JP2009117755A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2009117755A
JP2009117755A JP2007291892A JP2007291892A JP2009117755A JP 2009117755 A JP2009117755 A JP 2009117755A JP 2007291892 A JP2007291892 A JP 2007291892A JP 2007291892 A JP2007291892 A JP 2007291892A JP 2009117755 A JP2009117755 A JP 2009117755A
Authority
JP
Japan
Prior art keywords
semiconductor region
insulating film
electrode
main surface
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007291892A
Other languages
Japanese (ja)
Other versions
JP4293272B2 (en
Inventor
Katsuyuki Torii
克行 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2007291892A priority Critical patent/JP4293272B2/en
Priority to US12/682,383 priority patent/US8207612B2/en
Priority to EP08847499.4A priority patent/EP2209142B1/en
Priority to CN2008801110162A priority patent/CN101821853B/en
Priority to PCT/JP2008/067009 priority patent/WO2009060670A1/en
Publication of JP2009117755A publication Critical patent/JP2009117755A/en
Application granted granted Critical
Publication of JP4293272B2 publication Critical patent/JP4293272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4905Shape
    • H01L2224/49051Connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/85951Forming additional members, e.g. for reinforcing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of preventing breakage of an interlayer insulating film and breakage of an electrode due to bonding while securing bonding strength, and improving electrical characteristics, and to provide a manufacturing method thereof. <P>SOLUTION: A semiconductor element 1 mounted on the semiconductor device is provided with an interlayer insulating film 12 having an extending section 121 which covers a gate electrode 116 and extends in a first direction, a connecting section 122 which connects, at fixed intervals in the first direction, the extending sections 121 adjacent to each other in a second direction, and an opening section 123 which has its opening shape defined by the extending section 121 and the connecting section 122 and exposes the main surface of a base region 112 and the main surface of an emitter region 113. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置及びその製造方法に関し、特に半導体素子の電極に外部配線が接続される半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device in which external wiring is connected to an electrode of a semiconductor element and a manufacturing method thereof.

IGBT(insulated gate bipolar transistor)、パワーMOSFET(metal oxide semiconductor field effect transistor)等の半導体素子は半導体装置に組み込まれる。この種の半導体素子は大電流を高速に制御することができるスイッチングデバイスである。   Semiconductor elements such as IGBTs (insulated gate bipolar transistors) and power MOSFETs (metal oxide semiconductor field effect transistors) are incorporated in semiconductor devices. This type of semiconductor element is a switching device that can control a large current at high speed.

半導体素子例えばIGBTは、コレクタ領域と、ベース領域と、エミッタ領域と、ゲート絶縁膜と、ゲート電極とを備えている。コレクタ領域は、基板の一方の主面上にエピタキシャル成長又は基板の一方の主面部に拡散により形成されている。ベース領域は、基板の他方の主面部に形成されている。エミッタ領域は、ベース領域の表面部に形成されている。ゲート絶縁膜は少なくともベース領域の表面に形成されており、ゲート電極はゲート絶縁膜上に形成されている。   A semiconductor element such as an IGBT includes a collector region, a base region, an emitter region, a gate insulating film, and a gate electrode. The collector region is formed by epitaxial growth on one main surface of the substrate or diffusion on one main surface portion of the substrate. The base region is formed on the other main surface portion of the substrate. The emitter region is formed on the surface portion of the base region. The gate insulating film is formed at least on the surface of the base region, and the gate electrode is formed on the gate insulating film.

半導体素子にはゲート電極がストライプ状に形成されることにより高耐圧でかつゲート容量が小さいストライプ構造のIGBTが採用されている。この構造を採用するIGBTにおいては、ゲート電極がゲート長方向に向かって基板主面上を延伸し、このゲート電極がゲート幅方向に一定間隔において複数配列され、上方から見てゲート幅方向にゲート電極を挟み込むようにエミッタ領域及びベース領域の表面の一部がゲート長方向にストライプ状に露出する。この表面が露出されたエミッタ領域及びベース領域にはエミッタ電極(エミッタ配線)が電気的に接続される。エミッタ電極はゲート電極との間に挟まれた層間絶縁膜上に形成されており、層間絶縁膜はゲート電極上を覆うとともに上述のエミッタ領域及びベース領域の一部が露出した領域上(に対応する箇所)においてゲート長方向にストライプ状の開口(コンタクト開口)を備えている。つまり、ゲート幅方向に切断した断面において、上述の開口によって隣り合う層間絶縁膜同士に隙間を有する凸状の層間絶縁膜の平面形状はゲート電極の平面形状と同様にストライプ形状になる。このようなストライプ構造を採用するIGBTは、エミッタ領域及びベース領域とエミッタ電極との間のコンタクト面積を増加し、電流容量を増大することができるので、電界集中の発生を減少し、大電流化並びに高耐圧化を実現することができる。   A semiconductor device employs a stripe-structure IGBT having a high breakdown voltage and a small gate capacitance by forming gate electrodes in a stripe shape. In an IGBT employing this structure, the gate electrode extends on the main surface of the substrate in the gate length direction, and a plurality of gate electrodes are arranged at regular intervals in the gate width direction. A part of the surface of the emitter region and the base region is exposed in a stripe shape in the gate length direction so as to sandwich the electrode. An emitter electrode (emitter wiring) is electrically connected to the emitter region and the base region where the surface is exposed. The emitter electrode is formed on an interlayer insulating film sandwiched between the gate electrode, and the interlayer insulating film covers the gate electrode and corresponds to a region where the above-mentioned emitter region and base region are partially exposed (corresponding to Striped openings (contact openings) in the gate length direction. That is, in the cross-section cut in the gate width direction, the planar shape of the convex interlayer insulating film having a gap between adjacent interlayer insulating films due to the above-described opening is a stripe shape similar to the planar shape of the gate electrode. An IGBT adopting such a stripe structure can increase the contact area between the emitter region and the base region and the emitter electrode and increase the current capacity, thereby reducing the occurrence of electric field concentration and increasing the current. In addition, a high breakdown voltage can be realized.

IGBTのエミッタ電極はボンディングワイヤを通してエミッタ用リード(外部端子)に電気的に接続され、ゲート電極にも同様にボンディングワイヤを通してゲート用リードが電気的に接続される。コレクタ領域は例えば基板の他方の主面に設けられたコレクタ電極がコレクタ用リードに電気的に接続される。ボンディングワイヤは、一般的にワイヤボンディング装置を使用し、超音波振動を併用した熱圧着によりボンディングされている。そして、IGBTは各リードのインナー部とともに樹脂封止され、半導体装置として組み立てられる。   The emitter electrode of the IGBT is electrically connected to the emitter lead (external terminal) through a bonding wire, and the gate lead is also electrically connected to the gate electrode through the bonding wire. In the collector region, for example, a collector electrode provided on the other main surface of the substrate is electrically connected to a collector lead. Bonding wires are generally bonded by thermocompression bonding using ultrasonic vibration using a wire bonding apparatus. The IGBT is resin-sealed together with the inner part of each lead and assembled as a semiconductor device.

なお、この種の半導体装置に関しては、例えば下記特許文献1及び特許文献2に記載されている。
特開平10−22322号公報 特開2002−222826号公報
This type of semiconductor device is described in, for example, Patent Document 1 and Patent Document 2 below.
Japanese Patent Laid-Open No. 10-22322 JP 2002-222826 A

しかしながら、前述の半導体装置においては、以下の点について配慮がなされていなかった。ストライプ構造を有するIGBTの直上のエミッタ電極に直接ボンディングワイヤが超音波振動のエネルギによりボンディングされると、層間絶縁膜やその下のIGBT(セル)のゲート電極に剥がれや破壊が生じる。詳細には、IGBTにおいては、ゲート電極及び層間絶縁膜の平面形状がゲート長方向に細長いストライプ形状を備えているので、ゲート電極及び層間絶縁膜の機械的強度が弱く、かつ下地との接着面積が少なく、しかも基板主面から突出した形状であるために、ボンディングワイヤがボンディングされた際に、層間絶縁膜やゲート電極に剥がれや破壊が生じる。特に、層間絶縁膜にゲート幅方向の応力が生じると上記問題が生じ易い。   However, in the semiconductor device described above, no consideration has been given to the following points. When a bonding wire is bonded directly to the emitter electrode directly above the IGBT having a stripe structure by the energy of ultrasonic vibration, the interlayer insulating film and the gate electrode of the IGBT (cell) below it are peeled off or broken. Specifically, in the IGBT, since the planar shape of the gate electrode and the interlayer insulating film has a stripe shape elongated in the gate length direction, the mechanical strength of the gate electrode and the interlayer insulating film is weak, and the bonding area with the base In addition, since the shape protrudes from the main surface of the substrate, the interlayer insulating film and the gate electrode are peeled off or broken when the bonding wire is bonded. In particular, the above problem is likely to occur when stress in the gate width direction is generated in the interlayer insulating film.

また、IGBTの微細化に伴い、IGBTにトレンチ構造が採用されると、基板主面上においてゲート電極の平面面積(ゲート幅寸法)が縮小され、この縮小に伴いゲート電極上の層間絶縁膜の平面面積(ゲート幅方向においてコンタクト開口から隣接する次段のコンタクト開口までの幅寸法)が縮小される。つまり、基板主面と層間絶縁膜との間の接着面積が更に縮小されるので、層間絶縁膜やゲート電極の剥がれや破壊が顕著に生じる。更に、半導体装置において大電流対応のために、ボンディングワイヤ径を太くした場合、ボンディングに必要な超音波振動のエネルギが増大するので、層間絶縁膜やゲート電極の剥がれや破壊がより一層顕著に生じる。   In addition, when the trench structure is adopted in the IGBT due to the miniaturization of the IGBT, the planar area (gate width dimension) of the gate electrode is reduced on the main surface of the substrate. With this reduction, the interlayer insulating film on the gate electrode is reduced. The planar area (width dimension from the contact opening to the adjacent contact opening in the gate width direction) is reduced. That is, since the adhesion area between the main surface of the substrate and the interlayer insulating film is further reduced, the interlayer insulating film and the gate electrode are significantly peeled off or broken. Furthermore, if the bonding wire diameter is increased in order to cope with a large current in a semiconductor device, the energy of ultrasonic vibration necessary for bonding increases, so that the interlayer insulation film and the gate electrode are more exfoliated and broken. .

このような層間絶縁膜やゲート電極に剥がれや破壊が生じると、エミッタ電極(エミッタ領域)とゲート電極との間に絶縁不良が発生する。程度が悪い場合には、エミッタ電極とゲート電極との間が電気的に短絡する。   When such an interlayer insulating film or gate electrode is peeled off or broken, an insulation failure occurs between the emitter electrode (emitter region) and the gate electrode. When the degree is poor, the emitter electrode and the gate electrode are electrically short-circuited.

層間絶縁膜やゲート電極の剥がれや破壊を抑制するには、ボンディング装置(ボンディング処理時)の超音波パワーを弱める方法、圧着荷重を軽減する方法がある。しかしながら、このような方法を採用した場合には、エミッタ電極とボンディングワイヤとの間に十分なボンディング強度(機械的な接合強度)を得ることができない。ボンディング強度が不十分な場合には、半導体製造プロセスにおける樹脂封止時や半導体装置の実稼動中に、エミッタ電極からボンディングワイヤに剥がれが生じる。   In order to suppress peeling and destruction of the interlayer insulating film and the gate electrode, there are a method of weakening the ultrasonic power of the bonding apparatus (during the bonding process) and a method of reducing the pressing load. However, when such a method is adopted, sufficient bonding strength (mechanical bonding strength) cannot be obtained between the emitter electrode and the bonding wire. When the bonding strength is insufficient, the bonding wire peels off from the emitter electrode during resin sealing in the semiconductor manufacturing process or during actual operation of the semiconductor device.

また、層間絶縁膜やゲート電極の剥がれや破壊を半導体素子側において抑制するには、ボンディングワイヤがボンディングされる領域にIGBT(セル)を配置しない方法、エミッタ電極を膜厚の厚いアルミニウム膜により形成する方法がある。しかしながら、前者の方法においては、基板の一部の領域にセルが存在しないので、IGBTの主要な電気的特性であるオン電圧が著しく増加するか、半導体素子のサイズが増大する。また、後者の方法においては、エミッタ電極によってボンディングワイヤのボンディング時の衝撃を吸収することができ、或いはエミッタ電極下に衝撃を伝搬しないようにすることができる。しかしながら、半導体製造プロセスにおいて、原材料費用の増加、電極成膜時間の増加等に伴い、製造コストが増大する。更に、エミッタ電極の膜厚の増加は半導体素子の動作によるエミッタ電極及びエミッタ電極に接する箇所との線膨張係数の違いによる膜ストレスの増加に繋がり、IGBTに不要なストレスが加わるので、IGBTの電気的特性に変化が生じる。   In addition, in order to suppress peeling and destruction of the interlayer insulating film and gate electrode on the semiconductor element side, a method in which no IGBT (cell) is arranged in the bonding wire bonding region, and the emitter electrode is formed of a thick aluminum film There is a way to do it. However, in the former method, since no cell exists in a part of the substrate, the on-voltage which is the main electrical characteristic of the IGBT is remarkably increased or the size of the semiconductor element is increased. In the latter method, the impact at the time of bonding of the bonding wire can be absorbed by the emitter electrode, or the impact can be prevented from propagating under the emitter electrode. However, in the semiconductor manufacturing process, the manufacturing cost increases as the raw material cost increases and the electrode film formation time increases. Furthermore, an increase in the thickness of the emitter electrode leads to an increase in film stress due to the difference in linear expansion coefficient between the emitter electrode and the portion in contact with the emitter electrode due to the operation of the semiconductor element, and an unnecessary stress is applied to the IGBT. Changes in the physical characteristics.

本発明は上記課題を解決するためになされたものである。従って、本発明は、ボンディング強度を確保しつつ、ボンディングに伴う層間絶縁膜の破壊や電極の破壊を防止することができる半導体装置及びその製造方法を提供することである。更に、本発明は、半導体素子の電気的特性が良好な半導体装置及びその製造方法を提供することである。更に、本発明は、製造コストを削減することができる半導体装置及びその製造方法を提供することである。   The present invention has been made to solve the above problems. Accordingly, an object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can prevent the breakdown of an interlayer insulating film and the electrode due to bonding while securing bonding strength. Furthermore, this invention is providing the semiconductor device with the favorable electrical property of a semiconductor element, and its manufacturing method. Furthermore, this invention is providing the semiconductor device which can reduce manufacturing cost, and its manufacturing method.

上記課題を解決するために、本発明の実施の形態に係る第1の特徴は、半導体装置において、第1の方向において対向する第1の辺及び第2の辺と第1の方向と交差する第2の方向において対向する第3の辺及び第4の辺とを有する基板と、基板上において第2の方向に複数配設され、かつ第1の主面を露出して配設され、第1の導電型を有する第1の半導体領域と、第1の半導体領域内において第2の方向に複数配設され、かつ第1の半導体領域の第1の主面に第2の主面が露出され、第1の導電型と反対の第2の導電型を有する第2の半導体領域と、第1の半導体領域の第2の半導体領域と第2の方向に隣接する他の第1の半導体領域の他の第2の半導体領域との間に渡って配設された制御電極と、制御電極上を覆い第1の方向に延伸する延伸部、第2の方向に隣接する延伸部同士を第1の方向に一定間隔において連結する連結部及び延伸部と連結部とにより開口形状が規定され第1の半導体領域の第1の主面と第2の半導体領域の第2の主面とを露出する開口部を有する層間絶縁膜と、層間絶縁膜上に配設され、層間絶縁膜の開口部を通して第1の半導体領域の第1の主面及び第2の半導体領域の第2の主面に電気的に接続された電極とを備える。   In order to solve the above problems, a first feature according to an embodiment of the present invention is that, in a semiconductor device, the first side and the second side that face each other in the first direction intersect the first direction. A plurality of substrates having a third side and a fourth side facing each other in the second direction; a plurality of substrates arranged in the second direction on the substrate; the first main surface being exposed; A first semiconductor region having one conductivity type, a plurality of first semiconductor regions disposed in the second direction in the first semiconductor region, and the second main surface exposed at the first main surface of the first semiconductor region And a second semiconductor region having a second conductivity type opposite to the first conductivity type, and another first semiconductor region adjacent to the second semiconductor region of the first semiconductor region in the second direction. A control electrode disposed between the second semiconductor region and the other second semiconductor region, covering the control electrode and extending in the first direction The first main surface of the first semiconductor region having an opening shape defined by the extending portion, the connecting portion that connects the extending portions adjacent to each other in the second direction in the first direction, and the extending portion and the connecting portion. And an interlayer insulating film having an opening exposing the second main surface of the second semiconductor region, and the first insulating layer disposed on the interlayer insulating film and through the opening of the interlayer insulating film. And an electrode electrically connected to the main surface and the second main surface of the second semiconductor region.

第1の特徴に係る半導体装置において、第1の半導体領域の第2の半導体領域と第2の方向に隣接する他の第1の半導体領域の他の第2の半導体領域との間において、第1の半導体領域の第1の主面から基板側に第1の半導体領域を貫通して配設され、第1の方向に延伸する穴と、穴の側面及び穴の底面に配設された絶縁膜と、を更に備え、制御電極は、穴に絶縁膜を介在して埋設されることが好ましい。   In the semiconductor device according to the first feature, between the second semiconductor region of the first semiconductor region and another second semiconductor region of the other first semiconductor region adjacent in the second direction, A hole extending through the first semiconductor region from the first main surface of the first semiconductor region to the substrate side and extending in the first direction; an insulating surface disposed on a side surface of the hole and a bottom surface of the hole; The control electrode is preferably embedded in the hole with an insulating film interposed therebetween.

第1の特徴に係る半導体装置において、第1の半導体領域の第2の半導体領域と第2の方向に隣接する他の第1の半導体領域の他の第2の半導体領域との間に配設され、かつ第3の主面が露出され、第2の導電型を有する第3の半導体領域と、第3の半導体領域の第3の主面上に配設された絶縁膜と、を更に備え、制御電極は、第3の半導体領域の第3の主面上に絶縁膜を介在して配設されることが好ましい。   In the semiconductor device according to the first feature, the semiconductor device is disposed between the second semiconductor region of the first semiconductor region and the other second semiconductor region of the other first semiconductor region adjacent in the second direction. And a third semiconductor region having the second main surface exposed and having the second conductivity type, and an insulating film disposed on the third main surface of the third semiconductor region. The control electrode is preferably disposed on the third main surface of the third semiconductor region with an insulating film interposed.

第1の特徴に係る半導体装置において、層間絶縁膜は、延伸部、連結部及び開口部によりメッシュ形状において構成されていることが好ましい。   In the semiconductor device according to the first feature, the interlayer insulating film is preferably configured in a mesh shape by extending portions, connecting portions, and openings.

第1の特徴に係る半導体装置において、層間絶縁膜の連結部は電極のボンディングエリアの直下の領域に配設されていることが好ましい。   In the semiconductor device according to the first feature, the connecting portion of the interlayer insulating film is preferably disposed in a region immediately below the bonding area of the electrode.

第1の特徴に係る半導体装置において、電極にはワイヤ、クリップリードのいずれかの外部配線が電気的に接続されていることが好ましい。   In the semiconductor device according to the first feature, it is preferable that an external wiring of either a wire or a clip lead is electrically connected to the electrode.

本発明の実施の形態に係る第2の特徴は、半導体装置の製造方法において、第1の方向において対向する第1の辺及び第2の辺と第1の方向と交差する第2の方向において対向する第3の辺及び第4の辺とを有する基板と、基板上において第2の方向に複数配設され、かつ第1の主面を露出して配設され、第1の導電型を有する第1の半導体領域と、第1の半導体領域内において第2の方向に複数配設され、かつ第1の半導体領域の第1の主面に第2の主面が露出され、第1の導電型と反対の第2の導電型を有する第2の半導体領域と、第1の半導体領域の第2の半導体領域と第2の方向に隣接する他の第1の半導体領域の他の第2の半導体領域との間に渡って配設された制御電極と、を形成する工程と、制御電極上を覆い第1の方向に延伸する延伸部、第2の方向に隣接する延伸部同士を第1の方向に一定間隔において連結する連結部及び延伸部と連結部とにより開口形状が規定され第1の半導体領域の第1の主面と第2の半導体領域の第2の主面とを露出する開口部を有する層間絶縁膜を形成する工程と、層間絶縁膜上に配設され、層間絶縁膜の開口部を通して第1の半導体領域の第1の主面及び第2の半導体領域の第2の主面に電気的に接続された電極を形成する工程と、電極上にこの電極に電気的に接続される外部配線を形成する工程とを備える。   A second feature of the embodiment of the present invention is that, in the method of manufacturing a semiconductor device, the first side facing in the first direction and the second direction intersecting the first side with the second side. A substrate having a third side and a fourth side facing each other, a plurality of substrates arranged in the second direction on the substrate and arranged with the first main surface exposed, and having the first conductivity type A first semiconductor region having a first semiconductor region, a plurality of first semiconductor regions disposed in the second direction in the first semiconductor region, and the second main surface exposed at the first main surface of the first semiconductor region; A second semiconductor region having a second conductivity type opposite to the conductivity type; another second semiconductor region adjacent to the second semiconductor region of the first semiconductor region in the second direction; Forming a control electrode disposed between the semiconductor region and extending in the first direction covering the control electrode An opening shape is defined by the extending portion, the connecting portion connecting the extending portions adjacent to each other in the second direction at a constant interval, and the extending portion and the connecting portion, and the first main region of the first semiconductor region Forming an interlayer insulating film having an opening exposing the surface and the second main surface of the second semiconductor region, and the first semiconductor disposed on the interlayer insulating film and through the opening of the interlayer insulating film Forming an electrode electrically connected to the first main surface of the region and the second main surface of the second semiconductor region, and forming an external wiring electrically connected to the electrode on the electrode A process.

第2の特徴に係る半導体装置の製造方法において、層間絶縁膜を形成する工程はボンディングエリアの直下の領域に連結部を配設する層間絶縁膜を形成する工程であり、外部配線を形成する工程はボンディングエリアにおいて電極に電気的に接続する外部配線を形成する工程であることが好ましい。   In the method of manufacturing a semiconductor device according to the second feature, the step of forming an interlayer insulating film is a step of forming an interlayer insulating film in which a connecting portion is provided in a region immediately below the bonding area, and a step of forming external wiring Is preferably a step of forming an external wiring electrically connected to the electrode in the bonding area.

本発明によれば、ボンディング強度を確保しつつ、ボンディングに伴う層間絶縁膜の破壊や電極の破壊を防止することができる半導体装置及びその製造方法を提供することができる。更に、本発明によれば、半導体素子の電気的特性が良好な半導体装置及びその製造方法を提供することができる。更に、本発明によれば、製造コストを削減することができる半導体装置及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor device which can prevent the destruction of the interlayer insulation film and the destruction of an electrode accompanying bonding, and its manufacturing method can be provided, ensuring bonding strength. Furthermore, according to the present invention, it is possible to provide a semiconductor device having good electrical characteristics of a semiconductor element and a method for manufacturing the same. Furthermore, according to the present invention, it is possible to provide a semiconductor device and a manufacturing method thereof that can reduce manufacturing costs.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、現実のものとは異なる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic and different from actual ones. In addition, there may be a case where the dimensional relationships and ratios are different between the drawings.

また、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は各構成部品の配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is to arrange the components and the like as follows. Not specific. The technical idea of the present invention can be variously modified within the scope of the claims.

(第1の実施の形態)
本発明の第1の実施の形態は、トレンチ構造を有するIGBTからなる半導体素子、それを搭載した電力用半導体装置及びその製造方法に本発明を適用した例を説明するものである。
(First embodiment)
The first embodiment of the present invention describes an example in which the present invention is applied to a semiconductor element made of an IGBT having a trench structure, a power semiconductor device on which the semiconductor element is mounted, and a manufacturing method thereof.

[半導体素子(IGBT)のデバイス構造]
図1及び図4に示すように、第1の実施の形態に係る半導体装置に搭載された半導体素子1は、第1の方向において対向する第1の辺101及び第2の辺102と第1の方向と交差する第2の方向において対向する第3の辺103及び第4の辺104とを有する基板111(特に図1及び図4参照。)と、基板111上において第2の方向に複数配設され、かつ第1の主面を露出して配設され、第1の導電型を有する第1の半導体領域112(特に図1及び図2参照。)と、第1の半導体領域112内において第2の方向に複数配設され、かつ第1の半導体領域112の第1の主面に第2の主面が露出され、第1の導電型と反対の第2の導電型を有する第2の半導体領域113と、第1の半導体領域112の第2の半導体領域113と第2の方向に隣接する他の第1の半導体領域112の他の第2の半導体領域113との間に渡って配設されたゲート電極(制御電極)116と、ゲート電極116上を覆い第1の方向に延伸する延伸部121、第2の方向に隣接する延伸部121同士を第1の方向に一定間隔において連結する連結部122及び延伸部121と連結部122とにより開口形状が規定され第1の半導体領域112の第1の主面と第2の半導体領域113の第2の主面とを露出する開口部123を有する層間絶縁膜12(特に図1及び図3参照。)と、層間絶縁膜12上に配設され、層間絶縁膜12の開口部123を通して第1の半導体領域112の第1の主面及び第2の半導体領域113の第2の主面に電気的に接続された電極13とを備えている。
[Device structure of semiconductor element (IGBT)]
As shown in FIGS. 1 and 4, the semiconductor element 1 mounted on the semiconductor device according to the first embodiment includes a first side 101 and a second side 102 that face each other in the first direction. A substrate 111 having a third side 103 and a fourth side 104 facing each other in a second direction intersecting with the direction of the substrate 104 (see FIGS. 1 and 4 in particular), and a plurality of substrates 111 in the second direction on the substrate 111. A first semiconductor region 112 (see FIG. 1 and FIG. 2 in particular) having a first conductivity type, which is disposed with the first main surface exposed, and in the first semiconductor region 112 The second main surface is exposed in the second direction, the second main surface is exposed at the first main surface of the first semiconductor region 112, and has a second conductivity type opposite to the first conductivity type. The second semiconductor region 113, the second semiconductor region 113 of the first semiconductor region 112, and the second semiconductor region 113 A gate electrode (control electrode) 116 disposed between the other second semiconductor region 113 adjacent to the other first semiconductor region 112 and the first direction covering the gate electrode 116 in the first direction An opening shape is defined by the extending portion 121 extending in the first direction, the connecting portion 122 connecting the extending portions 121 adjacent to each other in the second direction at a constant interval, and the extending portion 121 and the connecting portion 122. An interlayer insulating film 12 (see particularly FIGS. 1 and 3) having an opening 123 exposing the first main surface of the semiconductor region 112 and the second main surface of the second semiconductor region 113; and an interlayer insulating film The electrode 13 is disposed on the electrode 12 and electrically connected to the first main surface of the first semiconductor region 112 and the second main surface of the second semiconductor region 113 through the opening 123 of the interlayer insulating film 12. And.

半導体素子1はIGBT11であり、このIGBT11は、図1及び図2に示すように、第1の実施の形態において、トレンチゲート構造を有するIGBTにより構成されている。すなわち、IGBT11は、コレクタ領域(又はドレイン領域)であるp型の第2の半導体領域110(以下、コレクタ領域110という。)と、n型ベース領域でありかつn型の第1の半導体領域である基板111(以下、ベース領域111という。)と、p型ベース領域であるp型の第1の半導体領域112(以下、ベース領域112という。)と、エミッタ領域であるn型の第2の半導体領域113(以下、エミッタ領域113という。)と、穴(トレンチ)114と、ゲート絶縁膜115と、ゲート電極116と、コレクタ電極(第1の電極)と、エミッタ電極(第2の電極)13とを備えて構成されている。ここで、「ゲート電極」とは、主電流の流れを制御することができる電極という意味において使用され、主電流の流れを制御することができる電極であれば、半導体領域、拡散領域、電極等が含まれる。   The semiconductor element 1 is an IGBT 11, and the IGBT 11 is composed of an IGBT having a trench gate structure in the first embodiment, as shown in FIGS. That is, the IGBT 11 includes a p-type second semiconductor region 110 (hereinafter referred to as a collector region 110) that is a collector region (or a drain region), and an n-type base region and an n-type first semiconductor region. A substrate 111 (hereinafter referred to as base region 111), a p-type first semiconductor region 112 (hereinafter referred to as base region 112) that is a p-type base region, and an n-type second semiconductor that is an emitter region. Semiconductor region 113 (hereinafter referred to as emitter region 113), hole (trench) 114, gate insulating film 115, gate electrode 116, collector electrode (first electrode), emitter electrode (second electrode) 13. Here, the “gate electrode” is used in the sense of an electrode capable of controlling the flow of the main current, and may be a semiconductor region, a diffusion region, an electrode, or the like as long as the electrode can control the flow of the main current. Is included.

ベース領域(基板)111は、図4に示すように、第1の方向において対向する第1の辺101及び第2の辺102と、第2の方向において対向する第3の辺103及び第4の辺104とを有し、平面方形状により構成されている。ベース領域111は、この半導体素子1の製造プロセスにおいて、シリコン単結晶ウエーハによりIGBT(セル)11を製作した後に、ダイシング工程により切り出されたものであり、半導体チップである。ベース領域111の平面形状は必ずしもこの平面形状に限定されるものではないが、ベース領域111は第1の辺101及び第2の辺102を長辺、第3の辺103及び第4の辺104を短辺とする平面長方形により構成されている。   As shown in FIG. 4, the base region (substrate) 111 includes a first side 101 and a second side 102 that face each other in the first direction, and a third side 103 and a fourth side that face each other in the second direction. The side 104 is configured by a planar rectangular shape. The base region 111 is a semiconductor chip that is cut out by a dicing process after the IGBT (cell) 11 is manufactured by a silicon single crystal wafer in the manufacturing process of the semiconductor element 1. Although the planar shape of the base region 111 is not necessarily limited to this planar shape, the base region 111 has the first side 101 and the second side 102 as long sides, and the third side 103 and the fourth side 104. It is comprised by the planar rectangle which makes short side.

ここで、第1の実施の形態において、「第1の方向」とは、図2中、図3中及び図4中の上下方向であり、「Y方向」である。また、「第2の方向」とは、同図中の左右方向であり、「X方向」である。   Here, in the first embodiment, the “first direction” is the vertical direction in FIGS. 2, 3, and 4, and is the “Y direction”. Further, the “second direction” is the left-right direction in the figure and is the “X direction”.

図1に示すように、ベース領域111には第1の実施の形態においてn型シリコン単結晶基板が使用されている。このシリコン単結晶基板の一方の主面(図1中、下側表面上)にはエピタキシャル成長法又は拡散法によりp型不純物を拡散して形成されたp型の第2の半導体領域110が配設されている。このp型の第2の半導体領域110はIGBT11のコレクタ領域として機能する。   As shown in FIG. 1, an n-type silicon single crystal substrate is used for the base region 111 in the first embodiment. A p-type second semiconductor region 110 formed by diffusing p-type impurities by an epitaxial growth method or a diffusion method is disposed on one main surface (on the lower surface in FIG. 1) of the silicon single crystal substrate. Has been. This p-type second semiconductor region 110 functions as a collector region of the IGBT 11.

p型のベース領域112はn型のベース領域111の主面上に不純物拡散法によりp型不純物を拡散して形成される。エミッタ領域(又はソース領域)113は、p型のベース領域112の主面部にn型不純物を拡散して形成される。   The p-type base region 112 is formed by diffusing p-type impurities on the main surface of the n-type base region 111 by an impurity diffusion method. The emitter region (or source region) 113 is formed by diffusing n-type impurities in the main surface portion of the p-type base region 112.

穴114は、図1に示すように、エミッタ領域113の主面からその深さ方向(基板側)に向い、p型のベース領域112を通過し、n型のベース領域111に達する深さを備えている。更に、図2に示すように、第1の辺101から第2の辺102まで第1の方向に向かって穴114の長手方向が延在し、この穴114は第3の辺103から第4の辺104に向かって第2の方向に一定間隔において複数配列されている。穴114の平面形状はストライプ形状である。穴114は例えばリアクティブイオンエッチング(RIE)等の異方性エッチングを用いて形成されている。   As shown in FIG. 1, the hole 114 extends from the main surface of the emitter region 113 in the depth direction (substrate side), passes through the p-type base region 112, and reaches the n-type base region 111. I have. Further, as shown in FIG. 2, the longitudinal direction of the hole 114 extends in the first direction from the first side 101 to the second side 102, and the hole 114 extends from the third side 103 to the fourth side. A plurality of lines are arranged at regular intervals in the second direction toward the side 104. The planar shape of the hole 114 is a stripe shape. The hole 114 is formed by using anisotropic etching such as reactive ion etching (RIE).

ゲート絶縁膜115は穴114の内壁並びに底面に沿って配設されている。ゲート絶縁膜115には例えば熱酸化法、CVD法等の成膜方法を用いて形成されたシリコン酸化膜を実用的に使用することができる。また、ゲート絶縁膜115には、シリコン窒化膜や、シリコン酸化膜とシリコン窒化膜とを組み合わせた複合膜が使用されてもよい。   The gate insulating film 115 is disposed along the inner wall and the bottom surface of the hole 114. For the gate insulating film 115, for example, a silicon oxide film formed by using a film forming method such as a thermal oxidation method or a CVD method can be practically used. The gate insulating film 115 may be a silicon nitride film or a composite film in which a silicon oxide film and a silicon nitride film are combined.

ゲート電極116は穴114の内部にゲート絶縁膜115を介在して埋設されている。第1の実施の形態において、ゲート電極116には、例えば導電性を確保するn型不純物が導入されたシリコン多結晶膜を実用的に使用することができる。ゲート電極116は、穴114の内部に埋設された後、エッチング法又はケミカルメカニカルポリッシング(CMP)法を用いて形成される。図2に示すように、穴114の平面形状が第1の方向に細長いストライプ形状に形成されているので、ゲート電極116の平面形状は穴114の平面形状に従って第1の方向に細長いストライプ形状に形成されている。   The gate electrode 116 is embedded in the hole 114 with the gate insulating film 115 interposed. In the first embodiment, for the gate electrode 116, for example, a silicon polycrystalline film into which an n-type impurity for ensuring conductivity is introduced can be used practically. The gate electrode 116 is formed by using an etching method or a chemical mechanical polishing (CMP) method after being embedded in the hole 114. As shown in FIG. 2, since the planar shape of the hole 114 is formed in a striped shape elongated in the first direction, the planar shape of the gate electrode 116 is striped in the first direction according to the planar shape of the hole 114. Is formed.

同図2に示すように、ゲート電極116を挟むように形成されたエミッタ領域113の表面において後述する層間絶縁膜121の連結部122が形成されていない表面領域が露出される。同様に、p型のベース領域112の表面において後述する層間絶縁膜12(の連結部122)が形成されていない表面領域が露出される。従って、第2の方向において隣接するゲート電極116間に配設されたエミッタ領域113及びp型のベース領域112のそれぞれは後述するボンディングエリア内を除きゲート電極116の延在方向と同様に第1の方向に延在し、このエミッタ領域113及びp型のベース領域112のそれぞれは第2の方向に複数配列されている。エミッタ領域113及びp型のベース領域112のそれぞれの平面形状は後述するボンディングエリア内を除きストライプ形状において形成されている。   As shown in FIG. 2, a surface region where a connecting portion 122 of an interlayer insulating film 121 described later is not formed is exposed on the surface of the emitter region 113 formed so as to sandwich the gate electrode 116. Similarly, the surface region in which the later-described interlayer insulating film 12 (the connecting portion 122) is not formed is exposed on the surface of the p-type base region 112. Therefore, each of the emitter region 113 and the p-type base region 112 disposed between the gate electrodes 116 adjacent in the second direction is the same as the extending direction of the gate electrode 116 except in the bonding area described later. A plurality of emitter regions 113 and p-type base regions 112 are arranged in the second direction. The planar shape of each of the emitter region 113 and the p-type base region 112 is formed in a stripe shape except in a bonding area described later.

図1乃至図4に示すように、第1の実施の形態に係る層間絶縁膜12の平面形状は、第1の電極13のボンディングエリア内において、第2の方向に一定間隔において配列され第1の方向に延伸する第2の電極13とゲート電極116との間に設けられた延伸部121と、それに隣り合う円心部121を連結する連結部122と、開口部123とを有するメッシュ形状である。また、層間絶縁膜12の平面形状は、第1の電極13のボンディングエリア外において、第2の電極13とゲート電極116との間に設けられた円心部121のみが形成されたストライプ形状である。   As shown in FIGS. 1 to 4, the planar shape of the interlayer insulating film 12 according to the first embodiment is arranged in the second direction at a constant interval in the bonding area of the first electrode 13. In a mesh shape having an extending portion 121 provided between the second electrode 13 extending in the direction of the gate electrode 116 and the gate electrode 116, a connecting portion 122 connecting the adjacent central portions 121, and an opening 123. is there. Further, the planar shape of the interlayer insulating film 12 is a stripe shape in which only the circular center part 121 provided between the second electrode 13 and the gate electrode 116 is formed outside the bonding area of the first electrode 13. is there.

層間絶縁膜12の「メッシュ形状」とは、ゲート電極116(穴114)上に配設され、このゲート電極116が延在する第1の方向と同一方向に延在し、ゲート電極116と同様に第2の方向に一定間隔に配列した、平面形状がストライプ形状を有する延伸部121と、第2の方向において隣接する延伸部121の間を相互に連結し一体に構成された連結部122と、第2の方向において隣接する2本の延伸部121と第1の方向において隣接する2本の連結部122とに囲まれた領域内に形成された開口123とを備えている。連結部122は第2の方向に隣接する延伸部121間を第1の方向に一定間隔において連結しているので、層間絶縁膜12の延伸部121及びその直下のゲート電極116における第2の電極13のボンディングエリア内における機械的強度を向上することができる。特に、ボンディングの際に発生する応力(例えば超音波振動エネルギ)に対して、層間絶縁膜12の延伸部121及びその直下のゲート電極116の割れや剥がれを防止することができる。一方、層間絶縁膜12の連結部122は、第2の方向において隣接する延伸部121間に設けられているが、連結部122が設けられているのはボンディングエリア内であって、ボンディングエリア内においてもメッシュ形状となるようにできる限り開口123が配設されているので、エミッタ領域113と第2の電極13との間のコンタクト面積及び電流容量の減少を抑制し、電界集中を防止することができる。また、これらの効果を層間絶縁膜12の開口パターンを変更することだけで達成することができ、製造プロセスを追加することがないため、製造が容易になりかつ製造コストが高くならない。第1の実施の形態において、層間絶縁膜12にはシリコン酸化膜具体的には燐ガラス(PSG)膜を実用的に使用することができ、この燐ガラス膜の膜厚は例えば0.5 μm−3.0 μmに設定されている。   The “mesh shape” of the interlayer insulating film 12 is disposed on the gate electrode 116 (hole 114), extends in the same direction as the first direction in which the gate electrode 116 extends, and is similar to the gate electrode 116. Extending portions 121 having a stripe shape in a planar shape and arranged in the second direction at regular intervals, and connecting portions 122 integrally connected to each other between the extending portions 121 adjacent in the second direction. And an opening 123 formed in a region surrounded by two extending portions 121 adjacent in the second direction and two connecting portions 122 adjacent in the first direction. Since the connecting portion 122 connects the extending portions 121 adjacent to each other in the second direction at a constant interval in the first direction, the second electrode in the extending portion 121 of the interlayer insulating film 12 and the gate electrode 116 immediately below the extending portion 121. The mechanical strength in the 13 bonding areas can be improved. In particular, it is possible to prevent the extending portion 121 of the interlayer insulating film 12 and the gate electrode 116 immediately below it from being cracked or peeled off due to stress generated during bonding (for example, ultrasonic vibration energy). On the other hand, the connecting portion 122 of the interlayer insulating film 12 is provided between the extending portions 121 adjacent in the second direction, but the connecting portion 122 is provided in the bonding area, and in the bonding area. Since the opening 123 is disposed as much as possible so as to have a mesh shape, the reduction of the contact area and current capacity between the emitter region 113 and the second electrode 13 is suppressed, and the electric field concentration is prevented. Can do. Further, these effects can be achieved only by changing the opening pattern of the interlayer insulating film 12, and since a manufacturing process is not added, the manufacturing becomes easy and the manufacturing cost does not increase. In the first embodiment, a silicon oxide film, specifically, a phosphor glass (PSG) film can be practically used as the interlayer insulating film 12, and the film thickness of the phosphor glass film is, for example, 0.5 μm−3.0. It is set to μm.

層間絶縁膜12並びにこの層間絶縁膜12の構造に関係する各部の一例の実施寸法は例えば以下の通りである。   The implementation dimensions of an example of each part related to the interlayer insulating film 12 and the structure of the interlayer insulating film 12 are as follows, for example.

1.穴114の穴幅:0.5 μm−3.0 μm
2.穴114の配列ピッチ:2.0 μm−20.0 μm
3.層間絶縁膜12の延伸部121の幅:1.0 μm−4.0 μm
4.層間絶縁膜12の連結部122の幅:1.0 μm−19.0 μm
5.連結部122の第1の方向の配列ピッチ:2.0 μm−20.0 μm
6.層間絶縁膜12の開口123のサイズ:1.0 μm×1.0 μm−19.0 μm×1.0 μm
7.ボンディングエリアのサイズ:50 μm×50 μm−2 mm×2 mm
第1の実施の形態において、更に層間絶縁膜12の平面形状には、図3に示すように、第1の方向に一定間隔に配列された開口123と、それに対して第2の方向側に隣り合う開口123とがオフセットされたメッシュ形状となるように採用されることが望ましい。オフセット量は例えば2分の1配列ピッチである。
1. Hole width of hole 114: 0.5 μm-3.0 μm
2. Arrangement pitch of holes 114: 2.0 μm-20.0 μm
3. Width of the extended portion 121 of the interlayer insulating film 12: 1.0 μm−4.0 μm
4). Width of connecting portion 122 of interlayer insulating film 12: 1.0 μm-19.0 μm
5). Arrangement pitch of connecting parts 122 in the first direction: 2.0 μm−20.0 μm
6). Size of the opening 123 of the interlayer insulating film 12: 1.0 μm × 1.0 μm-19.0 μm × 1.0 μm
7). Bonding area size: 50 μm × 50 μm-2 mm × 2 mm
In the first embodiment, the planar shape of the interlayer insulating film 12 further includes openings 123 arranged at regular intervals in the first direction as shown in FIG. It is desirable that the adjacent openings 123 be adopted so as to have an offset mesh shape. The offset amount is, for example, a half arrangement pitch.

ここで、層間絶縁膜12の平面形状がメッシュ形状に設定される「第2の電極13のボンディングエリア」とは、第2の電極(エミッタ電極)13とエミッタ用リードとを電気的に接続するボンディングワイヤ(32)がボンディングされる領域である。第2の電極13上には保護膜14が配設され、この保護膜14にはボンディングワイヤ(32)を通過させる開口141が配設されており、第2の電極13のボンディングエリアはこの保護膜14に配設される開口141の領域内である。   Here, the “bonding area of the second electrode 13” in which the planar shape of the interlayer insulating film 12 is set to a mesh shape electrically connects the second electrode (emitter electrode) 13 and the emitter lead. This is the region where the bonding wire (32) is bonded. A protective film 14 is disposed on the second electrode 13, and an opening 141 through which the bonding wire (32) passes is disposed in the protective film 14, and the bonding area of the second electrode 13 is protected by this protection film 14. In the region of the opening 141 provided in the membrane 14.

第2の電極13のボンディングエリア外において層間絶縁膜12の平面形状は前述のようにストライプ形状である。詳細には、層間絶縁膜12は、ゲート電極116(穴114)上に配設されこのゲート電極116が延在する第1の方向と同一方向に延在し、ゲート電極116の配列間隔と同様に第2の方向に一定間隔において複数配列された、平面形状がストライプ形状を有する延伸部121と、第2の方向において隣接する延伸部121の間に双方に囲まれた領域内に形成され、第2の方向に一定間隔において複数配列された、平面ストライプ形状を有する開口124とを備えている。第2の電極13のボンディングエリア外においては、ボンディングの際に発生する応力に対する機械的強度を高める必要はないので、第2の方向において隣接する延伸部121間に連結部122は配設されていない。連結部122が配設されていない結果、開口124の面積を増加することができるので、エミッタ領域113と第2の電極13との間のコンタクト面積及び電流容量を確保し、電界集中を防止することができる。また、これらの効果を層間絶縁膜12の開口パターンを変更することだけで達成することができ、製造プロセスを追加することがないため、製造が容易になりかつ製造コストが高くならない。   Outside the bonding area of the second electrode 13, the planar shape of the interlayer insulating film 12 is a stripe shape as described above. Specifically, the interlayer insulating film 12 is disposed on the gate electrode 116 (hole 114) and extends in the same direction as the first direction in which the gate electrode 116 extends, and is similar to the arrangement interval of the gate electrodes 116. Are formed in a region surrounded by a stretched portion 121 having a stripe shape in a planar shape and a stretched portion 121 adjacent to each other in the second direction. A plurality of openings 124 having a planar stripe shape arranged in the second direction at regular intervals. Outside the bonding area of the second electrode 13, there is no need to increase the mechanical strength against the stress generated during bonding, so the connecting portion 122 is disposed between the extending portions 121 adjacent in the second direction. Absent. Since the area of the opening 124 can be increased as a result of the connection portion 122 not being provided, a contact area and a current capacity between the emitter region 113 and the second electrode 13 are ensured, and electric field concentration is prevented. be able to. Further, these effects can be achieved only by changing the opening pattern of the interlayer insulating film 12, and since a manufacturing process is not added, the manufacturing becomes easy and the manufacturing cost does not increase.

第2の電極(エミッタ電極)13は、層間絶縁膜12上に配設されるとともに、IGBT11のエミッタ領域113及びp型のベース領域112に電気的に接続されている。第2の電極13のボンディングエリア内においては、第2の電極13は層間絶縁膜12の開口123を通してIGBT11に接続され、第2の電極13のボンディングエリア外においては、第2の電極13は層間絶縁膜12の開口124を通してIGBT11に接続されている。第2の電極13はエミッタ電極(又はソース電極)として使用され、この第2の電極13には例えばアルミニウム合金膜を使用することができる。アルミニウム合金膜は、アロイスパイクを防止するSi、マイグレーションを防止するCu等の添加物を添加したアルミニウムである。   The second electrode (emitter electrode) 13 is disposed on the interlayer insulating film 12 and is electrically connected to the emitter region 113 and the p-type base region 112 of the IGBT 11. Within the bonding area of the second electrode 13, the second electrode 13 is connected to the IGBT 11 through the opening 123 of the interlayer insulating film 12, and outside the bonding area of the second electrode 13, the second electrode 13 is connected to the interlayer It is connected to the IGBT 11 through the opening 124 of the insulating film 12. The second electrode 13 is used as an emitter electrode (or source electrode), and an aluminum alloy film can be used for the second electrode 13, for example. The aluminum alloy film is aluminum to which additives such as Si for preventing alloy spikes and Cu for preventing migration are added.

図1に示すように、保護膜14は基板10の主面上の全域において第2の電極13上に配設されている。保護膜14には、図1乃至図4に示すように、素子領域において第2の電極13上のボンディングエリアに開口141が配設されている。また、保護膜14には、図4に示すように、素子領域において、IGBT11のゲート電極116に電気的に接続させるためのボンディング電極13Gが保護膜14の開口142によって露出されている。ゲート電極116のボンディング電極13Gは、第2の電極13と同一導電層において同一導電性材料により構成されている。保護膜14の開口141は図4に示すようにベース領域(基板)111の中央部分に配設され、開口142はベース領域111の第3の辺103の近傍に配設されている。開口142の平面面積は開口141の平面面積に比べて小さい。保護膜14には、例えばPIF(poly-imide film)等の樹脂膜やPSG膜を実用的に使用することができる。   As shown in FIG. 1, the protective film 14 is disposed on the second electrode 13 in the entire region on the main surface of the substrate 10. As shown in FIGS. 1 to 4, the protective film 14 is provided with an opening 141 in a bonding area on the second electrode 13 in the element region. In addition, as shown in FIG. 4, the bonding electrode 13 </ b> G for electrically connecting to the gate electrode 116 of the IGBT 11 is exposed to the protective film 14 through the opening 142 of the protective film 14 in the element region. The bonding electrode 13 </ b> G of the gate electrode 116 is made of the same conductive material in the same conductive layer as the second electrode 13. As shown in FIG. 4, the opening 141 of the protective film 14 is disposed in the central portion of the base region (substrate) 111, and the opening 142 is disposed in the vicinity of the third side 103 of the base region 111. The planar area of the opening 142 is smaller than the planar area of the opening 141. For the protective film 14, for example, a resin film such as PIF (poly-imide film) or a PSG film can be used practically.

[半導体装置の組立構造]
図4に示すように、半導体装置201は、半導体素子1と、半導体素子1を搭載するダイボンディング領域21Dを有し第1の方向(Y方向)に延在する第1のリード(コレクタ用リード)21と、第1のリード21の左側に隣接し第1の方向に延在する第2のリード(ゲート用リード)22と、第1のリード21の右側に隣接し第1の方向に延在する第3のリード(エミッタ用リード)23と、第2のリード22と半導体素子1のボンディング電極13Gとの間を電気的に接続するボンディングワイヤ31と、第3のリード23と半導体素子1の第2の電極13のボンディングエリアとの間を電気的に接続するボンディングワイヤ32と、封止体4とを備えている。
[Assembly structure of semiconductor device]
As shown in FIG. 4, the semiconductor device 201 includes a semiconductor element 1 and a first lead (collector lead) having a die bonding region 21 </ b> D for mounting the semiconductor element 1 and extending in a first direction (Y direction). ) 21, a second lead (gate lead) 22 adjacent to the left side of the first lead 21 and extending in the first direction, and adjacent to the right side of the first lead 21 and extending in the first direction. A third lead (emitter lead) 23, a bonding wire 31 that electrically connects the second lead 22 and the bonding electrode 13 G of the semiconductor element 1, and the third lead 23 and the semiconductor element 1. A bonding wire 32 that electrically connects the bonding area of the second electrode 13 and the sealing body 4 are provided.

第1のリード21、第2のリード22及び第3のリード23にはCu板、Fe−Ni合金板等を使用することができる。ここで、金属板や合金板の抵抗成分並びにインダクタンス成分はワイヤ配線のそれに比べて小さいが、金属板や合金板とボンディングエリアとの接合部に生じる応力が大きい。しかしながら、第1の実施の形態においては、第2の電極13のボンディングエリアにおいて層間絶縁膜12に連結部122を備えているので、第2の電極13のボンディングエリアにおける機械的強度は高い。従って、半導体装置201においては、抵抗成分並びにインダクタンス成分を小さくしつつ、層間絶縁膜12の剥がれやゲート電極116の剥がれを防止することができる。   For the first lead 21, the second lead 22, and the third lead 23, a Cu plate, an Fe—Ni alloy plate, or the like can be used. Here, although the resistance component and the inductance component of the metal plate or alloy plate are smaller than those of the wire wiring, the stress generated at the junction between the metal plate or alloy plate and the bonding area is large. However, in the first embodiment, since the connecting portion 122 is provided in the interlayer insulating film 12 in the bonding area of the second electrode 13, the mechanical strength in the bonding area of the second electrode 13 is high. Therefore, in the semiconductor device 201, it is possible to prevent the interlayer insulating film 12 and the gate electrode 116 from peeling while reducing the resistance component and the inductance component.

図1及び図4には詳細に図示していないが、第1のリード21のダイボンディン領域21Dには導電性接着材を介在させて半導体素子1の裏面の第1の電極が電気的かつ機械的に接続されている。   Although not shown in detail in FIGS. 1 and 4, the first electrode on the back surface of the semiconductor element 1 is electrically and mechanically interposed in the die bond area 21 </ b> D of the first lead 21 with a conductive adhesive interposed therebetween. Connected.

ボンディングワイヤ31は半導体素子1の保護膜14に形成された開口142を通してボンディング電極13Gに電気的に接続されている。同様に、ボンディングワイヤ32は基板10上の保護膜14に形成された開口141を通して電極13に電気的に接続されている。ボンディングワイヤ31及び32には例えばAu、Lu、Al等のワイヤを実用的に使用することができ、このワイヤはボンディング装置を用い超音波振動に熱圧着を併用してボンディングされる。   The bonding wire 31 is electrically connected to the bonding electrode 13G through the opening 142 formed in the protective film 14 of the semiconductor element 1. Similarly, the bonding wire 32 is electrically connected to the electrode 13 through the opening 141 formed in the protective film 14 on the substrate 10. For example, a wire such as Au, Lu, or Al can be practically used as the bonding wires 31 and 32, and this wire is bonded by using ultrasonic bonding together with ultrasonic vibration using a bonding apparatus.

封止体4には例えばエポキシ系樹脂が使用されている。このエポキシ系樹脂は例えばモールド法により成型される。封止体4の内部には半導体素子1、第1のリード21、第2のリード22及び第3のリード23のそれぞれのインナー部(一部)、ボンディングワイヤ31及び32が気密封止される。封止体4の外部には第1のリード21、第2のリード22及び第3のリード23のそれぞれのアウター部(一部)が突出する。   For example, an epoxy resin is used for the sealing body 4. This epoxy resin is molded by, for example, a molding method. Inside the sealing body 4, the semiconductor element 1, the first lead 21, the second lead 22, the third lead 23, the inner portions (part) of each, and the bonding wires 31 and 32 are hermetically sealed. . Outer portions (parts) of the first lead 21, the second lead 22, and the third lead 23 protrude outside the sealing body 4.

[半導体装置の特徴]
図1乃至図4に示すように、第1の実施の形態に係る半導体装置201においては、ボンディングエリア内の層間絶縁膜12の平面構造がメッシュ形状に構成され、層間絶縁膜12の第2の方向に隣接する延伸部121を連結部122により機械的な強度が増強されているので、ボンディングの際の層間絶縁膜12のボンディング強度を確保しつつ、ボンディングに伴う層間絶縁膜12の破壊や電極(例えばゲート電極116や第2の電極13)の破壊を防止することができる。
[Features of semiconductor devices]
As shown in FIGS. 1 to 4, in the semiconductor device 201 according to the first embodiment, the planar structure of the interlayer insulating film 12 in the bonding area is configured in a mesh shape, and the second structure of the interlayer insulating film 12 is formed. Since the mechanical strength of the extending portion 121 adjacent to the direction is enhanced by the connecting portion 122, the bonding strength of the interlayer insulating film 12 at the time of bonding is secured, and the breakdown of the interlayer insulating film 12 and the electrode accompanying the bonding are performed. Destruction of the gate electrode 116 or the second electrode 13 can be prevented, for example.

更に、第1の実施の形態に係る半導体装置201においては、層間絶縁膜12の連結部122を第2の方向に一定間隔において配設しているので、開口123の平面面積を十分に確保することができる。従って、ストライプ構造を有するIGBT11の本来の特性であるコンタクト面積を十分に確保することができるので、電界集中を減少することができ、十分な耐圧を確保することができ、半導体素子1の電気的特性が良好な半導体装置201を提供することができる。   Furthermore, in the semiconductor device 201 according to the first embodiment, since the connecting portions 122 of the interlayer insulating film 12 are arranged at regular intervals in the second direction, a sufficient plane area of the opening 123 is ensured. be able to. Therefore, a sufficient contact area, which is an original characteristic of the IGBT 11 having a stripe structure, can be sufficiently ensured, electric field concentration can be reduced, a sufficient breakdown voltage can be ensured, and the electrical resistance of the semiconductor element 1 can be secured. A semiconductor device 201 with favorable characteristics can be provided.

また、第1の実施の形態に係る半導体装置201においては、ボンディングエリア外の層間絶縁膜12の平面形状がストライプ形状により構成されているので、前述のように半導体素子1の電気的特性を確保することができる。   Further, in the semiconductor device 201 according to the first embodiment, since the planar shape of the interlayer insulating film 12 outside the bonding area is configured by a stripe shape, the electrical characteristics of the semiconductor element 1 are ensured as described above. can do.

また、第1の実施の形態に係る半導体装置201においては、このような作用効果を奏するための層間絶縁膜12の平面形状は製造用マスクのパターンを変更するだけで対応することができるので、特に製造工程数を増加する必要がなく、製造コストを減少することができる。更に、第2の電極13、ボンディング電極13Gの膜厚は、ボンディングのために厚くする必要がないので、この点においても製造コストを減少することができる。   Further, in the semiconductor device 201 according to the first embodiment, the planar shape of the interlayer insulating film 12 for producing such an effect can be dealt with by simply changing the pattern of the manufacturing mask. In particular, it is not necessary to increase the number of manufacturing steps, and the manufacturing cost can be reduced. Furthermore, the film thickness of the second electrode 13 and the bonding electrode 13G does not need to be increased for bonding, so that the manufacturing cost can be reduced also in this respect.

[変形例]
第1の実施の形態の変形例に係る半導体装置1においては、IGBT11の層間絶縁膜12の特にボンディングエリア内の平面形状が、図5に示すように、第1の方向に一定間隔に配列された開口123と、それに対して第2の方向側に隣り合う開口123とが同一の直線上となるように随時形成されたメッシュ形状により構成されている。すなわち、連結部122を第2の方向に見ると一直線上に形成され、第1の方向に見ると一定間隔に繰り返し形成されており、変形例に係る層間絶縁膜12の平面形状は、連結部122及び開口123の配列ピッチをアンオフセットしている。
[Modification]
In the semiconductor device 1 according to the modification of the first embodiment, the planar shape of the interlayer insulating film 12 of the IGBT 11, particularly in the bonding area, is arranged at regular intervals in the first direction as shown in FIG. 5. The opening 123 and the opening 123 adjacent to the second direction side with respect to the opening 123 are configured in a mesh shape formed as needed so as to be on the same straight line. That is, when the connecting portion 122 is viewed in the second direction, it is formed in a straight line, and when viewed in the first direction, it is repeatedly formed at regular intervals. The planar shape of the interlayer insulating film 12 according to the modification is as follows. The arrangement pitch of 122 and the opening 123 is unoffset.

このように構成される変形例に係る半導体装置201においては、前述の第1の実施の形態に係る半導体装置201により得られる効果と同様の効果を奏することができる。   In the semiconductor device 201 according to the modified example configured as described above, the same effect as that obtained by the semiconductor device 201 according to the first embodiment described above can be obtained.

なお、第1の実施の形態に係る半導体装置201においては、半導体素子1のボンディングエリア内のみ層間絶縁膜12の平面形状をメッシュ形状としているが、本発明は、このような構造に限定されるものではなく、ボンディングエリア内外の層間絶縁膜12の平面形状をメッシュ形状としてもよい。   In the semiconductor device 201 according to the first embodiment, the planar shape of the interlayer insulating film 12 is a mesh shape only in the bonding area of the semiconductor element 1, but the present invention is limited to such a structure. Instead, the planar shape of the interlayer insulating film 12 inside and outside the bonding area may be a mesh shape.

(第2の実施の形態)
本発明の第2の実施の形態は、プレーナ構造を有するIGBTからなる半導体素子、それを搭載した電力用半導体装置及びその製造方法に本発明を適用した例を説明するものである。
(Second Embodiment)
In the second embodiment of the present invention, an example in which the present invention is applied to a semiconductor element composed of an IGBT having a planar structure, a power semiconductor device on which the semiconductor element is mounted, and a manufacturing method thereof will be described.

[半導体素子(IGBT)のデバイス構造]
第2の実施の形態に係る半導体装置201に搭載された半導体素子1は、図6に示すように、プレーナ構造を有するIGBT11により構成されている。すなわち、IGBT11は、コレクタ領域(p型の第2の半導体領域)110と、n型ベース領域(n型の第1の半導体領域又は基板)111と、p型ベース領域(p型の第1の半導体領域)112と、エミッタ領域(n型の第2の半導体領域)113と、ゲート絶縁膜115と、ゲート電極116と、コレクタ電極(第1の電極)と、エミッタ電極(第2の電極)13とを備えて構成されている。基本的な半導体素子1の断面構造は前述の第1の実施の形態に係る半導体装置201の半導体素子1の断面構造と同一であるが、図1に示す穴114が配設されていない。つまり、半導体素子1は、ベース領域111の主面上にゲート絶縁膜115を介在してゲート電極116をプレーナ構造において配設し、ゲート電極116をマスクとして二重拡散構造によりベース領域112及びエミッタ領域113が配設されている。
[Device structure of semiconductor element (IGBT)]
As shown in FIG. 6, the semiconductor element 1 mounted on the semiconductor device 201 according to the second embodiment is composed of an IGBT 11 having a planar structure. That is, the IGBT 11 includes a collector region (p-type second semiconductor region) 110, an n-type base region (n-type first semiconductor region or substrate) 111, and a p-type base region (p-type first semiconductor region). Semiconductor region) 112, emitter region (n-type second semiconductor region) 113, gate insulating film 115, gate electrode 116, collector electrode (first electrode), emitter electrode (second electrode) 13. The basic cross-sectional structure of the semiconductor element 1 is the same as the cross-sectional structure of the semiconductor element 1 of the semiconductor device 201 according to the first embodiment, but the hole 114 shown in FIG. 1 is not provided. That is, in the semiconductor element 1, the gate electrode 116 is disposed in a planar structure on the main surface of the base region 111 with the gate insulating film 115 interposed therebetween, and the base region 112 and the emitter are formed by a double diffusion structure using the gate electrode 116 as a mask. A region 113 is provided.

層間絶縁膜12は、前述の図1乃至図4に示す第1の実施の形態に係る半導体装置201と同様に、ゲート電極116上に配設されこのゲート電極116が延在する第1の方向と同一方向に延在し、ゲート電極116の配列間隔と同様に第2の方向に一定間隔に配列した、平面形状がストライプ形状を有する延伸部121と、第2の方向に隣り合う延伸部121の間を相互に連結し一体に構成された連結部122と、第2の方向に隣り合う2本の延伸部121と第1の方向に隣り合う2本の連結部122とに囲まれた領域内に形成された開口123とを備えている。すなわち、少なくとも第2の電極13のボンディングエリア内において層間絶縁膜12の平面形状はメッシュ形状により構成されている。   Similar to the semiconductor device 201 according to the first embodiment shown in FIGS. 1 to 4 described above, the interlayer insulating film 12 is disposed on the gate electrode 116 and extends in the first direction. Extending portions 121 extending in the same direction and arranged at a constant interval in the second direction as in the arrangement interval of the gate electrodes 116, and extending portions 121 adjacent to each other in the second direction. A region surrounded by a connecting portion 122 that is integrally connected to each other, two extending portions 121 that are adjacent in the second direction, and two connecting portions 122 that are adjacent in the first direction And an opening 123 formed therein. That is, at least in the bonding area of the second electrode 13, the planar shape of the interlayer insulating film 12 is configured by a mesh shape.

[半導体装置の特徴]
図6に示すように、第2の実施の形態に係る半導体装置201においては、前述の第1の実施の形態に係る半導体装置201と同様に、第2の電極13のボンディングエリア内の層間絶縁膜12の平面構造がメッシュ形状に構成され、層間絶縁膜12の第2の方向に隣り合う延伸部121を連結部122により連結し機械的な強度が増強されているので、ボンディングの際の層間絶縁膜12のボンディング強度を確保しつつ、ボンディングに伴う層間絶縁膜12の破壊や電極(例えばゲート電極116や第2の電極13)の破壊を防止することができる。
[Features of semiconductor devices]
As shown in FIG. 6, in the semiconductor device 201 according to the second embodiment, the interlayer insulation in the bonding area of the second electrode 13 is similar to the semiconductor device 201 according to the first embodiment described above. Since the planar structure of the film 12 is configured in a mesh shape, and the extending portions 121 adjacent to each other in the second direction of the interlayer insulating film 12 are connected by the connecting portions 122, the mechanical strength is enhanced. While securing the bonding strength of the insulating film 12, it is possible to prevent the interlayer insulating film 12 and the electrodes (for example, the gate electrode 116 and the second electrode 13) from being damaged due to bonding.

更に、第2の実施の形態に係る半導体装置201においては、層間絶縁膜12の連結部122を第2の方向に一定間隔において配設しているので、開口123の平面面積(コンタクト面積)を十分に確保することができる。従って、ストライプ構造を有する半導体素子1の本来の特性であるコンタクト面積及び電流容量を十分に確保することができるので、電界集中を減少することができ、十分な耐圧を確保することができ、半導体素子1の電気的特性が良好な半導体装置201を提供することができる。   Furthermore, in the semiconductor device 201 according to the second embodiment, since the connecting portions 122 of the interlayer insulating film 12 are arranged at regular intervals in the second direction, the planar area (contact area) of the opening 123 is reduced. It can be secured sufficiently. Therefore, since the contact area and current capacity, which are the original characteristics of the semiconductor element 1 having the stripe structure, can be sufficiently secured, electric field concentration can be reduced, and a sufficient breakdown voltage can be secured. A semiconductor device 201 in which the electrical characteristics of the element 1 are favorable can be provided.

また、第2の実施の形態に係る半導体装置201においては、第2の電極13のボンディングエリア外の層間絶縁膜12の平面形状を前述の図3に示すストライプ形状に構成することにより、半導体素子1の電気的特性を確保することができる。   Further, in the semiconductor device 201 according to the second embodiment, the planar shape of the interlayer insulating film 12 outside the bonding area of the second electrode 13 is configured in the stripe shape shown in FIG. 1 electrical characteristics can be ensured.

また、第2の実施の形態に係る半導体装置201においては、このような作用効果を奏するための層間絶縁膜12の平面形状は製造用マスクのパターンを変更するだけで対応することができるので、特に製造工程数を増加する必要がなく、製造コストを減少することができる。   Further, in the semiconductor device 201 according to the second embodiment, the planar shape of the interlayer insulating film 12 for producing such an effect can be dealt with only by changing the pattern of the manufacturing mask. In particular, it is not necessary to increase the number of manufacturing steps, and the manufacturing cost can be reduced.

(第3の実施の形態)
本発明の第3の実施の形態は、前述の第1の実施の形態及び第2の実施の形態に係る半導体装置201において、半導体素子1と第2のリード22及び第3のリード23との間の接続方法を代えた例を説明するものである。
(Third embodiment)
The third embodiment of the present invention relates to the semiconductor device 201 according to the first embodiment and the second embodiment described above, and includes the semiconductor element 1, the second lead 22, and the third lead 23. An example in which the connection method between them is changed will be described.

第3の実施の形態に係る半導体装置201は、図7及び図8に示すように、半導体素子1のボンディング電極13Gと第2のリード22との間がクリップリード22Cにより電気的に接続され、第2の電極13と第3のリード23との間がクリップリード23Cにより電気的に接続されている。クリップリード22Cとボンディング電極13G、第2のリード22のそれぞれとの間の接続には半田ペースト35が使用され、双方の間は電気的かつ機械的に接続される。同様に、クリップリード23Cと第2の電極13、第3のリード23のそれぞれとの間の接続には半田ペースト36が使用され、双方の間は電気的かつ機械的に接続される。   In the semiconductor device 201 according to the third embodiment, as shown in FIGS. 7 and 8, the bonding electrode 13G of the semiconductor element 1 and the second lead 22 are electrically connected by the clip lead 22C, The second electrode 13 and the third lead 23 are electrically connected by the clip lead 23C. A solder paste 35 is used for connection between the clip lead 22C and each of the bonding electrode 13G and the second lead 22, and the both are electrically and mechanically connected. Similarly, a solder paste 36 is used for connection between the clip lead 23C and each of the second electrode 13 and the third lead 23, and both are electrically and mechanically connected.

クリップリード22C及び23Cには例えばCu板等の金属板やFe−Ni合金板等の合金板を使用することができる。半田ペースト35及び36には例えばPb−Sn半田、又はSn−3 wt% Ag−0.5 wt% Cu等のPbフリー半田を使用することができる。ボンディング電極13Gに半田ペースト35を介したクリップリード22Cの接続、第2のリード22に半田ペースト35を介したクリップリード22Cの接続には、ボンディングワイヤ31のボンディングと同様に、超音波振動に熱圧着を併用したボンディング法により行われる。同様に、第2の電極13に半田ペースト36を介したクリップリード23Cの接続、第3のリード23に半田ペースト36を介したクリップリード23Cの接続には、ヒータ等による加熱法、又はボンディングワイヤ32のボンディングと同様に、超音波振動に熱圧着を併用したボンディング法が使用される。   For the clip leads 22C and 23C, for example, a metal plate such as a Cu plate or an alloy plate such as an Fe-Ni alloy plate can be used. For the solder pastes 35 and 36, for example, Pb-Sn solder or Pb-free solder such as Sn-3 wt% Ag-0.5 wt% Cu can be used. In the connection of the clip lead 22C via the solder paste 35 to the bonding electrode 13G and the connection of the clip lead 22C via the solder paste 35 to the second lead 22, as in the bonding of the bonding wire 31, heat is applied to ultrasonic vibration. It is carried out by a bonding method using pressure bonding together. Similarly, for the connection of the clip lead 23C via the solder paste 36 to the second electrode 13 and the connection of the clip lead 23C via the solder paste 36 to the third lead 23, a heating method using a heater or the like, or a bonding wire Similar to the bonding of 32, a bonding method using ultrasonic vibration in combination with thermocompression bonding is used.

また、ボンディング電極13Gと半田ペースト35とのボンダビリティを向上するため、同様に第2の電極13と半田ペースト36とのボンダビリティを向上するため、ボンディング電極13G、第2の電極13のそれぞれの表面上に濡れ性向上膜を形成してもよい。この濡れ性向上膜には例えばTi層上にNi層を積層した複合層を実用的に使用することができる。   Further, in order to improve the bondability between the bonding electrode 13G and the solder paste 35, and similarly improve the bondability between the second electrode 13 and the solder paste 36, each of the bonding electrode 13G and the second electrode 13 is provided. A wettability improving film may be formed on the surface. As this wettability improving film, for example, a composite layer in which a Ni layer is laminated on a Ti layer can be used practically.

このように構成される第3の実施の形態に係る半導体装置201においては、前述の第1の実施の形態及び第2の実施の形態に係る半導体装置201により得られる効果と同様の効果を奏することができる。   The semiconductor device 201 according to the third embodiment configured as described above has the same effect as that obtained by the semiconductor device 201 according to the first embodiment and the second embodiment described above. be able to.

更に、クリップリード22C及び23Cの金属板や合金板の抵抗成分並びにインダクタンス成分はワイヤ配線のそれに比べて小さい特徴がある。反面、金属板や合金板とボンディングエリアとの接合部に生じる応力が大きくなるが、第3の実施の形態においては、第2の電極13のボンディングエリアにおいて層間絶縁膜12に連結部122を備えているので、第2の電極13のボンディングエリアにおける機械的強度を高めることができる。従って、半導体装置201においては、抵抗成分並びにインダクタンス成分を小さくしつつ、層間絶縁膜12の剥がれやゲート電極116の剥がれを防止することができる。   Furthermore, the resistance component and the inductance component of the metal plates and alloy plates of the clip leads 22C and 23C are characterized by being smaller than that of the wire wiring. On the other hand, although the stress generated at the joint between the metal plate or alloy plate and the bonding area increases, in the third embodiment, the connecting portion 122 is provided in the interlayer insulating film 12 in the bonding area of the second electrode 13. Therefore, the mechanical strength in the bonding area of the second electrode 13 can be increased. Therefore, in the semiconductor device 201, it is possible to prevent the interlayer insulating film 12 and the gate electrode 116 from peeling while reducing the resistance component and the inductance component.

(その他の実施の形態)
上記のように、本発明を第1の実施の形態、その変形例、第2の実施の形態及び第3の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものでない。本発明は様々な代替実施の形態、実施例及び運用技術に適用することができる。例えば、前述の実施の形態等においては、IGBT11からなる半導体素子1が搭載された半導体装置201を例に説明したが、本発明は、IGBT11に限定されるものではなく、パワートランジスタ(パワーMOSFET)からなる半導体素子及びそれを搭載する半導体装置に適用することができる。また、トレンチ構造だけでなく、プレーナ構造を有するパワートランジスタからなる半導体素子及びそれを搭載した半導体装置に本発明は適用することができる。
(Other embodiments)
As described above, the present invention has been described with reference to the first embodiment, its modifications, the second embodiment, and the third embodiment. However, the discussion and the drawings that form a part of this disclosure are the present invention. It does not limit. The present invention can be applied to various alternative embodiments, examples, and operational technologies. For example, in the above-described embodiment and the like, the semiconductor device 201 on which the semiconductor element 1 made of the IGBT 11 is mounted has been described as an example. However, the present invention is not limited to the IGBT 11 and is a power transistor (power MOSFET). The present invention can be applied to a semiconductor element comprising the above and a semiconductor device on which the semiconductor element is mounted. Further, the present invention can be applied not only to a trench structure but also to a semiconductor element composed of a power transistor having a planar structure and a semiconductor device having the semiconductor element mounted thereon.

本発明の第1の実施の形態に係る半導体装置に搭載された半導体素子にボンディングワイヤを設けたときの要部拡大断面図である。It is a principal part expanded sectional view when a bonding wire is provided in the semiconductor element mounted in the semiconductor device which concerns on the 1st Embodiment of this invention. 図1に示す半導体素子の要部(図1における保護膜、ボンディングワイヤ、第2の電極及び層間絶縁膜を省いたIGBTの一部)の拡大平面図である。FIG. 2 is an enlarged plan view of a main part of the semiconductor element shown in FIG. 1 (a part of the IGBT excluding the protective film, bonding wire, second electrode, and interlayer insulating film in FIG. 1). 図1に示す半導体素子において層間絶縁膜の要部の拡大平面図である。FIG. 2 is an enlarged plan view of a main part of an interlayer insulating film in the semiconductor element shown in FIG. 1. 本発明の第1の実施の形態に係る半導体装置の内部構造を示す平面図である。1 is a plan view showing an internal structure of a semiconductor device according to a first embodiment of the present invention. 第1の実施の形態の変形例に係る半導体素子において層間絶縁膜の要部の拡大平面図である。It is an enlarged plan view of the principal part of an interlayer insulation film in the semiconductor element concerning the modification of a 1st embodiment. 本発明の第2の実施の形態に係る半導体装置に搭載された半導体素子にボンディングワイヤを設けたときの要部拡大断面図である。It is a principal part expanded sectional view when a bonding wire is provided in the semiconductor element mounted in the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る半導体装置の内部構造を示す平面図である。It is a top view which shows the internal structure of the semiconductor device which concerns on the 3rd Embodiment of this invention. 図7に示す半導体装置の半導体素子にクリップリードを設けたときの要部拡大断面図である。FIG. 8 is an enlarged cross-sectional view of a main part when a clip lead is provided in the semiconductor element of the semiconductor device shown in FIG. 7.

符号の説明Explanation of symbols

201…半導体装置
110…コレクタ領域
101…第1の辺
102…第2の辺
103…第3の辺
104…第4の辺
1…半導体素子
11…IGBT
111、112…ベース領域
113…エミッタ領域
114…穴
115…ゲート絶縁膜
116…ゲート電極
12…層間絶縁膜
121…延伸部
122…連結部
123、124…開口部
13…第2の電極
13G…ボンディング電極
14…保護膜
141、142…開口
21…第1のリード
22…第2のリード
23…第3のリード
31、32…ボンディングワイヤ
22C、23C…クリップリード
35、36…半田ペースト
4…封止体
DESCRIPTION OF SYMBOLS 201 ... Semiconductor device 110 ... Collector area | region 101 ... 1st edge | side 102 ... 2nd edge | side 103 ... 3rd edge | side 104 ... 4th edge | side 1 ... Semiconductor element 11 ... IGBT
111, 112 ... Base region 113 ... Emitter region 114 ... Hole 115 ... Gate insulating film 116 ... Gate electrode 12 ... Interlayer insulating film 121 ... Extension part 122 ... Connection part 123, 124 ... Opening part 13 ... Second electrode 13G ... Bonding Electrode 14 ... Protective film 141, 142 ... Opening 21 ... First lead 22 ... Second lead 23 ... Third lead 31, 32 ... Bonding wire 22C, 23C ... Clip lead 35, 36 ... Solder paste 4 ... Sealing body

Claims (8)

第1の方向において対向する第1の辺及び第2の辺と前記第1の方向と交差する第2の方向において対向する第3の辺及び第4の辺とを有する基板と、
前記基板上において前記第2の方向に複数配設され、かつ第1の主面を露出して配設され、第1の導電型を有する第1の半導体領域と、
前記第1の半導体領域内において前記第2の方向に複数配設され、かつ前記第1の半導体領域の第1の主面に第2の主面が露出され、前記第1の導電型と反対の第2の導電型を有する第2の半導体領域と、
前記第1の半導体領域の前記第2の半導体領域と前記第2の方向に隣接する他の前記第1の半導体領域の他の前記第2の半導体領域との間に渡って配設された制御電極と、
前記制御電極上を覆い前記第1の方向に延伸する延伸部、前記第2の方向に隣接する前記延伸部同士を前記第1の方向に一定間隔において連結する連結部及び前記延伸部と前記連結部とにより開口形状が規定され前記第1の半導体領域の前記第1の主面と前記第2の半導体領域の前記第2の主面とを露出する開口部を有する層間絶縁膜と、
前記層間絶縁膜上に配設され、前記層間絶縁膜の前記開口部を通して前記第1の半導体領域の前記第1の主面及び前記第2の半導体領域の前記第2の主面に電気的に接続された電極と、
を備えたことを特徴とする半導体装置。
A substrate having a first side and a second side facing each other in a first direction and a third side and a fourth side facing each other in a second direction intersecting the first direction;
A plurality of first semiconductor regions disposed on the substrate in the second direction and having a first main surface exposed, the first semiconductor region having a first conductivity type;
A plurality of the first semiconductor regions are arranged in the second direction, and a second main surface is exposed on the first main surface of the first semiconductor region, opposite to the first conductivity type. A second semiconductor region having the second conductivity type;
Control disposed between the second semiconductor region of the first semiconductor region and the other second semiconductor region of the other first semiconductor region adjacent in the second direction. Electrodes,
An extending portion that covers the control electrode and extends in the first direction, a connecting portion that connects the extending portions adjacent to each other in the second direction at a constant interval, and the extending portion and the connection An interlayer insulating film having an opening defined by a portion and having an opening exposing the first main surface of the first semiconductor region and the second main surface of the second semiconductor region;
Electrically disposed on the interlayer insulating film and electrically through the opening of the interlayer insulating film to the first main surface of the first semiconductor region and the second main surface of the second semiconductor region; Connected electrodes;
A semiconductor device comprising:
前記第1の半導体領域の前記第2の半導体領域と前記第2の方向に隣接する他の前記第1の半導体領域の他の前記第2の半導体領域との間において、前記第1の半導体領域の前記第1の主面から前記基板側に前記第1の半導体領域を貫通して配設され、前記第1の方向に延伸する穴と、
前記穴の側面及び前記穴の底面に配設された絶縁膜と、を更に備え、
前記制御電極は、前記穴に前記絶縁膜を介在して埋設されたことを特徴とする請求項1に記載の半導体装置。
The first semiconductor region between the second semiconductor region of the first semiconductor region and the other second semiconductor region of the other first semiconductor region adjacent in the second direction. A hole extending from the first main surface of the first semiconductor region to the substrate side through the first semiconductor region and extending in the first direction;
An insulating film disposed on a side surface of the hole and a bottom surface of the hole, and
The semiconductor device according to claim 1, wherein the control electrode is embedded in the hole with the insulating film interposed.
前記第1の半導体領域の前記第2の半導体領域と前記第2の方向に隣接する他の前記第1の半導体領域の他の前記第2の半導体領域との間に配設され、かつ第3の主面が露出され、第2の導電型を有する第3の半導体領域と、
前記第3の半導体領域の前記第3の主面上に配設された絶縁膜と、を更に備え、
前記制御電極は、前記第3の半導体領域の前記第3の主面上に前記絶縁膜を介在して配設されたことを特徴とする請求項1に記載の半導体装置。
A third semiconductor region disposed between the second semiconductor region of the first semiconductor region and the other second semiconductor region of the other first semiconductor region adjacent in the second direction; A third semiconductor region having a second conductivity type, the main surface of which is exposed;
An insulating film disposed on the third main surface of the third semiconductor region,
2. The semiconductor device according to claim 1, wherein the control electrode is disposed on the third main surface of the third semiconductor region with the insulating film interposed therebetween.
前記層間絶縁膜は、前記延伸部、前記連結部及び前記開口部によりメッシュ形状において構成されていることを特徴とする請求項1乃至請求項3のいずれかに記載の半導体装置。   4. The semiconductor device according to claim 1, wherein the interlayer insulating film is configured in a mesh shape by the extending portion, the connecting portion, and the opening. 5. 前記層間絶縁膜の前記連結部は前記電極のボンディングエリアの直下の領域に配設されていることを特徴とする請求項1乃至請求項4のいずれかに記載の半導体装置。   5. The semiconductor device according to claim 1, wherein the connecting portion of the interlayer insulating film is disposed in a region immediately below a bonding area of the electrode. 前記電極にはワイヤ、クリップリードのいずれかの外部配線が電気的に接続されていることを特徴とする請求項1乃至請求項5のいずれかに記載の半導体装置。   6. The semiconductor device according to claim 1, wherein an external wiring of either a wire or a clip lead is electrically connected to the electrode. 第1の方向において対向する第1の辺及び第2の辺と前記第1の方向と交差する第2の方向において対向する第3の辺及び第4の辺とを有する基板と、前記基板上において前記第2の方向に複数配設され、かつ第1の主面を露出して配設され、第1の導電型を有する第1の半導体領域と、前記第1の半導体領域内において前記第2の方向に複数配設され、かつ前記第1の半導体領域の第1の主面に第2の主面が露出され、前記第1の導電型と反対の第2の導電型を有する第2の半導体領域と、前記第1の半導体領域の前記第2の半導体領域と前記第2の方向に隣接する他の前記第1の半導体領域の他の前記第2の半導体領域との間に渡って配設された制御電極と、を形成する工程と、
前記制御電極上を覆い前記第1の方向に延伸する延伸部、前記第2の方向に隣接する前記延伸部同士を前記第1の方向に一定間隔において連結する連結部及び前記延伸部と前記連結部とにより開口形状が規定され前記第1の半導体領域の前記第1の主面と前記第2の半導体領域の前記第2の主面とを露出する開口部を有する層間絶縁膜を形成する工程と、
前記層間絶縁膜上に配設され、前記層間絶縁膜の前記開口部を通して前記第1の半導体領域の前記第1の主面及び前記第2の半導体領域の前記第2の主面に電気的に接続された電極を形成する工程と、
前記電極上にこの電極に電気的に接続される外部配線を形成する工程と、
を備えたことを特徴とする半導体装置の製造方法。
A substrate having a first side and a second side facing each other in the first direction and a third side and a fourth side facing each other in a second direction intersecting the first direction; A first semiconductor region having a first conductivity type disposed in a plurality of in the second direction and having a first main surface exposed, and the first semiconductor region in the first semiconductor region A second conductive surface having a second conductivity type opposite to the first conductivity type, wherein a second main surface is exposed on the first main surface of the first semiconductor region. And between the second semiconductor region of the first semiconductor region and the other second semiconductor region of the other first semiconductor region adjacent to the second direction. Forming a disposed control electrode; and
An extending portion that covers the control electrode and extends in the first direction, a connecting portion that connects the extending portions adjacent to each other in the second direction at a constant interval, and the extending portion and the connection Forming an interlayer insulating film having an opening defined by the portion and having an opening exposing the first main surface of the first semiconductor region and the second main surface of the second semiconductor region. When,
Electrically disposed on the interlayer insulating film and electrically through the opening of the interlayer insulating film to the first main surface of the first semiconductor region and the second main surface of the second semiconductor region; Forming a connected electrode;
Forming an external wiring electrically connected to the electrode on the electrode;
A method for manufacturing a semiconductor device, comprising:
前記層間絶縁膜を形成する工程はボンディングエリアの直下の領域に前記連結部を配設する層間絶縁膜を形成する工程であり、前記外部配線を形成する工程は前記ボンディングエリアにおいて前記電極に電気的に接続する前記外部配線を形成する工程であることを特徴とする請求項7に記載の半導体装置の製造方法。   The step of forming the interlayer insulating film is a step of forming an interlayer insulating film for disposing the connecting portion in a region immediately below the bonding area, and the step of forming the external wiring electrically connects the electrodes in the bonding area. 8. The method of manufacturing a semiconductor device according to claim 7, wherein the external wiring is connected to a semiconductor device.
JP2007291892A 2007-11-09 2007-11-09 Semiconductor device Active JP4293272B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007291892A JP4293272B2 (en) 2007-11-09 2007-11-09 Semiconductor device
US12/682,383 US8207612B2 (en) 2007-11-09 2008-09-19 Semiconductor device and manufacturing method thereof
EP08847499.4A EP2209142B1 (en) 2007-11-09 2008-09-19 Semiconductor device and manufacturing method thereof
CN2008801110162A CN101821853B (en) 2007-11-09 2008-09-19 Semiconductor device and manufacturing method thereof
PCT/JP2008/067009 WO2009060670A1 (en) 2007-11-09 2008-09-19 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291892A JP4293272B2 (en) 2007-11-09 2007-11-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2009117755A true JP2009117755A (en) 2009-05-28
JP4293272B2 JP4293272B2 (en) 2009-07-08

Family

ID=40784512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291892A Active JP4293272B2 (en) 2007-11-09 2007-11-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4293272B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125639A1 (en) * 2009-04-28 2010-11-04 三菱電機株式会社 Power semiconductor device
EP2695795A1 (en) 2011-04-07 2014-02-12 Mitsubishi Electric Corporation Molded module and electric power steering apparatus
CN107895689A (en) * 2016-10-04 2018-04-10 拉碧斯半导体株式会社 Semiconductor device
JP2020009828A (en) * 2018-07-04 2020-01-16 富士電機株式会社 Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125639A1 (en) * 2009-04-28 2010-11-04 三菱電機株式会社 Power semiconductor device
US8450796B2 (en) 2009-04-28 2013-05-28 Mitsubishi Electric Corporation Power semiconductor device
JP5599388B2 (en) * 2009-04-28 2014-10-01 三菱電機株式会社 Power semiconductor device
EP2695795A1 (en) 2011-04-07 2014-02-12 Mitsubishi Electric Corporation Molded module and electric power steering apparatus
CN107895689A (en) * 2016-10-04 2018-04-10 拉碧斯半导体株式会社 Semiconductor device
JP2018060879A (en) * 2016-10-04 2018-04-12 ラピスセミコンダクタ株式会社 Semiconductor device
JP2021145146A (en) * 2016-10-04 2021-09-24 ラピスセミコンダクタ株式会社 Semiconductor device
JP7179916B2 (en) 2016-10-04 2022-11-29 ラピスセミコンダクタ株式会社 semiconductor equipment
CN107895689B (en) * 2016-10-04 2023-09-05 拉碧斯半导体株式会社 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2020009828A (en) * 2018-07-04 2020-01-16 富士電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP4293272B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
US8207612B2 (en) Semiconductor device and manufacturing method thereof
JP5729126B2 (en) Manufacturing method of semiconductor device
US8222651B2 (en) Semiconductor device
US8754510B2 (en) Conduction path, semiconductor device using the same, and method of manufacturing conduction path, and semiconductor device
US7847316B2 (en) Semiconductor device and its manufacture
KR20080096483A (en) Semiconductor device
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP5605095B2 (en) Semiconductor device
JP2008117825A (en) Power semiconductor device
JP2001332687A (en) Semiconductor device and manufacturing method thereof
JP5098630B2 (en) Semiconductor device and manufacturing method thereof
JP4293272B2 (en) Semiconductor device
JP2004111885A (en) Semiconductor device
JP4706551B2 (en) Power semiconductor element and power module
JP4058007B2 (en) Semiconductor device
US11201099B2 (en) Semiconductor device and method of manufacturing the same
JP2009164288A (en) Semiconductor element and semiconductor device
JP7383881B2 (en) Semiconductor device and semiconductor device manufacturing method
JP2000058820A (en) Power semiconductor element and power module
JP2013045973A (en) Semiconductor device
WO2021235020A1 (en) Power semiconductor element
JP7419781B2 (en) semiconductor module
WO2023090137A1 (en) Semiconductor element and semiconductor device
WO2023119837A1 (en) Semiconductor module, semiconductor device, and vehicle
WO2023063025A1 (en) Semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4293272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250