JP2009121787A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2009121787A
JP2009121787A JP2007299011A JP2007299011A JP2009121787A JP 2009121787 A JP2009121787 A JP 2009121787A JP 2007299011 A JP2007299011 A JP 2007299011A JP 2007299011 A JP2007299011 A JP 2007299011A JP 2009121787 A JP2009121787 A JP 2009121787A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
indoor
air conditioner
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007299011A
Other languages
Japanese (ja)
Inventor
Junji Hayashi
淳二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007299011A priority Critical patent/JP2009121787A/en
Publication of JP2009121787A publication Critical patent/JP2009121787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner, securing cooling performance corresponding to a request load of an indoor unit, and achieving excellent amenity and excellent energy-saving performance without exhibiting excessive capability. <P>SOLUTION: This air conditioner includes the outdoor unit 5 and the indoor unit 9, wherein the outdoor unit 5 has a variable capability compressor 1, a four-way valve 4, an outdoor heat exchanger 2 and an expansion valve 3, and the indoor unit 9 has an indoor heat exchanger 6, an indoor heat exchanger temperature detecting means 7 for detecting the temperature of the indoor heat exchanger 6 and an indoor suction temperature detecting means 8 for detecting the suction temperature. During the cooling operation, the operating frequency of the variable capability compressor 1 is controlled so that the temperature detected by the indoor heat exchanger temperature detecting means 7 reaches the suction temperature detected by the indoor suction temperature detecting means 8 and the target evaporation temperature calculated from a preset temperature preset by a remote controller 10. A cooling performance corresponding to a request load of the indoor unit 9 can be secured to provide a refrigerating cycle, which achieves excellent amenity and energy-saving performance without exhibiting excessive capability. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気調和機に関するもので、特に、空気調和機の圧縮機の制御方法に関するものである。   The present invention relates to an air conditioner, and more particularly to a method for controlling a compressor of an air conditioner.

従来、この種の空気調和機の圧縮機能力制御は、室温とリモコンで設定された設定温度を制御入力とし、その差温に応じて圧縮機能力を決定するのが一般的であった(例えば、特許文献1参照)。
特開昭57−67735号公報
Conventionally, the compression function force control of this type of air conditioner is generally performed by using the set temperature set by the room temperature and the remote control as a control input, and determining the compression function force according to the differential temperature (for example, , See Patent Document 1).
JP 57-67735 A

しかしながら、上記特許文献1に開示されているような従来の空気調和機の構成においては、外気温度変化により、能力が空調負荷に対して過大または不足となることから、結果として、設定温度への未到達やサーモオフによる断続運転、室温の大幅変動など快適性の面で課題があった。   However, in the configuration of the conventional air conditioner disclosed in Patent Document 1, the capacity becomes excessive or insufficient with respect to the air conditioning load due to a change in the outside air temperature. There were problems in terms of comfort, such as unreached, intermittent operation due to thermo-off, and significant room temperature fluctuations.

本発明は、上記従来の課題を解決するもので、室内機の要求負荷に見合った冷房性能を確保し、快適性に優れていると共に、過剰な能力を発揮させることなく省エネ性にも優れた空気調和機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, ensures cooling performance commensurate with the required load of the indoor unit, is excellent in comfort, and is excellent in energy saving without exhibiting excessive capacity. An object is to provide an air conditioner.

前記従来の課題を解決するために、本発明の空気調和機は、室外機と、前記室外機に接続された室内機からなる空気調和機において、前記室外機は、能力可変圧縮機と、四方弁と、室外熱交換器と、膨張弁とを有し、前記室内機は、室内熱交換器と、前記室内熱交換器の温度を検出する室内熱交換器温度検出手段と、吸込み温度を検出する室内吸込み温度検出手段とを有し、冷房運転中に、前記室内吸込み温度検出手段で検出された吸込み温度と、リモコンで設定された設定温度とから目標蒸発温度を算出し、前記室内熱交換器温度検出手段で検出する温度が前記目標蒸発温度となるように、前記能力可変圧縮機の運転周波数を制御するもので、室内機の要求負荷に見合った冷房性能を確保できるため、快適性に優れていると共に、常に冷凍サイクルを監視していることから、過剰な能力を発揮させることなく省エネ性にも優れた冷凍サイクルにすることができる。   In order to solve the conventional problem, an air conditioner of the present invention is an air conditioner including an outdoor unit and an indoor unit connected to the outdoor unit. The outdoor unit includes a variable capacity compressor, The indoor unit has a valve, an outdoor heat exchanger, and an expansion valve, and the indoor unit detects an indoor heat exchanger, an indoor heat exchanger temperature detecting means for detecting the temperature of the indoor heat exchanger, and a suction temperature. An indoor suction temperature detection means for calculating a target evaporation temperature from the suction temperature detected by the indoor suction temperature detection means and a set temperature set by a remote controller during cooling operation, and the indoor heat exchange The operating frequency of the variable capacity compressor is controlled so that the temperature detected by the device temperature detecting means becomes the target evaporation temperature, and the cooling performance corresponding to the required load of the indoor unit can be ensured, so that comfort is ensured. Excellent and always frozen Since monitoring the cycle, it may be an excellent refrigeration cycle to energy saving without exerting excessive capacity.

本発明の空気調和機は、室内機の要求負荷に見合った冷房性能を確保できるため、快適性に優れていると共に、常に冷凍サイクルを監視していることから、過剰な能力を発揮させることなく省エネ性にも優れた冷凍サイクルにすることができる。   Since the air conditioner of the present invention can ensure the cooling performance commensurate with the required load of the indoor unit, it is excellent in comfort and constantly monitoring the refrigeration cycle, so that it does not exhibit excessive capacity. A refrigeration cycle with excellent energy savings can be achieved.

第1の発明は、室外機と、前記室外機に接続された室内機からなる空気調和機において、前記室外機は、能力可変圧縮機と、四方弁と、室外熱交換器と、膨張弁とを有し、前記室内機は、室内熱交換器と、前記室内熱交換器の温度を検出する室内熱交換器温度検出手段と、吸込み温度を検出する室内吸込み温度検出手段とを有し、冷房運転中に、前記室内吸込み温度検出手段で検出された吸込み温度と、リモコンで設定された設定温度とから目標蒸発温度を算出し、前記室内熱交換器温度検出手段で検出する温度が前記目標蒸発温度となるように、前記能力可変圧縮機の運転周波数を制御するもので、室内機の要求負荷に見合った冷房性能を確保できるため、快適性に優れていると共に、常に冷凍サイクルを監
視していることから、過剰な能力を発揮させることなく省エネ性にも優れた冷凍サイクルにすることができる。
1st invention is an air conditioner which consists of an outdoor unit and the indoor unit connected to the said outdoor unit, The said outdoor unit is a variable capacity compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, The indoor unit includes an indoor heat exchanger, an indoor heat exchanger temperature detecting means for detecting the temperature of the indoor heat exchanger, and an indoor suction temperature detecting means for detecting the suction temperature, During operation, a target evaporation temperature is calculated from the suction temperature detected by the indoor suction temperature detection means and a set temperature set by a remote controller, and the temperature detected by the indoor heat exchanger temperature detection means is the target evaporation. Controls the operating frequency of the variable capacity compressor so that the temperature becomes the same, and because it can ensure cooling performance commensurate with the required load of the indoor unit, it is excellent in comfort and constantly monitors the refrigeration cycle. Because of excessive capacity It can be an excellent refrigeration cycle also in energy saving without to exert.

第2の発明は、特に、第1の発明のリモコンの設定風量により、目標蒸発温度を上方補正するもので、過剰な能力を発揮させることなくより省エネ性に優れた冷凍サイクルにすることができる。   In the second invention, in particular, the target evaporation temperature is corrected upward by the set air volume of the remote controller of the first invention, and a refrigeration cycle with more energy saving can be achieved without exhibiting excessive capacity. .

第3の発明は、特に、第1の発明の室外機に、低圧圧力を検出するセンサーを設け、目標蒸発温度の飽和圧力を算出し、前記低圧圧力センサーが検出する低圧圧力が、前記目標蒸発温度の飽和圧力となるように圧縮機の運転周波数を制御するもので、確実に室内機の要求負荷に見合った冷房性能を確保できるため、快適性に優れていると共に、常に冷凍サイクルを監視していることから、過剰な能力を発揮させることなく省エネ性にも優れた冷凍サイクルにすることができる。   In the third invention, in particular, the outdoor unit of the first invention is provided with a sensor for detecting a low pressure, the saturation pressure of the target evaporation temperature is calculated, and the low pressure detected by the low pressure sensor detects the target evaporation. The compressor's operating frequency is controlled so that the temperature reaches the saturation pressure, and the cooling performance that matches the required load of the indoor unit can be ensured, so it has excellent comfort and constantly monitors the refrigeration cycle. Therefore, it is possible to obtain a refrigeration cycle having excellent energy saving performance without exhibiting excessive capacity.

第4の発明は、特に、第3の発明のリモコンの設定風量により、目標蒸発温度の飽和圧力を上方補正するもので、過剰な能力を発揮させることなくより省エネ性に優れた冷凍サイクルにすることができる。   In the fourth aspect of the invention, in particular, the saturation pressure of the target evaporation temperature is corrected upward by the set air volume of the remote controller of the third aspect of the invention, so that the refrigeration cycle is more excellent in energy saving without exhibiting excessive capacity. be able to.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和機の構成模式図、図2は、同空気調和機のフローチャートである。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of an air conditioner according to the first embodiment of the present invention, and FIG. 2 is a flowchart of the air conditioner.

図1において、本実施の形態における空気調和機は、室外機5と、室外機5に接続された室内機9から構成され、室外機5は、能力可変圧縮機1と、室外熱交換器2と、膨張弁3と、四方弁4と、低圧圧力を検知する低圧圧力センサー11を有し、室内機9は、室内熱交換器6と、室内熱交換器6の温度を検出する室内熱交換器温度検出手段7と、吸込み温度を検出する室内吸込み温度検出手段8とを有し、リモコン10からの信号により冷房モードで動作した場合、能力可変圧縮機1から吐出した高圧ガス冷媒は、四方弁4を通過して、室外熱交換器2で熱交換により液化し、膨張弁3で減圧されて室内機9へ移動する。室内機9では、室内熱交換器6で熱交換されて低圧ガス化し、四方弁4を通過して圧縮機1に戻り、再び室外機5へ送られる。   In FIG. 1, the air conditioner in this Embodiment is comprised from the outdoor unit 5 and the indoor unit 9 connected to the outdoor unit 5, and the outdoor unit 5 is the capacity variable compressor 1 and the outdoor heat exchanger 2. And the expansion valve 3, the four-way valve 4, and the low pressure sensor 11 that detects low pressure, and the indoor unit 9 includes an indoor heat exchanger 6 and an indoor heat exchanger that detects the temperature of the indoor heat exchanger 6. When the compressor temperature detection means 7 and the indoor suction temperature detection means 8 for detecting the suction temperature are operated in the cooling mode by a signal from the remote controller 10, the high-pressure gas refrigerant discharged from the variable capacity compressor 1 is After passing through the valve 4, it is liquefied by heat exchange in the outdoor heat exchanger 2, depressurized by the expansion valve 3, and moves to the indoor unit 9. In the indoor unit 9, heat is exchanged in the indoor heat exchanger 6, converted into low-pressure gas, passes through the four-way valve 4, returns to the compressor 1, and is sent to the outdoor unit 5 again.

次に、図2により、本実施の形態における空気調和機の動作、作用について説明する。   Next, the operation and action of the air conditioner in the present embodiment will be described with reference to FIG.

冷房運転開始(STEP 0)すると、室外機5は、室内機9の吸い込み温度aの検出(STEP 1)と、リモコン10で設定した設定温度bを認識(STEP 2)する。室外機5で目標蒸発温度XTを算出式(XT=α(a−b))から算出(STEP 3)し、室内機9から室内熱交換器温度Tを検出(STEP 4)する。   When the cooling operation is started (STEP 0), the outdoor unit 5 detects the suction temperature a of the indoor unit 9 (STEP 1) and recognizes the set temperature b set by the remote controller 10 (STEP 2). The target evaporating temperature XT is calculated from the calculation formula (XT = α (ab)) in the outdoor unit 5 (STEP 3), and the indoor heat exchanger temperature T is detected from the indoor unit 9 (STEP 4).

算出した目標蒸発温度XTと、室内熱交換器温度Tとを比較判定し、同一である場合(STEP 5のYes)は、能力可変圧縮機1の運転周波数を維持(STEP 6)し、室内機9の吸い込み温度aの検出(STEP 1)に移行する。また、目標蒸発温度XTと室内熱交換器温度Tとを比較判定し、異なる場合(STEP 5のNo)は大小判定を行い、目標蒸発温度XTよりも室内熱交換器温度Tが大きい場合(STEP 7のYes)は、周波数を上方補正(STEP 8)し、目標蒸発温度XTよりも室内熱交換器温度Tが小さい場合(STEP 7のNo)は、周波数を下降補正(STEP 9)し、室内機9の吸い込み温度aの検出(STEP 1)に移行する。   The calculated target evaporation temperature XT and the indoor heat exchanger temperature T are compared and determined, and if they are the same (Yes in STEP 5), the operation frequency of the variable capacity compressor 1 is maintained (STEP 6), and the indoor unit 9 shifts to the detection of the suction temperature a (STEP 1). Further, the target evaporation temperature XT and the indoor heat exchanger temperature T are compared and determined. If they are different (NO in STEP 5), the size is determined. If the indoor heat exchanger temperature T is higher than the target evaporation temperature XT (STEP 5). 7), the frequency is corrected upward (STEP 8), and when the indoor heat exchanger temperature T is smaller than the target evaporation temperature XT (NO in STEP 7), the frequency is corrected downward (STEP 9). The process proceeds to the detection of the suction temperature a of the machine 9 (STEP 1).

上記の様に、周波数補正することにより、冷房運転時における室内機9の要求負荷に見合った蒸発温度を維持することができるため、冷房性能を確保でき快適性に優れていると共に、常に冷凍サイクルを監視していることから、過剰な能力を発揮させることなく省エネ性にも優れた冷凍サイクルにすることができる。   As described above, by correcting the frequency, the evaporating temperature corresponding to the required load of the indoor unit 9 during the cooling operation can be maintained, so that the cooling performance can be ensured and the comfort is excellent, and the refrigeration cycle is always performed. Therefore, it is possible to obtain a refrigeration cycle having excellent energy saving performance without exhibiting excessive capacity.

(実施の形態2)
図3は、本発明の第2の実施の形態における空気調和機のフローチャートである。なお、上記第1の実施の形態における空気調和機と同一部分については、同じ符号を用いて説明を省略する。
(Embodiment 2)
FIG. 3 is a flowchart of the air conditioner according to the second embodiment of the present invention. In addition, about the same part as the air conditioner in the said 1st Embodiment, description is abbreviate | omitted using the same code | symbol.

図3により、本実施の形態における空気調和機の動作、作用について説明する。   The operation and action of the air conditioner in the present embodiment will be described with reference to FIG.

冷房運転開始(STEP 0)すると、室外機5は、室内機9の吸い込み温度aの検出(STEP 1)と、リモコン10で設定した設定温度b及び設定風量cで検出(STEP 10)した値を基に、室外機5で、目標蒸発温度XTを算出式(XT=α×c×(a−b))から算出(STEP 11)し、室内機9から室内熱交換器温度Tを検出(STEP 4)する。   When the cooling operation is started (STEP 0), the outdoor unit 5 detects the suction temperature a of the indoor unit 9 (STEP 1), and the values detected by the set temperature b and the set air volume c set by the remote controller 10 (STEP 10). Based on this, the outdoor unit 5 calculates the target evaporation temperature XT from the calculation formula (XT = α × c × (ab)) (STEP 11), and detects the indoor heat exchanger temperature T from the indoor unit 9 (STEP 4) Do.

算出した目標蒸発温度XTと室内熱交換器温度Tとを比較判定し、同一である場合(STEP 5のYes)は、能力可変圧縮機1の運転周波数を維持(STEP 6)し、室内機9の吸い込み温度aの検出(STEP 1)に移行する。   The calculated target evaporation temperature XT and the indoor heat exchanger temperature T are compared and determined. If they are the same (Yes in STEP 5), the operation frequency of the variable capacity compressor 1 is maintained (STEP 6), and the indoor unit 9 The process proceeds to detection of the suction temperature a (STEP 1).

また、目標蒸発温度XTと室内熱交換器温度Tとを比較判定し、異なる場合(STEP
5のNo)は、大小判定し、目標蒸発温度XTよりも室内熱交換器温度Tが大きい場合(STEP 7のYes)は、周波数を上方補正(STEP 8)し、目標蒸発温度XTよりも、室内熱交換器温度Tが小さい場合(STEP 7のNo)は、周波数を下降補正(STEP 9)し、室内機9の吸い込み温度aの検出(STEP 1)に移行する。
Further, the target evaporation temperature XT and the indoor heat exchanger temperature T are compared and judged, and if they are different (STEP
5) No. is determined, and if the indoor heat exchanger temperature T is larger than the target evaporation temperature XT (STEP 7 Yes), the frequency is corrected upward (STEP 8), and the target evaporation temperature XT When the indoor heat exchanger temperature T is small (No in STEP 7), the frequency is corrected to decrease (STEP 9), and the process proceeds to the detection of the suction temperature a of the indoor unit 9 (STEP 1).

以上のように本実施の形態によれば、冷房運転時における室内機風量が低い(要求負荷が小さい)場合においても、要求負荷に見合った蒸発温度を維持することができるため、過剰な能力を発揮させることなく省エネ性に優れた冷凍サイクルにすることができる。   As described above, according to the present embodiment, even when the indoor unit air volume during cooling operation is low (required load is small), the evaporation temperature corresponding to the required load can be maintained. A refrigeration cycle with excellent energy saving performance can be achieved without exhibiting it.

(実施の形態3)
図4は、本発明の第3の実施の形態における空気調和機のフローチャートである。なお、上記第1、第2の実施の形態における空気調和機と同一部分については、同じ符号を用いて説明を省略する。
(Embodiment 3)
FIG. 4 is a flowchart of the air conditioner according to the third embodiment of the present invention. In addition, about the same part as the air conditioner in the said 1st, 2nd embodiment, description is abbreviate | omitted using the same code | symbol.

図4により、本実施の形態における空気調和機の動作、作用について説明する。   The operation and effect of the air conditioner in the present embodiment will be described with reference to FIG.

冷房運転開始(STEP 0)すると、室外機5は、室内機9の吸い込み温度aの検出(STEP 1)と、リモコン10での設定温度bの検出(STEP 2)をする。   When the cooling operation is started (STEP 0), the outdoor unit 5 detects the suction temperature a of the indoor unit 9 (STEP 1) and the set temperature b of the remote controller 10 (STEP 2).

室外機5で、目標蒸発温度XTを算出式(XT=α(a−b))から算出(STEP 3)し、目標蒸発温度XTの飽和圧力XP(目標低圧圧力)へ変換(STEP 12)し、室外機5から、低圧圧力Pを検出(STEP 13)する。   In the outdoor unit 5, the target evaporation temperature XT is calculated from the calculation formula (XT = α (ab)) (STEP 3), and converted to the saturation pressure XP (target low pressure) of the target evaporation temperature XT (STEP 12). The low pressure P is detected from the outdoor unit 5 (STEP 13).

目標低圧圧力XPと低圧圧力Pとを比較判定し、同一である場合(STEP 14のYes)は、能力可変圧縮機1の運転周波数を維持(STEP 6)し、室内機9の吸い込み温度aの検出(STEP 1)に移行する。   When the target low pressure XP and the low pressure P are compared and determined to be the same (YES in STEP 14), the operation frequency of the variable capacity compressor 1 is maintained (STEP 6), and the suction temperature a of the indoor unit 9 is set. The process proceeds to detection (STEP 1).

また、目標低圧圧力XPと低圧圧力Pとを比較判定し、異なる場合(STEP 14のNo)は、大小判定し、目標低圧圧力XPよりも低圧圧力Pが大きい場合(STEP 15のYes)は、能力可変圧縮機1の運転周波数を上方補正(STEP 8)し、目標低圧圧力XPよりも低圧圧力Pが小さい場合(STEP 15のNo)は、能力可変圧縮機1の運転周波数を下降補正(STEP 9)し、室内機9の吸い込み温度aの検出(STEP 1)に移行する。   Further, the target low pressure XP and the low pressure P are compared and determined, and if they are different (No in STEP 14), the size is determined, and if the low pressure P is larger than the target low pressure XP (Yes in STEP 15), When the operating frequency of the variable capacity compressor 1 is corrected upward (STEP 8) and the low pressure P is smaller than the target low pressure XP (No in STEP 15), the operating frequency of the variable capacity compressor 1 is corrected downward (STEP 8). 9) Then, the process proceeds to the detection of the suction temperature a of the indoor unit 9 (STEP 1).

以上のように、低圧圧力センサー11を用いることより、冷房運転時における室内機9の要求負荷に見合った蒸発温度をより確実に維持することができるため冷房性能を確保できると共に、常に冷凍サイクルを監視していることから、過剰な能力を発揮させることなく省エネ性や快適性に優れた冷凍サイクルにすることができる。   As described above, by using the low pressure sensor 11, the evaporating temperature corresponding to the required load of the indoor unit 9 during the cooling operation can be more reliably maintained, so that the cooling performance can be secured and the refrigeration cycle is always performed. Since monitoring is performed, a refrigeration cycle having excellent energy saving and comfort can be achieved without exhibiting excessive capacity.

(実施の形態4)
図5は、本発明の第4の実施の形態における空気調和機のフローチャートである。なお、上記第1〜3の実施の形態における空気調和機と同一部分については、同じ符号を用いて説明を省略する。
(Embodiment 4)
FIG. 5 is a flowchart of the air conditioner according to the fourth embodiment of the present invention. In addition, about the same part as the air conditioner in the said 1st-3rd embodiment, description is abbreviate | omitted using the same code | symbol.

図5により、本実施の形態における空気調和機の動作、作用について説明する。   The operation and action of the air conditioner in the present embodiment will be described with reference to FIG.

冷房運転開始(STEP 0)すると、室外機5は、室内機9の吸い込み温度aの検出(STEP 1)と、リモコン10での設定温度b及び設定風量cで検出(STEP 10)した値を基に、室外機5で、目標蒸発温度XTを算出式(XT=α×c×(a−b))から算出(STEP 11)し、目標蒸発温度XTの飽和圧力XP(目標低圧圧力)へ変換(STEP 12)し、室外機5から低圧圧力Pを検出(STEP 13)する。   When the cooling operation is started (STEP 0), the outdoor unit 5 detects the suction temperature a of the indoor unit 9 (STEP 1) and the values detected by the set temperature b and the set air volume c (STEP 10) of the remote controller 10 (STEP 10). Then, in the outdoor unit 5, the target evaporation temperature XT is calculated from the calculation formula (XT = α × c × (ab)) (STEP 11) and converted to the saturation pressure XP (target low pressure) of the target evaporation temperature XT. (STEP 12), and the low pressure P is detected from the outdoor unit 5 (STEP 13).

目標低圧圧力XPと検出された低圧圧力Pとを比較判定し、同一である場合(STEP
14のYes)は、周波数を維持(STEP 6)し、室内機9の吸い込み温度aの検出(STEP 1)に移行する。
The target low pressure XP and the detected low pressure P are compared and judged to be the same (STEP)
14 (Yes), the frequency is maintained (STEP 6), and the process proceeds to detection of the suction temperature a of the indoor unit 9 (STEP 1).

また、目標低圧圧力XPと低圧圧力Pとを比較判定し、異なる場合(STEP 14のNo)は大小判定し、目標低圧圧力XPよりも低圧圧力Pが大きい場合(STEP 15のYes)は、周波数を上方補正(STEP 8)し、目標低圧圧力XPよりも低圧圧力Pが小さい場合(STEP 15のNo)は、周波数を下降補正(STEP 9)し室内機9の吸い込み温度aの検出(STEP 1)に移行する。   Further, the target low-pressure pressure XP and the low-pressure pressure P are compared and determined, and if they are different (NO in STEP 14), the magnitude is determined. If the low-pressure pressure P is larger than the target low-pressure pressure XP (YES in STEP 15), the frequency is determined. Is corrected upward (STEP 8), and when the low pressure P is smaller than the target low pressure XP (NO in STEP 15), the frequency is corrected downward (STEP 9) and the suction temperature a of the indoor unit 9 is detected (STEP 1). ).

以上のように、本実施の形態によれば、低圧圧力センサー11を用いることより、冷房運転時における室内機9の要求負荷に見合った蒸発温度をより確実に維持することができると共に、常に冷凍サイクルを監視していることから、冷房運転時における室内機9の風量が低い(要求負荷が小さい)場合においても、要求負荷に見合った蒸発温度をより確実に維持することができるため、過剰な能力を発揮させることなく省エネ性に優れた冷凍サイクルにすることができる。   As described above, according to the present embodiment, by using the low-pressure sensor 11, it is possible to more reliably maintain the evaporation temperature commensurate with the required load of the indoor unit 9 during the cooling operation, and always refrigeration Since the cycle is monitored, even when the air volume of the indoor unit 9 during the cooling operation is low (required load is small), the evaporation temperature corresponding to the required load can be more reliably maintained. A refrigeration cycle with excellent energy saving performance can be achieved without exhibiting its ability.

以上のように、本発明にかかる空気調和機は、室内機の要求負荷に見合った能力制御ができるため、過剰な能力を発揮させることなく省エネ性に優れた冷凍サイクルにすることができるので多室型空気調和機や蓄熱式多室型空気調和機等にも適用できる。   As described above, since the air conditioner according to the present invention can perform capacity control commensurate with the required load of the indoor unit, it can be made into a refrigeration cycle having excellent energy saving performance without exhibiting excessive capacity. It can also be applied to a room type air conditioner, a heat storage type multi-room type air conditioner, and the like.

本発明の実施の形態1における空気調和機の構成模式図Configuration schematic diagram of an air conditioner in Embodiment 1 of the present invention 同空気調和機のフローチャートFlow chart of the air conditioner 本発明の実施の形態2における空気調和機のフローチャートFlowchart of the air conditioner in Embodiment 2 of the present invention 本発明の実施の形態3における空気調和機のフローチャートFlowchart of the air conditioner in Embodiment 3 of the present invention 本発明の実施の形態4における空気調和機のフローチャートFlowchart of the air conditioner in Embodiment 4 of the present invention

符号の説明Explanation of symbols

1 能力可変圧縮機
2 室外熱交換器
3 膨張弁
4 四方弁
5 室外機
6 室内熱交換器
7 室内熱交換器温度検出手段
8 室内吸込み温度検出手段
9 室内機
10 リモコン
11 低圧圧力センサー
DESCRIPTION OF SYMBOLS 1 Variable capacity compressor 2 Outdoor heat exchanger 3 Expansion valve 4 Four-way valve 5 Outdoor unit 6 Indoor heat exchanger 7 Indoor heat exchanger temperature detection means 8 Indoor suction temperature detection means 9 Indoor unit 10 Remote control 11 Low pressure sensor

Claims (4)

室外機と、前記室外機に接続された室内機からなる空気調和機において、前記室外機は、能力可変圧縮機と、四方弁と、室外熱交換器と、膨張弁とを有し、前記室内機は、室内熱交換器と、前記室内熱交換器の温度を検出する室内熱交換器温度検出手段と、吸込み温度を検出する室内吸込み温度検出手段とを有し、冷房運転中に、前記室内吸込み温度検出手段で検出された吸込み温度と、リモコンで設定された設定温度とから目標蒸発温度を算出し、前記室内熱交換器温度検出手段で検出する温度が前記目標蒸発温度となるように、前記能力可変圧縮機の運転周波数を制御することを特徴とする空気調和機。 In the air conditioner including an outdoor unit and an indoor unit connected to the outdoor unit, the outdoor unit includes a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and an expansion valve, The machine has an indoor heat exchanger, an indoor heat exchanger temperature detecting means for detecting the temperature of the indoor heat exchanger, and an indoor suction temperature detecting means for detecting the suction temperature, and during the cooling operation, The target evaporation temperature is calculated from the suction temperature detected by the suction temperature detection means and the set temperature set by the remote controller, and the temperature detected by the indoor heat exchanger temperature detection means becomes the target evaporation temperature. An air conditioner that controls an operating frequency of the variable capacity compressor. リモコンの設定風量により、目標蒸発温度を上方補正することを特徴とする請求項1に記載の空気調和機。 The air conditioner according to claim 1, wherein the target evaporation temperature is corrected upward according to a set air volume of the remote controller. 室外機に、低圧圧力を検出するセンサーを設け、目標蒸発温度の飽和圧力を算出し、前記低圧圧力センサーが検出する低圧圧力が、前記目標蒸発温度の飽和圧力となるように圧縮機の運転周波数を制御することを特徴とする請求項1に記載の空気調和機。 The outdoor unit is provided with a sensor for detecting low pressure, the saturation pressure of the target evaporation temperature is calculated, and the operating frequency of the compressor is such that the low pressure detected by the low pressure sensor becomes the saturation pressure of the target evaporation temperature. The air conditioner according to claim 1, wherein the air conditioner is controlled. リモコンの設定風量により、目標蒸発温度の飽和圧力を上方補正することを特徴とする請求項3に記載の空気調和機。 The air conditioner according to claim 3, wherein the saturation pressure of the target evaporation temperature is corrected upward according to the set air volume of the remote controller.
JP2007299011A 2007-11-19 2007-11-19 Air conditioner Pending JP2009121787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299011A JP2009121787A (en) 2007-11-19 2007-11-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299011A JP2009121787A (en) 2007-11-19 2007-11-19 Air conditioner

Publications (1)

Publication Number Publication Date
JP2009121787A true JP2009121787A (en) 2009-06-04

Family

ID=40814117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299011A Pending JP2009121787A (en) 2007-11-19 2007-11-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP2009121787A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697109A (en) * 2014-12-22 2015-06-10 青岛海尔空调器有限总公司 Refrigeration control method, control device and variable frequency air conditioner
CN105987478A (en) * 2015-01-27 2016-10-05 青岛海尔空调器有限总公司 Frequency-variable air conditioner control method and control device, and frequency-variable air conditioner
CN106196444A (en) * 2016-07-12 2016-12-07 Tcl空调器(中山)有限公司 The detection method of air-conditioner evaporating temperature and system
CN106801983A (en) * 2017-02-28 2017-06-06 青岛海尔空调器有限总公司 Air-conditioning and its refrigeration control method and control device
US10670305B2 (en) 2016-04-11 2020-06-02 Mitsubishi Electric Corporation Refrigeration apparatus and method for controlling the same
CN115164299A (en) * 2022-06-10 2022-10-11 青岛海尔空调电子有限公司 Control method, system, control device and readable storage medium of air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697109A (en) * 2014-12-22 2015-06-10 青岛海尔空调器有限总公司 Refrigeration control method, control device and variable frequency air conditioner
CN104697109B (en) * 2014-12-22 2017-03-22 青岛海尔空调器有限总公司 Refrigeration control method, control device and variable frequency air conditioner
CN105987478A (en) * 2015-01-27 2016-10-05 青岛海尔空调器有限总公司 Frequency-variable air conditioner control method and control device, and frequency-variable air conditioner
CN105987478B (en) * 2015-01-27 2019-04-23 青岛海尔空调器有限总公司 Control method for frequency conversion air conditioner, control device and convertible frequency air-conditioner
US10670305B2 (en) 2016-04-11 2020-06-02 Mitsubishi Electric Corporation Refrigeration apparatus and method for controlling the same
CN106196444A (en) * 2016-07-12 2016-12-07 Tcl空调器(中山)有限公司 The detection method of air-conditioner evaporating temperature and system
CN106196444B (en) * 2016-07-12 2019-03-01 Tcl空调器(中山)有限公司 The detection method and system of air conditioner evaporating temperature
CN106801983A (en) * 2017-02-28 2017-06-06 青岛海尔空调器有限总公司 Air-conditioning and its refrigeration control method and control device
CN115164299A (en) * 2022-06-10 2022-10-11 青岛海尔空调电子有限公司 Control method, system, control device and readable storage medium of air conditioner

Similar Documents

Publication Publication Date Title
EP2270405B1 (en) Refrigerating device
WO2018216127A1 (en) Air conditioning system
WO2011148856A1 (en) Method for controlling fan for heat source heat exchanger, and air conditioning device
JP5598353B2 (en) Air conditioner
JP5511761B2 (en) Air conditioner
JP6327558B2 (en) Air conditioner
JP2013015299A (en) Air-conditioning apparatus
CN107560085B (en) Minimum operation frequency control method and control device for air conditioner compressor
JP2015113993A (en) Air conditioner
JP2010506132A (en) Method and apparatus for controlling stop operation of air conditioner
US11262108B2 (en) Refrigeration cycle apparatus
WO2014061129A1 (en) Air conditioner
JP2009121787A (en) Air conditioner
JP2013178046A (en) Air conditioner
JP5910719B1 (en) Air conditioner
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP2008190759A (en) Air conditioner
WO2016001958A1 (en) Air-conditioning device
JP5900463B2 (en) Air conditioning system
JP2006214617A (en) Air conditioner
JP2011158118A (en) Multi-type air conditioner
JP5113776B2 (en) Refrigeration equipment
JP2009041832A (en) Air conditioner
JP2008190757A (en) Refrigeration system
JP2011149611A (en) Air-conditioning apparatus