JP2009120884A - Method for refining stainless steel - Google Patents
Method for refining stainless steel Download PDFInfo
- Publication number
- JP2009120884A JP2009120884A JP2007294228A JP2007294228A JP2009120884A JP 2009120884 A JP2009120884 A JP 2009120884A JP 2007294228 A JP2007294228 A JP 2007294228A JP 2007294228 A JP2007294228 A JP 2007294228A JP 2009120884 A JP2009120884 A JP 2009120884A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- concentration
- amount
- stainless steel
- refining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000007670 refining Methods 0.000 title claims abstract description 27
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 32
- 239000010935 stainless steel Substances 0.000 title claims description 31
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 57
- 239000000956 alloy Substances 0.000 claims abstract description 57
- 229910000676 Si alloy Inorganic materials 0.000 claims abstract description 48
- 239000002893 slag Substances 0.000 claims abstract description 46
- 238000007664 blowing Methods 0.000 claims abstract description 19
- 238000005261 decarburization Methods 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 89
- 229910052760 oxygen Inorganic materials 0.000 claims description 61
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 58
- 239000001301 oxygen Substances 0.000 claims description 58
- 229910052742 iron Inorganic materials 0.000 claims description 45
- 229910052717 sulfur Inorganic materials 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 12
- 239000002436 steel type Substances 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 7
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000003009 desulfurizing effect Effects 0.000 claims 1
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 abstract description 6
- 239000010959 steel Substances 0.000 abstract description 6
- 230000000052 comparative effect Effects 0.000 description 14
- 238000006477 desulfuration reaction Methods 0.000 description 12
- 230000023556 desulfurization Effects 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 9
- 239000011593 sulfur Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 238000009749 continuous casting Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910000604 Ferrochrome Inorganic materials 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 5
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000010436 fluorite Substances 0.000 description 5
- 239000006028 limestone Substances 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910001203 Alloy 20 Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 201000004384 Alopecia Diseases 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910001309 Ferromolybdenum Inorganic materials 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- -1 that is Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本願発明は、Argon Oxygen Decarburization(以下、AODと略称する)法におけるステンレス鋼の精錬技術に係り、高価なSi合金鉄の使用を削減し、なおかつ効率的にCr還元を行う技術に関する。特に、Siの含有量が低いステンレス鋼の精錬方法に関する。 The present invention relates to a technique for refining stainless steel in the Argon Oxygen Decarburization (hereinafter abbreviated as AOD) method, and relates to a technique for reducing the use of expensive Si alloy iron and efficiently reducing Cr. In particular, the present invention relates to a method for refining stainless steel having a low Si content.
ステンレス鋼の脱炭精錬は、AOD法、Vacuum Oxygen Decarburization(以下、VODと略称する)法により行うことが一般的となっている。AOD法の場合、通常、電気炉において原料を溶解し、配合にて炭素をおよそ1〜2.5%とし、AODに移湯して酸素あるいはアルゴン酸素混合ガスを吹精し、脱炭精錬に入る。 The decarburization and refining of stainless steel is generally performed by an AOD method or a vacuum oxygen decarburization (hereinafter abbreviated as VOD) method. In the case of the AOD method, the raw materials are usually melted in an electric furnace, the carbon content is adjusted to approximately 1 to 2.5%, transferred to AOD, blown with oxygen or argon-oxygen mixed gas, and decarburized and refined. enter.
この時、有価金属であるCr成分は、吹精した酸素によって少なからず酸化してスラグ中に移行してしまう。したがって、脱炭精錬後、このCr酸化物を還元して溶融合金中に回収するために、Si合金鉄をスラグに添加する。SUS304などの比較的汎用ステンレス鋼であれば、Si投入量(Si原単位)は一定値として設定する。 At this time, the Cr component, which is a valuable metal, is not less oxidized by the blown oxygen and moves into the slag. Therefore, after decarburization refining, Si alloy iron is added to the slag in order to reduce this Cr oxide and recover it in the molten alloy. In the case of a relatively general-purpose stainless steel such as SUS304, the Si input amount (Si basic unit) is set as a constant value.
しかしながら、Cr、Moを高濃度含有するステンレス鋼の場合、溶融合金中のSi含有量が高まると、シグマ相と呼ばれるCr、Fe、Mo等で形成される金属間化合物が形成しやすく、最終的に得られる合金が極端に脆化する場合がある。このような合金では、シグマ相形成を助長するSiの含有量を低く制御することが必要である。 However, in the case of stainless steel containing a high concentration of Cr and Mo, if the Si content in the molten alloy increases, an intermetallic compound formed of Cr, Fe, Mo, etc., called a sigma phase, is likely to be formed. The resulting alloy may be extremely brittle. In such an alloy, it is necessary to control the Si content that promotes the formation of the sigma phase to be low.
Siは合金元素であるとともに、AODにおけるCr還元剤であることから、Siの制御は重要である。比較的Cr含有量の高いステンレス鋼の場合、Si合金鉄の投入不足に起因するCr酸化物の還元不足の問題や、逆に、Siの過剰投入の問題があった。 Since Si is an alloy element and a Cr reducing agent in AOD, control of Si is important. In the case of stainless steel having a relatively high Cr content, there was a problem of insufficient reduction of Cr oxide due to insufficient introduction of Si alloy iron, and conversely, there was a problem of excessive addition of Si.
さらに、このようなCr、Mo(場合によっては0.1〜0.4mass%のN)を高濃度含有するステンレス鋼は高耐食用途に用いられる場合が多く、耐食性を低下させる炭化物の形成を抑制するために、AODにおいて極低炭素の領域まで脱炭する。高Crのため、炭素を多く含有するFeCrの配合量が多くなり、その理由からも配合直後の炭素濃度は通常の炭素濃度よりも高くなる。 Furthermore, stainless steel containing high concentrations of Cr and Mo (0.1 to 0.4 mass% in some cases) is often used for high corrosion resistance, and suppresses the formation of carbides that reduce corrosion resistance. In order to achieve this, decarburization is performed to an extremely low carbon region in the AOD. Due to the high Cr, the blending amount of FeCr containing a large amount of carbon increases, and for that reason as well, the carbon concentration immediately after blending is higher than the normal carbon concentration.
そのため、AODにおいては、比較的高いC濃度を極低炭素の領域まで低下させるため、通常よりも多くの酸素吹精量が必要となり、酸化されてスラグ中に移行するCr酸化物濃度も高くなってしまう。そのため、その後のCr還元も困難な面が多かった。このようにCr還元が不充分であると、酸素、硫黄濃度が高くなってしまい、熱間加工性を低下させ熱延時に割れを発生させる問題があった。 Therefore, in AOD, since a relatively high C concentration is lowered to an extremely low carbon region, a larger amount of oxygen blowing is required than usual, and the concentration of Cr oxide that is oxidized and moves into slag also increases. End up. For this reason, the subsequent reduction of Cr was also difficult. If the Cr reduction is insufficient, the oxygen and sulfur concentrations are increased, resulting in a problem that hot workability is lowered and cracking occurs during hot rolling.
従来の技術に目を向けると、Cr還元を強化して、脱酸、脱硫を充分進行させるために、スラグ中に移行したCr、Mn量に相当するFe−Si合金の量とさらに溶融合金中Si濃度を0.4%以上とする技術が開示されている(例えば、特許文献1参照)。しかしながら、この技術では、0.4%未満の低いSi含有量の合金を製造することはできない。 Looking at the conventional technology, in order to strengthen the Cr reduction and sufficiently proceed with deoxidation and desulfurization, the amount of Fe-Si alloy corresponding to the amount of Cr and Mn transferred into the slag and further in the molten alloy A technique for setting the Si concentration to 0.4% or more is disclosed (for example, see Patent Document 1). However, this technique cannot produce alloys with a low Si content of less than 0.4%.
また、Cr還元後にスラグ中の(Cr2O3)+(MnO)+(T.Fe)を3%以下とすることでS濃度を20ppm以下に制御する技術が開示されている(例えば、特許文献2参照)。しかしながら、いかにして(Cr2O3)+(MnO)+(T.Fe)の合計量3%以下を達成するかについては、具体的な方策が示されておらず、本願が対象とするステンレス鋼には適用できない。 Further, a technique is disclosed in which the S concentration is controlled to 20 ppm or less by reducing (Cr 2 O 3 ) + (MnO) + (T.Fe) in the slag after Cr reduction to 3% or less (for example, patents) Reference 2). However, there is no specific measure for how to achieve a total amount of 3% or less of (Cr 2 O 3 ) + (MnO) + (T.Fe), and the present application is intended. Not applicable to stainless steel.
本発明は、ステンレス鋼の精錬において、脱炭工程において酸素吹精によってスラグ中に移行したCr酸化物を、Si合金鉄を用いて、効率的、かつ的確に還元して溶融合金中に回収する技術を提供する。特に、Si含有量が低く制限される高Cr含有ステンレス鋼のCr還元に関し、Si合金鉄の添加不足によるCr還元不足を避けつつSiの過剰投入にもならない技術を提供することを目的とする。 In the present invention, in the refining of stainless steel, Cr oxide transferred into slag by oxygen blowing in the decarburization step is efficiently and accurately reduced and recovered in the molten alloy using Si alloy iron. Provide technology. In particular, it is an object of the present invention to provide a technique that does not cause excessive addition of Si while avoiding insufficient Cr reduction due to insufficient addition of Si alloy iron with respect to Cr reduction of high Cr-containing stainless steel in which the Si content is limited to be low.
本発明においては、上述した問題を解決するために、本発明者らはAODでのCr還元の実績を鋭意解析した。高Cr含有ステンレス鋼のSUS312L、SUS329J3L、SUS329J4Lについて、特に注力して解析を進めた。これらの鋼種は、電気炉においてフェロクロム(安価に製造するために高炭素フェロクロム合金が好ましい)、鉄屑、Ni、ステンレス屑、フェロモリブデンなどの原料を目的の組成に合わせて溶解し、その後AODに移湯して、酸素、酸素とArの混合ガス、または窒素と酸素の混合ガスで脱炭し、Cr還元、脱酸、脱硫を行う。その後、取鍋精錬にて温度と微量成分を調節して、連続鋳造機にて鋳造しスラブを製造したものである。 In the present invention, in order to solve the above-mentioned problems, the present inventors have intensively analyzed the results of Cr reduction with AOD. The analysis was advanced with particular emphasis on SUS312L, SUS329J3L, and SUS329J4L, which are high Cr-containing stainless steels. These steel types are obtained by melting raw materials such as ferrochrome (high carbon ferrochrome alloy is preferable for inexpensive production), iron scrap, Ni, stainless steel scrap, ferromolybdenum, etc. in an electric furnace according to the target composition, and then converting to AOD. The hot water is transferred, decarburized with oxygen, a mixed gas of oxygen and Ar, or a mixed gas of nitrogen and oxygen, and Cr reduction, deoxidation, and desulfurization are performed. Thereafter, the temperature and trace components are adjusted by ladle refining, and the slab is manufactured by casting with a continuous casting machine.
Cr還元後のSi濃度、スラグ中Cr酸化物濃度には、非常に大きなバラツキが見られた。これは、これらの鋼種が脱炭によりCを0.03mass%以下程度まで低下させる必要がある、極低炭素鋼であるのが一つの理由と推定された。試行錯誤により鋭意操業解析を重ねた。Cr還元が不足していた場合、スラグ中Cr酸化物が所定の含有率(鋼種ごとに異なり、SUS312L、SUS329J3L、SUS329J4Lであれば3%)になるに必要なSi原単位を求めた。Si合金鉄の投入量が過剰であって溶融合金中のSi濃度が所定のSi濃度を超えた場合には、添加したSi合金鉄量と溶融合金中の過剰Si濃度(過剰Siとは、溶融合金中のSi濃度と所定のSi濃度の差を示す。)の差から、溶融合金中のSi濃度を所定のSi濃度に抑制するために本来投入すべきであったSi合金鉄投入量を求めた。このように必要なSi原単位を算出した種々解析したところ、酸素原単位とよい相関関係が得られた。すなわち、酸素原単位が高くなるにしたがい、Si原単位を高くする必要があることが分かった。この理由は、AODにおける初期の状態(温度、炭素濃度、Si濃度)の差により、酸素吹精量が異なってきて、それにしたがいCr酸化物の形成量が変わるためである。すなわち、酸素原単位が高いほどCr酸化物の形成量が多くなり、多くのSi量を要するということである。なお、この解析には、精度を維持するのに10点以上程度はプロットが必要である。 A very large variation was observed in the Si concentration after Cr reduction and the Cr oxide concentration in the slag. This is presumed to be one of the reasons why these steel types are extremely low carbon steels that require C to be reduced to about 0.03 mass% or less by decarburization. We conducted earnest operation analysis through trial and error. When Cr reduction was insufficient, the Si basic unit required for the Cr oxide in the slag to be a predetermined content (3% for SUS312L, SUS329J3L, and SUS329J4L, which differ for each steel type) was determined. When the amount of Si alloy iron input is excessive and the Si concentration in the molten alloy exceeds a predetermined Si concentration, the amount of added Si alloy iron and the excess Si concentration in the molten alloy (excess Si is melted) The difference between the Si concentration in the alloy and the predetermined Si concentration is shown.) The amount of Si alloy iron input that should have been originally input to suppress the Si concentration in the molten alloy to the predetermined Si concentration is obtained. It was. As a result of various analyzes for calculating the necessary Si basic unit, a good correlation with the oxygen basic unit was obtained. That is, it was found that the Si basic unit needs to be increased as the oxygen basic unit increases. This is because the amount of oxygen blowing is different due to the difference in the initial state (temperature, carbon concentration, Si concentration) in the AOD, and the amount of Cr oxide formed changes accordingly. That is, the higher the oxygen basic unit, the greater the amount of Cr oxide formed and the greater the amount of Si required. In this analysis, it is necessary to plot about 10 points or more in order to maintain accuracy.
図1に、SUS329J3L(Fe−5mass%Ni−22.5mass%Cr−3.2mass%Mo−0.16mass%N)、SUS329J4L(Fe−6mass%Ni−25mass%Cr−3.3mass%Mo−0.15mass%N)の酸素原単位とSi原単位の関係を、図2にSUS312L(Fe−18mass%Ni−20mass%Cr−6mass%Mo−0.8mass%Cu−0.2mass%N)の酸素原単位とSi原単位の関係を示す。図中の直線より上ではSi投入量が過剰となっていた領域である。特に、本発明では最終的にAlを用いて脱酸、脱硫を進めるために、Alを添加するときに、下記の(1)式で示す反応によりスラグ中のSiO2が還元されて、溶融合金中のSiがピックアップする。 FIG. 1 shows SUS329J3L (Fe-5 mass% Ni-22.5 mass% Cr-3.2 mass% Mo-0.16 mass% N), SUS329J4L (Fe-6 mass% Ni-25 mass% Cr-3.3 mass% Mo-0). .15 mass% N) oxygen basic unit and Si basic unit, FIG. 2 shows the oxygen content of SUS312L (Fe-18 mass% Ni-20 mass% Cr-6 mass% Mo-0.8 mass% Cu-0.2 mass% N). The relationship between the basic unit and the Si basic unit is shown. Above the straight line in the figure is a region where the amount of Si input is excessive. In particular, in the present invention, in order to finally proceed with deoxidation and desulfurization using Al, when Al is added, SiO 2 in the slag is reduced by the reaction represented by the following formula (1), and the molten alloy Inside Si picks up.
3(SiO2) + 4Al = 2(Al2O3) + 3Si (1)
式(1)中、( )は、スラグ中であることを示し、 (下線部)は、メタル中であることを示す。
3 (SiO 2 ) +4 Al = 2 (Al 2 O 3 ) +3 Si (1)
In formula (1), () indicates that it is in slag, (Underlined part) indicates that it is in metal.
Siは上記したように、本願のステンレス鋼ではシグマ相形成を助長するので、Cr還元後0.4%未満に抑えておかないと、最終的にAlを投入することで、0.6%を超えて高くなってしまい問題となる。逆に直線の下では還元不足のため、脱酸が弱く酸素と硫黄が効果的に低下できなかった領域であった。 As described above, Si promotes the formation of sigma phase in the stainless steel of the present application. Therefore, if not suppressed to less than 0.4% after Cr reduction, by adding Al finally, 0.6% It becomes too high and becomes a problem. On the contrary, under the straight line, due to insufficient reduction, it was a region where oxygen and sulfur could not be effectively reduced due to weak deoxidation.
このように、図中の直線で示される関数を用いて算出し添加することとした。すなわち、その関数は、Si原単位(kg/t)をyとして、酸素原単位(Nm3/t)をxとした場合、下記のように表される。 Thus, it was decided to calculate and add using the function indicated by the straight line in the figure. That is, the function is expressed as follows when the Si basic unit (kg / t) is y and the oxygen basic unit (Nm 3 / t) is x.
y=0.78x−6.14 (SUS329J3L、SUS329J4Lの場合)
y=0.70x+2.21 (SUS312Lの場合)
y = 0.78x-6.14 (in the case of SUS329J3L, SUS329J4L)
y = 0.70x + 2.21 (for SUS312L)
酸素原単位にしたがい算出されるSi原単位を投入してCr還元を行い、その後、石灰石、蛍石を適宜添加し、脱酸および脱硫とともに成分調整を行ったところ、Siが過剰にならずに、かつ脱酸不良にならなかった。続けてAlを添加して、酸素濃度は好ましい30ppm以下に制御できた。脱酸が問題なく進行したことから、脱硫も進み硫黄濃度も0.005%以下まで低下することができた。このようにして、Siを過剰に添加することなく、酸素と硫黄濃度が低く制御できたため、脆化の原因となるシグマ相を形成せずに、熱間加工性に優れるスラブを得ることが出来た。本発明は上記の知見に基づき開発されたものである。 When the Si basic unit calculated according to the oxygen basic unit is added, Cr reduction is performed, and then limestone and fluorite are added as appropriate, and the components are adjusted together with deoxidation and desulfurization. And deoxidation did not become poor. Subsequently, Al was added to control the oxygen concentration to a preferable level of 30 ppm or less. Since deoxidation proceeded without problems, desulfurization proceeded and the sulfur concentration could be reduced to 0.005% or less. In this way, since the oxygen and sulfur concentrations could be controlled low without adding excessive Si, a slab with excellent hot workability could be obtained without forming a sigma phase that would cause embrittlement. It was. The present invention has been developed based on the above findings.
すなわち本発明は、上記問題を解決するものであり、本発明のステンレス鋼の精錬方法は、原料を溶融させて溶融合金とし、AODにおける脱炭工程において、酸素、アルゴン酸素混合ガス、または、窒素酸素混合ガスを溶融合金に吹精して炭素濃度を0.03%以下まで低下させ、吹精によってスラグ中に移行したCr酸化物をSi合金鉄によって還元して溶融合金中に回収する操作において、Si合金鉄は、脱炭工程における総酸素吹精量の関数として予め算出した投入量を添加するものであり、Si合金鉄の投入量の算出方法は、ステンレス鋼の精錬の本操業の前に、総酸素吹精量がそれぞれ異なる複数回の予備的操業を行い、複数回の予備的操業のうち一の予備的操業において任意の量のSi合金鉄を投入して精錬を行い、鋼種ごとに決定される所定のCr酸化物含有率を超えるCr酸化物がスラグ中に残存していた場合は、スラグ中の残存Cr酸化物を所定のCr酸化物含有率以下にするためにさらに添加が必要なSi合金鉄投入量とすでに投入したSi合金鉄投入量を合算して、本来投入すべきであったSi合金鉄投入量を求め、複数回の予備的操業のうち他の予備的操業において任意の量のSi合金鉄を投入して精錬を行い、Si合金鉄の投入量が過剰であって溶融合金中のSi濃度が所定のSi濃度を超えた場合には、添加したSi合金鉄量と溶融合金中の過剰Si濃度(過剰Siとは、溶融合金中のSi濃度と所定のSi濃度の差を示す。)の差から、溶融合金中のSi濃度を所定のSi濃度以下に抑制するために本来投入すべきであったSi合金鉄投入量を求め、複数回のそれぞれの予備的操業によって酸素吹精量とSi合金鉄投入量の関数を回帰式とした条件により、Cr酸化物還元後の溶融合金中の最適Si濃度を得るものであり、さらに、Alを2〜10kg/t添加して脱酸および脱硫することを特徴としている。 That is, the present invention solves the above problems, and the method for refining stainless steel according to the present invention comprises melting a raw material to form a molten alloy, and in a decarburization step in AOD, oxygen, argon-oxygen mixed gas, or nitrogen In an operation in which oxygen mixed gas is blown into a molten alloy to reduce the carbon concentration to 0.03% or less, and Cr oxide transferred into slag by blowing is reduced by Si alloy iron and recovered in the molten alloy. , Si alloy iron is to add the input amount calculated in advance as a function of the total oxygen blown amount in the decarburization process, and the calculation method of the Si alloy iron input amount is the same as before the main operation of refining stainless steel. In addition, multiple preliminary operations with different total oxygen blowing rates are performed, and in one preliminary operation of multiple preliminary operations, an arbitrary amount of Si alloy iron is introduced and refined, for each steel type. If Cr oxide exceeding the determined Cr oxide content remains in the slag, further addition is necessary to keep the residual Cr oxide in the slag below the predetermined Cr oxide content The total amount of Si alloy iron input and the amount of Si alloy iron input that has already been added are summed up to obtain the amount of Si alloy iron input that should have been originally input, and it is optional in other preliminary operations among multiple preliminary operations When the amount of Si alloy iron is excessive and the Si concentration in the molten alloy exceeds a predetermined Si concentration, the amount of added Si alloy iron and In order to suppress the Si concentration in the molten alloy below the predetermined Si concentration from the difference in the excess Si concentration in the molten alloy (excess Si indicates the difference between the Si concentration in the molten alloy and the predetermined Si concentration). Of the amount of Si alloy iron that should have been originally introduced In addition, an optimum Si concentration in the molten alloy after reduction of Cr oxide is obtained according to a condition in which a function of oxygen blowing rate and Si alloy iron input is set as a regression equation by a plurality of preliminary operations. Further, the deoxidation and desulfurization are performed by adding 2 to 10 kg / t of Al.
本発明においては、Cr還元後の溶融合金中のSi濃度が0.4%未満であることを好ましい態様としている。また、ステンレス鋼の化学成分は、C:0.003〜0.03%、Si:0.1〜0.6%以下、S:0.005%以下、Cr:11〜35%、Ni:40%以下、Al:0.005〜0.1%、残部鉄または不可避的不純物からなることを好ましい態様としている。さらにMo:1〜18%、Cu:3%以下、W:5%以下、Co:3%以下のいずれか1種または2種以上を含有しても良い。上記のほかに、B:5〜70ppmを含有し、酸素:30ppm以下であることが好ましい。 In this invention, it is set as the preferable aspect that Si concentration in the molten alloy after Cr reduction | restoration is less than 0.4%. The chemical components of stainless steel are: C: 0.003 to 0.03%, Si: 0.1 to 0.6% or less, S: 0.005% or less, Cr: 11 to 35%, Ni: 40 % Or less, Al: 0.005 to 0.1%, balance iron or unavoidable impurities is a preferred embodiment. Furthermore, Mo: 1 to 18%, Cu: 3% or less, W: 5% or less, and Co: 3% or less may be included. In addition to the above, it is preferable that B: 5 to 70 ppm and oxygen: 30 ppm or less.
本発明によれば、ステンレス鋼の酸素濃度、硫黄濃度を効果的に低下するできるため、加工性が良いスラブを得ることが可能となる。その結果、熱延時に割れが発生せず、製品歩留りを高く保つことが可能となる。 According to the present invention, since the oxygen concentration and sulfur concentration of stainless steel can be effectively reduced, a slab with good workability can be obtained. As a result, cracks do not occur during hot rolling, and the product yield can be kept high.
本発明を実施するにあたり、最良の実施形態を説明する。
図3は、本願発明における合金の製造工程を示す模式図である。符号Aは電気炉(Electric Furnace,EF)であり、溶解工程として、フェロクロム、鉄屑、Ni、ステンレス屑等の原料を目的の組成に合わせて溶解する。溶解した原料を、精錬工程として、電気炉Aから酸素吹精炉B(AOD)に移湯して、酸素あるいは酸素とArの混合ガス(場合によっては窒素と酸素の混合ガス)で脱炭し、Cr還元、脱酸、脱硫を行い、その後、取鍋精錬(Ladle furnace)にて温度と微量成分を調節する。
The best mode for carrying out the present invention will be described.
FIG. 3 is a schematic diagram showing an alloy manufacturing process in the present invention. Reference symbol A denotes an electric furnace (EF), and as a melting step, raw materials such as ferrochrome, iron scrap, Ni, and stainless scrap are melted in accordance with a target composition. As a refining process, the melted raw material is transferred from electric furnace A to oxygen blowing furnace B (AOD) and decarburized with oxygen or a mixed gas of oxygen and Ar (in some cases, a mixed gas of nitrogen and oxygen). , Cr reduction, deoxidation and desulfurization are performed, and then the temperature and trace components are adjusted by ladle refining.
続いて、溶融合金を鋳造機の注入鍋に投入して鋳造を行う。図3の符号Cは、連続鋳造機(Continuous Casting Machine、CCM)の模式図である。図3に示す鋳造機は、溶融合金が上方から供給されてスラブが下方へ送出される垂直型の鋳造機である。高合金では多くの元素が添加されるため、冷却されて固まるときに大きく曲がると割れが入りやすい傾向があるが、垂直型の装置では偏った無理な力が加わりにくく、高合金に適した装置として利用される。ただし、連続鋳造機は垂直型が好ましいが、それに限定されるものではない。 Subsequently, the molten alloy is cast into the casting pot of the casting machine to perform casting. The code | symbol C of FIG. 3 is a schematic diagram of a continuous casting machine (Continuous Casting Machine, CCM). The casting machine shown in FIG. 3 is a vertical casting machine in which a molten alloy is supplied from above and a slab is sent downward. Since many elements are added in high alloys, cracks tend to easily occur when bent when cooled and hardened. However, in a vertical type device, it is difficult to apply an unreasonable force and is suitable for high alloys. Used as However, the continuous casting machine is preferably a vertical type, but is not limited thereto.
最終的に、図3に示すCCMで溶融合金を鋳造し、スラブを製造する。図3において符号10は注入鍋であり、注入鍋10に、上記溶解工程と精錬工程を経た溶融合金20を出鋼する。続いて溶融合金20は、注入鍋10の下流側に設けられたタンディッシュ11を経て、モールド12に供給されて型入れされる。型に注湯された溶融合金20は、下流側に設けられたスプレー冷却帯13を通過することによって凝固させられつつ、ピンチロール14によって引き抜かれて所定の厚さを有するスラブ21が得られる。また、スラブ21は、所定の位置にてトーチ15によって切断され、圧延等の必要な加工を経て、最終製品が得られる。
Finally, a molten alloy is cast by the CCM shown in FIG. 3 to produce a slab. In FIG. 3,
本発明は、上記工程のうち、AODにおける脱炭後のCr還元の操作方法に関するものであり、以下に詳細に説明する。
AODにおける脱炭工程において、酸素およびアルゴン酸素混合ガスを吹精後、本願が対象とする炭素濃度である0.03%以下まで低下させる。その後、スラグ中に移行したCr酸化物を還元して溶融合金中に回収するために、Si合金鉄を還元剤として用いる。上述の通り、このSi投入量が不足した場合は、Cr酸化物を還元して溶融合金中に回収することが十分に行われず、逆にSi投入量が過剰であった場合は、溶融合金中のSi濃度が増大してしまい、好ましくない。このように、Si投入量は多過ぎても少な過ぎても好ましくなく、厳密な制御が要求されるため、そのSi投入量は、脱炭工程の総酸素吹精量の関数として算出し、必要十分な量を添加する。
This invention relates to the operation method of Cr reduction | restoration after the decarburization in AOD among the said processes, and demonstrates it in detail below.
In the decarburization process in AOD, after oxygen and argon oxygen mixed gas is blown, the carbon concentration targeted by the present application is reduced to 0.03% or less. Thereafter, Si alloy iron is used as a reducing agent in order to reduce the Cr oxide transferred into the slag and recover it in the molten alloy. As described above, when the Si input amount is insufficient, the Cr oxide is not sufficiently reduced and recovered in the molten alloy. Conversely, when the Si input amount is excessive, The Si concentration increases, which is not preferable. Thus, it is not preferable that the Si input amount is too large or too small, and since strict control is required, the Si input amount is calculated as a function of the total oxygen blowing amount in the decarburization process, and is necessary. Add sufficient amount.
その関数としての回帰式を導き出す方法は以下の通りである。
この関数を導き出すための予備的な操業は、本操業の前に複数回行う。予備的操業の回数は少なくとも10回程度は必要であり、その結果を用いて必要なSi投入量の関数を解析する。予備的な操業において任意の量のSi合金鉄を投入して操業を行い、スラグを分析し、その結果スラグ中にCr酸化物が過剰に残存していた場合、すなわちSiによるCr還元が不足していたと判明した場合は、スラグ中の残存Cr酸化物を所定の含有率(鋼種ごとに決定され、SUS312L、SUS329J3L、SUS329J4Lであれば3%)以下にするためにさらに添加が必要なSi投入量とすでに投入したSi投入量の和から、本来必要であったSi原単位を求めた。
The method of deriving the regression equation as the function is as follows.
The preliminary operation for deriving this function is performed several times before the main operation. The number of preliminary operations is required to be at least about 10, and the function of the required Si input amount is analyzed using the result. In the preliminary operation, an arbitrary amount of Si alloy iron is put into operation and the slag is analyzed. As a result, when excessive Cr oxide remains in the slag, that is, Cr reduction by Si is insufficient. If it is found that the residual Cr oxide in the slag is less than a predetermined content (determined for each steel type, 3% for SUS312L, SUS329J3L, and SUS329J4L), the amount of Si input that needs further addition From the sum of the amounts of Si that had already been added, the basic unit of Si that was originally required was determined.
逆に、他の予備的な操業において同様に任意の量のSi合金鉄を投入して操業を行い、その結果、Si合金鉄を多く投入し過ぎた場合、すなわち過剰のSiが溶融合金に移行してしまい溶融合金中のSi濃度が所定のSi濃度を超えてしまった場合には、添加したSi量とCr還元後の溶融合金中の過剰Si濃度の差から、溶融合金中のSi濃度を当該所定のSi濃度以下に抑制しつつCr還元に有効に作用した、本来必要であったSi原単位を求めた。 Conversely, in other preliminary operations, similarly, an arbitrary amount of Si alloy iron is put into operation, and as a result, when too much Si alloy iron is thrown in, that is, excess Si is transferred to the molten alloy. If the Si concentration in the molten alloy exceeds the predetermined Si concentration, the Si concentration in the molten alloy is determined from the difference between the added Si amount and the excess Si concentration in the molten alloy after Cr reduction. The originally required Si basic unit that effectively acted on Cr reduction while being suppressed below the predetermined Si concentration was determined.
その時に、石灰石、蛍石を適宜投入して、適正な流動性を持つスラグを形成する。この操作により、スラグ中のCr酸化物は8%以下まで低下し、Cr還元が終了した時点でのSi濃度は0.4%未満に制御できる。0.4%以上だと、続けて添加するAlがスラグ中のSiO2を還元して、溶融合金中のSi濃度が、最終的に0.6%を超えてしまう。なお、この時形成したスラグは、一旦排滓しても構わない。排滓した場合は、再度石灰石、蛍石を適宜投入してスラグを作る。 At that time, limestone and fluorite are appropriately added to form a slag having an appropriate fluidity. By this operation, the Cr oxide in the slag is reduced to 8% or less, and the Si concentration at the time when the Cr reduction is completed can be controlled to less than 0.4%. If it is 0.4% or more, subsequently added Al will reduce SiO 2 in the slag, and the Si concentration in the molten alloy will eventually exceed 0.6%. The slag formed at this time may be temporarily discarded. In case of excretion, add limestone and fluorite again to make slag.
SiによるCr還元の後、Alを2〜10kg/t添加して脱酸および脱硫する。スラグ組成は、CaO、SiO2、MgO、Al2O3、Fから構成される系となる。MgOはAODの耐火物であるドロマイトあるいはマグクロの溶損により混入するものである。CaO/SiO2比率は2以上が脱酸脱硫を進める上で好ましい。 After Cr reduction by Si, 2 to 10 kg / t of Al is added for deoxidation and desulfurization. The slag composition is a system composed of CaO, SiO 2 , MgO, Al 2 O 3 , and F. MgO is mixed due to erosion damage of dolomite or magcro, which is an AOD refractory. A CaO / SiO 2 ratio of 2 or more is preferable in promoting deoxidation and desulfurization.
Si原単位を算出する回帰式を求める際の操作で目標とするスラグ中のCr酸化物の臨界濃度は、例えばSUS312L、SUS329J3L、SUS329J4Lであれば3%であることはすでに述べたが、この値は鋼種ごとに異なる。表1に、鋼種ごとのCr酸化物臨界濃度を示す。表1に示す通り、例えばSUS304であれば、この濃度は1%であるので、回帰式を作成するための予備的操業において、任意の量のSi合金鉄を投入して操業を行い、スラグを分析した結果、SiによるCr還元が不足していた場合は、スラグ中の残存Cr酸化物を1%以下にするためにさらに添加が必要なSi投入量とすでに投入したSi投入量の和から、本来必要であったSi原単位を求め、回帰式を作成することになる。なお、このCr酸化物臨界濃度は、Si合金鉄を投入して、Cr酸化物を還元し、溶融合金中には0.1%未満のSi濃度に留めるために設定される濃度の指標である。 As described above, the critical concentration of Cr oxide in the slag targeted by the operation for obtaining the regression equation for calculating the Si basic unit is 3% for SUS312L, SUS329J3L, SUS329J4L, for example. Is different for each steel type. Table 1 shows the critical concentration of Cr oxide for each steel type. As shown in Table 1, for example, in the case of SUS304, this concentration is 1%. Therefore, in a preliminary operation for creating a regression equation, an arbitrary amount of Si alloy iron is introduced and the slag is reduced. As a result of the analysis, when Cr reduction by Si was insufficient, from the sum of the Si input amount that needs to be further added to reduce the residual Cr oxide in the slag to 1% or less and the Si input amount that has already been added, The Si basic unit that was originally necessary is obtained, and a regression equation is created. The critical concentration of Cr oxide is an indicator of the concentration set in order to reduce the Cr oxide by introducing Si alloy iron and keep the Si concentration at less than 0.1% in the molten alloy. .
また、先出の所定のSi濃度とは、Cr酸化物還元後のスラグ中に残存するCr酸化物が所定のCr酸化物臨界濃度を超えた時、溶融合金中のSi濃度をスラグ中に残存するCr酸化物が所定のCr酸化物臨界濃度になるまで、Si合金鉄を投入する際の指標である。 Also, the above-mentioned predetermined Si concentration means that when the Cr oxide remaining in the slag after the reduction of Cr oxide exceeds the predetermined critical concentration of Cr oxide, the Si concentration in the molten alloy remains in the slag. This is an index when Si alloy iron is added until the Cr oxide to be obtained reaches a predetermined Cr oxide critical concentration.
次に、本発明のステンレス鋼の化学成分について説明する。
C:0.003〜0.03%
Cはステンレス鋼の強度を確保するために必要な元素である。しかしながら、0.03%を超えて高いと、Crの炭化物を形成し耐食性を低下させる。そのため、0.003〜0.03%とした。好ましくは、0.005〜0.025%である。
Next, chemical components of the stainless steel of the present invention will be described.
C: 0.003 to 0.03%
C is an element necessary for ensuring the strength of stainless steel. However, if it exceeds 0.03%, Cr carbide is formed and the corrosion resistance is lowered. Therefore, it was set as 0.003 to 0.03%. Preferably, it is 0.005 to 0.025%.
Si:0.1〜0.6%
SiはCr還元および脱酸に必要な元素である。しかし、0.6%を超える過剰の添加は、鋼を脆化させるシグマ相形成を促進する。そのため、0.1〜0.6%と定めた。上述の回帰式を用いてSi原単位を算出し、Siを投入することで、Cr還元後にSi濃度を0.4%未満に抑えることで、上限の0.6%以下を満足できる。好ましくは、0.2〜0.55%、より好ましくは、0.25〜0.55%である。
Si: 0.1-0.6%
Si is an element necessary for Cr reduction and deoxidation. However, excessive addition exceeding 0.6% promotes sigma phase formation that embrittles the steel. Therefore, it was determined as 0.1 to 0.6%. By calculating the Si basic unit using the above regression equation and introducing Si, the upper limit of 0.6% or less can be satisfied by suppressing the Si concentration to less than 0.4% after Cr reduction. Preferably, it is 0.2 to 0.55%, more preferably 0.25 to 0.55%.
S:0.005%以下
Sは熱間加工性を低下させる元素であるため、0.005%以下とした。上記の操作によりCr還元し、さらにAlを2〜10kg/t添加して脱酸することで制御できる。好ましくは、0.004%以下、より好ましくは0.003%以下である。
S: 0.005% or less Since S is an element that decreases hot workability, the content is set to 0.005% or less. It can be controlled by reducing Cr by the above operation and deoxidizing by adding 2 to 10 kg / t of Al. Preferably, it is 0.004% or less, more preferably 0.003% or less.
Cr:11〜35%
Crは鋼の表面に不導体皮膜を生成して、耐食性を確保するために必要な元素である。11%未満ではその効果が得られず、35%を超えて高いと、熱間強度が著しく高くなり、熱間加工が困難となる。そのため、11〜35%とした。なお、本発明はCr含有量が比較的高い19〜30%の領域でより効果が大きい。
Cr: 11-35%
Cr is an element necessary for generating a non-conductive film on the surface of steel and ensuring corrosion resistance. If it is less than 11%, the effect cannot be obtained, and if it exceeds 35%, the hot strength becomes remarkably high and hot working becomes difficult. Therefore, it was set to 11 to 35%. In addition, this invention is more effective in the 19 to 30% region where the Cr content is relatively high.
Ni:40%以下
Niはオーステナイト相を安定化させる元素であるため、40%以下の範囲で添加してもよい。
Ni: 40% or less Since Ni is an element that stabilizes the austenite phase, it may be added within a range of 40% or less.
Al:0.005〜0.1%
Alは脱酸および脱硫を進行させるために必要な元素である。しかし、0.1%を超えての過剰の添加は、AlNを形成して熱間加工性を低下させる場合がある。また、スラグ中のSiO2を還元しすぎて、Si濃度を0.6%超に高くしてしまう。そのため、0.005〜0.1%とした。SiによるCr還元の後、Alを2〜10kg/t添加する操作でこの範囲に制御できる。好ましくは、0.01〜0.07%、より好ましくは、0.01〜0.06%である。
Al: 0.005 to 0.1%
Al is an element necessary for the progress of deoxidation and desulfurization. However, excessive addition exceeding 0.1% may form AlN and reduce hot workability. Further, SiO 2 in the slag is excessively reduced, and the Si concentration is increased to more than 0.6%. Therefore, it was set as 0.005 to 0.1%. After reduction of Cr by Si, this range can be controlled by adding 2 to 10 kg / t of Al. Preferably, it is 0.01 to 0.07%, more preferably 0.01 to 0.06%.
他の元素成分
上記の元素に加えて、Mo:1〜18%、Cu:3%以下、W:5%以下、Co:3%以下のいずれか1種または2種以上を、耐食性の観点から含有しても良い。さらに、熱間加工性向上の目的で、B:5〜70ppmを含有しても構わない。酸素は熱間加工性を低下させるので、低い方が良く、30ppm以下に抑えることが好ましい。
Other element components In addition to the above elements, Mo: 1 to 18%, Cu: 3% or less, W: 5% or less, Co: 3% or less, from the viewpoint of corrosion resistance It may be contained. Furthermore, B may contain 5 to 70 ppm for the purpose of improving hot workability. Since oxygen reduces hot workability, it is preferable that oxygen be low, and it is preferable to suppress it to 30 ppm or less.
具体的に実施例を示して本発明の効果を説明する。なお、ここで説明する実施例は、SUS329J3L、SUS329J4L(図1)、SUS312L(図2)についてである。 An example is shown concretely and the effect of the present invention is explained. In addition, the Example described here is about SUS329J3L, SUS329J4L (FIG. 1), and SUS312L (FIG. 2).
60トン電気炉においてフェロクロム、鉄屑、Ni、ステンレス屑、などの原料を目的の組成に合わせて溶解し、その後AODに移湯して、酸素あるいは酸素とArの混合ガスで脱炭し、Cr還元、脱酸、脱硫を行った。AODにおける脱炭工程において、酸素およびアルゴン酸素混合ガスを吹精後、炭素濃度を0.03%以下まで低下させた。その後、スラグ中に移行したCr酸化物を還元して溶融合金中に回収する操作において、還元剤にフェロシリコン合金を用い、そのSi投入量は脱炭工程の総酸素吹精量の関数として算出し添加した。 In a 60-ton electric furnace, raw materials such as ferrochrome, iron scrap, Ni and stainless steel scrap are melted to the desired composition, then transferred to AOD, decarburized with oxygen or a mixed gas of oxygen and Ar, Cr Reduction, deoxidation, and desulfurization were performed. In the decarburization step in AOD, the carbon concentration was lowered to 0.03% or less after blowing oxygen and argon-oxygen mixed gas. Thereafter, in the operation of reducing the Cr oxide transferred into the slag and recovering it in the molten alloy, a ferrosilicon alloy is used as the reducing agent, and the amount of Si input is calculated as a function of the total oxygen blowing rate in the decarburization process. And added.
その関数としての回帰式を導き出す方法は次の通りとした。予備的な操業を10回行い、その結果を用いて解析した。Cr還元が不足していた場合、スラグ中Cr酸化物が3%になるに必要なSi原単位を求めた。逆に還元剤のSiを多く投入しすぎた時には、添加したSiとCr還元後の溶融合金中のSi濃度の差から、Cr還元に有効に作用したSi原単位を求めた。 The method of deriving the regression equation as the function was as follows. Preliminary operations were performed 10 times, and the results were used for analysis. When Cr reduction was insufficient, the Si basic unit necessary for the Cr oxide in the slag to be 3% was determined. Conversely, when too much reducing agent Si was added, the Si basic unit that effectively acted on Cr reduction was determined from the difference in Si concentration between the added Si and the molten alloy after Cr reduction.
また、Cr還元の操作では、石灰石、蛍石を適宜投入して、適正な流動性を持つスラグを形成した。この時形成したスラグは、一旦排滓し、再度石灰石、蛍石を適宜投入してスラグを形成した。スラグの組成は、CaO、SiO2、MgO、Al2O3、Fから構成される系であった。その後、Alを添加し脱酸と脱硫を進めた。なお、一部の比較例では、意図的に添加しなかった例もある。 In the Cr reduction operation, limestone and fluorite were appropriately added to form slag having appropriate fluidity. The slag formed at this time was once discarded, and limestone and fluorite were added again as appropriate to form slag. The slag composition was a system composed of CaO, SiO 2 , MgO, Al 2 O 3 , and F. Thereafter, Al was added to proceed with deoxidation and desulfurization. In some comparative examples, there was an example that was not intentionally added.
AODでの精錬後、取鍋精錬にて温度と微量成分を調節して、連続鋳造機にて鋳造しスラブを製造した。スラブは表面を研削し、熱間圧延を行い熱延板とした。この熱延板を酸洗した後に、ヘゲ疵の発生状況を目視により検査した。ヘゲ疵の発生位置は主として、コイル端より100〜300mmの位置にあり、特にこの位置を注視した。代表的な疵を表面から撮影したものを図4に示す。特徴は被さり状を呈している点である。 After refining at AOD, temperature and trace components were adjusted by ladle refining, and cast by a continuous casting machine to produce a slab. The surface of the slab was ground and hot rolled to form a hot rolled sheet. After this hot-rolled sheet was pickled, the state of occurrence of lashes was visually inspected. The position where the lashes are generated is mainly 100 to 300 mm from the end of the coil. FIG. 4 shows a typical wing photographed from the surface. The feature is that it has a cover shape.
各測定ならびに評価方法は以下によった。
・還元後のスラグ中Cr2O3濃度:スラグを採取して粉砕後、タブレットを作り、蛍光X線分析により求めた。
・還元後Si濃度:溶融合金を採取し、蛍光X線分析により求めた。
・最終成分:溶融合金サンプルを採取し、NとO以外は蛍光X線分析により求めた。NとOは不活性ガスインパルス融解赤外線吸収法により求めた。
・熱延板での外観:ヘゲ疵の発生頻度により評価した。◎:コイル中に10個以下、○:コイル中に10個を超える数あるが、コイル研削により除去できる程度、×:コイル研削により除去不可能で屑化せねばならない程度
Each measurement and evaluation method was as follows.
Slug in the Cr 2 O 3 concentration after the reduction: After slag is collected grinding, making the tablet, was determined by X-ray fluorescence analysis.
-Si concentration after reduction: A molten alloy was collected and determined by fluorescent X-ray analysis.
-Final component: A molten alloy sample was collected, and other than N and O were determined by fluorescent X-ray analysis. N and O were determined by an inert gas impulse melting infrared absorption method.
-Appearance on hot-rolled sheet: Evaluated by the frequency of occurrence of lashes. ◎: 10 or less in the coil, ○: More than 10 in the coil, but can be removed by coil grinding, ×: Degradable that cannot be removed by coil grinding
[実施例1]
SUS329J3L
表2にSUS329J3Lの実施例を示す。発明例No.1〜4はSi原単位、還元後のスラグ中Cr2O3濃度、還元後Si濃度、Al原単位いずれも本発明の範囲に入っていた。そのため、最終成分のS、Oともに低くなり熱延板での外観も◎または○であり、良好であった。
[Example 1]
SUS329J3L
Table 2 shows examples of SUS329J3L. Invention Example No. 1 to 4 were all within the scope of the present invention, Si unit, Cr 2 O 3 concentration in the slag after reduction, Si concentration after reduction, and Al unit. Therefore, both S and O of the final component were lowered, and the appearance on the hot-rolled sheet was good, i.e., ◎ or ○.
一方、比較例では、いずれかの条件が外れていたために、熱延板にて欠陥が多数観察された。比較例1と3は、酸素原単位に対してSi原単位が低かったので、還元が不十分となり、酸素、硫黄ともに高くなってしまった。比較例1は、さらにAlを投入しなかったため、比較例3よりも酸素が高かった。比較例2と4は、酸素原単位に対してSi原単位が高かったので、還元後のSi濃度が0.4%を超えて高くなってしまった。そのため、最終的なSi濃度も0.6%を超えて高く、シグマ相形成により脆化し、熱延板での欠陥をもたらした。 On the other hand, in the comparative example, since one of the conditions was not met, many defects were observed in the hot rolled sheet. In Comparative Examples 1 and 3, since the Si basic unit was lower than the oxygen basic unit, the reduction was insufficient, and both oxygen and sulfur were high. Comparative Example 1 was higher in oxygen than Comparative Example 3 because Al was not further added. In Comparative Examples 2 and 4, since the Si basic unit was higher than the oxygen basic unit, the Si concentration after the reduction exceeded 0.4%. Therefore, the final Si concentration was also higher than 0.6%, and it became brittle due to sigma phase formation, resulting in defects in the hot-rolled sheet.
[実施例2]
SUS329J4L
表3にSUS329J4Lの実施例を示す。発明例No.5〜10はSi原単位、還元後のスラグ中Cr2O3濃度、還元後Si濃度、Al原単位いずれも本発明の範囲に入っていた。そのため、最終成分のS、Oともに低くなり熱延板での外観も◎または○であり、良好であった。
[Example 2]
SUS329J4L
Table 3 shows examples of SUS329J4L. Invention Example No. 5 to 10 were all within the scope of the present invention, including Si basic unit, Cr 2 O 3 concentration in the slag after reduction, Si concentration after reduction, and Al basic unit. Therefore, both S and O of the final component were lowered, and the appearance on the hot-rolled sheet was good, i.e., ◎ or ○.
一方、比較例では、いずれかの条件が外れていたために、熱延板にて欠陥が多数観察された。比較例6、7、8、10は、酸素原単位に対してSi原単位が低かったので、還元が不十分となり、酸素、硫黄ともに高くなってしまった。比較例7と10は、さらにAlを投入しなかったので、酸素濃度が他よりも高かった。比較例5と9は、酸素原単位に対してSi原単位が高かったので、還元後のSi濃度が0.4%を超えて高くなってしまった。そのため、最終的なSi濃度も0.6%を超えて高く、シグマ相形成により脆化し、熱延板での欠陥をもたらした。 On the other hand, in the comparative example, since one of the conditions was not met, many defects were observed in the hot rolled sheet. In Comparative Examples 6, 7, 8, and 10, since the Si basic unit was lower than the oxygen basic unit, the reduction was insufficient and both oxygen and sulfur were high. In Comparative Examples 7 and 10, since Al was not further added, the oxygen concentration was higher than the others. In Comparative Examples 5 and 9, since the Si basic unit was higher than the oxygen basic unit, the Si concentration after the reduction exceeded 0.4%. Therefore, the final Si concentration was also higher than 0.6%, and it became brittle due to sigma phase formation, resulting in defects in the hot-rolled sheet.
[実施例3]
SUS312L
表4にSUS312Lの実施例を示す。発明例No.11〜14はSi原単位、還元後のスラグ中Cr2O3濃度、還元後Si濃度、Al原単位いずれも本発明の範囲に入っていた。そのため、最終成分のS、Oともに低くなり熱延板での外観も◎または○であり、良好であった。
[Example 3]
SUS312L
Table 4 shows examples of SUS312L. Invention Example No. Nos. 11 to 14 were all within the scope of the present invention, including Si basic unit, Cr 2 O 3 concentration in the slag after reduction, Si concentration after reduction, and Al basic unit. Therefore, both S and O of the final component were lowered, and the appearance on the hot-rolled sheet was good, i.e., ◎ or ○.
一方、比較例では、いずれかの条件が外れていたために、熱延板にて欠陥が多数観察された。比較例11と13はSi原単位が高く、還元後Si濃度が0.4%を超えて高く、最終的なSi濃度も0.6%を超えて高くなってしまった。そのため、シグマ相形成により脆化し、熱延板での欠陥をもたらした。比較例12と14は、逆にSi原単位が低く、酸素および硫黄濃度が高くなってしまった。特に比較例12ではAlを投入しなかったので、酸素と硫黄濃度が特に高かった。 On the other hand, in the comparative example, since one of the conditions was not met, many defects were observed in the hot rolled sheet. In Comparative Examples 11 and 13, the Si basic unit was high, the Si concentration after reduction was higher than 0.4%, and the final Si concentration was also higher than 0.6%. Therefore, it became brittle due to sigma phase formation, resulting in defects in the hot rolled sheet. In Comparative Examples 12 and 14, on the contrary, the Si basic unit was low, and the oxygen and sulfur concentrations were high. Particularly in Comparative Example 12, since no Al was added, the oxygen and sulfur concentrations were particularly high.
以上説明したように、本発明のステンレス合金の精錬方法においては、本操業の前に予備的操業を行ってSi原単位と酸素原単位の関係を示す回帰式を求めているので、本操業においては、操業ごとに成分を分析する必要がなく、その回帰式にしたがって必要十分なSi合金鉄の投入量を決定することができる。 As described above, in the method for refining a stainless alloy of the present invention, a preliminary operation is performed before the main operation to obtain a regression equation indicating the relationship between the Si basic unit and the oxygen basic unit. Therefore, it is not necessary to analyze the components for each operation, and the necessary and sufficient amount of Si alloy iron can be determined according to the regression equation.
Si濃度を低減してシグマ相形成を抑制した高Cr含有ステンレス合金を効率良く製造することができる。 It is possible to efficiently produce a high Cr-containing stainless steel alloy in which the Si concentration is reduced and sigma phase formation is suppressed.
A 電気炉
B 酸素吹精炉
C 連続鋳造機
10 注入鍋
11 タンディッシュ
12 モールド
13 スプレー冷却帯
14 ピンチロール
15 トーチ
20 溶融合金
21 スラブ
A Electric furnace B Oxygen blowing furnace C
Claims (6)
上記Si合金鉄は、上記脱炭工程における総酸素吹精量の関数として予め算出した投入量を添加するものであり、
上記Si合金鉄の投入量の算出方法は、
上記ステンレス鋼の精錬の本操業の前に、上記総酸素吹精量がそれぞれ異なる複数回の予備的操業を行い、
上記複数回の予備的操業のうち一の予備的操業において任意の量のSi合金鉄を投入して精錬を行い、鋼種ごとに決定される所定のCr酸化物臨界濃度を超えるCr酸化物がスラグ中に残存していた場合は、スラグ中の残存Cr酸化物を上記所定のCr酸化物臨界濃度にするためにさらに添加が必要なSi合金鉄投入量とすでに投入したSi合金鉄投入量を合算して、本来投入すべきであったSi合金鉄投入量を求め、
上記複数回の予備的操業のうち他の予備的操業において任意の量のSi合金鉄を投入して精錬を行い、Si合金鉄の投入量が過剰であって溶融合金中のSi濃度が所定のSi濃度を超えた場合には、添加したSi合金鉄量と溶融合金中の過剰Si濃度の差から、溶融合金中のSi濃度を所定のSi濃度に抑制するために本来投入すべきであったSi合金鉄投入量を求め、
上記複数回のそれぞれの予備的操業によって酸素吹精量とSi合金鉄投入量の関数を回帰式とした条件により、Cr酸化物還元後の溶融合金中の最適Si濃度を得るものであり、
さらに、Alを2〜10kg/t添加して脱酸および脱硫することを特徴とするステンレス鋼の精錬方法。 A method for refining stainless steel, in which a raw material is melted to form a molten alloy, and in the decarburization process in AOD, oxygen, argon-oxygen mixed gas, or nitrogen-oxygen mixed gas is blown into the molten alloy to reduce the carbon concentration. In the operation of reducing to 0.03% or less and reducing the Cr oxide transferred into the slag by the above blowing to the molten alloy by reducing with the Si alloy iron,
The Si alloy iron is to add the input amount calculated in advance as a function of the total oxygen blowing amount in the decarburization step,
The calculation method of the input amount of the Si alloy iron is as follows:
Prior to the main operation of refining the stainless steel, a plurality of preliminary operations with different total oxygen blowing rates are performed,
In one preliminary operation of the above-mentioned multiple operations, an arbitrary amount of Si alloy iron is introduced and refined, and Cr oxides exceeding a predetermined Cr oxide critical concentration determined for each steel type are slag. In the case where the residual Cr oxide remains in the slag, the amount of Si alloy iron that needs to be further added to bring the residual Cr oxide in the slag to the above-mentioned critical Cr oxide critical concentration is combined with the amount of Si alloy iron that has already been added. Then, the amount of Si alloy iron input that should have been originally input is obtained,
In other preliminary operations among the plurality of preliminary operations, an arbitrary amount of Si alloy iron is charged and refining is performed. The amount of Si alloy iron input is excessive and the Si concentration in the molten alloy is a predetermined value. When the Si concentration was exceeded, it should have been originally introduced in order to suppress the Si concentration in the molten alloy to a predetermined Si concentration from the difference between the amount of added Si alloy iron and the excess Si concentration in the molten alloy. Determine the amount of Si alloy iron input,
According to the conditions in which the function of the oxygen blowing amount and Si alloy iron input amount is a regression equation by each of the plurality of preliminary operations, an optimum Si concentration in the molten alloy after Cr oxide reduction is obtained,
Furthermore, the refining method of stainless steel characterized by adding 2-10 kg / t of Al, and deoxidizing and desulfurizing.
6. The method for refining stainless steel according to claim 4, wherein the stainless steel contains B: 5 to 70 ppm and oxygen: 30 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007294228A JP5285895B2 (en) | 2007-11-13 | 2007-11-13 | Stainless steel refining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007294228A JP5285895B2 (en) | 2007-11-13 | 2007-11-13 | Stainless steel refining method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009120884A true JP2009120884A (en) | 2009-06-04 |
JP5285895B2 JP5285895B2 (en) | 2013-09-11 |
Family
ID=40813356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007294228A Active JP5285895B2 (en) | 2007-11-13 | 2007-11-13 | Stainless steel refining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5285895B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101243246B1 (en) | 2009-07-14 | 2013-03-13 | 주식회사 포스코 | Manufacturing method of austenitic stainless steel plate with good cleanness |
JP2013072106A (en) * | 2011-09-27 | 2013-04-22 | Nippon Yakin Kogyo Co Ltd | Method for producing boron-containing stainless steel |
CN107470578A (en) * | 2017-07-31 | 2017-12-15 | 四川维珍高新材料有限公司 | A kind of centrifuge annular cast and its preparation technology |
WO2018058953A1 (en) * | 2016-09-27 | 2018-04-05 | 东北大学 | Method of removing carbon in high-carbon copper-containing molten iron by injection of carbon dioxide |
CN114107603A (en) * | 2021-11-26 | 2022-03-01 | 攀钢集团江油长城特殊钢有限公司 | Smelting method of low-silicon low-aluminum tungsten-containing boron-containing high-chromium martensitic stainless steel |
JP7469636B2 (en) | 2020-05-13 | 2024-04-17 | 日本製鉄株式会社 | Stainless Steel Pipes and Welded Fittings |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57155314A (en) * | 1981-02-25 | 1982-09-25 | Sumitomo Metal Ind Ltd | Refining of high-cr steel |
JPS61223117A (en) * | 1985-03-29 | 1986-10-03 | Kawasaki Steel Corp | Method for reducing and recovering metallic oxide in molten slag |
JPS6475646A (en) * | 1987-09-18 | 1989-03-22 | Nisshin Steel Co Ltd | Manufacture of stainless steel |
JPH06331577A (en) * | 1993-05-18 | 1994-12-02 | Nisshin Steel Co Ltd | Determination of oxygen in oxide to be reduced contained in slag in steelmaking |
JPH08260030A (en) * | 1995-03-20 | 1996-10-08 | Nisshin Steel Co Ltd | Method for vacuum-refining extra-low carbon stainless steel |
JPH09296213A (en) * | 1996-05-08 | 1997-11-18 | Nisshin Steel Co Ltd | Method for melting chromium-containing steel and apparatus therefor |
JP2006213966A (en) * | 2005-02-03 | 2006-08-17 | Nisshin Steel Co Ltd | Method for decarburizing molten stainless steel and method for manufacturing extra-low carbon stainless steel |
-
2007
- 2007-11-13 JP JP2007294228A patent/JP5285895B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57155314A (en) * | 1981-02-25 | 1982-09-25 | Sumitomo Metal Ind Ltd | Refining of high-cr steel |
JPS61223117A (en) * | 1985-03-29 | 1986-10-03 | Kawasaki Steel Corp | Method for reducing and recovering metallic oxide in molten slag |
JPS6475646A (en) * | 1987-09-18 | 1989-03-22 | Nisshin Steel Co Ltd | Manufacture of stainless steel |
JPH06331577A (en) * | 1993-05-18 | 1994-12-02 | Nisshin Steel Co Ltd | Determination of oxygen in oxide to be reduced contained in slag in steelmaking |
JPH08260030A (en) * | 1995-03-20 | 1996-10-08 | Nisshin Steel Co Ltd | Method for vacuum-refining extra-low carbon stainless steel |
JPH09296213A (en) * | 1996-05-08 | 1997-11-18 | Nisshin Steel Co Ltd | Method for melting chromium-containing steel and apparatus therefor |
JP2006213966A (en) * | 2005-02-03 | 2006-08-17 | Nisshin Steel Co Ltd | Method for decarburizing molten stainless steel and method for manufacturing extra-low carbon stainless steel |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101243246B1 (en) | 2009-07-14 | 2013-03-13 | 주식회사 포스코 | Manufacturing method of austenitic stainless steel plate with good cleanness |
JP2013072106A (en) * | 2011-09-27 | 2013-04-22 | Nippon Yakin Kogyo Co Ltd | Method for producing boron-containing stainless steel |
WO2018058953A1 (en) * | 2016-09-27 | 2018-04-05 | 东北大学 | Method of removing carbon in high-carbon copper-containing molten iron by injection of carbon dioxide |
CN107470578A (en) * | 2017-07-31 | 2017-12-15 | 四川维珍高新材料有限公司 | A kind of centrifuge annular cast and its preparation technology |
CN107470578B (en) * | 2017-07-31 | 2019-05-07 | 四川维珍高新材料有限公司 | A kind of centrifuge annular cast and its preparation process |
JP7469636B2 (en) | 2020-05-13 | 2024-04-17 | 日本製鉄株式会社 | Stainless Steel Pipes and Welded Fittings |
CN114107603A (en) * | 2021-11-26 | 2022-03-01 | 攀钢集团江油长城特殊钢有限公司 | Smelting method of low-silicon low-aluminum tungsten-containing boron-containing high-chromium martensitic stainless steel |
Also Published As
Publication number | Publication date |
---|---|
JP5285895B2 (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6066412B2 (en) | Fe-Ni-Cr alloy having excellent surface properties and method for producing the same | |
JP5285895B2 (en) | Stainless steel refining method | |
JP5687590B2 (en) | Method for producing boron-containing stainless steel | |
JP6990337B1 (en) | Ni-based alloy with excellent surface properties and its manufacturing method | |
JP6603033B2 (en) | High Mn content Fe-Cr-Ni alloy and method for producing the same | |
JP6937190B2 (en) | Ni-Cr-Mo-Nb alloy and its manufacturing method | |
JP6222806B2 (en) | High corrosion resistance duplex stainless steel with excellent brittleness resistance | |
EP2749669B1 (en) | Boron-containing stainless steel having excellent hot workability and excellent surface properties | |
JP4285302B2 (en) | Stainless steel containing fine inclusions and method for producing the same | |
CN109804092A (en) | Flux-cored wire cold-rolled steel sheet and its manufacturing method | |
JP5961296B2 (en) | Method of overlaying stainless steel for welding | |
JP4656007B2 (en) | Method of processing molten iron by adding Nd and Ca | |
CN113046616B (en) | Stainless steel excellent in surface properties and method for producing same | |
JP6410311B2 (en) | Stainless steel refining method | |
JP3510989B2 (en) | Refining method of Si alloy iron and stainless steel used for refining stainless steel | |
JP3825570B2 (en) | Austenitic stainless steel slab excellent in workability and method for producing the same | |
JP7369266B1 (en) | Fe-Cr-Ni alloy with excellent surface properties and its manufacturing method | |
WO2024084877A1 (en) | Ni-cr-fe-mo-based alloy having excellent surface properties, and method for producing same | |
JP2000087128A (en) | Secondary refining method of molten steel | |
JP3836249B2 (en) | Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel | |
JP2012251194A (en) | Stainless steel and method for producing the same | |
JP4207324B2 (en) | Austenitic stainless steel sheet and manufacturing method thereof | |
CN117286318A (en) | Low-oxygen smelting method of chromium-nickel-molybdenum stainless steel band | |
JP4655127B2 (en) | Method for producing austenitic stainless steel slab | |
JP3840096B2 (en) | Method for producing Fe-Ni alloy for low thermal expansion shadow mask with excellent rust resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5285895 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |