JP2009122081A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor Download PDF

Info

Publication number
JP2009122081A
JP2009122081A JP2007299519A JP2007299519A JP2009122081A JP 2009122081 A JP2009122081 A JP 2009122081A JP 2007299519 A JP2007299519 A JP 2007299519A JP 2007299519 A JP2007299519 A JP 2007299519A JP 2009122081 A JP2009122081 A JP 2009122081A
Authority
JP
Japan
Prior art keywords
lid
case
coil
acceleration sensor
semiconductor acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007299519A
Other languages
Japanese (ja)
Other versions
JP4799533B2 (en
Inventor
Isao Kamiya
勲 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKI SEMICONDUCTOR MIYAZAKI CO
Lapis Semiconductor Co Ltd
Lapis Semiconductor Miyazaki Co Ltd
Original Assignee
OKI SEMICONDUCTOR MIYAZAKI CO
Oki Semiconductor Co Ltd
Oki Semiconductor Miyazaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKI SEMICONDUCTOR MIYAZAKI CO, Oki Semiconductor Co Ltd, Oki Semiconductor Miyazaki Co Ltd filed Critical OKI SEMICONDUCTOR MIYAZAKI CO
Priority to JP2007299519A priority Critical patent/JP4799533B2/en
Publication of JP2009122081A publication Critical patent/JP2009122081A/en
Application granted granted Critical
Publication of JP4799533B2 publication Critical patent/JP4799533B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • G01P2015/0842Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass the mass being of clover leaf shape

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means of automatically releasing adhesion state, when adhesion between a plumb section and a stopper, due to excess acceleration imposed on a semiconductor acceleration sensor. <P>SOLUTION: The semiconductor acceleration sensor is a semiconductor acceleration sensor which is equipped with a based case, a lid attached to top surface of the case, a frame-shaped fixed part contained in a space formed with the case and the lid, a plumb section, supported at a center of the fixed part swingably by a flexible section, and a sensor chip with a stopper restricting upward displacement of the plumb section. The sensor has alid formed of a magnetic material, possesses a first coil which is wound on the perimeter of the lid by at least one round and deploys a second coil, with one or more winding numbers at the center part of the top surface of the plumb section facing the undersurface of the lid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車や航空機等の輸送機器や携帯電話等の携帯機器等の機器に搭載されてその加速度や衝突等の測定に用いられる半導体加速度センサに関する。   The present invention relates to a semiconductor acceleration sensor that is mounted on a device such as a transport device such as an automobile or an aircraft, or a portable device such as a mobile phone, and is used for measuring acceleration or collision.

従来の半導体加速度センサは、シリコンからなる矩形の枠状の固定部に、十字状に配置された可撓部により、揺動可能に支持された重錘部と、固定部の4隅に形成され、重錘部の上方への移動を制限するストッパとを有するセンサチップを、枠状の有底のケースとその上面に取付けられた平板状の蓋とで形成される空間に収納して構成され、ストッパに重錘部を衝突させて、重錘部の上方への過大な変位を制限することにより、過大な加速度によるセンサチップの破損を防止している(例えば、特許文献1参照。)。   A conventional semiconductor acceleration sensor is formed at a rectangular frame-shaped fixed portion made of silicon, with a weight portion that is swingably supported by a flexible portion arranged in a cross shape, and four corners of the fixed portion. The sensor chip having a stopper for restricting the upward movement of the weight portion is housed in a space formed by a frame-shaped bottomed case and a flat lid attached to the upper surface thereof. Further, by causing the weight portion to collide with the stopper and restricting excessive displacement of the weight portion upward, damage to the sensor chip due to excessive acceleration is prevented (for example, see Patent Document 1).

また、センサチップの加速度検出試験を行う場合に、重錘部の上方への移動を制限するためのストッパとして機能する制御部材の下面に電極層を形成すると共に、これに対向する可撓部の上面にも電極層を形成し、対向する電極層間に同極性または異極性の電化を印加し、これにより生ずるクーロン力による反発力または引力を利用して可撓部を変形させ、これによるセンサチップからの信号出力を用いてセンサチップの試験を行っているものがある(例えば、特許文献2参照。)。
特開2002−198243号公報(主に第5頁段落0020−0025、第7頁段落0041、0044、第1図、第2図) 特開平3−200038号公報(主に第8頁左上欄−第9頁右上欄、第9図、第12図)
In addition, when performing an acceleration detection test of the sensor chip, an electrode layer is formed on the lower surface of the control member that functions as a stopper for restricting the upward movement of the weight portion, and the flexible portion facing this is formed. An electrode layer is also formed on the upper surface, electrification of the same or different polarity is applied between the opposing electrode layers, and the flexible part is deformed by utilizing the repulsive force or attractive force caused by the Coulomb force, thereby the sensor chip. In some cases, a sensor chip is tested by using a signal output from (see, for example, Patent Document 2).
JP 2002-198243 A (mainly, page 5 paragraphs 0020-0025, page 7 paragraphs 0041 and 0044, FIGS. 1 and 2) Japanese Patent Laid-Open No. 3-200038 (mainly page 8 upper left column-page 9 upper right column, FIGS. 9 and 12)

しかしながら、上述した従来の特許文献1の技術においては、固定部の4隅に設けたストッパに重錘部を衝突させて、重錘部の上方への過大な変位を防止しているため、半導体加速度センサに過大な加速度が印加されて重錘部がストッパに衝突したときに、重錘部とストッパとが凝着してしまう場合があり、凝着が生ずると、物理的な衝撃を加える以外に凝着状態を解除する手段がなく、センサチップからの信号出力が固定されて加速度の検出ができなくなるという問題がある。   However, in the technique of the above-mentioned conventional patent document 1, since the weight portion collides with stoppers provided at the four corners of the fixed portion to prevent excessive displacement of the weight portion, the semiconductor When excessive acceleration is applied to the acceleration sensor and the weight part collides with the stopper, the weight part and the stopper may adhere to each other. However, there is no means for releasing the adhesion state, and there is a problem that the signal output from the sensor chip is fixed and the acceleration cannot be detected.

本発明は、上記の問題点を解決するためになされたもので、半導体加速度センサに過大な加速度による重錘部とストッパとの凝着が生じたときに、その凝着状態を自動的に解除する手段を提供することを目的とする。   The present invention has been made to solve the above-described problems, and when the semiconductor acceleration sensor is adhered to the weight portion and the stopper due to excessive acceleration, the adhesion state is automatically released. It aims at providing the means to do.

本発明は、上記課題を解決するために、有底のケースと、前記ケースの上面に取付けられた蓋と、前記ケースと蓋とにより形成された空間に収納され、枠状の固定部と、前記固定部の中央に可撓部により揺動可能に支持された重錘部と、前記重錘部の上方への移動を制限するストッパとを有するセンサチップと、を備えた半導体加速度センサであって、前記蓋を磁性材料で形成すると共に、前記蓋の周囲を少なくとも1巻する第1のコイルを設け、前記蓋の下面に対向する前記重錘部の上面の中央部に、1以上の巻数を有する第2のコイルを設けたことを特徴とする。   In order to solve the above-mentioned problem, the present invention has a bottomed case, a lid attached to the upper surface of the case, a space formed by the case and the lid, a frame-shaped fixing portion, A semiconductor acceleration sensor comprising: a weight portion that is swingably supported by a flexible portion at the center of the fixed portion; and a sensor chip having a stopper that restricts the upward movement of the weight portion. The lid is made of a magnetic material, provided with a first coil that winds at least one turn around the lid, and has one or more turns at the center of the upper surface of the weight portion facing the lower surface of the lid. A second coil having the above is provided.

これにより、本発明は、重錘部とストッパとの間に凝着が生じた場合に、第1および第2のコイルに電流を流して、重錘部とストッパとの間に反発力を生じさせることができ、半導体加速度センサに過大な加速度による重錘部とストッパとの凝着が生じたときに、反発力を用いて凝着状態を自動的に解除することができるという効果が得られる。   Accordingly, in the present invention, when adhesion occurs between the weight portion and the stopper, a current is passed through the first and second coils to generate a repulsive force between the weight portion and the stopper. When the adhesion between the weight portion and the stopper due to excessive acceleration occurs in the semiconductor acceleration sensor, the effect of automatically releasing the adhesion state using the repulsive force is obtained. .

以下に、図面を参照して本発明による半導体加速度センサの実施例について説明する。   Embodiments of a semiconductor acceleration sensor according to the present invention will be described below with reference to the drawings.

図1は実施例の半導体加速度センサの断面を示す説明図、図2は実施例の半導体加速度センサの組立状態を示す説明図、図3は実施例のセンサチップの上面を示す説明図、図4は実施例の半導体加速度センサの制御系統を示す説明図である。
なお、図1に示すセンサチップの断面は、図3に示すA−A断面線に沿った断面で示してある。
1 is an explanatory view showing a cross section of the semiconductor acceleration sensor of the embodiment, FIG. 2 is an explanatory view showing an assembled state of the semiconductor acceleration sensor of the embodiment, FIG. 3 is an explanatory view showing an upper surface of the sensor chip of the embodiment, and FIG. These are explanatory drawings which show the control system of the semiconductor acceleration sensor of an Example.
The cross section of the sensor chip shown in FIG. 1 is shown as a cross section taken along the line AA shown in FIG.

図1、図2において、1は半導体加速度センサである。
2はケースであり、セラミック材料等で形成された底板3を有する有底の枠状部材であって、矩形の底板3の周囲を囲う枠状に形成された側壁4には、その開口側の上面4aから、底板3側に形成された内部端子5に達するスルーホールに埋込まれた導電プラグ6が形成されており、底板3と側壁4とで囲まれた内側の空間がセンサチップ10や制御チップ20を収納するチップ収納空間として機能する。
1 and 2, reference numeral 1 denotes a semiconductor acceleration sensor.
Reference numeral 2 denotes a case, which is a bottomed frame-like member having a bottom plate 3 made of a ceramic material or the like, and a side wall 4 formed in a frame shape surrounding the rectangular bottom plate 3 is provided on the opening side thereof. A conductive plug 6 embedded in a through hole reaching the internal terminal 5 formed on the side of the bottom plate 3 from the upper surface 4a is formed, and the inner space surrounded by the bottom plate 3 and the side wall 4 is the sensor chip 10 or It functions as a chip storage space for storing the control chip 20.

7は蓋であり、磁性材料の薄板で形成された板状部材であって、ケース2の側壁4の上面4aに接着剤等の接合部材で接合されており、その周囲の側面には、エナメル線等の被服導線が巻き付けられて、1巻の第1のコイル8が形成され、その両端部はそれぞれケース2の側壁4の上面4aに露出している導電プラグ6の端面(図2参照)に電気的に接続される。   Reference numeral 7 denotes a lid, which is a plate-like member formed of a thin plate of magnetic material, and is joined to the upper surface 4a of the side wall 4 of the case 2 by a joining member such as an adhesive, A covered conductor such as a wire is wound to form a first coil 8 of one turn, and both end portions of the conductive plug 6 are exposed at the upper surface 4a of the side wall 4 of the case 2 (see FIG. 2). Is electrically connected.

これらの蓋7と第1のコイル8とにより、有心の第1の電磁石9aが形成される。
上記のセンサチップ10は、互いに直交するX軸、Y軸、Z軸からなる3軸の加速度成分をピエゾ抵抗素子11で形成されたブリッジ回路12(図4参照)の平衡状態の変化を利用して出力するセンサである。
図3において、13はセンサチップ10の固定部であり、センサチップ10の周縁部を形成するシリコン(Si)からなる略正方形の有底の枠状部材であって、その内側には十字状に配置された薄いシリコンからなる可撓部14に釣り下げられた重錘部15が揺動可能に収容されている。
The lid 7 and the first coil 8 form a centered first electromagnet 9a.
The sensor chip 10 utilizes a change in the equilibrium state of the bridge circuit 12 (see FIG. 4) formed by the piezoresistive element 11 with the three-axis acceleration component composed of the X axis, the Y axis, and the Z axis orthogonal to each other. Sensor.
In FIG. 3, reference numeral 13 denotes a fixing portion of the sensor chip 10, which is a substantially square bottomed frame-shaped member made of silicon (Si) that forms the peripheral portion of the sensor chip 10. A weight portion 15 suspended from a flexible portion 14 made of thin silicon is accommodated in a swingable manner.

本実施例の重錘部15は、固定部13の内側の中央部に配置された略正方形の錘支持部15aの各隅部に、4つの錘部15bを形成して構成され、その錘支持部15aは可撓部14に接続して、その上面は固定部13の上面、可撓部14の上面と面一に形成されており、錘部15bの上面は、錘支持部15aの上面より1段低く形成されている(図1参照)。   The weight portion 15 of the present embodiment is configured by forming four weight portions 15b at each corner of a substantially square weight support portion 15a disposed at the center portion inside the fixed portion 13, and supporting the weight. The portion 15a is connected to the flexible portion 14, and the upper surface thereof is flush with the upper surface of the fixed portion 13 and the upper surface of the flexible portion 14, and the upper surface of the weight portion 15b is from the upper surface of the weight support portion 15a. It is formed one step lower (see FIG. 1).

また、固定部13の4つ辺の中央にそれぞれ固定された可撓部14には、それぞれブリッジ回路12を形成するためのピエゾ抵抗素子11(図2における図示は省略)が形成されている。
16はコアであり、重錘部15の錘支持部15aの上面の中央部に接着等により取付けられた磁性材料からなる矩形の薄板であって、その周囲にはアルミニウム(Al)等の導電材料で形成されたメタル配線からなる1巻以上(本実施例では、2.5巻)の第2のコイル17が形成され、その両端部はそれぞれ可撓部14上に形成された接続配線18に接続している。
In addition, a piezoresistive element 11 (not shown in FIG. 2) for forming the bridge circuit 12 is formed in each of the flexible portions 14 fixed to the centers of the four sides of the fixed portion 13.
Reference numeral 16 denotes a core, which is a rectangular thin plate made of a magnetic material attached to the central portion of the upper surface of the weight support portion 15a of the weight portion 15 by adhesion or the like, and has a conductive material such as aluminum (Al) around it. The second coil 17 having one or more turns (2.5 turns in the present embodiment) made of the metal wiring formed in the above is formed, and both end portions thereof are connected to the connection wiring 18 formed on the flexible portion 14, respectively. Connected.

これらのコア16と第2のコイル17とにより、有心の第2の電磁石9bが形成される。
本実施例の第2のコイル17は、発生させる磁界に応じて、錘支持部15aの上面の一部または全部に形成される。
19はストッパであり、固定部13の内側の4つの隅部に、それぞれの隅を頂点とする直角3角形状に形成されており、図1に示すように、その下面は重錘部15の錘部15bの上面と、所定の隙間C(本実施例では、2〜5μm)を介して対向しており、センサチップ10に印加された過大な加速度により、重錘部15が上方に移動したときに、1ないし4の錘部15bが衝突させて、可撓部14に過大な変形が生じることを防止する。
The core 16 and the second coil 17 form a centric second electromagnet 9b.
The second coil 17 of this embodiment is formed on a part or all of the upper surface of the weight support portion 15a according to the magnetic field to be generated.
Reference numeral 19 denotes a stopper, which is formed at four corners on the inner side of the fixed portion 13 in a right-angled triangle shape having the corners as apexes. It faces the upper surface of the weight portion 15b through a predetermined gap C (2 to 5 μm in this embodiment), and the weight portion 15 moves upward due to excessive acceleration applied to the sensor chip 10. Occasionally, the 1 to 4 weight portions 15b collide to prevent the flexible portion 14 from being excessively deformed.

図1、図4において、20はLSI(Large Scale Integrated circuit)等の制御チップであり、ケース2の底板3上に接着剤等により形成された接着層21により接合され、その上面にはセンサチップ10の下面が接着剤等により形成された接着層22により接合されている。
図4において、23は制御チップ20の制御部であり、制御チップ20内の各部を制御して凝着解除処理等を実行する。
1 and 4, reference numeral 20 denotes a control chip such as an LSI (Large Scale Integrated Circuit), which is bonded to the bottom plate 3 of the case 2 by an adhesive layer 21 formed of an adhesive or the like, and a sensor chip is bonded to the upper surface thereof. The lower surface of 10 is joined by an adhesive layer 22 formed of an adhesive or the like.
In FIG. 4, reference numeral 23 denotes a control unit of the control chip 20, which controls each unit in the control chip 20 and executes an adhesion release process and the like.

24は記憶部であり、制御部23が実行するプログラムやそれに用いる各種のデータおよび制御部23による処理結果等が格納される。
25は時計部であり、水晶発振器等を有する周波数発生器等を備えており、発生した周波数を基に時間を計数して制御部23へ出力する機能を有している。
26は増幅器であり、X軸方向、Y軸方向、Z軸方向のそれぞれの加速度検出用に形成されたブリッジ回路12が内部接続され、これらの信号出力を増幅する機能を有しており、DAコンバータ27、ADコンバータ28を介して制御部23に接続している。
A storage unit 24 stores a program executed by the control unit 23, various data used for the program, processing results by the control unit 23, and the like.
A clock unit 25 includes a frequency generator having a crystal oscillator and the like, and has a function of counting time based on the generated frequency and outputting it to the control unit 23.
Reference numeral 26 denotes an amplifier, which is internally connected to a bridge circuit 12 formed for detecting accelerations in the X-axis direction, Y-axis direction, and Z-axis direction, and has a function of amplifying these signal outputs. It is connected to the control unit 23 via a converter 27 and an AD converter 28.

また、制御部23には、外部端子29(図2参照)を介して外部との信号の送受を行うためのインタフェース回路31や、第1のコイル8および第2のコイル17へ電流を供給するための電流発生回路32が接続している。
更に、制御部23は、本実施例の半導体加速度センサ1を搭載した上位装置として図示しない機器の主制御部と通信可能に接続されている。
Further, the controller 23 supplies current to the interface circuit 31 for transmitting / receiving signals to / from the outside and the first coil 8 and the second coil 17 through the external terminal 29 (see FIG. 2). For this purpose, a current generating circuit 32 is connected.
Further, the control unit 23 is communicably connected to a main control unit of a device (not shown) as a host device equipped with the semiconductor acceleration sensor 1 of the present embodiment.

上記の構成の半導体加速度センサ1を組立てる場合は、図1、図2に示すように、制御チップ20の下面をケース2の底板3上の中央部に接着層21により接合し、その制御チップ20の上面にセンサチップ10を接着層22により接合して積層し、ワイヤボンディングにより、制御チップ20の図示しないパッドと、内部端子5および外部端子29に接続する図示しない内部端子とを金(Au)等の導電材料で形成されたワイヤ34で電気的に接続して、ケース2のチップ収納空間にセンサチップ10を積層した制御チップ20を設置し、ケース2の側壁4の上面4aに、周囲に、第1のコイル8を形成した蓋7の下面を接合部材で接合して取付け、第1のコイル8の両端部を、それぞれケース2の側壁4の上面4aの導電プラグ6の端面に半田等によりに電気的に接続する。   When assembling the semiconductor acceleration sensor 1 having the above-described configuration, as shown in FIGS. 1 and 2, the lower surface of the control chip 20 is joined to the central portion of the bottom plate 3 of the case 2 by the adhesive layer 21, and the control chip 20 The sensor chip 10 is bonded and laminated to the upper surface of the control chip 20 by an adhesive layer 22, and pads (not shown) of the control chip 20 and internal terminals (not shown) connected to the internal terminals 5 and the external terminals 29 are gold (Au) by wire bonding. The control chip 20 in which the sensor chip 10 is laminated in the chip housing space of the case 2 is installed by connecting the wires 34 made of a conductive material such as the conductive material, and the upper surface 4a of the side wall 4 of the case 2 The lower surface of the lid 7 on which the first coil 8 is formed is attached by bonding with a bonding member, and both end portions of the first coil 8 are respectively connected to the end surfaces of the conductive plug 6 on the upper surface 4a of the side wall 4 of the case 2. Electrically connected by solder or the like.

これにより、図1に示す、蓋7の下面と、重錘部15の錘支持部15aの上面とが所定の間隔K(本実施例では、30〜200μm)を介して対向する半導体加速度センサ1が組立てられると共に、図4に示す制御系統が結線される。
上記の制御チップ20の記憶部24には、センサチップ10からのX軸、Y軸、Z軸用のブリッジ回路12の信号出力を検出して、そのいずれかの信号出力が、正負の接近判定値の範囲外となったときに、信号出力が範囲外となっている維持時間を計測し、計測した維持時間が異常判定時間以上となった場合に、重錘部15とストッパ19との凝着を判定して、第1および第2のコイル8、17に、互いを反発させる方向に磁界を形成する電流を供給する機能を有する凝着解除処理プログラムが予め格納されており、制御部23が実行する凝着解除処理プログラムのステップにより本実施例の半導体加速度センサ1のハードウェアとしての各機能手段が形成される。
Thereby, the semiconductor acceleration sensor 1 shown in FIG. 1 is opposed to the lower surface of the lid 7 and the upper surface of the weight support portion 15a of the weight portion 15 with a predetermined distance K (30 to 200 μm in this embodiment). Is assembled and the control system shown in FIG. 4 is connected.
The storage unit 24 of the control chip 20 detects the signal output of the bridge circuit 12 for the X-axis, Y-axis, and Z-axis from the sensor chip 10 and determines whether the signal output is a positive or negative approach. When the signal output is out of the range, the maintenance time during which the signal output is out of the range is measured, and when the measured maintenance time is equal to or greater than the abnormality determination time, the weight 15 and the stopper 19 are not fixed. An adhesion release processing program having a function of supplying a current for forming a magnetic field in a direction in which the first and second coils 8 and 17 repel each other is determined in advance, and is stored in the control unit 23. Each function means as hardware of the semiconductor acceleration sensor 1 of the present embodiment is formed by the steps of the adhesion release processing program executed by.

また、記憶部24には、重錘部15のストッパ19への接近を検出するための接近判定値、重錘部15の上面とストッパの下面とが凝着したことを判定するための異常判定時間、および凝着が解除されないことを判定するための不解除判定時間が予め設定されて格納されている。
本実施例では、接近判定値として、重錘部15の上面とストッパの下面とが当接したときの最大信号出力の70〜90%の範囲の加速度の正負の信号出力(本実施例では約±80%に相当する±2.5G)が設定され、異常判定時間として1秒、不解除判定時間として1秒が設定されている。
The storage unit 24 also includes an approach determination value for detecting the approach of the weight 15 to the stopper 19 and an abnormality determination for determining that the upper surface of the weight 15 and the lower surface of the stopper are adhered. The time and the non-release determination time for determining that the adhesion is not released are preset and stored.
In this embodiment, as an approach determination value, a positive or negative signal output of acceleration in the range of 70 to 90% of the maximum signal output when the upper surface of the weight portion 15 and the lower surface of the stopper abut (in this embodiment, approximately ± 2.5G corresponding to ± 80%) is set, 1 second is set as the abnormality determination time, and 1 second is set as the non-cancellation determination time.

以下に、図5にSで示すステップに従って、本実施例の半導体加速度センサにおける凝着解除処理の作動について説明する。
制御チップ20へ電源が投入されると、制御チップ20の記憶部24に格納されている凝着解除処理プログラムが自動的に起動される。
S1、凝着解除処理プログラムが起動すると、制御部23は、記憶部24に格納されている接近判定値を読出し、センサチップ10からの信号出力を検出しながら、検出した信号出力と、正負の接近判定値とを比較し、信号出力が正負いずれかの接近判定値を超える接近判定値の範囲外(正の接近判定値以上、負の接近判定値以下の領域をいう。)となるのを待って待機し、信号出力が接近判定値の範囲外となったときにステップS2へ移行する。
The operation of the adhesion release process in the semiconductor acceleration sensor of this embodiment will be described below according to the step indicated by S in FIG.
When power is turned on to the control chip 20, the adhesion release processing program stored in the storage unit 24 of the control chip 20 is automatically activated.
S1, When the adhesion release processing program is activated, the control unit 23 reads the approach determination value stored in the storage unit 24, detects the signal output from the sensor chip 10, and detects the detected signal output and the positive / negative Compared to the approach judgment value, the signal output is outside the range of the approach judgment value exceeding either the positive or negative approach judgment value (refers to an area that is greater than or equal to the positive approach judgment value and less than or equal to the negative approach judgment value). After waiting, the process proceeds to step S2 when the signal output falls outside the range of the approach determination value.

信号出力が接近判定値の範囲内の場合は、前記の待機を継続する。
S2、信号出力が正負いずれかの接近判定値を超えたことを認識した制御部23は、記憶部24に格納されている異常判定時間を読出すと共に、時計部25により、信号出力が接近判定値の範囲外となったときからの維持時間Tの計測を開始してステップS3へ移行する。
When the signal output is within the range of the approach determination value, the standby is continued.
S2, the control unit 23 that has recognized that the signal output has exceeded either the positive or negative approach determination value, reads the abnormality determination time stored in the storage unit 24, and the clock unit 25 determines whether the signal output is approaching. The measurement of the maintenance time T from when the value is out of the range starts, and the process proceeds to step S3.

S3、維持時間Tの計測を開始した制御部23は、時計部25により、信号出力が接近判定値の範囲外となっている維持時間Tを計測しながら、計測した維持時間Tが読出した異常判定時間以上となるのを待って待機し、維持時間Tが異常判定時間以上となったときに、重錘部15とストッパ19との間に凝着が生じたことを判定してステップS4へ移行する。   In S3, the control unit 23 that has started measuring the maintenance time T uses the clock unit 25 to measure the maintenance time T in which the signal output is outside the range of the approach determination value, while the measured maintenance time T is read out. Waiting for the determination time to be exceeded, and waiting, and when the maintenance time T is equal to or greater than the abnormality determination time, it is determined that adhesion has occurred between the weight portion 15 and the stopper 19 and the process proceeds to step S4. Transition.

維持時間Tが異常判定時間に達する前に、信号出力が、範囲外となったときに超えた正または負の接近判定値を通過して、接近判定値の範囲内になった場合は、正常作動と判定してステップS1へ戻って、上記の処理を継続する。
この様子を、図6に示す時間経過に伴う信号出力の変化のグラフを用いて説明すると、運転の開始後に、最初に正の接近判定値を超えた場合の維持時間T1と、次に負の接近判定値を超えた場合の維持時間T2とは、ともに異常判定時間未満であるので、正常運転と判定され、維持時間T2を計測した後に、再び正の接近判定値を超えた場合の維持時間Tは異常判定時間以上であるので、凝着が生じたと判定される。
If the signal output passes through the positive or negative approach judgment value that was exceeded when the maintenance time T reaches the abnormality judgment time and is within the approach judgment value range, it is normal. It determines with an action | operation and returns to step S1, and said process is continued.
This state will be described with reference to the graph of the change in signal output with the lapse of time shown in FIG. Since the maintenance time T2 when the approach determination value is exceeded is both less than the abnormality determination time, the maintenance time when the positive approach determination value is exceeded again after measuring the maintenance time T2 after determining the normal operation. Since T is longer than the abnormality determination time, it is determined that adhesion has occurred.

このような凝着は、例えば、図7に示すように、X軸方向またはY軸方向に過大な加速度が印加され、重錘部15の錘部15bの固定部13側の角部が、ストッパ19の下面に衝突したとき等に生ずる。
S4、凝着が生じたことを判定した制御部23は、電流発生回路32により、蓋7の周囲に形成された第1のコイル8および重錘部15の錘支持部15aの上面のコア16の周りに形成された第2のコイル17へ、互いを反発させる方向に磁界を形成するための電流、例えば、図2に示す第1のコイル8には、上面から見て時計方向に、第2のコイル17には、上面から見て反時計方向に流れるように電流を供給する。
For example, as shown in FIG. 7, an excessive acceleration is applied in the X-axis direction or the Y-axis direction, and the corner of the weight portion 15b on the fixed portion 13 side of the weight portion 15b It occurs when it hits the lower surface of 19.
S <b> 4, the control unit 23 that has determined that adhesion has occurred, the first coil 8 formed around the lid 7 and the core 16 on the upper surface of the weight support unit 15 a of the weight unit 15 by the current generation circuit 32. For example, the first coil 8 shown in FIG. 2 has a first coil 8 in the clockwise direction as viewed from above. A current is supplied to the second coil 17 so as to flow counterclockwise as viewed from above.

これにより第1および第2のコイル8、17の間に生じた反発力を用いて、重錘部15とストッパ19との凝着は解除可能となる。
この場合に、制御チップ20の凝着解除処理に用いない演算回路等は、その作動を停止させるようにするとよい。このようにすれば、第1および第2のコイル8、17による磁界により発生する電磁誘導による電流の影響を抑制することが可能になる。
Thereby, the adhesion between the weight portion 15 and the stopper 19 can be released by using the repulsive force generated between the first and second coils 8 and 17.
In this case, it is preferable to stop the operation of arithmetic circuits or the like that are not used for the adhesion release processing of the control chip 20. In this way, it is possible to suppress the influence of current due to electromagnetic induction generated by the magnetic field generated by the first and second coils 8 and 17.

そして、制御部23は、記憶部24に格納されている不解除判定時間を読出し、時計部25により、凝着を判定したときからの経過時間を計測しながら、計測した経過時間が読出した不解除判定時間以上となるのを待って待機し、経過時間が不解除判定時間以上となったときに、重錘部15とストッパ19との凝着の解除不能を判定してステップS6へ移行する。   Then, the control unit 23 reads the non-cancellation determination time stored in the storage unit 24 and measures the elapsed time from the time when the clock unit 25 has measured the elapsed time since the adhesion is determined. Waiting for the release determination time or more to wait, and when the elapsed time exceeds the non-release determination time, it is determined that the adhesion between the weight portion 15 and the stopper 19 cannot be released, and the process proceeds to step S6. .

経過時間が不解除判定時間に達する前に、信号出力が、接近判定値の範囲外となったときに超えた正または負の接近判定値を通過して、接近判定値の範囲内になった場合は、凝着が解除されたことを判定して、第1および第2のコイル8、17への電流の供給を停止し、ステップS1へ戻って上記の処理を継続する。
S6、凝着の解除不能を判定した制御部23は、第1および第2のコイル8、17への電流の供給を停止すると共に、凝着発生の旨を記した凝着発生通知を図示しない上位装置の主制御部へ送信して、凝着解除処理を終了させる。
Before the elapsed time reaches the non-cancellation judgment time, the signal output passed the positive or negative approach judgment value that was exceeded when it was out of the approach judgment value range, and was within the approach judgment value range. In this case, it is determined that the adhesion has been released, the supply of current to the first and second coils 8 and 17 is stopped, the process returns to step S1 and the above processing is continued.
S6, the control unit 23 that has determined that the adhesion cannot be released stops the supply of current to the first and second coils 8 and 17, and does not show an adhesion occurrence notification indicating the occurrence of adhesion. It transmits to the main control part of a high-order apparatus, and complete | finishes an adhesion cancellation | release process.

このようにして、本実施例の凝着解除処理が実行される。
以上説明したように、本実施例では、ケースの上面に取付けられた磁性材料からなる蓋の周囲に第1のコイルを設けると共に、ケースと蓋とにより形成されたチップ収納空間に収納されたセンサチップの、蓋の下面に対向する重錘部の上面の中央部に第2のコイルを設けたことによって、重錘部とストッパとの間に凝着が生じた場合に、第1および第2のコイルに電流を流して、重錘部とストッパとの間に反発力を生じさせることができ、半導体加速度センサに過大な加速度による重錘部とストッパとの凝着が生じたときに、反発力を用いて凝着状態を自動的に解除することができる。
In this way, the adhesion release process of the present embodiment is executed.
As described above, in this embodiment, the first coil is provided around the lid made of a magnetic material attached to the upper surface of the case, and the sensor is housed in the chip housing space formed by the case and the lid. When the second coil is provided at the center of the upper surface of the weight portion facing the lower surface of the lid of the chip, when adhesion occurs between the weight portion and the stopper, the first and second A repulsive force can be generated between the weight part and the stopper by passing a current through the coil, and when the semiconductor accelerometer adheres to the weight part and the stopper due to excessive acceleration, the repulsion occurs. The adhesive state can be automatically released using force.

また、センサチップからの信号出力が接近判定値の範囲外となったときに、接近判定値の範囲外となっている維持時間Tを計測し、その維持時間Tが異常判定時間以上となった場合に、重錘部とストッパとの間に凝着が生じたことを判定するので、瞬間的な異常状態を排除して、凝着状態を容易に、かつ確実に判定することができる。
なお、上記実施例においては、重錘部の上面の第2のコイルに囲まれた領域に磁性材料からなるコアを設けるとして説明したが、コアの設置を省略するようにしてもよい。
Further, when the signal output from the sensor chip is out of the range of the approach determination value, the maintenance time T that is outside the range of the approach determination value is measured, and the maintenance time T becomes equal to or longer than the abnormality determination time. In this case, since it is determined that adhesion has occurred between the weight portion and the stopper, it is possible to easily and reliably determine the adhesion state by eliminating the instantaneous abnormal state.
In the above embodiment, the core made of the magnetic material is provided in the region surrounded by the second coil on the upper surface of the weight portion. However, the installation of the core may be omitted.

また、上記実施例においては、第1のコイルは1巻であるとして説明したが、2巻以上であってもよい。
更に、制御チップは、ケースの内部に配置するとして説明したが、ケース外に制御チップを配置して、外部端子を介して信号出力の検出や、第1および第2のコイルへの電流の供給を行うようにしてもよい。
Moreover, in the said Example, although the 1st coil demonstrated as 1 turn, 2 or more turns may be sufficient.
Further, the control chip has been described as being disposed inside the case. However, the control chip is disposed outside the case to detect signal output and supply current to the first and second coils via the external terminals. May be performed.

実施例の半導体加速度センサの断面を示す説明図Explanatory drawing which shows the cross section of the semiconductor acceleration sensor of an Example 実施例の半導体加速度センサの組立状態を示す説明図Explanatory drawing which shows the assembly state of the semiconductor acceleration sensor of an Example. 実施例のセンサチップの上面を示す説明図Explanatory drawing which shows the upper surface of the sensor chip of an Example 実施例の半導体加速度センサの制御系統を示す説明図Explanatory drawing which shows the control system of the semiconductor acceleration sensor of an Example 実施例の凝着解除処理を示すフローチャートThe flowchart which shows the adhesion cancellation process of an Example 実施例のセンサチップの信号出力の変化を示すグラフThe graph which shows the change of the signal output of the sensor chip of an Example 実施例のセンサチップの凝着状態を示す説明図Explanatory drawing which shows the adhesion state of the sensor chip of an Example

符号の説明Explanation of symbols

1 半導体加速度センサ
2 ケース
3 底板
4 側壁
4a 上面
5 内部端子
6 導電プラグ
7 蓋
8 第1のコイル
9a 第1の電磁石
9b 第2の電磁石
10 センサチップ
11 ピエゾ抵抗素子
12 ブリッジ回路
13 固定部
14 可撓部
15 重錘部
15a 錘支持部
15b 錘部
16 コア
17 第2のコイル
18 接続配線
19 ストッパ
20 制御チップ
21、22 接着層
23 制御部
24 記憶部
25 時計部
26 増幅器
27 DAコンバータ
28 ADコンバータ
29 外部端子
31 インタフェース回路
32 電流発生回路
34 ワイヤ
DESCRIPTION OF SYMBOLS 1 Semiconductor acceleration sensor 2 Case 3 Bottom plate 4 Side wall 4a Upper surface 5 Internal terminal 6 Conductive plug 7 Cover 8 1st coil 9a 1st electromagnet 9b 2nd electromagnet 10 Sensor chip 11 Piezoresistive element 12 Bridge circuit 13 Fixed part 14 Possible Flexible part 15 Weight part 15a Weight support part 15b Weight part 16 Core 17 Second coil 18 Connection wiring 19 Stopper 20 Control chip 21, 22 Adhesive layer 23 Control part 24 Storage part 25 Clock part 26 Amplifier 27 DA converter 28 AD converter 29 External Terminal 31 Interface Circuit 32 Current Generation Circuit 34 Wire

Claims (4)

有底のケースと、
前記ケースの上面に取付けられた蓋と、
前記ケースと蓋とにより形成された空間に収納され、枠状の固定部と、前記固定部の中央に可撓部により揺動可能に支持された重錘部と、前記重錘部の上方への移動を制限するストッパとを有するセンサチップと、を備えた半導体加速度センサであって、
前記蓋を磁性材料で形成すると共に、前記蓋の周囲を少なくとも1巻する第1のコイルを設け、
前記蓋の下面に対向する前記重錘部の上面の中央部に、1以上の巻数を有する第2のコイルを設けたことを特徴とする半導体加速度センサ。
A bottomed case,
A lid attached to the upper surface of the case;
Housed in a space formed by the case and the lid, a frame-shaped fixed part, a weight part supported by a flexible part in a swingable manner at the center of the fixed part, and above the weight part A semiconductor acceleration sensor comprising: a sensor chip having a stopper that restricts movement of
The lid is formed of a magnetic material, and a first coil that winds around the lid at least once is provided,
A semiconductor acceleration sensor, wherein a second coil having one or more turns is provided at the center of the upper surface of the weight portion facing the lower surface of the lid.
請求項1において、
前記ケースの底面と、前記センサチップとの間に、前記第1および第2のコイルへ供給する電流を制御する制御チップを配置したことを特徴とする半導体加速度センサ。
In claim 1,
A semiconductor acceleration sensor, wherein a control chip for controlling a current supplied to the first and second coils is disposed between a bottom surface of the case and the sensor chip.
有底のケースと、
前記ケースの上面に取付けられた磁性材料からなる蓋と、
前記蓋の周囲を少なくとも1巻する第1のコイルと、
前記ケースと蓋とにより形成された空間に収納され、枠状の固定部と、前記固定部の中央に可撓部により揺動可能に支持された重錘部と、前記重錘部の上方への移動を制限するストッパと、前記蓋の下面に対向する前記重錘部の上面の中央部に、1以上の巻数を有する第2のコイルとを有するセンサチップと、
前記ケースの底面と、前記センサチップとの間に配置され、前記第1および第2のコイルへ供給する電流を制御する制御チップと、を備えた半導体加速度センサであって、
前記制御チップは、
前記重錘部と、前記ストッパとの凝着を判定するための異常判定時間と、前記重錘部の、前記ストッパへの接近を検出するための正負の接近判定値とを格納する手段と、
前記センサチップからの信号出力を検出する手段と、
前記信号出力が、前記接近判定値の範囲外となったときに、前記接近判定値の範囲外となっている維持時間を計測する手段と、
前記維持時間が、前記異常判定時間以上となった場合に、前記第1および第2のコイルに、互いを反発させる方向に磁界を形成する電流を供給する手段と、を備えることを特徴とする半導体加速度センサ。
A bottomed case,
A lid made of a magnetic material attached to the upper surface of the case;
A first coil that winds around the lid at least once;
Housed in a space formed by the case and the lid, a frame-shaped fixed part, a weight part supported by a flexible part in a swingable manner at the center of the fixed part, and above the weight part A sensor chip having a stopper for restricting movement of the second coil, and a second coil having one or more turns at the center of the upper surface of the weight portion facing the lower surface of the lid;
A semiconductor acceleration sensor comprising: a control chip that is disposed between the bottom surface of the case and the sensor chip and controls a current supplied to the first and second coils;
The control chip is
Means for storing an abnormality determination time for determining adhesion between the weight part and the stopper, and a positive / negative approach determination value for detecting the approach of the weight part to the stopper;
Means for detecting a signal output from the sensor chip;
Means for measuring a maintenance time that is outside the range of the approach determination value when the signal output is outside the range of the approach determination value;
Means for supplying a current for forming a magnetic field in a direction to repel each other to the first and second coils when the maintenance time is equal to or longer than the abnormality determination time. Semiconductor acceleration sensor.
請求項1ないし請求項3のいずれか一項において、
前記重錘部の上面の、第2のコイルに囲まれた領域に、磁性材料からなるコアを設けたことを特徴とする半導体加速度センサ。
In any one of Claims 1 to 3,
A semiconductor acceleration sensor, wherein a core made of a magnetic material is provided in a region surrounded by a second coil on an upper surface of the weight portion.
JP2007299519A 2007-11-19 2007-11-19 Semiconductor acceleration sensor Expired - Fee Related JP4799533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299519A JP4799533B2 (en) 2007-11-19 2007-11-19 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299519A JP4799533B2 (en) 2007-11-19 2007-11-19 Semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JP2009122081A true JP2009122081A (en) 2009-06-04
JP4799533B2 JP4799533B2 (en) 2011-10-26

Family

ID=40814377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299519A Expired - Fee Related JP4799533B2 (en) 2007-11-19 2007-11-19 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP4799533B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244968A (en) * 1991-01-31 1992-09-01 Toyoda Mach Works Ltd Capacitance type acceleration sensor
JPH0545377A (en) * 1991-08-09 1993-02-23 Akebono Brake Res & Dev Center Ltd Method for detecting acceleration and acceleration sensor
JPH05322921A (en) * 1992-05-19 1993-12-07 Hitachi Ltd Acceleration sensor and air bag system using the same
JPH10335675A (en) * 1997-05-30 1998-12-18 Aisin Seiki Co Ltd Semiconductor micromachine
JPH11230985A (en) * 1998-02-18 1999-08-27 Denso Corp Semiconductor dynamic quantity sensor
JP2004347499A (en) * 2003-05-23 2004-12-09 Denso Corp Semiconductor dynamical quantity sensor
JP2006145546A (en) * 2005-12-09 2006-06-08 Oki Electric Ind Co Ltd Acceleration sensor
JP2006153800A (en) * 2004-12-01 2006-06-15 Denso Corp Sensor system for physical quantities

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244968A (en) * 1991-01-31 1992-09-01 Toyoda Mach Works Ltd Capacitance type acceleration sensor
JPH0545377A (en) * 1991-08-09 1993-02-23 Akebono Brake Res & Dev Center Ltd Method for detecting acceleration and acceleration sensor
JPH05322921A (en) * 1992-05-19 1993-12-07 Hitachi Ltd Acceleration sensor and air bag system using the same
JPH10335675A (en) * 1997-05-30 1998-12-18 Aisin Seiki Co Ltd Semiconductor micromachine
JPH11230985A (en) * 1998-02-18 1999-08-27 Denso Corp Semiconductor dynamic quantity sensor
JP2004347499A (en) * 2003-05-23 2004-12-09 Denso Corp Semiconductor dynamical quantity sensor
JP2006153800A (en) * 2004-12-01 2006-06-15 Denso Corp Sensor system for physical quantities
JP2006145546A (en) * 2005-12-09 2006-06-08 Oki Electric Ind Co Ltd Acceleration sensor

Also Published As

Publication number Publication date
JP4799533B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP2019105647A (en) Mems pressure sensor and mems inertial sensor integration structure
US7578184B2 (en) Portable apparatus with an accelerometer device for free-fall detection
JPH05223839A (en) Accelerometer assembly
JP4578087B2 (en) Acceleration sensor
JP2008111795A (en) Pressure sensor
JP2006194681A (en) Angular velocity sensor device
JP2006153800A (en) Sensor system for physical quantities
JP2018072170A (en) Inertial force sensor device
EP2667202B1 (en) Acceleration sensor
JP4799533B2 (en) Semiconductor acceleration sensor
WO2013015671A1 (en) A piezoresistive accelerometer
JPH11211750A (en) Semiconductor sensor and package for semiconductor sensor
JP2008076264A (en) Compound sensor
JP2016070670A (en) Sensor device
JP2007322160A (en) Triaxial acceleration sensor
JP2008089421A (en) Pressure sensor package
JP2006337197A (en) Acceleration detector
JP3127747B2 (en) Acceleration sensor
JP5075979B2 (en) Magnetic sensor package
JP5154275B2 (en) Magnetic sensor package
JP3346118B2 (en) Semiconductor acceleration sensor
JP4206984B2 (en) Angular velocity detector
JPH11250788A (en) Physical quantity change recording element
JP2009128121A (en) Sensor module
JP3818399B2 (en) Ultra-small acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees