JPH05322921A - Acceleration sensor and air bag system using the same - Google Patents

Acceleration sensor and air bag system using the same

Info

Publication number
JPH05322921A
JPH05322921A JP4125897A JP12589792A JPH05322921A JP H05322921 A JPH05322921 A JP H05322921A JP 4125897 A JP4125897 A JP 4125897A JP 12589792 A JP12589792 A JP 12589792A JP H05322921 A JPH05322921 A JP H05322921A
Authority
JP
Japan
Prior art keywords
acceleration
diagnosis
sensor
self
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4125897A
Other languages
Japanese (ja)
Inventor
Keiji Hanzawa
恵二 半沢
Tetsuo Matsukura
哲夫 松倉
Hirokazu Fujita
弘和 藤田
Masayoshi Suzuki
政善 鈴木
Masahiro Matsumoto
昌大 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP4125897A priority Critical patent/JPH05322921A/en
Priority to US08/059,069 priority patent/US5506454A/en
Priority to DE4316263A priority patent/DE4316263C2/en
Publication of JPH05322921A publication Critical patent/JPH05322921A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/017Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including arrangements for providing electric power to safety arrangements or their actuating means, e.g. to pyrotechnic fuses or electro-mechanic valves
    • B60R21/0173Diagnostic or recording means therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

PURPOSE:To enhance the fail-safe functions of a sensor and a system by performing the self-diagnosis for the fault, the deterioration of performances and the time change of an acceleration sensor. CONSTITUTION:When a diagnosis mode is set, a diagnostic signal VG is generated in a diagnostic power supply 22 provided in a signal applying part 19. The signal is added to a detecting voltage VS1 in an adder 23. The result is applied to a fixed electrode 7 of a sensor. Thus, electrostatic force corresponding to acceleration is generated between the fixed electrode 7 and a movable electrode 6. In the sound case, the mass part 6 is adequately displaced. The change in capacitance between the movable electrode and the fixed electrode when the diagnostic signal is generated is detected, and the acceleration sensor undergoes self-diagnosis. The force corresponding to the acceleration can be the mechanical vibration generated with electromagnetic force or an electrostrictive element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加速度センサ及びこれを
用いたエアバッグシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor and an air bag system using the acceleration sensor.

【0002】[0002]

【従来の技術】例えば、自動車等の加速度を検出するセ
ンサとしては、静電容量式,歪ゲージ式等が知られてい
る。これらは、加速度に応じて変位する質量部の状態を
静電容量の変化或いは歪量からとらえている。
2. Description of the Related Art For example, as a sensor for detecting the acceleration of an automobile or the like, a capacitance type, a strain gauge type and the like are known. These capture the state of the mass portion which is displaced according to the acceleration, from the change in capacitance or the amount of strain.

【0003】一例を挙げれば、静電容量式の加速度セン
サは、シリコン等の微細加工技術を利用したものが知ら
れており、特開平1−253657号公報に開示される
ようにパルス幅変調サーボ技術を適用したものがある。
As an example, an electrostatic capacitance type acceleration sensor using a fine processing technique of silicon or the like is known, and as disclosed in Japanese Patent Application Laid-Open No. 1-253657, a pulse width modulation servo is disclosed. Some have applied technology.

【0004】これは加速度に応じて変位する可動電極
(質量部に相当)と、これに対向して配置される少なく
とも一対の固定電極を有し、固定電極の一方にパルス列
状の電圧を印加し、他方にはその反転電圧を印加してい
る。これらの印加電圧により、固定電極・可動電極間に
可動電極の位置制御(静電サーボ制御)が可能な静電気
力を働かせ、可動電極が基準位置より変位した時には、
その変位を可動電極・固定電極間の静電容量の変化より
とらえている。
This has a movable electrode (corresponding to a mass portion) which is displaced in response to acceleration, and at least a pair of fixed electrodes arranged so as to face the movable electrode, and a pulse train voltage is applied to one of the fixed electrodes. , And the reverse voltage is applied to the other. With these applied voltages, an electrostatic force that can control the position of the movable electrode (electrostatic servo control) is exerted between the fixed electrode and the movable electrode, and when the movable electrode is displaced from the reference position,
The displacement is captured by the change in the electrostatic capacitance between the movable electrode and the fixed electrode.

【0005】そして、この静電量量の変化信号に基づ
き、可動電極が基準位置位置に戻れるよう(前記静電容
量が基準値となるよう)に、前記静電気力を前記固定電
極印加電圧の単位周期当たりの印加時間割合を変化させ
ることで可変制御し、この固定電極印加電圧の平均値或
いは前記静電容量の変化信号に基づき加速度を検出して
いる。
Then, based on the change signal of the electrostatic quantity, the electrostatic force is applied to the movable electrode so that the movable electrode can return to the reference position (the electrostatic capacitance becomes the reference value). It is variably controlled by changing the application time ratio per hit, and the acceleration is detected based on the average value of the fixed electrode applied voltage or the change signal of the electrostatic capacity.

【0006】その他、静電サーボをかけない静電容量式
の加速度センサもある。
In addition, there is a capacitance type acceleration sensor which does not apply electrostatic servo.

【0007】[0007]

【発明が解決しようとする課題】ところで、自動車用に
使われる加速度センサは、サスペンション制御,アンチ
スキッドブレーキ制御等の車両制御やエアバッグシステ
ムに用いられているが、その使用環境が厳しい反面、高
い信頼性が求められる。そのため、センサの故障や性能
低下に対してはフェイルセーフ対策が要求される。
Accelerometers used for automobiles are used for vehicle control such as suspension control and anti-skid brake control, and for airbag systems, but the environment in which they are used is severe but high. Reliability is required. Therefore, fail-safe measures are required for sensor failures and performance degradation.

【0008】特に、エアバッグは、センサの故障や性能
低下や特性の経時変化が車両衝突時の非動作や、衝突時
以外の誤動作につながるため、重大事故の原因となる可
能性があり、他のセンサ以上に高信頼性が求められる。
In particular, an airbag may cause a serious accident because failure of a sensor, deterioration of performance, and changes in characteristics with time lead to non-operation during a vehicle collision or malfunctions other than during a collision. Higher reliability is required than other sensors.

【0009】本発明は以上の点に鑑みてなされ、その目
的は、加速度センサの故障,性能低下等の異常や特性の
経時変化等を検知してフェイルセーフ機能を高めること
にある。
The present invention has been made in view of the above points, and an object of the present invention is to enhance the fail-safe function by detecting an abnormality such as a failure of an acceleration sensor, a performance deterioration, or a change in characteristics over time.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するために、基本的には次のような課題解決手段を提
案する。
In order to achieve the above object, the present invention basically proposes the following problem solving means.

【0011】すなわち、加速度に応じて変位する質量部
を有し、この質量部の変位を電気信号に変換して加速度
を検出する加速度センサにおいて、診断用の信号により
前記質量部に加速度相当の力を与える手段と、この診断
用信号発生時のセンサ出力から加速度センサを自己診断
する手段とを設けた。
That is, in an acceleration sensor having a mass portion that is displaced according to acceleration, and converting the displacement of the mass portion into an electric signal to detect acceleration, a force corresponding to the acceleration is applied to the mass portion by a diagnostic signal. And means for self-diagnosing the acceleration sensor from the sensor output when the diagnostic signal is generated.

【0012】[0012]

【作用】上記構成よりなる本発明によれば、通常の加速
度検出モードから診断モードに変わり、診断用の信号が
生じると、この診断用信号に基づいて質量部を加速度相
当の力(例えば静電気力,電磁力,機械振動等)が与え
られる。
According to the present invention having the above-described structure, when the normal acceleration detection mode is changed to the diagnostic mode and a diagnostic signal is generated, the mass section is forced to generate a force (e.g., electrostatic force) corresponding to the acceleration based on the diagnostic signal. , Electromagnetic force, mechanical vibration, etc.) is given.

【0013】この場合には、質量部が正常に変位してそ
れに対応の検出信号が出力されれば異常はないが、検出
系に故障や性能劣化等の異常をきたすと、検出信号が出
力されなかったり、その出力特性が適正な形で表れな
い。これらの診断信号に起因するセンサ出力態様を、診
断用の判定レベルにかけることで質量部等のセンサの状
態を自己診断でき、診断結果に基づきシステムのフェイ
ルセーフ機能を動作させることが可能となる。
In this case, if the mass section is normally displaced and a detection signal corresponding thereto is output, there is no abnormality, but if an abnormality such as a failure or performance deterioration occurs in the detection system, the detection signal is output. Or the output characteristics do not appear properly. By applying the sensor output mode caused by these diagnostic signals to the determination level for diagnosis, the state of the sensor such as the mass part can be self-diagnosed, and the fail-safe function of the system can be operated based on the diagnostic result. ..

【0014】[0014]

【実施例】本発明の実施例を図面により説明する。Embodiments of the present invention will be described with reference to the drawings.

【0015】図1の(a)は本発明の第1実施例に係る
静電容量式加速度センサの動作原理図、(b)はその回
路図である。
FIG. 1A is a diagram showing the operating principle of the capacitance type acceleration sensor according to the first embodiment of the present invention, and FIG. 1B is a circuit diagram thereof.

【0016】本センサは信号印加部19、加速度検出素
子18、容量検出部13、増幅部14,自己診断手段と
なる回路15により構成されている。
This sensor comprises a signal applying section 19, an acceleration detecting element 18, a capacitance detecting section 13, an amplifying section 14, and a circuit 15 serving as a self-diagnosis means.

【0017】加速度検出素子18は、シリコンビーム5
により支持される可動電極6と、これに対向配置される
一対の固定電極7、8より成る。
The acceleration detecting element 18 is a silicon beam 5.
And a pair of fixed electrodes 7 and 8 arranged to face the movable electrode 6.

【0018】シリコンビーム5と可動電極6は、シリコ
ン9を両面からエッチング(微細加工技術)して一体形
成され、ビーム5は単数、複数のいずれで構成してもよ
く、その先端に加速度に応動する質量部たる可動電極6
が形成してあり、また、残りの部分が可動電極6を囲む
スペーサ9a,12となる。
The silicon beam 5 and the movable electrode 6 are integrally formed by etching the silicon 9 from both sides (microfabrication technology). The beam 5 may be composed of either a single beam or a plurality of beams. Movable electrode 6 which is the mass part
Are formed, and the remaining portions become spacers 9a and 12 that surround the movable electrode 6.

【0019】固定電極7,8は、アルミニウム等の金属
材で、それぞれがガラス板10,11に蒸着、その他適
宜の方法により形成される。ガラス板10、11は、固
定電極7,8のそれぞれを可動電極6と位置合わせしつ
つ、スペーサ9a,12を介して平行配置され、且つこ
のスペーサ9a,12と陽極接合してある。可動電極6
と各固定電極7,8間には、初期ギャップdoが確保さ
れる。
The fixed electrodes 7 and 8 are made of a metal material such as aluminum, and are formed on the glass plates 10 and 11 by vapor deposition or any other suitable method. The glass plates 10 and 11 are arranged in parallel via the spacers 9a and 12 while aligning the fixed electrodes 7 and 8 with the movable electrode 6, respectively, and are anodically bonded to the spacers 9a and 12. Movable electrode 6
And an initial gap do is secured between the fixed electrodes 7 and 8.

【0020】信号印加部19は、通常の加速度検出モー
ド時に固定電極7,8のそれぞれに加速度検出に必要な
信号VS1,VS2(このVS1,VS2については後
述する)を印加する手段と、診断モード時に診断信号V
GをVS1に加算して一方の固定電極7に印加して、可
動電極6に加速度相当の力を与える手段としての役割を
なす。
The signal application unit 19 applies a signal VS1 or VS2 (the VS1 and VS2 will be described later) necessary for acceleration detection to each of the fixed electrodes 7 and 8 in the normal acceleration detection mode, and a diagnostic mode. Sometimes diagnostic signal V
G is added to VS1 and applied to one fixed electrode 7 to serve as a means for applying a force equivalent to acceleration to the movable electrode 6.

【0021】可動電極6は、検出すべき加速度により慣
性力を受け変位する。可動電極6が変位すると、可動電
極6・固定電極間7間の静電容量C1、及び可動電極6
・固定電極8間の静電容量C2は変化する。
The movable electrode 6 is displaced by receiving an inertial force due to the acceleration to be detected. When the movable electrode 6 is displaced, the electrostatic capacitance C1 between the movable electrode 6 and the fixed electrode 7 and the movable electrode 6
-The capacitance C2 between the fixed electrodes 8 changes.

【0022】容量検出部13は、信号印加部19により
作られる矩形波状の交流電圧VS2,その反転電圧VS
1により、このC1とC2の差分△Cを検出し(△Cの
検出メカニズムは後述してある)、電圧に変換して出力
する。容量検出部13からの出力電圧Voが増幅部14
により増幅,調整されることにより、加速度に比例した
直線的な出力電圧Voutを得る。
The capacitance detector 13 has a rectangular wave AC voltage VS2 generated by the signal applying unit 19 and its inverted voltage VS.
The difference ΔC between C1 and C2 is detected by 1 (the detection mechanism of ΔC is described later), converted into a voltage and output. The output voltage Vo from the capacitance detection unit 13 is the amplification unit 14
By being amplified and adjusted by, the linear output voltage Vout proportional to the acceleration is obtained.

【0023】このような構成によれば、安価でかつ簡単
な構成で高加速度(±100G程度)を比較的高周波
(1kHz程度)まで検出できる。
With such a structure, it is possible to detect a high acceleration (about ± 100 G) up to a relatively high frequency (about 1 kHz) with an inexpensive and simple structure.

【0024】ここで、図1(b)により、上記加速度セ
ンサの具体的回路の一例を説明する。
An example of a specific circuit of the acceleration sensor will be described with reference to FIG.

【0025】このセンサ回路において、発振器20及び
反転器21は信号印加部19の要素で、反転器21によ
り反転された出力電圧VS1は、自己診断用電源22か
らの電圧VGが発生していない非診断モード(通常の加
速度検出モード)では、そのまま加算器23を通して固
定電極7に印加され、発振器20の出力電圧VS2が固
定電極8に印加される。
In this sensor circuit, the oscillator 20 and the inverter 21 are elements of the signal applying section 19, and the output voltage VS1 inverted by the inverter 21 does not generate the voltage VG from the self-diagnosis power supply 22. In the diagnostic mode (normal acceleration detection mode), the voltage is directly applied to the fixed electrode 7 through the adder 23, and the output voltage VS2 of the oscillator 20 is applied to the fixed electrode 8.

【0026】加速度検出素子18は、等価的にコンデン
サC1,C2を直列に接合してその中間が容量検出部1
3の要素となるオペアンプ25の反転端子側に接続さ
れ、オペアンプ25の非反転端子側には基準電圧Vαの
定電圧源37が接続される。
In the acceleration detecting element 18, the capacitors C1 and C2 are equivalently connected in series, and the middle thereof is the capacitance detecting section 1.
3 is connected to the inverting terminal side of the operational amplifier 25, and the non-inverting terminal side of the operational amplifier 25 is connected to the constant voltage source 37 of the reference voltage Vα.

【0027】矩形波状の交流電圧VS1が立ち上がると
(VS2が立ち下がると)、C1は充電され、C2は放
電される。この時、C1からオペアンプ25側のコンデ
ンサCfに移動する(充放電時に流れる電流により電荷
が移動するように見える)電荷Q1、及びC2からCf
に移動する電荷Q2は、
When the rectangular wave AC voltage VS1 rises (VS2 falls), C1 is charged and C2 is discharged. At this time, the charge Q1 that moves from C1 to the capacitor Cf on the operational amplifier 25 side (the charge seems to move due to the current that flows during charging / discharging), and C2 to Cf
The charge Q2 that moves to

【0028】[0028]

【数1】Q1=C1・VS Q2=−C2・VS で表される。## EQU1 ## Q1 = C1.VS Q2 = -C2.VS.

【0029】ここで、VSは交流電圧VS1、VS2の
電圧値(波高値)である。また、VSは後述の自己診断
用電圧VGに較べて小さく、VSのみの印加時には、可
動電極に加わる静電気力は無視できるほど小さくなるよ
うにしてある。
Here, VS is the voltage value (peak value) of the AC voltages VS1 and VS2. Further, VS is smaller than a self-diagnosis voltage VG described later, and when only VS is applied, the electrostatic force applied to the movable electrode is so small that it can be ignored.

【0030】容量Cfに蓄えられる電荷Qfは、Q1と
Q2の和になるので、次式で表される。
The charge Qf stored in the capacitor Cf is the sum of Q1 and Q2, and is represented by the following equation.

【0031】[0031]

【数2】Qf=Q1+Q2=(C1−C2)VS さらに、容量Cfの両端の電圧Vは、次式で表される。## EQU00002 ## Qf = Q1 + Q2 = (C1-C2) VS Further, the voltage V across the capacitance Cf is expressed by the following equation.

【0032】[0032]

【数3】V=Qf/Cf=(C1−C2)VS/Cf オペアンプ24の出力Voは、容量Cfの両端の電圧V
と正負反対の電圧であるから、Voは次式で表される。
## EQU3 ## V = Qf / Cf = (C1-C2) VS / Cf The output Vo of the operational amplifier 24 is the voltage V across the capacitance Cf.
Vo is expressed by the following equation.

【0033】[0033]

【数4】Vo=−(C1−C2)VS/Cf+Vα このようにして、加速度に応じて可動電極6が変位した
時のC1とC2静電容量差△Cが電圧Voに変換され
る。そして、電圧VS1の立ち上がりに同期してスイッ
チ34が閉じ、コンデンサ35によって電圧Voがサン
プルホールドされ、増幅器26により増幅されて出力電
圧Voutとなる。このようにして、加速度が電気信号
に変換されて検出される。
## EQU4 ## Vo =-(C1-C2) VS / Cf + Vα In this way, the capacitance difference ΔC between C1 and C2 when the movable electrode 6 is displaced according to the acceleration is converted into the voltage Vo. Then, the switch 34 is closed in synchronization with the rising of the voltage VS1, the voltage Vo is sampled and held by the capacitor 35, and amplified by the amplifier 26 to become the output voltage Vout. In this way, the acceleration is converted into an electric signal and detected.

【0034】ここで、加速度センサの自己診断モードの
動作について説明する。
The operation of the acceleration sensor in the self-diagnosis mode will be described.

【0035】本実施例では、診断用の信号VGにより可
動電極(質量部)6に加速度相当の静電気力を与える手
段を、加速度検出用の一方の固定電極7、診断用電圧源
22、加算器23により構成する。
In the present embodiment, means for applying an electrostatic force equivalent to acceleration to the movable electrode (mass part) 6 by the diagnostic signal VG includes one fixed electrode 7 for acceleration detection, a diagnostic voltage source 22, and an adder. 23.

【0036】診断用電圧源22からの電圧VGは、診断
モードにのみ加算器23に入力されて反転器21からの
電圧VS1に加算され、この時の検出素子18に印加さ
れる電圧波形を図2に示す。図2に示すように、電圧V
G+VS1は、固定電極7に印加され、その大きさは加
速度に相当する程度の静電気力を固定電極7・可動電極
6間に発生させるもので、これにより可動電極6が固定
電極7側に強制変位する。
The voltage VG from the diagnostic voltage source 22 is input to the adder 23 only in the diagnostic mode, added to the voltage VS1 from the inverter 21, and the voltage waveform applied to the detection element 18 at this time is shown. 2 shows. As shown in FIG.
G + VS1 is applied to the fixed electrode 7 to generate an electrostatic force having a magnitude corresponding to acceleration between the fixed electrode 7 and the movable electrode 6, whereby the movable electrode 6 is forcibly displaced to the fixed electrode 7 side. To do.

【0037】ここで、固定電極7と可動電極6の間の距
離をd、可動電極6の面積をS、固定電極7・可動電極
6間の誘電率をεとすると、固定電極7・可動電極6間
に働く静電気力Fsは次式で表される。
Assuming that the distance between the fixed electrode 7 and the movable electrode 6 is d, the area of the movable electrode 6 is S, and the dielectric constant between the fixed electrode 7 and the movable electrode 6 is ε, the fixed electrode 7 and the movable electrode 6 are The electrostatic force Fs acting between 6 is expressed by the following equation.

【0038】[0038]

【数5】Fs=εSVG2/2d2 すなわち、この静電気力により可動電極6が固定電極7
側に変位することにより、固定電極7・可動電極6間に
形成される静電容量C1が増加し、反対に固定電極8・
可動電極6間に形成される静電容量C2は減少する。
## EQU00005 ## Fs = .epsilon.SVG 2 / 2d 2, that is, the movable electrode 6 causes the fixed electrode 7 to move due to this electrostatic force.
By displacing to the side, the capacitance C1 formed between the fixed electrode 7 and the movable electrode 6 increases, and conversely, the fixed electrode 8
The capacitance C2 formed between the movable electrodes 6 decreases.

【0039】この状態で、固定電極7と8にそれぞれ容
量検出用の交流電圧VS1とVS2が印加されることに
より、コンデンサ24とオペアンプ25により構成され
る容量検出部13によって、静電容量C1と静電容量C
2との差△Cが上記加速度検出と同様の原理により検出
される。図3に測定加速度Gと自己診断用の直流電圧V
Gとの関係を示す。
In this state, AC voltages VS1 and VS2 for capacitance detection are applied to the fixed electrodes 7 and 8, respectively, so that the capacitance detection unit 13 including the capacitor 24 and the operational amplifier 25 causes the capacitance C1 Capacitance C
The difference ΔC from 2 is detected by the same principle as the above acceleration detection. Fig. 3 shows the measured acceleration G and the DC voltage V for self-diagnosis.
The relationship with G is shown.

【0040】カンチレバー5のばね定数をktとする
と、加速度測定時には、慣性力Faとカンチレバーから
の抗力Ftが釣り合うことから、可動電極6の基準位置
からの変位xは、次式により表される。
Assuming that the spring constant of the cantilever 5 is kt, the inertial force Fa and the reaction force Ft from the cantilever balance during acceleration measurement, so the displacement x of the movable electrode 6 from the reference position is expressed by the following equation.

【0041】[0041]

【数6】x=mG/kt 上記数5及び数6式より、数7式が導かれる。Equation 6 x = mG / kt From Equation 5 and Equation 6, Equation 7 is derived.

【0042】[0042]

【数7】(d−x)2x=εSVG2/2kt 数6及び数7式から数8式が導かれる。(D−x) 2 x = εSVG 2 / 2kt Equation 8 and Equation 7 are derived from Equations 6 and 7.

【0043】[0043]

【数8】 [Equation 8]

【0044】この数8式により表される加速度Gと自己
診断用の電圧VGの関係をグラフかしたものが図3であ
る。
FIG. 3 is a graph showing the relationship between the acceleration G and the voltage VG for self-diagnosis expressed by the equation (8).

【0045】図3より、自己診断用にある電圧VG1を
印加した場合、その静電気力Fsによる可動電極6の変
位量は、加速度G1が加わった場合に等しいことが理解
される。
From FIG. 3, it is understood that when a certain voltage VG1 for self-diagnosis is applied, the displacement amount of the movable electrode 6 due to the electrostatic force Fs is equal to that when the acceleration G1 is applied.

【0046】従って、自己診断用の電圧VG1を印加し
た時のセンサの出力電圧は、加速度G1が加わった時の
出力と等しくなる。この特性を利用して、センサ出力の
静特性(加速度に対して本来得るべきセンサ出力値特
性)が経時変化しているかどうかを診断することができ
る。また、センサの出力電圧があるレベルに到達するま
での時間を測定することで、センサ動特性(ここで、動
特性とは加速度に対するセンサ出力応答特性である)を
診断することができる。診断手段(診断部)について
は、図9のエアバッグシステムに一例として後述してあ
る。
Therefore, the output voltage of the sensor when the self-diagnosis voltage VG1 is applied becomes equal to the output when the acceleration G1 is applied. By using this characteristic, it is possible to diagnose whether or not the static characteristic of the sensor output (the characteristic of the sensor output value that should be originally obtained with respect to the acceleration) is changing with time. Further, by measuring the time required for the output voltage of the sensor to reach a certain level, it is possible to diagnose the sensor dynamic characteristics (here, the dynamic characteristics are the sensor output response characteristics with respect to acceleration). The diagnosis means (diagnosis unit) will be described later as an example in the airbag system of FIG.

【0047】図4に上記診断に用いる自己診断用の信号
(矩形波VG)と、センサの出力電圧Voutの関係を
示す。
FIG. 4 shows the relationship between the self-diagnosis signal (rectangular wave VG) used for the diagnosis and the output voltage Vout of the sensor.

【0048】例えば、出力の最高電圧Vohの63%の
電圧Vrになる時間Tr(時定数)を電子回路やマイコ
ン等で読み込み、これがある比較基準時間以内か或いは
それ以上になっているかを判断することで、センサの故
障を自己診断することができる。すなわち、曲線40の
ような応答波形が出力されるのが正常である時、曲線4
1,42のような応答波形の場合には、Vrになる時間
Trは長くなり動特性の自己診断ができる。
For example, the time Tr (time constant) at which the voltage Vr becomes 63% of the maximum output voltage Voh is read by an electronic circuit, a microcomputer, or the like, and it is determined whether it is within a certain comparison reference time or more. Therefore, the sensor failure can be self-diagnosed. That is, when it is normal to output a response waveform such as the curve 40, the curve 4
In the case of response waveforms such as 1 and 42, the time Tr to reach Vr becomes long, and self-diagnosis of dynamic characteristics can be performed.

【0049】また、前記したように、診断モード時に得
られたセンサ出力の最高電圧を正常値と比較することに
より、センサの故障や静特性の経時変化の自己診断が可
能である(例えば、曲線42のような場合)。
Further, as described above, by comparing the maximum voltage of the sensor output obtained in the diagnostic mode with the normal value, it is possible to self-diagnose a sensor failure or a change in static characteristics over time (for example, a curve). 42).

【0050】本実施例では、以上のセンサ動特性,静特
性からセンサの故障及び特性の劣化,経時変化を自己診
断する。
In this embodiment, self-diagnosis of sensor failure, deterioration of characteristics, and change over time is carried out based on the above-mentioned sensor dynamic characteristics and static characteristics.

【0051】このような、自己診断機能を有すること
で、加速度センサ検出系の故障の旨を表示をしたり、或
いはセンサの静特性,動特性の経時変化が故障に至らな
い程度のレベルである場合には、その特性の経時変化分
を補正するような手段(例えばマイコン)を備えること
で、常にセンサの適正管理を保証し、且つ誤動作等を防
止する等のフェイルセーフ機能を働かせることができ
る。また、後者の補正機能を与えれば、システム誤動作
防止の他に部品を交換する必要がなく、コストや作業時
間を低減できる効果がある。
By having such a self-diagnosis function, the fact that the acceleration sensor detection system has failed is displayed, or the static characteristics and dynamic characteristics of the sensor do not change over time. In this case, by providing a means (for example, a microcomputer) for correcting the change in the characteristic over time, it is possible to always ensure proper management of the sensor and to operate a fail-safe function such as preventing malfunction. .. In addition, if the latter correction function is given, it is possible to reduce cost and work time because it is not necessary to replace parts in addition to system malfunction prevention.

【0052】図5に本発明の第2実施例の回路構成を示
す。なお、図中、第1実施例と同一符号は同一或いは共
通する要素を示す。
FIG. 5 shows the circuit configuration of the second embodiment of the present invention. In the figure, the same reference numerals as those in the first embodiment indicate the same or common elements.

【0053】本実施例が第1実施例と異なる点は、信号
印加部19が第1の発振器20,第2の発振器28を備
え、第1の発振器20が加速度検出用の信号VSを発生
させ、第2の発振器28が診断用の信号VGを発生さ
せ、これらの発振器をスイッチ27により切り替えるよ
うにした点にある。
The present embodiment differs from the first embodiment in that the signal applying section 19 is provided with a first oscillator 20 and a second oscillator 28, and the first oscillator 20 generates a signal VS for detecting acceleration. The second oscillator 28 generates a diagnostic signal VG, and these oscillators are switched by the switch 27.

【0054】図6に加速度検出素子18に印加される電
圧の波形を示す。
FIG. 6 shows the waveform of the voltage applied to the acceleration detecting element 18.

【0055】診断モード時には、スイッチ27が第2の
発振器28に接続される。ここで、第1の発振器20の
矩形波の振幅Vsに対し、第2の発振器28の矩形波の
振幅VGは大きく、しかもデューティ比を大きく(例え
ば95〜99%)してある。
In the diagnostic mode, the switch 27 is connected to the second oscillator 28. Here, the amplitude VG of the rectangular wave of the second oscillator 28 is larger than the amplitude Vs of the rectangular wave of the first oscillator 20, and the duty ratio is large (for example, 95 to 99%).

【0056】このように、矩形波VGを検出素子1に印
加すると静電気力が働き、可動電極6は基準位置から変
位する。この時の可動電極6の変位量、及び時間的な変
化をセンサ出力から検出することにより、センサの故
障、特性変化等を自己診断できる。
As described above, when the rectangular wave VG is applied to the detection element 1, the electrostatic force acts and the movable electrode 6 is displaced from the reference position. By detecting the displacement amount and the temporal change of the movable electrode 6 at this time from the sensor output, it is possible to self-diagnose the sensor failure, the characteristic change, and the like.

【0057】このときのオペアンプ25の出力電圧は、
次式で表すことができる。
The output voltage of the operational amplifier 25 at this time is
It can be expressed by the following equation.

【0058】[0058]

【数9】Vo=−(C1−C2)VG/Cf+Vα これは、図2に示した実施例において数5式に対し、電
圧VSを電圧VG(VS<VG)に置き換えたものと同
じである。
## EQU00009 ## Vo =-(C1-C2) VG / Cf + V.alpha. This is the same as the expression 5 in the embodiment shown in FIG. 2 except that the voltage VS is replaced with the voltage VG (VS <VG). ..

【0059】従って、本実施例を用いれば、センサの診
断を感度を上げて正確に行ない得るという効果がある。
Therefore, the use of this embodiment has the effect that the sensitivity of the sensor can be increased and the diagnosis can be performed accurately.

【0060】また、加算回路を必要としないため、より
簡単な回路構成で実現できる効果もある。
Further, since an adder circuit is not required, there is an effect that it can be realized with a simpler circuit configuration.

【0061】図7に、上記実施例に適用する自己昇圧回
路の一例を示す。
FIG. 7 shows an example of the self boosting circuit applied to the above embodiment.

【0062】センサの電源電圧は通常5V程度と比較的
低い電圧であるため、自己診断用の電圧は昇圧する方が
より効果的である。
Since the power supply voltage of the sensor is a relatively low voltage of about 5 V, it is more effective to boost the voltage for self-diagnosis.

【0063】本昇圧回路は、発振器50(発振器20と
共用してもよい)、FETトランジスタ51,52、コ
ンデンサ53,56、ダイオード54,55により構成
されるチャージポンプ回路である。
The booster circuit is a charge pump circuit composed of an oscillator 50 (may be shared with the oscillator 20), FET transistors 51 and 52, capacitors 53 and 56, and diodes 54 and 55.

【0064】トランジスタ51,52のスイッチングに
よりコンデンサ53に蓄積された電荷は、コンデンサ5
6にチャージされる。これを発振周波数で繰り返される
ことによって、ほゞ−VCCに近い電圧が昇圧される。
The charges accumulated in the capacitor 53 due to the switching of the transistors 51 and 52 are
Charged to 6. By repeating this at the oscillation frequency, a voltage close to about −VCC is boosted.

【0065】このような回路構成にすることによって、
自己診断用の昇圧電圧を簡単な回路構成で実現でき、回
路を集積化できる効果がある。
With such a circuit configuration,
The boosted voltage for self-diagnosis can be realized with a simple circuit configuration, and the circuit can be integrated.

【0066】図8に、昇圧回路の他の実施例を示す。FIG. 8 shows another embodiment of the booster circuit.

【0067】本実施例は発振器50(発振器20と共用
してもよい)、スイッチ60、電源電圧61、トランス
62、抵抗63により構成されている。
This embodiment comprises an oscillator 50 (may be shared with the oscillator 20), a switch 60, a power supply voltage 61, a transformer 62, and a resistor 63.

【0068】このような回路構成にすることにより、よ
り高く昇圧された矩形波が簡単に生成できるという効果
がある。
By adopting such a circuit configuration, there is an effect that a higher boosted rectangular wave can be easily generated.

【0069】図9にシステム構成の一実施例を示す。FIG. 9 shows an embodiment of the system configuration.

【0070】本実施例は、加速度センサ70、マイコン
75、エアバッグ76によって構成され、更に、マイコ
ン75はエアバッグ起動部71、診断部72、フェイル
セーフ機能部73により構成されている。
In this embodiment, an acceleration sensor 70, a microcomputer 75, and an airbag 76 are provided, and the microcomputer 75 is further provided with an airbag starting unit 71, a diagnosis unit 72, and a fail-safe function unit 73.

【0071】加速度センサ70は、例えば今までに述べ
てきたような静電容量式のセンサが使用される。
As the acceleration sensor 70, for example, a capacitance type sensor as described above is used.

【0072】上記システムの制御フローチャートを図1
1により説明する。
FIG. 1 is a control flowchart of the above system.
This will be described with reference to 1.

【0073】診断部72から診断開始信号が出力されな
い通常の場合(自己診断を行なわない場合)、加速度セ
ンサ70から出力される加速度信号は、エアバッグ起動
部71にてエアバッグを動作させるか否かを判断し、エ
アバッグ76を制御する。
In a normal case where the diagnosis start signal is not output from the diagnosis unit 72 (when self-diagnosis is not performed), the acceleration signal output from the acceleration sensor 70 indicates whether the airbag activation unit 71 operates the airbag. Then, the airbag 76 is controlled.

【0074】自己診断時には、診断部72から診断開始
信号が出力され、加速度センサ70が診断モードとな
る。そして、加速度センサ70から出力される信号は再
び診断部72を通って故障かどうかが判断され、故障の
場合には、フェイルセーフ機能部73を働かせ、エアバ
ッグ76が誤動作しないように、エアバッグ起動部71
の動作をロックすると共に、インジケータ等によって運
転者に故障を知らせる。
At the time of self-diagnosis, a diagnosis start signal is output from the diagnosis unit 72, and the acceleration sensor 70 enters the diagnosis mode. Then, the signal output from the acceleration sensor 70 passes through the diagnostic section 72 again to determine whether or not there is a failure. In the case of failure, the fail-safe function section 73 is activated to prevent the airbag 76 from malfunctioning. Starting unit 71
The operation of is locked and the driver is notified of the failure by an indicator or the like.

【0075】さらに、加速度センサからの診断信号が特
性変化を示す場合には、診断部から補正信号をエアバッ
グ起動部へ出力されるよう設定してある。
Further, when the diagnostic signal from the acceleration sensor indicates a characteristic change, the diagnostic unit is set to output a correction signal to the airbag activating unit.

【0076】以上のようなシステム構成にすることによ
り、システムの信頼性を従来に較べ向上させることがで
きる。
With the system configuration as described above, the reliability of the system can be improved as compared with the conventional one.

【0077】図11に本発明の自己診断の他の実施例を
示す。
FIG. 11 shows another embodiment of the self-diagnosis of the present invention.

【0078】本実施例では、検出素子18の回りを、金
属線等の微細線80でコイル上に巻くことにより、電磁
力が上方向に働き、可動電極6が上方向に変位する。こ
の時の電磁力の大きさと可動電極6の変位量(最終的に
は△Cの変化)から、センサの自己診断を行なうことが
できる。
In this embodiment, by winding a fine wire 80 such as a metal wire around the detecting element 18 around the coil, an electromagnetic force acts upward, and the movable electrode 6 is displaced upward. Self-diagnosis of the sensor can be performed based on the magnitude of the electromagnetic force and the amount of displacement of the movable electrode 6 (eventually, the change in ΔC) at this time.

【0079】このような構成によっても、容易に自己診
断を行ない得る効果がある。
Even with such a configuration, there is an effect that the self-diagnosis can be easily performed.

【0080】その他、圧電素子を使って、疑似的に加速
度を加えても自己診断が可能である。また、これまで述
べた方法を使って、センサやシステムの出荷前の検査装
置に応用することも可能である。
In addition, self-diagnosis can be performed by using a piezoelectric element and applying a pseudo acceleration. Further, it is possible to apply the method described above to an inspection device before shipment of a sensor or a system.

【0081】さらに、質量部となる重錘と、該重錘を支
持する歪ゲージ付き弾性支持体とを備えた歪ゲージ式の
加速度センサにおいても、上記各実施例と同様の診断系
の手段を構成することが可能である。
Further, also in a strain gauge type acceleration sensor having a weight serving as a mass part and an elastic support with a strain gauge supporting the weight, the same diagnostic system means as those in the above-mentioned respective embodiments is used. It is possible to configure.

【0082】例えば、同じような構成にすることが重錘
が半導体の微細加工により形成され、この重錘に対向し
て診断専用の固定電極が対向配置され、前記診断用の信
号による静電気力が前記重錘・固定電極間に与えられ、
歪ゲージの抵抗値変化を検知して加速度センサを自己診
断するか、又はこの診断用信号発生時の前記重錘・固定
電極間の静電容量の変化を検知して加速度センサを自己
診断するよう設定すればよい。
For example, with the same configuration, a weight is formed by fine processing of a semiconductor, a fixed electrode dedicated to diagnosis is arranged facing the weight, and electrostatic force due to the diagnostic signal is applied. Given between the weight and the fixed electrode,
Self-diagnosis of the acceleration sensor by detecting the change in resistance value of the strain gauge, or self-diagnosis of the acceleration sensor by detecting the change in capacitance between the weight and the fixed electrode when the diagnostic signal is generated. Just set it.

【0083】[0083]

【発明の効果】以上のように本発明によれば、加速度セ
ンサを自己診断することで、センサの故障,性能低下等
の異常を知らせることができ、システムの信頼性を向上
できる。
As described above, according to the present invention, the self-diagnosis of the acceleration sensor can notify an abnormality such as a sensor failure or performance deterioration, thereby improving the reliability of the system.

【0084】また、センサの出力特性の経時変化も診断
可能であり、この診断結果に基づき特性の補正を行なえ
ば、検出素子の交換を行なうことなく、センサやシステ
ムの健全性を保つことができる。
Further, it is possible to diagnose changes in the output characteristics of the sensor over time, and if the characteristics are corrected based on the result of this diagnosis, the soundness of the sensor and the system can be maintained without replacing the detection element. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る加速度センサのブロ
ック構成図及びその回路図
FIG. 1 is a block diagram and a circuit diagram of an acceleration sensor according to a first embodiment of the present invention.

【図2】第1実施例に用いる検出素子に印加される診断
モード時の電圧波形図
FIG. 2 is a voltage waveform diagram in a diagnostic mode applied to the detection element used in the first embodiment.

【図3】測定加速度Gに対する自己診断用直流電圧VG
の関係を示す線図
FIG. 3 DC voltage VG for self-diagnosis with respect to measured acceleration G
Diagram showing the relationship between

【図4】自己診断用の矩形波VGと出力電圧Voutの
時間変化を示す説明図
FIG. 4 is an explanatory diagram showing a time change of a rectangular wave VG for self-diagnosis and an output voltage Vout.

【図5】本発明の第2実施例に係る加速度センサの回路
FIG. 5 is a circuit diagram of an acceleration sensor according to a second embodiment of the present invention.

【図6】第2実施例の検出素子に印加される電圧波形図FIG. 6 is a voltage waveform diagram applied to the detection element of the second embodiment.

【図7】上記各実施例に用いる昇圧回路の一例を示す回
路図
FIG. 7 is a circuit diagram showing an example of a booster circuit used in each of the above embodiments.

【図8】上記各実施例に用いる昇圧回路の他の例を示す
回路図
FIG. 8 is a circuit diagram showing another example of the booster circuit used in each of the above embodiments.

【図9】本発明の第3実施例に係るエアバッグシステム
のブロック図
FIG. 9 is a block diagram of an airbag system according to a third embodiment of the present invention.

【図10】上記エアバッグシステムの制御フローチャー
FIG. 10 is a control flowchart of the airbag system.

【図11】本発明の第4実施例に係る加速度センサを示
す斜視図
FIG. 11 is a perspective view showing an acceleration sensor according to a fourth embodiment of the invention.

【符号の説明】 6…可動電極(質量部)、7,8…固定電極、13…容
量検出部、18…加速度センサの検出素子部、19…信
号印加部(加速度検出用信号及び診断信号の印加
部、)、22…診断用電圧源、80…コイル
[Explanation of Codes] 6 ... Movable electrodes (mass parts), 7, 8 ... Fixed electrodes, 13 ... Capacitance detection part, 18 ... Acceleration sensor detection element part, 19 ... Signal application part (acceleration detection signal and diagnostic signal Applicator,), 22 ... Diagnostic voltage source, 80 ... Coil

フロントページの続き (72)発明者 松倉 哲夫 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 (72)発明者 藤田 弘和 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 (72)発明者 鈴木 政善 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 (72)発明者 松本 昌大 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内Front page continuation (72) Inventor Tetsuo Matsukura 2520 Takaba, Takata, Ibaraki Prefecture, Hitachi Automotive Systems Division (72) Inventor Hirokazu Fujita 2520, Takaba, Katsuta, Ibaraki Hitachi, Ltd. Automotive Equipment Co., Ltd. (72) Inventor Masayoshi Suzuki, 2520 Takaba, Katsuta-shi, Ibaraki, Takaba, Hitachi, Ltd.Automotive Equipment Division (72) Inventor, Masahiro Matsumoto 4026, Kuji-machi, Hitachi, Ibaraki Hitachi, Ltd., Hitachi Research Laboratory

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 加速度に応じて変位する質量部を有し、
この質量部の変位を電気信号に変換して加速度を検出す
る加速度センサにおいて、 診断用の信号により前記質量部に加速度相当の力を与え
る手段と、この診断用信号発生時のセンサ出力から加速
度センサを自己診断する手段とを備えて成ることを特徴
とする加速度センサ。
1. A mass part that displaces in response to acceleration,
In an acceleration sensor that detects the acceleration by converting the displacement of the mass part into an electric signal, a means for applying a force equivalent to the acceleration to the mass part by a diagnostic signal, and an acceleration sensor based on the sensor output when the diagnostic signal is generated. And a means for performing self-diagnosis of the acceleration sensor.
【請求項2】 加速度に応じて変位する質量部を有し、
この質量部の変位を電気信号に変換して加速度を検出す
る加速度センサにおいて、 診断用の信号により前記質量部に加速度相当の力を与え
る手段と、この診断用信号発生時のセンサ出力から加速
度センサを自己診断する手段と、前記自己診断結果が故
障との診断であればその旨を報知する手段と、前記自己
診断の結果が故障に至らない程度のセンサ出力特性の経
時変化であるとの診断である場合はその特性を補正する
手段とを備えて成ることを特徴とする加速度センサ。
2. A mass unit that displaces in response to acceleration,
In an acceleration sensor that detects the acceleration by converting the displacement of the mass part into an electric signal, a means for applying a force equivalent to the acceleration to the mass part by a diagnostic signal, and an acceleration sensor based on the sensor output when the diagnostic signal is generated. Means for self-diagnosis, means for notifying that the self-diagnosis result is a failure, and diagnosis that the result of the self-diagnosis is a change over time in the sensor output characteristics that does not lead to a failure. And a means for correcting the characteristic of the acceleration sensor, the acceleration sensor.
【請求項3】 請求項1又は請求項2において、前記質
量部に加速度相当の力を与える手段は、前記診断用の信
号を基に前記質量部に静電気力,電磁力或いは外部から
機械的振動を与えるいずれかの機構より成ることを特徴
とする加速度センサ。
3. The means for applying a force equivalent to acceleration to the mass part according to claim 1 or 2, wherein the mass part is electrostatically or electromagnetically or externally mechanically vibrated on the basis of the diagnostic signal. An acceleration sensor characterized by comprising any mechanism that provides
【請求項4】 請求項1ないし請求項3のいずれか1項
において、前記加速度センサは、前記質量部となる可動
電極と、これに対向して配置される固定電極との間の静
電容量の変化をとらえて加速度を検出する静電容量式の
加速度センサで、前記質量部に加速度相当の力を与える
手段は、前記診断用の信号を前記固定電極(固定電極が
可動電極の両面に対向配置してある場合は、一方の固定
電極)に印加して前記可動電極を変位させるための静電
気力を発生させる信号印加部により構成され、前記自己
診断をする手段は、前記診断用信号発生時の前記可動電
極・固定電極間の静電容量の変化を検知して加速度セン
サを自己診断するよう設定してあることを特徴とする加
速度センサ。
4. The capacitance according to claim 1, wherein the acceleration sensor has a capacitance between a movable electrode that serves as the mass portion and a fixed electrode that faces the movable electrode. Is a capacitance-type acceleration sensor that detects acceleration by detecting the change in the force, and the means for applying a force equivalent to the acceleration to the mass part is configured to apply the diagnostic signal to the fixed electrode (the fixed electrode faces both surfaces of the movable electrode). If it is arranged, it is configured by a signal application unit that applies an electric force to one fixed electrode) to generate an electrostatic force for displacing the movable electrode, and the means for performing the self-diagnosis is configured to perform the self-diagnosis when the diagnostic signal is generated. 2. An acceleration sensor, wherein the acceleration sensor is set to self-diagnose by detecting a change in capacitance between the movable electrode and the fixed electrode.
【請求項5】 請求項1ないし請求項3のいずれか1項
において、前記加速度センサは、質量部となる重錘と、
該重錘を支持する歪ゲージ付き弾性支持体とを備えた歪
ゲージ式の加速度センサで、前記重錘が半導体の微細加
工により形成され、前記質量部に加速度相当の力を与え
る手段は、前記重錘に対向して配置される診断専用の固
定電極と、前記診断用信号を前記固定電極に印加して前
記重錘を変位させるための静電気力を発生する信号印加
部とにより構成され、前記自己診断をする手段は、前記
歪ゲージの抵抗値変化を検知するか、又は前記診断用信
号発生時の前記重錘・固定電極間の静電容量の変化を検
知して加速度センサを自己診断するよう設定してあるこ
とを特徴とする加速度センサ。
5. The acceleration sensor according to claim 1, wherein the acceleration sensor includes a weight serving as a mass portion,
A strain gauge type acceleration sensor comprising: an elastic support body with a strain gauge supporting the weight, wherein the weight is formed by fine processing of a semiconductor, and the means for applying a force equivalent to acceleration to the mass portion is A fixed electrode dedicated to diagnosis arranged opposite to the weight, and a signal application unit for applying the diagnostic signal to the fixed electrode to generate an electrostatic force for displacing the weight, The means for self-diagnosis detects a change in resistance value of the strain gauge, or detects a change in capacitance between the weight and the fixed electrode when the diagnostic signal is generated to self-diagnose the acceleration sensor. An acceleration sensor characterized by being set as follows.
【請求項6】 請求項1ないし請求項3のいずれか1項
において、前記質量部に加速度相当の力を与える手段
は、前記診断用の信号により電磁力を発生するコイル
で、このコイルでセンサの周囲を巻装して成ることを特
徴とする加速度センサ。
6. The means for applying a force equivalent to acceleration to the mass part according to claim 1, wherein the mass part is a coil for generating an electromagnetic force by the diagnostic signal, and the coil is a sensor. An acceleration sensor characterized by being wound around the circumference of.
【請求項7】 請求項1ないし請求項6のいずれか1項
において、前記自己診断する手段は、前記診断用の信号
と前記センサ出力値、或いは前記診断用の信号と前記セ
ンサ出力値の所定レベルに到達するまでの時間的変化か
ら、加速度センサの故障の有無を診断する機能を有して
成ることを特徴とする加速度センサ。
7. The self-diagnosis means according to claim 1, wherein the self-diagnosis means determines the diagnostic signal and the sensor output value or the diagnostic signal and the sensor output value. An acceleration sensor having a function of diagnosing the presence or absence of a failure of the acceleration sensor based on a time change until reaching a level.
【請求項8】 請求項1ないし請求項7のいずれか1項
において、前記自己診断する手段は、前記診断用の信号
とセンサ出力値とからセンサ静特性(ここで、静特性と
は加速度に対して本来得るべきセンサ出力値の特性であ
る)を自己診断する機能を有して成ることを特徴とする
加速度センサ。
8. The self-diagnosis means according to claim 1, wherein the self-diagnosis means determines a sensor static characteristic from the diagnostic signal and a sensor output value. On the other hand, an acceleration sensor having a function of self-diagnosis of (a characteristic of a sensor output value that should be originally obtained).
【請求項9】 請求項1ないし請求項8のいずれか1項
において、前記自己診断する手段は、前記診断用の信号
とセンサ出力値の所定レベルに到達するまでの時間的変
化とからセンサ動特性(ここで、動特性とは加速度に対
するセンサ出力応答特性である)を診断する機能を有し
て成ることを特徴とする加速度センサ。
9. The self-diagnosis means according to claim 1, wherein the self-diagnosis means detects a sensor movement based on a signal for the diagnosis and a temporal change in the sensor output value until reaching a predetermined level. An acceleration sensor having a function of diagnosing characteristics (here, dynamic characteristics are sensor output response characteristics with respect to acceleration).
【請求項10】 請求項1ないし請求項9のいずれか1
項において、前記診断用の信号は、IC化したチャージ
ポンプ回路を用いて増幅され、この増幅した信号電圧
が、前記加速度相当の力を与える手段に印加されること
を特徴とする加速度センサ。
10. The method according to any one of claims 1 to 9.
2. The acceleration sensor according to the item 1, wherein the diagnostic signal is amplified by using a charge pump circuit that is integrated into an IC, and the amplified signal voltage is applied to a unit that applies a force equivalent to the acceleration.
【請求項11】 請求項1ないし請求項9のいずれか1
項において、前記診断用の信号をトランスを用いて増幅
し、この増幅した信号電圧が、前記加速度相当の力を与
える手段に印加されることを特徴とする加速度センサ。
11. The method according to any one of claims 1 to 9.
2. The acceleration sensor according to the item 1, wherein the diagnostic signal is amplified by using a transformer, and the amplified signal voltage is applied to a unit that applies a force equivalent to the acceleration.
【請求項12】 請求項4ないし請求項6のいずれか1
項において、前記診断用の信号が発生すると、バッテリ
電源電圧が加速度検出系の回路と別の端子を介して、前
記固定電極或いはコイルに直接印加するよう設定してあ
ることを特徴とする加速度センサ。
12. The method according to any one of claims 4 to 6.
In the above item 1, when the diagnostic signal is generated, the battery power supply voltage is set to be directly applied to the fixed electrode or the coil through a terminal different from the circuit of the acceleration detection system. ..
【請求項13】 車両衝突を検出すると、エアバッグを
起動させるエアバッグシステムにおいて、 前記車両衝突の検出系が、車両衝突時に生じる加速度に
応動する質量部を有する加速度センサと、この質量部の
変位を電気信号に変換して衝突を判定する手段とで構成
され、且つ、フェイルセーフ系として、診断用の信号に
より前記質量部に加速度相当の力を与える手段と、この
診断用信号発生時のセンサ出力から加速度センサを自己
診断する手段と、前記自己診断結果が異常であるとの診
断であればその旨を報知する手段とを備えたことを特徴
とするエアバッグシステム。
13. An airbag system for activating an airbag when a vehicle collision is detected, wherein the vehicle collision detection system includes an acceleration sensor having a mass portion that responds to acceleration generated during the vehicle collision, and a displacement of the mass portion. To an electric signal to determine a collision, and as a fail-safe system, a means for applying a force equivalent to acceleration to the mass portion by a diagnostic signal, and a sensor for generating the diagnostic signal. An airbag system comprising: means for self-diagnosing the acceleration sensor based on the output; and means for notifying that the self-diagnosis result is abnormal if the self-diagnosis result is abnormal.
【請求項14】 請求項13において、前記自己診断の
結果が補正可能なセンサ出力に関する特性の経時変化で
あるとの診断である場合はその特性を補正する手段とを
備えたことを特徴とするエアバッグシステム。
14. The device according to claim 13, further comprising means for correcting the characteristic when the result of the self-diagnosis is a diagnosis that the characteristic relating to a correctable sensor output is a change over time. Airbag system.
【請求項15】 請求項14において、前記自己診断す
る手段は、前記診断用の信号とセンサ出力値とからセン
サ静特性の経時変化を診断し、前記診断用の信号とセン
サ出力値の所定レベルに到達するまでの時間的変化とか
らセンサ動特性の経時変化を診断する機能を有して成る
ことを特徴とするエアバッグシステム。
15. The self-diagnosis means according to claim 14, wherein the time-dependent change of the sensor static characteristic is diagnosed from the diagnostic signal and the sensor output value, and the diagnostic signal and the sensor output value have a predetermined level. An airbag system having a function of diagnosing a change with time in sensor dynamic characteristics based on a change with time before reaching the air conditioner.
JP4125897A 1991-03-20 1992-05-19 Acceleration sensor and air bag system using the same Pending JPH05322921A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4125897A JPH05322921A (en) 1992-05-19 1992-05-19 Acceleration sensor and air bag system using the same
US08/059,069 US5506454A (en) 1991-03-20 1993-05-10 System and method for diagnosing characteristics of acceleration sensor
DE4316263A DE4316263C2 (en) 1992-05-19 1993-05-14 System and method for diagnosing characteristics of an acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4125897A JPH05322921A (en) 1992-05-19 1992-05-19 Acceleration sensor and air bag system using the same

Publications (1)

Publication Number Publication Date
JPH05322921A true JPH05322921A (en) 1993-12-07

Family

ID=14921618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125897A Pending JPH05322921A (en) 1991-03-20 1992-05-19 Acceleration sensor and air bag system using the same

Country Status (2)

Country Link
JP (1) JPH05322921A (en)
DE (1) DE4316263C2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509484A (en) * 1996-02-23 2000-07-25 ローズマウント インコーポレイテッド Diagnosis method of pressure sensor for process transmitter
US6257061B1 (en) 1998-06-30 2001-07-10 Denso Corporation Capacitive physical-quantity detection apparatus
CN1314969C (en) * 2004-04-29 2007-05-09 中国科学院上海微系统与信息技术研究所 Accelerometer with static self test realized by single silicon slice micro mechanical technique
JP2007171203A (en) * 2005-12-22 2007-07-05 Honeywell Internatl Inc Differential capacitance sensor device of time-interval regulation type
US7325457B2 (en) 2005-09-26 2008-02-05 Hitachi, Ltd. Sensor and sensor module
JP2008527348A (en) * 2005-01-07 2008-07-24 リットン システムズ インコーポレイテッド Force balance instrument system and method for mitigating errors
JP2009122081A (en) * 2007-11-19 2009-06-04 Oki Semiconductor Co Ltd Semiconductor acceleration sensor
JP2011133332A (en) * 2009-12-24 2011-07-07 Honda Motor Co Ltd Piezoelectric force detection device
JP2012503184A (en) * 2008-09-19 2012-02-02 ボンバルディア トランスポーテイション ゲーエムベーハー Testable vibration monitoring device and method
KR101340851B1 (en) * 2011-12-16 2013-12-12 현대자동차주식회사 System for sensing a side airbag for a car
JP2015021971A (en) * 2013-07-23 2015-02-02 フリースケール セミコンダクター インコーポレイテッド Mems parameter identification using modulated waveforms
CN105307904A (en) * 2013-06-12 2016-02-03 博世株式会社 Control device that controls protection device for protecting vehicle passenger or pedestrian, and control system
JP2021192005A (en) * 2020-06-05 2021-12-16 株式会社日立製作所 Sensor system, adjustment method of sensor system and control device
US11371904B2 (en) 2019-02-22 2022-06-28 Seiko Epson Corporation Sensor module and sensor system with improved abnormality detection and abnormality determination method for an inertial sensor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2549815B2 (en) * 1993-06-03 1996-10-30 富士通テン株式会社 Semiconductor acceleration sensor and test method thereof
DE4439203C2 (en) * 1994-11-03 2001-06-28 Bosch Gmbh Robert Circuit arrangement for evaluating an acceleration sensor signal
DE19625618C1 (en) * 1996-06-26 1997-09-04 Siemens Ag Impact detector for automobile
DE19739903A1 (en) * 1997-09-11 1999-04-01 Bosch Gmbh Robert Sensor device
DE19757118A1 (en) * 1997-12-20 1999-07-01 Bosch Gmbh Robert Method and device for monitoring the functionality of a crash sensor
DE19811070C1 (en) * 1998-03-13 1999-09-23 Siemens Ag Motor vehicle occupant protection system e.g. airbag or belt tensioner system
DE19919030A1 (en) * 1999-04-27 2000-11-16 Bosch Gmbh Robert Determination of material properties, such as Young's Modulus, of micro-structures with dimensions less than around 2 mm by deflection of a test element and measurement of a representative value before and during deflection
DE10046958B4 (en) * 1999-09-27 2009-01-02 Denso Corp., Kariya-shi Capacitive device for detecting a physical quantity
DE10201551A1 (en) * 2002-01-17 2003-07-31 Conti Temic Microelectronic Method for evaluating an installation location of an acceleration sensor assembly in a vehicle
JP4736861B2 (en) * 2006-03-03 2011-07-27 株式会社デンソー Vehicle occupant protection device
JP4765708B2 (en) * 2006-03-23 2011-09-07 株式会社デンソー Capacitive physical quantity sensor
DE102006032911A1 (en) * 2006-07-15 2008-01-24 Conti Temic Microelectronic Gmbh Sensor`s e.g. acceleration sensor, mechanical fixation evaluation method for motor vehicle, involves evaluating signals detected by sensor regarding strength in preset frequency areas for concluding quality of mechanical fixation
EP2088485A1 (en) * 2008-02-06 2009-08-12 Siemens Aktiengesellschaft Monitoring of a device or installation with a safety-oriented function and method therefor
EP2131202A4 (en) * 2008-04-04 2014-07-30 Panasonic Corp Acceleration sensor
DE102011002603B4 (en) * 2011-01-12 2013-10-31 Ident Technology Ag Capacitive sensor device and method for operating a capacitive sensor device
DE102011007881B4 (en) * 2011-04-21 2020-07-16 Bayerische Motoren Werke Aktiengesellschaft Diagnosis of a personal protection system
EP2703825B1 (en) * 2012-08-31 2020-01-22 Meggitt SA Force sensor and method for testing its reliability

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2808872C2 (en) * 1978-03-02 1986-01-23 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Trigger circuit for an occupant protection device in motor vehicles
DE3334603A1 (en) * 1983-09-24 1985-04-04 Robert Bosch Gmbh, 7000 Stuttgart Amplifier arrangement for an acceleration pick-up
DE3542397A1 (en) * 1985-11-30 1987-06-04 Philips Patentverwaltung Arrangement for functional testing of piezoelectric acceleration pick-ups
DE3627241A1 (en) * 1986-08-12 1988-02-18 Bosch Gmbh Robert CIRCUIT AND METHOD FOR CHECKING ELECTRONIC SENSORS
FR2608771B1 (en) * 1986-12-18 1989-04-28 Onera (Off Nat Aerospatiale) ULTRASENSITIVE ACCELEROMETER CALIBRATION DEVICE
DE3809299A1 (en) * 1988-03-19 1989-09-28 Bosch Gmbh Robert Electronic device
JPH0672899B2 (en) * 1988-04-01 1994-09-14 株式会社日立製作所 Acceleration sensor
US5103667A (en) * 1989-06-22 1992-04-14 Ic Sensors, Inc. Self-testable micro-accelerometer and method
DE4027046A1 (en) * 1989-09-29 1991-04-11 Siemens Ag Acceleration sensor functional test and/or calibration - using electromagnet with soft iron pot core mounted on sensor housing
US5228341A (en) * 1989-10-18 1993-07-20 Hitachi, Ltd. Capacitive acceleration detector having reduced mass portion

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509484A (en) * 1996-02-23 2000-07-25 ローズマウント インコーポレイテッド Diagnosis method of pressure sensor for process transmitter
US6257061B1 (en) 1998-06-30 2001-07-10 Denso Corporation Capacitive physical-quantity detection apparatus
CN1314969C (en) * 2004-04-29 2007-05-09 中国科学院上海微系统与信息技术研究所 Accelerometer with static self test realized by single silicon slice micro mechanical technique
JP2008527348A (en) * 2005-01-07 2008-07-24 リットン システムズ インコーポレイテッド Force balance instrument system and method for mitigating errors
US7325457B2 (en) 2005-09-26 2008-02-05 Hitachi, Ltd. Sensor and sensor module
JP2007171203A (en) * 2005-12-22 2007-07-05 Honeywell Internatl Inc Differential capacitance sensor device of time-interval regulation type
JP2009122081A (en) * 2007-11-19 2009-06-04 Oki Semiconductor Co Ltd Semiconductor acceleration sensor
JP2012503184A (en) * 2008-09-19 2012-02-02 ボンバルディア トランスポーテイション ゲーエムベーハー Testable vibration monitoring device and method
JP2011133332A (en) * 2009-12-24 2011-07-07 Honda Motor Co Ltd Piezoelectric force detection device
KR101340851B1 (en) * 2011-12-16 2013-12-12 현대자동차주식회사 System for sensing a side airbag for a car
CN105307904A (en) * 2013-06-12 2016-02-03 博世株式会社 Control device that controls protection device for protecting vehicle passenger or pedestrian, and control system
JPWO2014199779A1 (en) * 2013-06-12 2017-02-23 ボッシュ株式会社 Control device and control system for controlling protection device for protecting vehicle occupant or pedestrian
JP6086459B2 (en) * 2013-06-12 2017-03-01 ボッシュ株式会社 Control device and control system for controlling protection device for protecting vehicle occupant or pedestrian
US10032324B2 (en) 2013-06-12 2018-07-24 Bosch Corporation Control apparatus and control system controlling protective apparatus for protecting passenger of vehicle or pedestrian
JP2015021971A (en) * 2013-07-23 2015-02-02 フリースケール セミコンダクター インコーポレイテッド Mems parameter identification using modulated waveforms
US11371904B2 (en) 2019-02-22 2022-06-28 Seiko Epson Corporation Sensor module and sensor system with improved abnormality detection and abnormality determination method for an inertial sensor
JP2021192005A (en) * 2020-06-05 2021-12-16 株式会社日立製作所 Sensor system, adjustment method of sensor system and control device

Also Published As

Publication number Publication date
DE4316263C2 (en) 1998-10-22
DE4316263A1 (en) 1993-11-25

Similar Documents

Publication Publication Date Title
JPH05322921A (en) Acceleration sensor and air bag system using the same
US5506454A (en) System and method for diagnosing characteristics of acceleration sensor
JP3216955B2 (en) Capacitive sensor device
JP3272412B2 (en) Circuit arrangement for evaluating and testing capacitive sensors
JP2761303B2 (en) Air bag system collision detection device
EP2317328B1 (en) Capacitive Sensor
US5618989A (en) Acceleration sensor and measurement method
US5095750A (en) Accelerometer with pulse width modulation
JP5222457B2 (en) Sensors and sensor modules
US6450029B1 (en) Capacitive physical quantity detection device
JP3162149B2 (en) Capacitive sensor
JPH04100755A (en) Operation checking method for vehicle safety system
US20090095080A1 (en) Capacitive detector
JPH08211093A (en) Circuit device for evaluating capacitive signal of acceleration sensor
JP2002311045A (en) Acceleration sensor
US20040187555A1 (en) Self-test circuit and method for testing a microsensor
JP2999088B2 (en) Airbag system
JPH05281256A (en) Capacitive sensor
JP3282360B2 (en) Capacitive sensor
JPH0674968A (en) Capacitance type acceleration sensor
JPH07209326A (en) Acceleration sensor and air bag system
JP3329060B2 (en) Capacitive sensor
JPH0341366A (en) Accelerometer
JP2773518B2 (en) Method and apparatus for detecting acceleration
JPH07120497A (en) Self-diagnosing device for acceleration sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040301

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080319

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120319

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130319

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20140319