JP2009117275A - Manufacturing method of plated rectangular conductor, and flexible flat cable - Google Patents

Manufacturing method of plated rectangular conductor, and flexible flat cable Download PDF

Info

Publication number
JP2009117275A
JP2009117275A JP2007291614A JP2007291614A JP2009117275A JP 2009117275 A JP2009117275 A JP 2009117275A JP 2007291614 A JP2007291614 A JP 2007291614A JP 2007291614 A JP2007291614 A JP 2007291614A JP 2009117275 A JP2009117275 A JP 2009117275A
Authority
JP
Japan
Prior art keywords
plated
conductor
rectangular
copper
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007291614A
Other languages
Japanese (ja)
Inventor
Tasuku Hatanaka
翼 畑中
Kunihiro Naoe
邦浩 直江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007291614A priority Critical patent/JP2009117275A/en
Publication of JP2009117275A publication Critical patent/JP2009117275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a plated rectangular copper conductor in which thickness of a plated layer of nickel or tin is more uniform, concretely meaning that a ratio of the maximum value to the minimum value of the plated layer is 1.05 or less, as the plated rectangular copper conductor for a flexible flat cable, to provide an FFC superior in corrosion resistance by using the obtained plated rectangular copper conductor, and furthermore to provide the FFC in which few whiskers are formed in the case it is mounted on a terminal of a connector, and a short circuit does not occur between copper wirings or the like. <P>SOLUTION: For example, problems are solved by the manufacturing method that an Ni plated copper wire drawn to a prescribed diameter is drawn into the Ni plated copper conductor of a rectangular cross section by using a profiled die, and the Ni plated rectangular conductor is prepared by rolling processing. Moreover, the problems are solved by making the FFC in which a plurality of numbers of the Ni plated rectangular conductors obtained by the manufacturing method are used and laminated by an insulating tape with an adhesive at a necessary spacing, and arranged in parallel, and a connecting part is formed at its end part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ニッケル或いは錫のめっき平角導体の製造方法並びにそれを用いたフレキシブルフラットケーブルに関するものである。   The present invention relates to a method for producing a nickel or tin plated rectangular conductor and a flexible flat cable using the same.

電子機器等の小型化や軽量化に伴い、搭載される配線材料も小型化が進んでいる。このため限られたスペースに収まると共にその可とう性も要求される。例えば、平角状の導体を複数本平面状に並べ、これをテープ状の絶縁体材料によって両側からラミネートしたフレキシブルフラットケーブルが使用されている。このフレキシブルフラットケーブルは、端末部を口出し加工してプリント配線基板等に接続配線されるが、接触抵抗を小さくしたり、半田付性を向上させるため前記平角導体には通常錫系めっき(Sn系めっき)や金/ニッケルめっき(Au/Niめっき)が施される。そして、これ等のめっき層はその表面が均一であるほど好ましいとされている。このような平角導体は、通常Φ0.5〜1mm程度の銅線にめっきを施した後に、Φ0.1〜0.2mm程度に伸線加工を行い、さらに圧延加工によって平角導体が作製されている。このような技術は、例えば特許文献1に記載されている。しかしながら、このような製造方法では銅丸線を平らに圧延加工されるために、銅丸線等の素材内に於ける加工歪は均一ではなく、大きく変形する箇所と殆ど変形しない箇所が生じることになる。当然、その上に施されているめっき層も同様の変形を受け、めっき層の厚みは全体に均一とならずに場所によって大きな差が生じることになる。具体的には、圧延ロールに接した平角導体の中央部はめっき層が厚く、中央部と両端部の間の部分が薄くなる傾向が見られる。このようにめっき層の厚さが不均一になると、めっき層の性能が損なわれて好ましくなくなる。例えば、Au/Niの2層めっきの場合にはNi層はバリヤ層として銅がAu層中に拡散することを防止しているが、Ni層に薄い部分が生じると銅がAu層中に拡散し、めっき層の表面に達した銅がAuめっき層の耐食性を著しく悪化させることになる。このように耐食性が悪くなると、接触抵抗の増加や半田付性の低下に繋がり好ましくない。また、Sn系めっき層の場合にはコネクタと嵌合した時に、コネクタの端子に押付けられた周辺のめっき層からウイスカーと呼ばれる針状結晶が成長してくることが知られている。このようなウイスカーの成長は、銅配線間等での短絡を生じて電子機器等のトラブルに繋がり好ましくない。このウイスカーの成長を抑えるためには、Sn系めっき層の純錫層の厚さを所定の厚さ以下に抑えることが有効とされている。一方、半田濡れ性はめっき層が厚いほど良好である。このため、圧延後の平角導体のめっき層は均一であることが望まれる。このため特許文献2に開示されるような技術が提案されている。すなわち、めっき丸線導体を上・下圧延ロールの回転と同時に、下段圧延ロールの回転軸を圧延面と平行な面に沿って、上段圧延ロールの回転軸とクロスする方向に、上段圧延ロールの回転数に対して極めて早く反復運動させながら圧延する方法が開示されている。そしてこのような圧延方法によれば、圧延後のめっき層が均一なフレキシブルフラットケーブル用の平角導体が得られるが、それでもめっき層の厚い部分と薄い部分とで平均して1.2倍程度の差が出ることがあり、均一にする効果が十分ではない場合があった。
特許3005742号公報 特開2007−95633号公報
Along with the downsizing and weight reduction of electronic devices and the like, the wiring materials to be mounted are also downsizing. For this reason, the space is limited and the flexibility is required. For example, a flexible flat cable is used in which a plurality of flat conductors are arranged in a plane and laminated from both sides with a tape-like insulator material. This flexible flat cable is connected to a printed wiring board or the like by calibrating the terminal portion, but in order to reduce contact resistance or improve solderability, the flat conductor is usually tin-based (Sn-based). Plating) or gold / nickel plating (Au / Ni plating). And it is supposed that these plating layers are so preferable that the surface is uniform. Such a flat conductor is usually formed by plating a copper wire having a diameter of about Φ0.5 to 1 mm, then drawing the wire to a diameter of about Φ0.1 to 0.2 mm, and further rolling the flat conductor. . Such a technique is described in Patent Document 1, for example. However, in such a manufacturing method, since the copper round wire is rolled flat, the processing strain in the material such as the copper round wire is not uniform, and a portion that deforms greatly and a portion that hardly deforms occur. become. Of course, the plating layer applied thereon is also subjected to the same deformation, and the thickness of the plating layer is not uniform as a whole, and a large difference occurs depending on the place. Specifically, the plating layer is thick at the central portion of the flat conductor in contact with the rolling roll, and the portion between the central portion and both end portions tends to be thin. Thus, when the thickness of a plating layer becomes non-uniform | heterogenous, the performance of a plating layer will be impaired and it becomes unpreferable. For example, in the case of Au / Ni two-layer plating, the Ni layer prevents the copper from diffusing into the Au layer as a barrier layer. However, if a thin portion occurs in the Ni layer, the copper diffuses into the Au layer. Then, the copper reaching the surface of the plating layer significantly deteriorates the corrosion resistance of the Au plating layer. Such poor corrosion resistance is undesirable because it leads to an increase in contact resistance and a decrease in solderability. In the case of an Sn-based plating layer, it is known that needle crystals called whiskers grow from a peripheral plating layer pressed against a connector terminal when fitted with a connector. Such whisker growth is not preferable because it causes a short circuit between copper wirings and leads to troubles in electronic equipment. In order to suppress the growth of the whisker, it is effective to suppress the thickness of the pure tin layer of the Sn-based plating layer to a predetermined thickness or less. On the other hand, the solder wettability is better as the plating layer is thicker. For this reason, it is desirable that the plated layer of the flat rectangular conductor after rolling is uniform. For this reason, a technique as disclosed in Patent Document 2 has been proposed. That is, simultaneously with the rotation of the upper and lower rolling rolls on the plated round wire conductor, the rotation axis of the upper rolling roll is crossed with the rotation axis of the upper rolling roll along the plane parallel to the rolling surface of the lower rolling roll. A method of rolling while repetitively moving with respect to the rotational speed is disclosed. And according to such a rolling method, a flat conductor for a flexible flat cable with a uniform plated layer after rolling can be obtained, but still about 1.2 times on average between the thick and thin portions of the plated layer. There may be a difference, and the effect of making uniform may not be sufficient.
Japanese Patent No. 3005742 JP 2007-95633 A

よって本発明が解決しようとする課題は、フレキシブルフラットケーブル(以下、FFC)用のめっき平角銅導体として、ニッケル或いは錫のめっき層の厚さがより均一、具体的にはめっき層の最大値と最小値の比が1.05以下のめっき平角銅導体の製造方法を提供し、また、得られた前記めっき平角銅導体を用いることによって耐食性が良好なFFCを得ること、さらには、コネクタの端子に取付けた場合にウイスカーの発生がなく銅配線間等での短絡を生じることがないFFCを提供することにある。   Therefore, the problem to be solved by the present invention is that, as a plated flat copper conductor for a flexible flat cable (hereinafter referred to as FFC), the thickness of the plated layer of nickel or tin is more uniform, specifically, the maximum value of the plated layer Provided is a method for producing a plated rectangular copper conductor having a minimum value ratio of 1.05 or less, and obtaining an FFC with good corrosion resistance by using the obtained plated rectangular copper conductor. An object of the present invention is to provide an FFC in which no whisker is generated and no short circuit occurs between copper wirings.

前記解決しようとする課題は、請求項1に記載するように、所定の径に伸線加工されたニッケルめっき丸銅線(Ni、めっき銅線)を、異形ダイスを用いて断面が四角形のNiめっき銅導体に伸線し、これを圧延加工によってNiめっき平角銅導体(以下、Niめっき平角導体)の製造方法とすることによって、解決される。また、請求項2に記載するように、前記製造方法によって得られたNiめっき平角導体の複数本が、必要な間隔で接着剤付絶縁テープによってラミネートされて平行に配置され、かつその端部には接続部が形成されているFFCとすることによって、解決される。   The problem to be solved is a nickel-plated round copper wire (Ni, plated copper wire) drawn to a predetermined diameter using a deformed die, and a cross-section of the Ni-plated Ni wire as described in claim 1. The problem is solved by drawing the plated copper conductor and rolling it into a method for producing a Ni-plated rectangular copper conductor (hereinafter, Ni-plated rectangular conductor). In addition, as described in claim 2, a plurality of Ni-plated flat conductors obtained by the manufacturing method are laminated in parallel with an insulating tape with an adhesive at a necessary interval, and are arranged at the ends. Is solved by using the FFC in which the connection portion is formed.

さらに、請求項3に記載するように、所定の径に伸線加工された錫めっき丸銅線(以下、Snめっき銅線)を、異形ダイスを用いて断面が四角形のSnめっき銅導体に伸線し、これを圧延加工によってSnめっき平角銅導体(以下、Snめっき平角導体)の製造方法としたことによって、解決される。さらにまた、請求項4に記載するように、前記製造方法によって得られたSnめっき平角導体の複数本が、必要な間隔で接着剤付絶縁テープによってラミネートされて平行に配置され、かつその端部には接続部が形成されているFFCとすることによって、解決される。   Furthermore, as described in claim 3, a tin-plated round copper wire (hereinafter, Sn-plated copper wire) drawn to a predetermined diameter is drawn into a Sn-plated copper conductor having a square cross section using a deformed die. This is solved by forming a Sn-plated flat copper conductor (hereinafter referred to as Sn-plated flat conductor) by rolling. Furthermore, as described in claim 4, a plurality of Sn-plated flat conductors obtained by the manufacturing method are laminated in parallel by an insulating tape with an adhesive at a necessary interval, and ends thereof This can be solved by using an FFC in which a connection portion is formed.

以上のような本発明によれば、所定の径に伸線加工されたNiめっき丸銅線を、異形ダイスを用いて断面が四角形のNiめっき銅導体に伸線し、これを圧延加工したNiめっき平角導体の製造方法であるから、Niめっき層の厚さがより均一、具体的にはめっき層の最大値と最小値の比が1.05以下のNiめっき平角導体が得られる。さらに、前記製造方法によって得られたNiめっき平角導体の複数本を、必要な間隔で接着剤付絶縁テープによってラミネートして平行に配置し、かつその端部には接続部が形成されているFFCとしたので、耐食性が良好であることにより腐食等による銅配線間等での短絡を生じることがないFFCを提供できる。さらに、FFCの曲げ特性も向上する。   According to the present invention as described above, a Ni-plated round copper wire drawn to a predetermined diameter is drawn into a Ni-plated copper conductor having a square cross section using a deformed die, and this is rolled Ni Since it is a manufacturing method of a plating flat conductor, the Ni plating flat conductor whose thickness of Ni plating layer is more uniform, specifically, the ratio of the maximum value and minimum value of a plating layer is 1.05 or less is obtained. Further, an FFC in which a plurality of Ni-plated flat conductors obtained by the manufacturing method are laminated in parallel with an insulating tape with an adhesive at a necessary interval and arranged at the end thereof. Therefore, it is possible to provide an FFC that does not cause a short circuit between copper wirings due to corrosion or the like due to good corrosion resistance. Furthermore, the bending characteristics of the FFC are also improved.

また、所定の径に伸線加工されたSnめっき銅線を、異形ダイスを用いて断面が四角形のSnめっき銅導体に伸線し、これを圧延加工したSnめっき平角導体の製造方法であるから、FFC用のめっき平角導体としてめっき層の厚さがより均一で薄く、具体的にはめっき層の最大値と最小値の比が1.05以下のSnめっき平角導体が得られる。また、このようなSnめっき平角導体は、Snめっき量を必要以上に使用する必要がないので、製造コストの上からも好ましいものである。また、前記Snめっき平角導体の複数本を、必要な間隔で接着剤付絶縁テープによってラミネートして平行に配置し、かつその端部には接続部が形成されているFFCとすることによって、コネクタの端子に取付けた場合にウイスカーの発生がなく、これによる銅配線間等での短絡を生じることがないFFCとなる。さらに、FFCの曲げ特性も向上する。   In addition, this is a method for producing a Sn-plated rectangular conductor obtained by drawing a Sn-plated copper wire drawn to a predetermined diameter into a Sn-plated copper conductor having a square cross section using a deformed die and rolling it. As a plated flat conductor for FFC, the thickness of the plated layer is more uniform and thin. Specifically, a Sn plated flat conductor having a ratio of the maximum value and the minimum value of the plated layer of 1.05 or less is obtained. Further, such an Sn-plated flat conductor is preferable from the viewpoint of manufacturing cost because it is not necessary to use an amount of Sn plating more than necessary. In addition, a connector is provided by forming a plurality of the Sn-plated flat conductors in parallel by laminating them with an insulating tape with an adhesive at a necessary interval, and having a connection portion formed at an end thereof. When it is attached to the terminal, whisker is not generated, and the FFC does not cause a short circuit between copper wirings. Furthermore, the bending characteristics of the FFC are also improved.

以下に本発明を詳細に説明する。請求項1に記載する発明は、FFC用として好ましいNiめつき平角導体の製造方法に関するもので、所定の径に伸線加工されたNiめっき銅線を、異形ダイスを用いて断面が四角形のNiめっき導体に伸線し、これを圧延加工によってNiめっき平角導体とする製造方法である。このような製造方法によれば、Niめっき平角導体のめっき層の厚さをより均一にすることができるので、より耐食性を良好なもとできる。   The present invention is described in detail below. The invention described in claim 1 relates to a method for manufacturing a Ni-plated flat conductor preferable for FFC, and a Ni-plated copper wire drawn to a predetermined diameter is formed using a deformed die and has a rectangular cross section. This is a manufacturing method in which a plated conductor is drawn and formed into a Ni-plated rectangular conductor by rolling. According to such a manufacturing method, since the thickness of the plating layer of the Ni-plated rectangular conductor can be made more uniform, the corrosion resistance can be improved.

図1に記載した概略図によって、その製造方法を説明する。符号1は所定の径に伸線されたNiめっき銅線で、銅線2は通常Φ0.1〜0.2mm程度に伸線され、Niめっき層3が施されたものである。ついで、このNiめっき銅線1を、圧延加工を行う前に四角形の穴部を有する異形ダイス4を通して伸線する。前記穴部は、縦が0.07〜0.18mm程度で、横幅が0.09〜0.20mm程度の四角形のものが用いられる。前記四角形は、通常正方形や長方形のものであるが、特に長方形のものが好ましい。また通常この工程では、0.1%程度までの減面加工が行われる。このように、一旦断面が四角形のNiめっき導体5に伸線した後に、通常の圧延加工によって目的のNiめっき平角導体6とされる。このように断面が四角形のNiめっき導体5を圧延ロールによる圧延加工を行ってNiめっき平角導体6としても、Niめっき銅線等の素材内に於ける加工歪が除去されているので、その上に施されているめっき層が変形を受けることなくめっき層の厚みは全体に均一とすることができる。すなわち、圧延ロールに接した平角導体の中央部はめっき層が厚く、中央部と両端部の間の部分が薄くなる傾向が見られたが、このような異形ダイスを通過させて伸線することによって、その後に通常の圧延加工を施しても、前記の問題がなく均一なNiめっき層を有する平角導体が得られることになる。具体的には、めっき層の最大値と最小値の比が1.05以下となるNiめっき平角導体を得ることができる。このように均一のNiめっき層を有するNiめっき平角導体6は、Ni層に薄い部分が生じて銅がAu層中に拡散し、めっき層の表面に達した銅がAuめっき層の耐食性を著しく悪化させると言うような問題が生じない。   The manufacturing method will be described with reference to the schematic diagram shown in FIG. Reference numeral 1 denotes a Ni-plated copper wire drawn to a predetermined diameter, and the copper wire 2 is usually drawn to about 0.1 to 0.2 mm and provided with a Ni plating layer 3. Next, the Ni plated copper wire 1 is drawn through a deformed die 4 having a square hole before rolling. The hole has a rectangular shape with a length of about 0.07 to 0.18 mm and a width of about 0.09 to 0.20 mm. The quadrangle is usually a square or a rectangle, but a rectangle is particularly preferable. Usually, in this step, surface reduction processing is performed up to about 0.1%. In this manner, after the wire is once drawn on the Ni-plated conductor 5 having a square cross section, the target Ni-plated flat conductor 6 is obtained by a normal rolling process. In this way, the Ni-plated conductor 5 having a square cross section is rolled with a rolling roll to form the Ni-plated flat conductor 6, because the processing strain in the material such as Ni-plated copper wire is removed. The thickness of the plating layer can be uniform throughout the plating layer without being deformed. That is, the central part of the flat conductor in contact with the rolling roll has a thick plating layer, and the part between the central part and both end parts tends to be thinned. Thus, even if a normal rolling process is performed thereafter, a rectangular conductor having a uniform Ni plating layer can be obtained without the above-mentioned problems. Specifically, a Ni-plated rectangular conductor in which the ratio between the maximum value and the minimum value of the plating layer is 1.05 or less can be obtained. In this way, the Ni-plated rectangular conductor 6 having a uniform Ni plating layer has a thin portion in the Ni layer and copper diffuses into the Au layer, and the copper reaching the surface of the plating layer significantly improves the corrosion resistance of the Au plating layer. There is no problem to make it worse.

そして、請求項2に記載するように、前記の製造方法によって製造されたNiめっき平角導体を用いてFFCを製造することにより、非常に均一なNiめっき層を有する平角導体のためにNiめっき層のバラつきによる腐食等の発生がないので、銅配線間等での短絡を生じることがないFFCを提供できる。なお、FFCは通常、Niめっきが施された数本〜数十本の平角導体を所定の間隔で平行に並べ、、ポリエチレンテレフタレート(以下、PET)やポリイミド樹脂(以下、PI)等の絶縁フィルムで両側からラミネートして被覆し、少なくとも一方の端部に電気コネクタと接続する接続端末部を形成することによって製造される。なお、この端末部には厚さ0.03〜1.00μm程度のAuめっき層が施されて接続端末部とされる。さらに、このFFCは曲げ特性にも優れたものとなる。   And, as described in claim 2, by manufacturing the FFC using the Ni plated rectangular conductor manufactured by the above manufacturing method, the Ni plated layer for a rectangular conductor having a very uniform Ni plated layer. Therefore, an FFC that does not cause a short circuit between copper wirings can be provided. Note that FFC is usually an insulating film made of polyethylene terephthalate (hereinafter referred to as PET) or polyimide resin (hereinafter referred to as PI) in which several to several tens of rectangular conductors plated with Ni are arranged in parallel at predetermined intervals. Is manufactured by forming a connection terminal portion to be connected to the electrical connector at at least one end portion. The terminal portion is provided with an Au plating layer having a thickness of about 0.03 to 1.00 μm to form a connection terminal portion. Furthermore, this FFC has excellent bending characteristics.

さらに、請求項3に記載のSnめっき平角導体の製造方法は、所定の径に伸線加工されたSnめっき銅線を、異形ダイスを用いて断面が四角形のSnめっき銅導体に伸線し、これを圧延加工によってSnめっき平角導体とする製造方法である。このようなプロセスによって製造されたSnめっき平角導体は、Snめっき層が均一かつ薄いために、コネクタと嵌合して長期に使用してもウイスカーの発生を抑制できる。また、Snめっき層を十分薄くしているので、製造コスト的にも有利である。なお、製造プロセスは前述のNiめっき平角導体の製造プロセスと同様に行われる。すなわち、図1に示したとおりである。具体的には、所定の径に伸線されたSnめっき銅線が使用され、銅丸線は通常Φ0.8mm程度のものに、5〜20μm程度のSnめっき層が施されたものである。また、圧延加工を行う前に伸線する四角形の穴部を有する異形ダイスも、穴部が縦0.07〜0.18mm程度で、横幅が0.09〜0.2mm程度の四角形のものが用いられる。前記四角形は、通常正方形や長方形のものであるが、特に長方形のものが好ましく、通常この工程で0.1%程度までの減面加工が行われる。このような異形ダイスを通過させて伸線することによって、その後に通常の圧延加工を施しても前記の問題がなく均一で薄いSnめっき層を有する平角導体が得られることになる。具体的には、めっき層厚さの最大値と最小値の比が1.05以下となるSnめっき平角導体を得ることができる。   Furthermore, the manufacturing method of the Sn-plated rectangular conductor according to claim 3, the Sn-plated copper wire drawn to a predetermined diameter is drawn to a Sn-plated copper conductor having a square cross section using a deformed die, This is a manufacturing method in which a Sn-plated flat conductor is formed by rolling. Since the Sn plating flat conductor manufactured by such a process has a uniform and thin Sn plating layer, it is possible to suppress the generation of whiskers even when used for a long time by fitting with a connector. Further, since the Sn plating layer is sufficiently thin, it is advantageous in terms of manufacturing cost. The manufacturing process is performed in the same manner as the manufacturing process of the Ni-plated rectangular conductor described above. That is, as shown in FIG. Specifically, an Sn plated copper wire drawn to a predetermined diameter is used, and a copper round wire is usually one having a diameter of about 0.8 mm and a Sn plating layer of about 5 to 20 μm. Also, the odd-shaped die having a rectangular hole portion to be drawn before rolling is also a rectangular die having a hole portion of about 0.07 to 0.18 mm in length and a width of about 0.09 to 0.2 mm. Used. The quadrangle is usually a square or a rectangle, but a rectangle is particularly preferable, and a surface reduction process of about 0.1% is usually performed in this step. By passing such a deformed die and drawing, a rectangular conductor having a uniform and thin Sn plating layer can be obtained without the above-described problems even if a normal rolling process is performed thereafter. Specifically, it is possible to obtain an Sn-plated rectangular conductor in which the ratio between the maximum value and the minimum value of the plating layer thickness is 1.05 or less.

そして、前述のSnめっき平角導体を用いてFFCを製造すると、前記Snめっき平角導体は均一で薄いSnめっき層を有する平角導体であるから、コネクタと嵌合して長期に使用してもウイスカーと呼ばれる針状結晶が成長することがない。このため、FFCは銅配線間等での短絡を生じることがなく実用的なものである。また、得られたFFCは曲げ特性にも優れたものである。   And when FFC is manufactured using the above-mentioned Sn-plated flat conductor, the Sn-plated flat conductor is a flat conductor having a uniform and thin Sn-plated layer. The acicular crystal called does not grow. For this reason, the FFC is practical without causing a short circuit between copper wirings. Further, the obtained FFC has excellent bending characteristics.

以下に実施例及び比較例を記載して、本発明の効果を述べる。
実施例1:Φ0.8mmの軟銅丸線に電解Niめっきにより10μm厚さのNiめっき層を形成した。このNiめっき軟銅丸線を伸線加工によりΦ0.12mmまで伸線した。ついで、縦が0.095mm、横幅が0.119mmの長方形の穴部を有する異形ダイスを用いて、断面が長方形のNiめっき銅線に伸線した。さらに、この断面が長方形のNiめっき銅線を上・下の圧延ロールを用いて圧延加工し、厚さが0.035mmのNiめっき平角導体とした。実施例として5本作製した。比較例として、前記Φ0.12mmのNiめっき軟銅丸線を、同様に圧延加工して0.035mmのNiめっき平角導体とした。比較例として3本作製した。さらに比較例として、前記Φ0.12mmのNiめっき軟銅丸線を本発明者らが提案している圧延加工方法(特開2007−95633号公報参照)である、下段の圧延ロールを上段圧延ロールの回転軸方向とクロスする方向に早い反復運動させる方法によって圧延加工した。比較例として3本作製した。これ等の試料について長手方向の適所で切断し、その断面観測からNiめっき層の厚さの最大値並びに最小値を測定した。結果を、最大値(A)と最小値(B)の比(A/B)として表1に示した。
The effects of the present invention will be described below by describing examples and comparative examples.
Example 1 An Ni plating layer having a thickness of 10 μm was formed on an annealed copper round wire of Φ0.8 mm by electrolytic Ni plating. This Ni-plated annealed copper round wire was drawn to Φ0.12 mm by wire drawing. Then, using a deformed die having a rectangular hole having a vertical length of 0.095 mm and a horizontal width of 0.119 mm, the Ni-plated copper wire having a rectangular cross section was drawn. Further, this Ni-plated copper wire having a rectangular cross section was rolled using upper and lower rolling rolls to obtain a Ni-plated rectangular conductor having a thickness of 0.035 mm. Five were produced as examples. As a comparative example, the above-mentioned Φ0.12 mm Ni-plated annealed copper round wire was similarly rolled to form a 0.035 mm Ni-plated rectangular conductor. Three were produced as comparative examples. Further, as a comparative example, the lower rolling roll of the above-described Ni-rolled annealed copper round wire having a diameter of 0.12 mm is a rolling method proposed by the present inventors (see Japanese Patent Application Laid-Open No. 2007-95633). Rolling was performed by a method of rapid repetitive movement in the direction crossing the rotation axis direction. Three were produced as comparative examples. These samples were cut at appropriate positions in the longitudinal direction, and the maximum value and the minimum value of the thickness of the Ni plating layer were measured from the cross-sectional observation. The results are shown in Table 1 as the ratio (A / B) between the maximum value (A) and the minimum value (B).

表1から明らかなように、Niめっきの例である本発明の実施例1〜5のように、長方形の穴部を有する異形ダイスを用いたものはめっき層の厚さが、最大値と最小値の比で1.05以下の均一なものである。これに対して、従来一般的に行われている圧延方法の例である比較例1〜3では、最大値と最小値の比が13.9〜19.0と大きな差が見られる。また、本発明者等が提案した圧延方法の例である比較例4〜6に於いても最大値と最小値の比が1.20〜1.32と、十分に均一とはならなかった。   As is apparent from Table 1, the thickness of the plating layer is the maximum value and the minimum value of the one using a deformed die having a rectangular hole as in Examples 1 to 5 of the present invention which is an example of Ni plating. It is uniform with a value ratio of 1.05 or less. On the other hand, in Comparative Examples 1 to 3, which are examples of rolling methods that are generally performed in the past, there is a large difference between the maximum value and the minimum value ratio of 13.9 to 19.0. Further, in Comparative Examples 4 to 6 which are examples of the rolling method proposed by the present inventors, the ratio of the maximum value to the minimum value was 1.20 to 1.32, which was not sufficiently uniform.

実施例2:Φ0.8mmの軟銅丸線に電解Niめっきにより10μm厚さのNiめっき層を形成した。このNiめっき軟銅丸線を伸線加工によりΦ0.12mmまで伸線した。ついで、0.105mm角の略正方形の穴部を有する異形ダイスを用いて、断面が長方形のNiめっき銅線に伸線した。さらに、この断面が長方形のNiめっき銅線を上・下の圧延ロールを用いて圧延加工し、厚さが0.035mmのNiめっき平角導体とて5本作製した。比較例として、前記Φ0.12mmのNiめっき軟銅丸線を、同様に圧延加工して0.035mmのNiめっき平角導体とした。(3本作製。)なお比較例としては、実施例1で記載した比較例1〜6を引用した。これ等の試料について長手方向の適所で切断し、その断面観測からNiめっき層厚さの最大値並びに最小値を測定した。結果を、最大値(A)と最小値(B)の比(A/B)として表2に示す。   Example 2: An Ni plating layer having a thickness of 10 μm was formed on an annealed copper round wire of Φ0.8 mm by electrolytic Ni plating. This Ni-plated annealed copper round wire was drawn to Φ0.12 mm by wire drawing. Subsequently, using a deformed die having a substantially square hole of 0.105 mm square, the Ni-plated copper wire having a rectangular cross section was drawn. Further, this Ni-plated copper wire having a rectangular cross section was rolled using upper and lower rolling rolls, and five Ni-plated rectangular conductors having a thickness of 0.035 mm were produced. As a comparative example, the above-mentioned Φ0.12 mm Ni-plated annealed copper round wire was similarly rolled to form a 0.035 mm Ni-plated rectangular conductor. (Production of 3). As Comparative Examples, Comparative Examples 1 to 6 described in Example 1 were cited. These samples were cut at appropriate positions in the longitudinal direction, and the maximum value and the minimum value of the Ni plating layer thickness were measured from the cross-sectional observation. The results are shown in Table 2 as the ratio (A / B) between the maximum value (A) and the minimum value (B).

また、表2から明らかなように、本発明の実施例6〜10に示した略正方形の穴部を有する異形ダイスを用いたものは、めっき層の厚さが最大値と最小値の比で1.05以下と均一なものである。これに対して、比較例7〜9では大きな差が見られ、また、比較例10〜12の圧延方法でも十分に均一とは言えなかった。   In addition, as is apparent from Table 2, the thickness of the plating layer is a ratio between the maximum value and the minimum value when using the irregular dies having substantially square holes shown in Examples 6 to 10 of the present invention. It is uniform as 1.05 or less. On the other hand, a large difference was observed in Comparative Examples 7 to 9, and the rolling methods of Comparative Examples 10 to 12 were not sufficiently uniform.

実施例3:Φ0.8mmの軟銅丸線に電解Snめっきにより10μm厚さのSnめっき層を形成した。このSnめっき軟銅丸線を伸線加工によりΦ0.12mmまで伸線した。ついで、縦が0.095mm、横幅が0.119mmの長方形の穴部を有する異形ダイスを用いて、断面が長方形のSnめっき銅線に伸線した。さらに、この断面が長方形のSnめっき銅線を上・下の圧延ロールを用いて圧延加工し、厚さが0.035mmのSnめっき平角導体として5本作製した。比較例として、前記Φ0.12mmのSnめっき軟銅丸線を、同様に圧延加工して0.035mmのSnめっき平角導体とした。(3本作製。)さらに比較例として、前記Φ0.12mmのSnめっき軟銅丸線を本発明者らが提案している圧延加工方法(特開2007−95633号公報参照)である、下段の圧延ロールを上段圧延ロールの回転軸方向とクロスする方向に早い反復運動させる方法によって圧延加工した。(3本作製。)これ等の試料について長手方向の適所で切断し、その断面観測からSnめっき層厚さの最大値並びに最小値を測定した。結果を、最大値(A)と最小値(B)の比(A/B)として、表3に示す。   Example 3 An Sn plating layer having a thickness of 10 μm was formed on an annealed copper round wire of Φ0.8 mm by electrolytic Sn plating. This Sn plated annealed copper round wire was drawn to Φ0.12 mm by wire drawing. Subsequently, using a deformed die having a rectangular hole portion having a vertical length of 0.095 mm and a horizontal width of 0.119 mm, the wire was drawn into an Sn-plated copper wire having a rectangular cross section. Furthermore, this Sn-plated copper wire having a rectangular cross section was rolled using upper and lower rolling rolls, and five Sn-plated rectangular conductors having a thickness of 0.035 mm were produced. As a comparative example, the Φ0.12 mm Sn-plated annealed copper round wire was similarly rolled to obtain a 0.035 mm Sn-plated rectangular conductor. (Production of 3 wires) Further, as a comparative example, lower rolling, which is a rolling method proposed by the present inventors for the Sn-plated annealed copper round wire of Φ0.12 mm (see Japanese Patent Application Laid-Open No. 2007-95633). The roll was rolled by a method in which the roll was repeatedly moved quickly in a direction crossing the rotational axis direction of the upper rolling roll. (Three samples were produced.) These samples were cut at appropriate positions in the longitudinal direction, and the maximum value and the minimum value of the Sn plating layer thickness were measured from the cross-sectional observation. The results are shown in Table 3 as the ratio (A / B) between the maximum value (A) and the minimum value (B).

表3から明らかなように、Snめっきの例を示す実施例11〜15である長方形の穴部を有する異形ダイスを用いたものは、めっき層の厚さが最大値と最小値の比で1.05以下の均一なものである。これに対して、従来一般的に行われている圧延方法の例である比較例13〜15では、最大値と最小値の比が2.90〜3.20と差が大きくなっている。また、本発明者等が提案した圧延方法の例である比較例16〜18に於いても、最大値と最小値の比が1.12〜1.48と、十分に均一とはならなかった。   As is apparent from Table 3, the thickness of the plating layer is 1 in the ratio between the maximum value and the minimum value when using the odd-shaped dies having the rectangular hole portions which are Examples 11 to 15 showing examples of Sn plating. .05 or less. On the other hand, in Comparative Examples 13-15 which are examples of the rolling method generally performed conventionally, the difference between the maximum value and the minimum value is 2.90-3.20, which is large. Also, in Comparative Examples 16 to 18 which are examples of the rolling method proposed by the present inventors, the ratio of the maximum value to the minimum value was 1.12 to 1.48, which was not sufficiently uniform. .

実施例4:Φ0.8mmの軟銅丸線に電解Snめっきにより10μm厚さのSnめっき層を形成した。このSnめっき軟銅丸線を伸線加工によりΦ0.12mmまで伸線した。ついで、0.105mm角の略正方形の穴部を有する異形ダイスを用いて、断面が長方形のSnめっき銅線に伸線した。さらに、この断面が長方形のSnめっき銅線を上・下の圧延ロールを用いて圧延加工し、厚さが0.035mmのSnめっき平角導体として5本作製した。比較例として、前記Φ0.12mmのSnめっき軟銅丸線を、同様に圧延加工して0.035mmのSnめっき平角導体とした。(3本作製。)なお、比較例としては、実施例3で記載した比較例13〜18を引用した。これ等の試料について長手方向の適所で切断し、その断面観測からSnめっき層厚さの最大値並びに最小値を測定した。結果を、最大値(A)と最小値(B)の比(A/B)として、表4に示す。   Example 4 An Sn plating layer having a thickness of 10 μm was formed on an annealed copper round wire of Φ0.8 mm by electrolytic Sn plating. This Sn plated annealed copper round wire was drawn to Φ0.12 mm by wire drawing. Subsequently, the wire was drawn into an Sn-plated copper wire having a rectangular cross section using a deformed die having a substantially square hole of 0.105 mm square. Furthermore, this Sn-plated copper wire having a rectangular cross section was rolled using upper and lower rolling rolls, and five Sn-plated rectangular conductors having a thickness of 0.035 mm were produced. As a comparative example, the Φ0.12 mm Sn-plated annealed copper round wire was similarly rolled to obtain a 0.035 mm Sn-plated rectangular conductor. (Production of 3). As Comparative Examples, Comparative Examples 13 to 18 described in Example 3 were cited. These samples were cut at appropriate positions in the longitudinal direction, and the maximum value and the minimum value of the Sn plating layer thickness were measured from the cross-sectional observation. The results are shown in Table 4 as the ratio (A / B) between the maximum value (A) and the minimum value (B).

また、表4から明らかなように、実施例16〜20に示した略正方形の穴部を有する異形ダイスを用いたものは、めっき層の厚さが最大値と最小値の比で1.05以下と均一なものである。これに対して、比較例19〜21では大きな差が見られ、また、比較例22〜24の圧延方法に於いても十分に均一とは言えなかった。   Further, as apparent from Table 4, in the examples using the irregular dies having substantially square holes shown in Examples 16 to 20, the thickness of the plating layer is 1.05 in a ratio between the maximum value and the minimum value. It is uniform with the following. On the other hand, a big difference was seen in Comparative Examples 19-21, and it could not be said that the rolling methods of Comparative Examples 22-24 were sufficiently uniform.

本発明のFFCは、めっき層の厚さがより均一なめっき平角銅導体を用いるので、めっき平角導体は耐食性に優れたものであり、また、Snめっき平角導体を用いたFFCに於いては、コネクタの端子に取付けた場合にウイスカーの発生がないので、機器類に使用中に銅配線間等での短絡を生じることがなく有用である。   Since the FFC of the present invention uses a plated flat copper conductor with a more uniform plating layer thickness, the plated flat conductor is excellent in corrosion resistance, and in the FFC using the Sn plated flat conductor, Since whisker is not generated when it is attached to a terminal of a connector, it is useful without causing a short circuit between copper wirings during use in equipment.

本発明のめっき平角導体の製造工程の概略を示す工程図である。It is process drawing which shows the outline of the manufacturing process of the plating flat conductor of this invention.

符号の説明Explanation of symbols

1 所定の径に伸線されためっき軟銅丸線
2 丸銅線
3 めっき層
4 異形ダイス
5 断面が四角形のめっき銅導体
6 めっき平角導体
DESCRIPTION OF SYMBOLS 1 Plating soft copper round wire drawn to predetermined diameter 2 Round copper wire 3 Plating layer 4 Deformed die 5 Plating copper conductor with square cross section 6 Plating rectangular conductor

Claims (4)

所定の径に伸線加工されたニッケルめっき丸銅線を、異形ダイスを用いて断面が四角形のニッケルめっき銅線に伸線し、これを圧延加工によって平角導体としたことを特徴とするニッケルめっき平角銅導体の製造方法。   Nickel-plated round copper wire drawn to a predetermined diameter is drawn into a nickel-plated copper wire with a square cross section using a deformed die, and this is plated into a rectangular conductor by rolling. Manufacturing method of flat copper conductor. 請求項1に記載する製造方法によって得られたニッケルめっき平角銅導体の複数本が、必要な間隔で接着剤付絶縁テープによってラミネートされて平行に配置され、かつその端部には接続部が形成されていることを特徴とするフレキシブルフラットケーブル。   A plurality of nickel-plated rectangular copper conductors obtained by the manufacturing method according to claim 1 are laminated in parallel by an insulating tape with an adhesive at a necessary interval, and a connection portion is formed at an end thereof. A flexible flat cable characterized by being made. 所定の径に伸線加工された錫めっき丸銅線を、異形ダイスを用いて断面が四角形の錫めっき銅線に伸線し、これを圧延加工によって平角導体としたことを特徴とする錫めっき平角銅導体の製造方法。   A tin-plated round copper wire drawn to a predetermined diameter is drawn into a tin-plated copper wire having a square cross section using a deformed die, and this is used to produce a flat conductor by rolling. Manufacturing method of flat copper conductor. 請求項3に記載する製造方法によって得られた錫めっき平角銅導体の複数本が、必要な間隔で接着剤付絶縁テープによってラミネートされて平行に配置され、かつその端部には接続部が形成されていることを特徴とするフレキシブルフラットケーブル。   A plurality of tin-plated rectangular copper conductors obtained by the manufacturing method according to claim 3 are laminated in parallel by an insulating tape with an adhesive at a necessary interval, and a connecting portion is formed at an end thereof. A flexible flat cable characterized by being made.
JP2007291614A 2007-11-09 2007-11-09 Manufacturing method of plated rectangular conductor, and flexible flat cable Pending JP2009117275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291614A JP2009117275A (en) 2007-11-09 2007-11-09 Manufacturing method of plated rectangular conductor, and flexible flat cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291614A JP2009117275A (en) 2007-11-09 2007-11-09 Manufacturing method of plated rectangular conductor, and flexible flat cable

Publications (1)

Publication Number Publication Date
JP2009117275A true JP2009117275A (en) 2009-05-28

Family

ID=40784172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291614A Pending JP2009117275A (en) 2007-11-09 2007-11-09 Manufacturing method of plated rectangular conductor, and flexible flat cable

Country Status (1)

Country Link
JP (1) JP2009117275A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263699A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp METHOD OF MANUFACTURING PLATED BASE MATERIAL HAVING Sn PLATED LAYER
JP2011154801A (en) * 2010-01-26 2011-08-11 Sumitomo Wiring Syst Ltd Plated wire material and metal terminal
CN102332323A (en) * 2011-08-24 2012-01-25 扬州俊飞铜业科技有限公司 Tinned copper plastic composite tape for cable and production method thereof
WO2013069689A1 (en) * 2011-11-07 2013-05-16 古河電気工業株式会社 Commutator material, method for manufacturing same, and micromotor using same
RU2493624C1 (en) * 2012-01-19 2013-09-20 Закрытое Акционерное Общество "Новомет-Пермь" Electric cable for electric submersible pump installations
WO2015072122A1 (en) * 2013-11-15 2015-05-21 デクセリアルズ株式会社 Method for producing fusible conductor
JP2015120966A (en) * 2013-12-25 2015-07-02 富山住友電工株式会社 Plated wire rod, method for producing the plated wire rod, and metal square wire connector terminal
KR101584301B1 (en) 2013-03-08 2016-01-14 주식회사 엘지화학 Method for manufacturing electrode tab and method for manufacturing electrode lead
CN106429526A (en) * 2016-11-12 2017-02-22 江苏华远电缆有限公司 Unloading car for ceramic fireproof cables
JP2018003161A (en) * 2017-08-25 2018-01-11 富山住友電工株式会社 Manufacturing method of plating wire material
KR101928351B1 (en) * 2017-12-06 2018-12-18 고려특수선재 주식회사 Method of manufacturing photovoltaic ribbons using shaped wire drawing
CN112453352A (en) * 2020-12-14 2021-03-09 江苏金合益复合新材料有限公司 Preparation method of flexible flat belt continuous casting copper-clad steel
CN113903504A (en) * 2021-10-09 2022-01-07 浙江长城电工科技股份有限公司 High-heat-level high-PDIV (polymer induced plasticity) enameled rectangular copper wire for driving motor and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263699A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp METHOD OF MANUFACTURING PLATED BASE MATERIAL HAVING Sn PLATED LAYER
JP2011154801A (en) * 2010-01-26 2011-08-11 Sumitomo Wiring Syst Ltd Plated wire material and metal terminal
CN102332323A (en) * 2011-08-24 2012-01-25 扬州俊飞铜业科技有限公司 Tinned copper plastic composite tape for cable and production method thereof
WO2013069689A1 (en) * 2011-11-07 2013-05-16 古河電気工業株式会社 Commutator material, method for manufacturing same, and micromotor using same
JP5485474B2 (en) * 2011-11-07 2014-05-07 古河電気工業株式会社 Commutator material, manufacturing method thereof, and micromotor using the same
RU2493624C1 (en) * 2012-01-19 2013-09-20 Закрытое Акционерное Общество "Новомет-Пермь" Electric cable for electric submersible pump installations
KR101584301B1 (en) 2013-03-08 2016-01-14 주식회사 엘지화학 Method for manufacturing electrode tab and method for manufacturing electrode lead
WO2015072122A1 (en) * 2013-11-15 2015-05-21 デクセリアルズ株式会社 Method for producing fusible conductor
JP2015097183A (en) * 2013-11-15 2015-05-21 デクセリアルズ株式会社 Method of manufacturing soluble conductor
JP2015120966A (en) * 2013-12-25 2015-07-02 富山住友電工株式会社 Plated wire rod, method for producing the plated wire rod, and metal square wire connector terminal
CN106429526A (en) * 2016-11-12 2017-02-22 江苏华远电缆有限公司 Unloading car for ceramic fireproof cables
JP2018003161A (en) * 2017-08-25 2018-01-11 富山住友電工株式会社 Manufacturing method of plating wire material
KR101928351B1 (en) * 2017-12-06 2018-12-18 고려특수선재 주식회사 Method of manufacturing photovoltaic ribbons using shaped wire drawing
CN112453352A (en) * 2020-12-14 2021-03-09 江苏金合益复合新材料有限公司 Preparation method of flexible flat belt continuous casting copper-clad steel
CN112453352B (en) * 2020-12-14 2022-04-15 江苏金合益复合新材料有限公司 Preparation method of flexible flat belt continuous casting copper-clad steel
CN113903504A (en) * 2021-10-09 2022-01-07 浙江长城电工科技股份有限公司 High-heat-level high-PDIV (polymer induced plasticity) enameled rectangular copper wire for driving motor and preparation method thereof
CN113903504B (en) * 2021-10-09 2024-04-26 浙江弘城智造有限公司 High-heat-level high-PDIV enameled rectangular copper wire for driving motor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2009117275A (en) Manufacturing method of plated rectangular conductor, and flexible flat cable
US7999187B2 (en) Plated flat conductor and flexible flat cable therewith
JP4367149B2 (en) Flat cable conductor, method of manufacturing the same, and flat cable
JP6479265B2 (en) Lead frame material, manufacturing method thereof, and semiconductor package
JP4904810B2 (en) Plating film, method for forming the same, and electronic component
JP4847898B2 (en) Wiring conductor and method for manufacturing the same
US20210398713A1 (en) Coaxial cable, coaxial cable producing method, and cable assembly
JP6643287B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5794899B2 (en) Shield braiding
JP2007123209A (en) Method of manufacturing flexible flat cable and conductor for flexible flat cable
JP4668232B2 (en) Flexible printed circuit board
JP2002025353A (en) Flex resistant flat cable
JP4878735B2 (en) Flat cable
JP4269374B2 (en) Tin-plated flat conductor manufacturing method and flat cable manufacturing method
JP4807829B2 (en) Manufacturing method of flat conductor for flexible flat cable
US20100170691A1 (en) Coaxial cable
JP4427044B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate
JP2003051219A (en) Ultra superfine coaxial cable
JP5119591B2 (en) Flat cable manufacturing method
JP2010116603A (en) Sn OR Sn ALLOY PLATING FILM AND METHOD FOR PRODUCING THE SAME
JP4796522B2 (en) Wiring conductor and method for manufacturing the same
JP2008173658A (en) Method for manufacturing tin plated flat rectangular conductive body, and flexible flat cable using the same
JP2005243345A (en) Conductor for flat cable and flat cable using it
JPS58181893A (en) Blanket coated twisted wire and preparation thereof
JP2010007111A (en) Copper or copper alloy rectangular conductive body and flexible flat cable