply and a dense electrode film 22b drawn out from the porous electrode film 22a to the electrolyte substrate 1 for wiring.
Here, for example, LSGMC: (LaSr) (GaMgCo) O 3 is used for the electrolyte substrate 1, and for example, SSC: (SmSr) CoO 3 is used for the reaction electrode 21, and the porous electrode film 22a and For example, Ag particles are used for the dense electrode film 22b.

ところで、図3に示すように、上記電気化学セルの電極部分は、それぞれ熱膨張係数の異なる電極膜が3層に重なり合う構造を有するため、セル作動時の高温雰囲気下において各電極膜の熱膨張係数の差で生じる熱応力による歪み(熱歪み)が積層方向の同じ位置に集中し易いという欠点がある。
電極膜の一カ所に熱歪みが集中すると、特に、大粒径のAg粒で成る多孔質電極膜が反応電極膜より剥離し、反応電極膜への給電に支障を来すことになる。給電が確実に行われないと電極部分の電気化学反応が不安定になり、ガス透過能力が低下するため、高酸素濃度の空気を安定して得られなくなるという問題が生じる。
By the way, as shown in FIG. 3, the electrode portion of the electrochemical cell has a structure in which electrode films having different thermal expansion coefficients are overlapped in three layers, so that the thermal expansion of each electrode film is performed in a high-temperature atmosphere during cell operation. There is a drawback that strain (thermal strain) due to thermal stress caused by the difference in coefficients tends to concentrate at the same position in the stacking direction.
When thermal strain concentrates at one position of the electrode film, in particular, the porous electrode film made of Ag particles having a large particle size is peeled off from the reaction electrode film, which hinders power supply to the reaction electrode film. If the power supply is not performed reliably, the electrochemical reaction at the electrode portion becomes unstable and the gas permeation ability is lowered, which causes a problem that high oxygen concentration air cannot be stably obtained.

尚、電気化学セルの電極構造として、例えば、特許文献1、特許文献2が開示されている。特許文献1には、第1電極膜の上に第2電極膜を配し、これら電極膜の隣に結線用のリード膜を配した構造が記載され、特許文献2には、ガス検出基板上に多孔質電極と結線用の緻密質電極を配した構造が記載されている。
特開2007−212280号公報 特開2000−227409号公報
For example, Patent Document 1 and Patent Document 2 are disclosed as electrode structures of electrochemical cells. Patent Document 1 describes a structure in which a second electrode film is disposed on a first electrode film, and a lead film for connection is disposed adjacent to these electrode films. Patent Document 2 describes a structure on a gas detection substrate. Describes a structure in which a porous electrode and a dense electrode for connection are arranged.
JP 2007-212280 A JP 2000-227409 A

本発明は、上記問題に鑑み為されたもので、熱応力による電極膜の剥離を防止し、高濃度の透過ガスを安定して得ることができる信頼性の高い電気化学セルおよび、これを用いた酸素富化器を提供することを目的としている。   The present invention has been made in view of the above-described problems. A highly reliable electrochemical cell capable of preventing the peeling of the electrode film due to thermal stress and stably obtaining a high-concentration permeated gas, and the use thereof are provided. The purpose is to provide an oxygen enricher.

すなわち、請求項1に記載の電気化学セルは、イオン伝導性を有する電解質基板の表裏両面に電極を配して成る電気化学セルであって、上記電極が、上記電解質基板上に形成されたガス透過部分となる反応電極膜と、この反応電極膜を覆うように形成された給電用の第1電極膜と、この第1電極膜に電気的に接続され、上記反応電極膜外において上記第1電極膜より引き出された配線用の第2電極膜とで構成されていることを特徴としている。
ここで、電気化学セルとは、電子の授受に伴って電気化学反応を行うセルを意味し、酸素透過セルの他に酸化剤ガスと燃料ガスとにより発電する発電セルや、水を電気分解する電解セルを含むものとする。
In other words, the electrochemical cell according to claim 1 is an electrochemical cell in which electrodes are arranged on both front and back surfaces of an electrolyte substrate having ion conductivity, and the electrode is a gas formed on the electrolyte substrate. A reaction electrode film serving as a transmission portion, a first electrode film for power feeding formed so as to cover the reaction electrode film, and the first electrode film electrically connected to the first electrode film, and outside the reaction electrode film, the first electrode film It is characterized by comprising a second electrode film for wiring drawn out from the electrode film.
Here, the electrochemical cell means a cell that undergoes an electrochemical reaction with the exchange of electrons, and in addition to an oxygen permeable cell, a power generation cell that generates power using an oxidant gas and a fuel gas, or electrolyzes water. Electrolytic cells are included.

また、請求項2に記載の発明は、請求項1に記載の電気化学セルにおいて、上記第1電極膜は多孔質電極膜で形成され、上記第2電極膜は緻密質電極膜で形成されていることを特徴としている。
ここで、上記多孔質電極膜には、平均粒径10〜20μmの大粒径の貴金属材料が用いられ、上記緻密質電極膜には、平均粒径0.5〜2.0μmの小粒径の貴金属材料が用いられている。なお、上記各電極膜の平均粒径はMicrotrac法によるものである。
貴金属材料としてAg、Au、Pt等が使用可能である。
According to a second aspect of the present invention, in the electrochemical cell according to the first aspect, the first electrode film is formed of a porous electrode film, and the second electrode film is formed of a dense electrode film. It is characterized by being.
Here, a noble metal material having a large average particle diameter of 10 to 20 μm is used for the porous electrode film, and a small particle diameter having an average particle diameter of 0.5 to 2.0 μm is used for the dense electrode film. Noble metal materials are used. In addition, the average particle diameter of each said electrode film is based on Microtrac method.
Ag, Au, Pt or the like can be used as the noble metal material.

また、請求項3に記載の発明は、請求項1または請求項2に記載の電気化学セルにおいて、上記電極膜の角部に面取り加工が施されて成ることを特徴としている。   The invention described in claim 3 is characterized in that, in the electrochemical cell according to claim 1 or 2, the corner portion of the electrode film is chamfered.

また、請求項4に記載の発明は、請求項1から請求項3までの何れかに記載の電気化学セルにおいて、上記電気化学セルは、酸素イオン伝導性を有する電解質基板の表裏両面に電極を配して成る酸素透過セルであることを特徴としている。   According to a fourth aspect of the present invention, there is provided the electrochemical cell according to any one of the first to third aspects, wherein the electrochemical cell has electrodes on both sides of an electrolyte substrate having oxygen ion conductivity. It is characterized by being an oxygen permeable cell.

また、請求項5に記載の酸素富化器は、請求項4に記載の電気化学セルを用いて成ることを特徴としている。   An oxygen enricher according to claim 5 is characterized by using the electrochemical cell according to claim 4.

請求項1〜4に記載の発明によれば、ガス透過部分となる反応電極膜上に給電用の第1電極膜が形成され、ガス非透過部分となる反応電極膜外において第1電極膜上より配線用の第2電極膜が引き出される構成としたので、従来、これらの電極膜の一部が積層方向に3層に重なる構造であったものを、各電極膜の一部が積層順に2層づつに重なるような電極構造にすることができる。
係る電極構造により、セル作動時の高温雰囲気下において各電極膜の熱膨張係数の差で生じる熱応力の発生位置を2層ごとに分散させることができるため、熱歪みによる各電極膜の剥離を防止でき、セルへの給電は確実に行われるようになる。その結果、常に安定した電気化学反応(電極反応)により、高濃度の透過ガス(請求項4に記載の酸素透過セルでは高酸素濃度の空気)を安定して得ることができるようになる。
According to invention of Claims 1-4, the 1st electrode film for electric power feeding is formed on the reaction electrode film used as a gas permeation | transmission part, and on the 1st electrode film outside the reaction electrode film used as a gas non-permeation part Since the second electrode film for wiring is more drawn, the conventional structure in which a part of these electrode films overlaps three layers in the laminating direction is used. An electrode structure can be formed so as to overlap each other.
With such an electrode structure, it is possible to disperse the generation position of the thermal stress caused by the difference in thermal expansion coefficient of each electrode film in a high temperature atmosphere at the time of cell operation, so that each electrode film is peeled off due to thermal strain. It is possible to prevent the power supply to the cell. As a result, it is possible to stably obtain a high concentration of permeated gas (high oxygen concentration air in the oxygen permeable cell according to claim 4) by an always stable electrochemical reaction (electrode reaction).

また、請求項2に記載の発明のように、ガス透過部分となる第1電極膜を多孔質電極膜で形成したので、電子伝導性とともに十分なガス透過性を確保することができ、且つまた、この多孔質電極膜への給電経路となる第2電極膜を緻密質電極膜で形成したので、緻密質電極膜を細長い電極パターンに形成しても高い電流密度で給電することができ、この面からも、安定した電気化学反応により、高酸濃度の透過ガスが安定して得られるようになる。   Moreover, since the 1st electrode film used as a gas permeation | transmission part was formed with the porous electrode film like invention of Claim 2, sufficient gas permeability can be ensured with electronic conductivity, and also Since the second electrode film serving as a power supply path to the porous electrode film is formed of a dense electrode film, power can be supplied at a high current density even if the dense electrode film is formed in an elongated electrode pattern. Also from the surface, a permeation gas having a high acid concentration can be stably obtained by a stable electrochemical reaction.

また、請求項3に記載の発明によれば、電極膜の角部に面取り加工を施すことで、熱応力が電極膜の角部に集中するのを防止できるため、熱歪みによる電極膜の剥離をより確実に防止できる。   According to the invention described in claim 3, since chamfering is performed on the corners of the electrode film, it is possible to prevent thermal stress from concentrating on the corners of the electrode film. Can be prevented more reliably.

また、請求項5に記載の発明によれば、上記構成の酸素透過電気化学セルを用いることにより、高酸素濃度の空気が長期間に渡って安定して得られる高性能で信頼性の高い酸素富化器を提供することができる。   Further, according to the invention described in claim 5, by using the oxygen permeable electrochemical cell having the above-described configuration, a high-performance and highly reliable oxygen in which air having a high oxygen concentration can be stably obtained over a long period of time. An enricher can be provided.

以下、図1、図2に基づいて本発明に係る電気化学セルの実施の形態を説明する。
図1は本実施形態による電気化学セルを示し、(a)は縦断面図、(b)は平面図を示し、図2は図1の電極部分の構造を示す要部縦断面図を示している。
Hereinafter, an embodiment of an electrochemical cell according to the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 shows an electrochemical cell according to the present embodiment, (a) is a longitudinal sectional view, (b) is a plan view, and FIG. 2 is a principal longitudinal sectional view showing the structure of the electrode portion of FIG. Yes.

図1に示すように、本実施形態による電気化学セルは、酸素イオン伝導性を有する薄板状の電解質基板1(固体電解質)と、その表裏両面に形成された一対の電極2、3とで構成される酸素透過セルである。
各々電極2、3は電解質基板1の外側の反応電極膜21(31)と、その外側の給電電極膜22(32)とで構成され、給電電極膜22(32)は、反応電極膜21(31)を覆うように形成された給電用の多孔質電極膜22a(32a)と、反応電極膜21(31)外において上記多孔質電極膜22a(32a)と電気的に接続され、且つ、電解質基板1に引き出された配線用の緻密質電極膜22b(32b)とで構成されている。
尚、反応電極膜21(31)は、電気化学反応の場となる電極で、セル作動時に酸素が透過する電極である。
As shown in FIG. 1, the electrochemical cell according to the present embodiment includes a thin plate-like electrolyte substrate 1 (solid electrolyte) having oxygen ion conductivity, and a pair of electrodes 2 and 3 formed on both front and back surfaces. Is an oxygen permeable cell.
Each of the electrodes 2 and 3 includes a reaction electrode film 21 (31) on the outside of the electrolyte substrate 1 and a power supply electrode film 22 (32) on the outside thereof. The power supply electrode film 22 (32) is formed of the reaction electrode film 21 ( 31) and a porous electrode film 22a (32a) for power feeding formed so as to cover, and electrically connected to the porous electrode film 22a (32a) outside the reaction electrode film 21 (31) and an electrolyte. It is composed of a dense electrode film 22b (32b) for wiring drawn out to the substrate 1.
The reaction electrode film 21 (31) is an electrode that serves as an electrochemical reaction field, and is an electrode through which oxygen permeates during cell operation.

ここで、上記電解質基板1には、(LaSr)(GaMg)O3、(LaSr)(GaMgCo)O3、(LaSr)(GaMgNi)O3 、(LaSr)(GaMgFe)O3等のランタンガレート系材料が用いられ、上記反応電極膜21(31)には、(SmSr)CoO3、(LaBa)CoO3、(LaSr)CoO3等の電子伝導性とイオン伝導性を有する複合金属酸化物材料が用いられ、上記給電電極膜22(32)には、Ag、Au、Pt等の耐熱性に優れる貴金属粒が用いられる。
この内、多孔質電極膜22a(32a)には、大粒径の上記貴金属材料が用いられ、緻密質電極膜22b(32b)には、小粒径の上記貴金属材料が用いられている。
Here, the electrolyte substrate 1 has a lanthanum gallate system such as (LaSr) (GaMg) O 3 , (LaSr) (GaMgCo) O 3 , (LaSr) (GaMgNi) O 3 , (LaSr) (GaMgFe) O 3, etc. The reaction electrode film 21 (31) is made of a composite metal oxide material having electron conductivity and ion conductivity such as (SmSr) CoO 3 , (LaBa) CoO 3 , and (LaSr) CoO 3. Used for the power supply electrode film 22 (32) is a noble metal particle having excellent heat resistance such as Ag, Au, Pt or the like.
Among these, the above-mentioned noble metal material having a large particle diameter is used for the porous electrode film 22a (32a), and the above-mentioned noble metal material having a small particle diameter is used for the dense electrode film 22b (32b).

これらの各電極膜は、厚さ30〜200μm程の電解質基板1上に、それぞれの電極材料粉末に溶剤やバインダを混練りして調製したペーストを順番に、例えばスクリーン印刷法等で塗布し、焼成することで形成することができる。各電極2、3の厚さは10〜20μm程度である。   Each of these electrode films is applied on the electrolyte substrate 1 having a thickness of about 30 to 200 μm in order by applying a paste prepared by kneading each electrode material powder with a solvent or a binder, for example, by a screen printing method, It can be formed by firing. The thickness of each electrode 2 and 3 is about 10 to 20 μm.

そして、上記構成の電気化学セルは、400〜800℃の高温雰囲気下において、電極2、3間に直流電圧を印加することにより、電解質基板1が、その一方の低電位電極面(負極3)側から他方の高電位電極面(正極2)側に向けて酸素含有混合ガス(例えば、空気)中から酸素のみを選択的に透過させる酸素透過膜として作用し、正極2側より高酸素濃度の空気を得ることができる。   And the electrochemical cell of the said structure is the low potential electrode surface (negative electrode 3) of the electrolyte substrate 1 by applying a DC voltage between the electrodes 2 and 3 in 400-800 degreeC high temperature atmosphere. Acts as an oxygen permeable membrane that selectively permeates only oxygen from the oxygen-containing mixed gas (for example, air) from the side toward the other high potential electrode surface (positive electrode 2), and has a higher oxygen concentration than the positive electrode 2 side. You can get air.

この場合、図1(a)に示すように、直流電源Vの+端子は、リード線8により正極2側の緻密質電極膜22bに接続され、この緻密質電極膜22bを介して多孔質電極膜22aに接続される。他方、直流電源Vの−端子は、リード線9により負極3側の緻密質電極膜32bに接続され、この緻密質電極膜32bを介して多孔質電極膜32aに接続される。   In this case, as shown in FIG. 1A, the positive terminal of the DC power source V is connected to the dense electrode film 22b on the positive electrode 2 side by the lead wire 8, and the porous electrode is interposed through the dense electrode film 22b. Connected to the membrane 22a. On the other hand, the negative terminal of the DC power source V is connected to the dense electrode film 32b on the negative electrode 3 side by the lead wire 9, and is connected to the porous electrode film 32a through the dense electrode film 32b.

また、図示しないが、上記構成の電気化学セルをガス透過側の電極が全て同一方向を向くような状態で絶縁性の支持基板上に複数併設することで任意容量の酸素富化器を構成することができる。この場合、上記緻密質電極膜22b(32b)を電気化学セル相互間の接続用電極パターンとしても使用することができる。   Although not shown in the drawing, an oxygen enricher having an arbitrary capacity is configured by arranging a plurality of electrochemical cells having the above configuration on an insulating support substrate in a state where all of the electrodes on the gas permeation side face the same direction. be able to. In this case, the dense electrode film 22b (32b) can also be used as an electrode pattern for connection between electrochemical cells.

以上、本実施形態によれば、給電電極膜22(32)については、酸素透過部分を多孔質電極膜22a(32a)で構成し、その他のガス非透過部分を緻密質電極膜22b(32b)で構成したので、従来、反応電極膜21(31)と多孔質電極膜22a(32a)と緻密質電極膜22b(32b)の一部がそれぞれ積層方向に3層に重なる構造であったものを、各電極膜の一部が積層順に2層づつ重なる電極構造にすることができる。
これにより、セル作動時の高温雰囲気下において各電極膜の熱膨張係数の差で生じる熱応力の発生箇所を各層毎に分散させることができるため、熱歪みによる電極膜の剥離(特に、多孔質電極膜22a、32aの剥離)を防止でき、セルへの給電が確実に行われるようになる。その結果、常に安定した電気化学反応(電極反応)により、高酸素濃度の空気を安定して得ることができるようになる。
さらには、図1(a)、図2に示すように、各電極膜の角部に面取り加工(C加工やR加工)を施すことで、熱応力が電極膜の角部に集中するのを防止できるため、熱歪みによる電極膜の剥離をより確実に防止することができる。
As described above, according to the present embodiment, with respect to the feeding electrode film 22 (32), the oxygen permeable part is constituted by the porous electrode film 22a (32a), and the other gas non-permeable part is the dense electrode film 22b (32b). In the conventional structure, the reaction electrode film 21 (31), the porous electrode film 22a (32a), and the dense electrode film 22b (32b) partially overlap each other in three layers. In addition, an electrode structure in which a part of each electrode film overlaps two layers in the stacking order can be obtained.
As a result, it is possible to disperse the generation points of thermal stress caused by the difference in thermal expansion coefficient of each electrode film in a high temperature atmosphere at the time of cell operation for each layer. Separation of the electrode films 22a and 32a) can be prevented, and power supply to the cell is reliably performed. As a result, air with a high oxygen concentration can be stably obtained by an always stable electrochemical reaction (electrode reaction).
Furthermore, as shown in FIG. 1A and FIG. 2, by applying chamfering (C processing or R processing) to the corners of each electrode film, thermal stress is concentrated on the corners of the electrode film. Since it can prevent, peeling of the electrode film by thermal distortion can be prevented more reliably.

また、直流電源Vの電流経路となる給電電極膜22(32)の内、ガス透過部分を多孔質電極膜22a(32a)で形成することで、電子伝導性とともに十分なガス透過性を確保することができ、且つ、この多孔質電極膜22a(32a)への給電を行う電極パターンを緻密質電極膜22b(32b)で形成することで、緻密質電極膜22b(32b)を配線用の細長い電極パターンに形成しても、高い電流密度で給電することができ、この面からも、安定した電気化学反応により、高酸素密度の空気が安定して得られるようになる。   Further, by forming the gas permeable portion of the feeding electrode film 22 (32) serving as the current path of the DC power source V with the porous electrode film 22a (32a), sufficient gas permeability is ensured together with the electron conductivity. The electrode pattern for supplying power to the porous electrode film 22a (32a) is formed by the dense electrode film 22b (32b), so that the dense electrode film 22b (32b) is elongated for wiring. Even when the electrode pattern is formed, power can be supplied at a high current density. Also from this aspect, air having a high oxygen density can be stably obtained by a stable electrochemical reaction.

従って、係る構成の酸素透過電気化学セルを用いることにより、長期間に渡って高酸素濃度の空気が安定して得られる高性能で信頼性の高い酸素富化器を提供することができる。   Therefore, by using the oxygen permeable electrochemical cell having such a configuration, it is possible to provide a high-performance and highly reliable oxygen enricher that can stably obtain air having a high oxygen concentration over a long period of time.

本発明に係る電気化学セルを示し、(a)は縦断面図、(b)は平面図。The electrochemical cell which concerns on this invention is shown, (a) is a longitudinal cross-sectional view, (b) is a top view. 図1の要部縦断面図。The principal part longitudinal cross-sectional view of FIG. 従来の電気化学セルの要部縦断面図。The principal part longitudinal cross-sectional view of the conventional electrochemical cell.

符号の説明Explanation of symbols

1 電解質基板
2 正極
3 負極
21、31 反応電極膜
22、32 給電電極膜
22a、32a 第1電極膜(多孔質電極膜)
22b、32b 第2電極膜(緻密質電極膜)
DESCRIPTION OF SYMBOLS 1 Electrolyte board | substrate 2 Positive electrode 3 Negative electrode 21, 31 Reaction electrode film | membrane 22, 32 Feed electrode film | membrane 22a, 32a 1st electrode film (porous electrode film)
22b, 32b Second electrode film (dense electrode film)

Claims (5)

イオン伝導性を有する電解質基板の表裏両面に電極を配して成る電気化学セルであって、
上記電極が、上記電解質基板上に形成されたガス透過部分となる反応電極膜と、この反応電極膜を覆うように形成された給電用の第1電極膜と、この第1電極膜に電気的に接続され、上記反応電極膜外において上記第1電極膜より引き出された配線用の第2電極膜とで構成されていることを特徴とする電気化学セル。
An electrochemical cell comprising electrodes disposed on both front and back surfaces of an electrolyte substrate having ion conductivity,
The electrode is a reaction electrode film serving as a gas permeable portion formed on the electrolyte substrate, a first electrode film for power feeding formed so as to cover the reaction electrode film, and an electrical connection to the first electrode film And a second electrode film for wiring drawn out from the first electrode film outside the reaction electrode film.
上記第1電極膜は多孔質電極膜で形成され、上記第2電極膜は緻密質電極膜で形成されていることを特徴とする請求項1に記載の電気化学セル。   The electrochemical cell according to claim 1, wherein the first electrode film is formed of a porous electrode film, and the second electrode film is formed of a dense electrode film. 上記電極膜の角部に面取り加工が施されて成ることを特徴とする請求項1または請求項2に記載の電気化学セル。   The electrochemical cell according to claim 1 or 2, wherein the corner portion of the electrode film is chamfered. 上記電気化学セルは、酸素イオン伝導性を有する電解質基板の表裏両面に電極を配して成る酸素透過セルであることを特徴とする請求項1から請求項3までの何れかに記載の電気化学セル。   The electrochemical cell according to any one of claims 1 to 3, wherein the electrochemical cell is an oxygen permeable cell in which electrodes are arranged on both front and back surfaces of an electrolyte substrate having oxygen ion conductivity. cell. 請求項4に記載の電気化学セルを用いて成ることを特徴とする酸素富化器。   An oxygen enricher comprising the electrochemical cell according to claim 4.
JP2008268689A 2007-10-26 2008-10-17 Electrochemical cell and oxygen enrichment machine Withdrawn JP2009122093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268689A JP2009122093A (en) 2007-10-26 2008-10-17 Electrochemical cell and oxygen enrichment machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007278816 2007-10-26
JP2008268689A JP2009122093A (en) 2007-10-26 2008-10-17 Electrochemical cell and oxygen enrichment machine

Publications (1)

Publication Number Publication Date
JP2009122093A true JP2009122093A (en) 2009-06-04

Family

ID=40814387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268689A Withdrawn JP2009122093A (en) 2007-10-26 2008-10-17 Electrochemical cell and oxygen enrichment machine

Country Status (1)

Country Link
JP (1) JP2009122093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071250A (en) * 2014-09-30 2016-05-09 住友大阪セメント株式会社 Circuit board with electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071250A (en) * 2014-09-30 2016-05-09 住友大阪セメント株式会社 Circuit board with electrode

Similar Documents

Publication Publication Date Title
JP5708923B2 (en) Fuel cell and fuel cell
JP2001273914A (en) Electrochemical device and accumulated electrochemical device
JP5298469B2 (en) Gas diffusion electrode for fuel cell
JP2008262909A (en) Fuel cell and its manufacturing method
JP5646779B2 (en) Fuel cell
JP4462050B2 (en) Solid oxide fuel cell
JP2007103031A (en) Solid electrolyte fuel battery stack, solid electrolyte fuel battery module, and solid electrolyte fuel battery system
JP5709670B2 (en) Fuel cell device
JP2007217209A (en) Oxygen enrichment device
US7691770B2 (en) Electrode structure and methods of making same
JP2007273303A (en) Solid oxide fuel cell
JP2009122093A (en) Electrochemical cell and oxygen enrichment machine
JP2006221884A (en) Single chamber type solid oxide fuel cell
JP2007250368A (en) Lateral stripe type fuel cell and fuel cell
JP5920880B2 (en) Mounting structure of stacked solid oxide fuel cell
JP6434299B2 (en) Cell stack, module and module housing device
JP5408381B2 (en) Fuel cell
WO2018190205A1 (en) Solid-electrolyte integrated element, method for manufacturing solid-electrolyte integrated element, and solid-electrolyte element
JP6152898B2 (en) Solid oxide fuel cell and solid oxide fuel cell stack
JP5074004B2 (en) Solid oxide fuel cell and method for producing the same
JP2016039004A (en) Fuel battery
JP2003288904A (en) Electrochemical element, oxygen concentrator, and fuel cell
JP2015191693A (en) Cell stack, electrolysis module and electrolysis device
Virkar Reversible fuel cells with tri-layer electrolytes
JP2005216619A (en) Fuel battery cell and fuel battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110