JP2009116284A - Pellicle and method for manufacturing pellicle - Google Patents

Pellicle and method for manufacturing pellicle Download PDF

Info

Publication number
JP2009116284A
JP2009116284A JP2007293692A JP2007293692A JP2009116284A JP 2009116284 A JP2009116284 A JP 2009116284A JP 2007293692 A JP2007293692 A JP 2007293692A JP 2007293692 A JP2007293692 A JP 2007293692A JP 2009116284 A JP2009116284 A JP 2009116284A
Authority
JP
Japan
Prior art keywords
film
pellicle
silicon
substrate
absorption coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007293692A
Other languages
Japanese (ja)
Other versions
JP4861963B2 (en
Inventor
Yoshihiro Kubota
芳宏 久保田
Shoji Akiyama
昌次 秋山
Toshihiko Shindo
敏彦 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007293692A priority Critical patent/JP4861963B2/en
Priority to DE200860003641 priority patent/DE602008003641D1/en
Priority to EP08017973A priority patent/EP2051139B1/en
Priority to US12/251,582 priority patent/US7901846B2/en
Priority to KR1020080102204A priority patent/KR101382414B1/en
Priority to TW97139865A priority patent/TWI414883B/en
Publication of JP2009116284A publication Critical patent/JP2009116284A/en
Application granted granted Critical
Publication of JP4861963B2 publication Critical patent/JP4861963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pellicle having a practical pellicle film for EUV, excellent in high transmissivity and chemical stability. <P>SOLUTION: The pellicle film 10 includes a silicon crystal film, the absorption coefficient of which is 0.005/nm or lower with respect to light having a wavelength of 13.5 nm, as a pellicle film 11. The silicon crystal film is an indirect transition type semiconductor film and therefore, the optical absorption coefficient thereof is relatively low. In particular, a single crystal silicon film has a lower absorption coefficient than an amorphous silicon film and a polysilicon film. Thus, it is easy to obtain desired transmissivity required of a pellicle film for EUV (Extreme Ultra Violet). Such a pellicle film as described above can be fabricated from an SOI (silicon-on-insulator) film obtained by thin-filming an SOI substrate (including a SOQ (silicon-on-quartz) substrate and an SOG (silicon-on-glass) substrate). When a pellicle film of a silicon crystal film is formed from the SOI substrate, formation of the pellicle film is completed under the temperatrue condition of around room temperature without addition of an excess stress during the formation of the pellicle film, and thereby, no distortion being induced in the film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リソグラフィ用ペリクルに関し、より詳細には、極端紫外光(EUV:Extreme Ultra Violet)を用いたリソグラフィに好適なペリクルおよびその製造方法に関する。   The present invention relates to a pellicle for lithography, and more particularly to a pellicle suitable for lithography using extreme ultraviolet light (EUV: Extreme Ultra Violet) and a method for manufacturing the pellicle.

半導体デバイスの高集積化に伴ってリソグラフィによって形成されるパターンは微細化し、現在では45nm程度のパターン幅のデバイスも実用化されつつある。このような細線パターンは、従来のエキシマ露光技術の改良技術であるArF液浸法や二重露光法といった手法によるリソグラフィによって実現可能である。   As semiconductor devices are highly integrated, patterns formed by lithography have become finer, and devices having a pattern width of about 45 nm are now being put into practical use. Such a fine line pattern can be realized by lithography using a technique such as an ArF immersion method or a double exposure method, which is an improved technique of the conventional excimer exposure technique.

しかしながら、このようなエキシマ露光技術に基づくリソグラフィでは、パターン幅が32nm以下といった更なる微細化が求められるパターニングには対応が困難であるとされ、これに代わる新たな露光技術としての極端紫外光(EUV:Extreme Ultra Violet)を用いたリソグラフィが注目されている。   However, in lithography based on such excimer exposure technology, it is difficult to cope with patterning that requires further miniaturization such as a pattern width of 32 nm or less, and extreme ultraviolet light (as a new exposure technology) Lithography using EUV (Extreme Ultra Violet) attracts attention.

13.5nmを主波長とするEUV光を用いた露光技術の実用化のためには、光源は勿論のこと、新しいレジストやペリクルなどの開発が不可欠であるが、これらのうち、光源やレジストについては既にかなりの進展がみられている一方、ペリクルに関してはEUV用ペリクルの実現のために解決しなければならない技術的課題が未解決のまま多く残されている。   Development of new resists and pellicles as well as light sources is indispensable for the practical application of exposure technology using EUV light with a primary wavelength of 13.5 nm. While considerable progress has already been made, there are many unsolved technical issues that must be solved in order to realize a pellicle for EUV.

EUV用ペリクルに設けられるペリクル膜には、フォトマスク上への異物の付着を防止する防塵機能はもとより、EUV光に対する高い透過性と化学的安定性が求められるが、これら高透過性と化学的安定性に優れた実用的なペリクル膜の材料開発という課題の解決には未だ目処が立っていないのが現状である。   The pellicle film provided on the EUV pellicle is required to have high transmittance and chemical stability with respect to EUV light as well as a dustproof function to prevent foreign matter from adhering to the photomask. The current situation is that there is no prospect of solving the problem of developing a material for a practical pellicle film having excellent stability.

13.5nmを主波長とする波長帯の光に対して透明な材料は現在のところ知られていないが、シリコンはこの波長帯の光に対しての透過率が比較的高いことから、EUV用のペリクル膜材料としてシリコンが注目されてきている(例えば、Shroff et al. “EUV pellicle Development for Mask Defect Control,” Emerging Lithographic Technologies X, Proc of SPIE Vol.6151 615104-1 (2006):(非特許文献1)、米国特許第6,623,893号明細書:(特許文献1))。   At present, no material is known that is transparent to light in the wavelength band having a main wavelength of 13.5 nm. However, since silicon has a relatively high transmittance for light in this wavelength band, it is used for EUV. Silicon has been attracting attention as a pellicle film material (for example, Shroff et al. “EUV pellicle Development for Mask Defect Control,” Emerging Lithographic Technologies X, Proc of SPIE Vol. 6151 615104-1 (2006): (non-patent Document 1), US Pat. No. 6,623,893 (patent document 1)).

しかし、非特許文献1でペリクル膜として用いられているシリコンはスパッタ等の方法で堆積された膜であるため、必然的に非晶質となり、EUV領域での吸収係数が高くなって透過率は必然的に低くならざるを得ない。   However, since silicon used as a pellicle film in Non-Patent Document 1 is a film deposited by a method such as sputtering, it is inevitably amorphous and has a high absorption coefficient in the EUV region, resulting in a high transmittance. Inevitably lower.

また、特許文献1に開示されているペリクル膜もその材料はシリコンであるが、このシリコン膜はCVDなどの方法で堆積されることが前提とされており、この場合のシリコン膜は非晶質若しくは多結晶の膜となってしまうため、EUV領域での吸収係数は高くならざるを得ない。   The pellicle film disclosed in Patent Document 1 is also made of silicon, but it is assumed that this silicon film is deposited by a method such as CVD. In this case, the silicon film is amorphous. Or, since it becomes a polycrystalline film, the absorption coefficient in the EUV region must be increased.

加えて、特許文献1や非特許文献1に開示されているペリクル膜のように、スパッタ法やCVD法で成膜したシリコン結晶中には強い応力が導入され易く、当該応力によって光学膜特性が劣化したり不均一なものとなったりし易いという問題もある。
米国特許第6,623,893号明細書 Shroff et al. “EUV pellicle Development for Mask Defect Control,” Emerging Lithographic Technologies X, Proc of SPIE Vol.6151 615104-1 (2006). Edward D. Palik, ed., “Handbook of Optical Constants of Solids,” Academic Press, Orlando(1985). 山田公編著 「クラスターイオンビーム 基礎と応用」第四章 (日刊工業社)
In addition, as in the pellicle film disclosed in Patent Document 1 and Non-Patent Document 1, a strong stress is easily introduced into a silicon crystal formed by a sputtering method or a CVD method, and the optical film characteristics are caused by the stress. There is also a problem that it tends to deteriorate or become non-uniform.
U.S. Patent 6,623,893 Shroff et al. “EUV pellicle Development for Mask Defect Control,” Emerging Lithographic Technologies X, Proc of SPIE Vol.6151 615104-1 (2006). Edward D. Palik, ed., “Handbook of Optical Constants of Solids,” Academic Press, Orlando (1985). Edited by Koda Yamada "Cluster Ion Beam Fundamentals and Applications" Chapter 4 (Nikkan Kogyo)

本発明は、このような問題に鑑みてなされたものであり、その目的とするところは、高透過性と化学的安定性に優れた実用的なEUV用ペリクル膜を備えたペリクルを提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a pellicle having a practical EUV pellicle film excellent in high permeability and chemical stability. It is in.

このような課題を解決するために、本発明のペリクルは、13.5nmの波長の光に対する吸収係数が0.005/nm以下であるシリコン結晶膜をペリクル膜として備えている。   In order to solve such a problem, the pellicle of the present invention includes a silicon crystal film having a absorption coefficient of 0.005 / nm or less for light having a wavelength of 13.5 nm as a pellicle film.

好ましくは、前記シリコン結晶膜は単結晶シリコン膜であり、当該単結晶シリコン膜はSOI基板を薄膜化して得られたものである。なお、単結晶シリコン膜の結晶面方位は(100)面であることが好ましい。   Preferably, the silicon crystal film is a single crystal silicon film, and the single crystal silicon film is obtained by thinning an SOI substrate. Note that the crystal plane orientation of the single crystal silicon film is preferably a (100) plane.

本発明のペリクルは、前記シリコン結晶膜の少なくとも一方の主面に保護膜を備えるようにしてもよい。この場合、保護膜の13.5nmの波長の光に対する吸収係数は0.05/nm以下であることが好ましい。   The pellicle of the present invention may be provided with a protective film on at least one main surface of the silicon crystal film. In this case, the absorption coefficient of the protective film with respect to light having a wavelength of 13.5 nm is preferably 0.05 / nm or less.

この保護膜は、例えば、SiC、SiO、Si、SiON、Y、YN、Mo、Ru、及びRhからなる群のうちの少なくとも1つの材料からなるものである。 The protective film is made of, for example, at least one material selected from the group consisting of SiC, SiO 2 , Si 3 N 4 , SiON, Y 2 O 3 , YN, Mo, Ru, and Rh.

このようなペリクルを実現するための製造方法は、一方主面にシリコン結晶膜が形成されたSOI基板にペリクル膜保持部を設ける工程と、前記SOI基板の他方主面側から支持基板を除去して前記シリコン結晶膜をペリクル膜とする工程とを備え、前記シリコン結晶膜は13.5nmの波長の光に対する吸収係数が0.005/nm以下である。   A manufacturing method for realizing such a pellicle includes a step of providing a pellicle film holding portion on an SOI substrate having a silicon crystal film formed on one main surface, and removing a support substrate from the other main surface side of the SOI substrate. The silicon crystal film as a pellicle film, and the silicon crystal film has an absorption coefficient of 0.005 / nm or less for light having a wavelength of 13.5 nm.

この製造方法において、前記シリコン結晶膜の少なくとも一方の面に保護膜を形成する工程を更に備えるようにすることもできる。   This manufacturing method may further include a step of forming a protective film on at least one surface of the silicon crystal film.

この場合、前記保護膜の形成は、例えば、SiC、SiO、Si、SiON、Y、YN、Mo、Ru、及びRhからなる群のうちの少なくとも1つの材料からなる膜を被膜することにより実行される。 In this case, the protective film is formed by, for example, a film made of at least one material selected from the group consisting of SiC, SiO 2 , Si 3 N 4 , SiON, Y 2 O 3 , YN, Mo, Ru, and Rh. It is performed by coating.

保護膜の被膜方法としては、ガスクラスタ・イオンビーム蒸着法が好ましい。   As a method for coating the protective film, a gas cluster ion beam deposition method is preferable.

本発明では、13.5nmの波長の光に対する吸収係数が0.005/nm以下であるシリコン結晶膜をペリクル膜として用いることとしたので、高透過性と化学的安定性に優れた実用的なEUV用ペリクル膜を備えたペリクルを提供することが可能となる。   In the present invention, a silicon crystal film having an absorption coefficient for light having a wavelength of 13.5 nm of 0.005 / nm or less is used as the pellicle film, so that it is practical and excellent in high permeability and chemical stability. A pellicle provided with a pellicle film for EUV can be provided.

以下に、図面を参照して本発明のペリクルの構造について説明する。   The structure of the pellicle of the present invention will be described below with reference to the drawings.

図1(A)および(B)は、本発明のペリクルの構造例を説明するための断面概略図で、このペリクル10は、13.5nmの波長の光に対する吸収係数が0.005/nm以下であるシリコン結晶膜をペリクル膜11として備えており、当該ペリクル膜11がペリクルフレーム12の端面に接着されている。   1A and 1B are schematic cross-sectional views for explaining a structural example of a pellicle according to the present invention. This pellicle 10 has an absorption coefficient of 0.005 / nm or less for light having a wavelength of 13.5 nm. The pellicle film 11 is provided as a silicon crystal film, and the pellicle film 11 is bonded to the end surface of the pellicle frame 12.

ペリクル膜11とされるシリコン結晶膜は間接遷移型の半導体膜であるために光吸収係数は相対的に低く、上述の吸収係数を有するものであれば非晶質シリコン膜や多結晶シリコン膜であってもよいが、単結晶のシリコン膜であることが好ましい。その理由は、非晶質シリコン膜や多結晶シリコン膜では、その育成方法等によってEUV光に対する吸収係数が高くなり易く、EUV用ペリクル膜としての所望の透過率を得るためには極薄の膜とする必要が生じ易い点にある。   Since the silicon crystal film used as the pellicle film 11 is an indirect transition type semiconductor film, the light absorption coefficient is relatively low, and an amorphous silicon film or a polycrystalline silicon film can be used as long as it has the above absorption coefficient. Although it may be, it is preferably a single crystal silicon film. The reason is that an amorphous silicon film or a polycrystalline silicon film tends to have a high absorption coefficient for EUV light depending on its growth method and the like, and an extremely thin film for obtaining a desired transmittance as a pellicle film for EUV It is easy to occur.

非晶質シリコンは、可視光に対する吸収係数が単結晶シリコンに比較して1桁程度大きいために薄膜太陽電池用の材料として広く利用されているが、EUV領域の光に対しても吸収係数は相対的に高い。   Amorphous silicon is widely used as a material for thin film solar cells because its absorption coefficient for visible light is about one digit larger than that of single crystal silicon, but the absorption coefficient for light in the EUV region is also low. Relatively high.

図2は、13.5nm近傍の波長の光に対する単結晶シリコンと非晶質シリコンの吸収係数を比較した例である(非特許文献2:Edward D. Palik, ed., “Handbook of Optical Constants of Solids,” Academic Press, Orlando(1985))。非晶質シリコンの光学特性はその育成方法によっても変わり得ることが予想されるが、この図に例示されているようにEUV領域においても単結晶シリコンは非晶質シリコンよりも低い吸収係数を有するため、EUV用ペリクル膜としては好ましい材料である。   FIG. 2 is an example in which absorption coefficients of single crystal silicon and amorphous silicon with respect to light having a wavelength near 13.5 nm are compared (Non-patent Document 2: Edward D. Palik, ed., “Handbook of Optical Constants of”. Solids, ”Academic Press, Orlando (1985)). Although it is expected that the optical properties of amorphous silicon may vary depending on the growth method, single crystal silicon has a lower absorption coefficient than amorphous silicon even in the EUV region as illustrated in this figure. Therefore, it is a preferable material for a pellicle film for EUV.

ペリクル膜としてのシリコン結晶膜の吸収係数に制限を設けるのは、150nm程度の厚みのペリクル膜であってもEUV光の透過率を50%以上とするためである。ペリクル膜の吸収係数をα(nm−1)、膜厚をx(nm)とすると、ペリクル膜を透過した光の強度Iは、入射光の強度をIとして、次式で与えられる。 The reason why the absorption coefficient of the silicon crystal film as the pellicle film is limited is that the transmittance of EUV light is 50% or more even for a pellicle film having a thickness of about 150 nm. When the absorption coefficient of the pellicle film is α (nm −1 ) and the film thickness is x (nm), the intensity I of the light transmitted through the pellicle film is given by the following equation, where the intensity of the incident light is I 0 .

Figure 2009116284
Figure 2009116284

従って、EUV光の透過率を50%以上とするために必要なペリクル膜の厚みxは概ね0.693/αとなり、吸収係数αが0.005/nm以下であれば、140nmの厚みのペリクル膜でも50%のEUV透過率が確保可能である。   Therefore, the thickness x of the pellicle film necessary for setting the EUV light transmittance to 50% or more is approximately 0.693 / α, and if the absorption coefficient α is 0.005 / nm or less, the pellicle having a thickness of 140 nm is used. Even with a film, EUV transmittance of 50% can be secured.

このようなペリクル膜は、例えば後述する手法により、SOI基板(「SOI基板」は広義ではSOQ基板やSOG基板を含む用語として用いる)を薄膜化して得られたSOI膜から作製することができる。この場合、単結晶シリコン膜の結晶面方位が(100)面であると加工性に優れるという利点がある。   Such a pellicle film can be manufactured from an SOI film obtained by thinning an SOI substrate (“SOI substrate” is used as a term including an SOQ substrate and an SOG substrate in a broad sense) by a method described later, for example. In this case, if the crystal plane orientation of the single crystal silicon film is the (100) plane, there is an advantage that the workability is excellent.

本発明のペリクル10は、ペリクル膜11であるシリコン結晶膜の少なくとも一方の主面に保護膜(13a、13b)を設けてシリコン結晶面を被覆するようにしてもよい(図1(B))。このような保護膜は、高出力光源からの光によるシリコン結晶膜の表面の酸化を防止するなどの役割を担うもので、例えば、SiC、SiO、Si、SiON、Y、YNなどのセラミックスの膜や、Mo、Ru、Rhなどの金属膜などを例示することができ、これらの組み合わせにより得られる材料からなる膜としたり、複数の膜を積層させた態様の膜とすることも可能である。 In the pellicle 10 of the present invention, a protective film (13a, 13b) may be provided on at least one main surface of the silicon crystal film that is the pellicle film 11 to cover the silicon crystal surface (FIG. 1B). . Such a protective film plays a role of preventing the surface of the silicon crystal film from being oxidized by light from a high-power light source. For example, SiC, SiO 2 , Si 3 N 4 , SiON, Y 2 O 3 And a ceramic film such as YN, a metal film such as Mo, Ru, and Rh, etc., and a film made of a material obtained by a combination thereof, or a film in a form in which a plurality of films are laminated It is also possible to do.

保護膜の形成法に特別な制限はなく、公知のCVD法、スパッタ法、電子ビーム蒸着法などによる成膜が可能であるが、ガスクラスタ・イオンビーム(GCIB)蒸着法によれば理論密度に近い高密度の緻密な保護膜が形成可能であり、薄い膜であっても高い耐酸化性を得ることが期待できる(非特許文献3:山田公編著 「クラスターイオンビーム 基礎と応用」第四章 日刊工業社)。従って、ペリクルとしての透過率をしかる程低下させることのない保護膜の形成法としては、GCIB蒸着法が好適である。   There is no particular restriction on the method of forming the protective film, and film formation by a known CVD method, sputtering method, electron beam evaporation method, etc. is possible, but the theoretical density can be achieved by gas cluster ion beam (GCIB) evaporation method. Close dense high-density protective film can be formed, and high oxidation resistance can be expected even with a thin film (Non-Patent Document 3: Koda Yamada, “Cluster ion beam fundamentals and applications”, Chapter 4 Nikkan Kogyo). Therefore, the GCIB vapor deposition method is suitable as a method for forming a protective film that does not significantly reduce the transmittance as a pellicle.

保護膜は比較的薄く形成することが容易であるため、その吸収係数はペリクル膜ほど低いものである必要はないが、13.5nmの波長の光に対する吸収係数を0.05/nm以下とすることが好ましい。保護膜を設けた場合には、当該保護膜とペリクル膜を透過するEUV光の透過率が50%以上となるように、双方の厚み等が設計されることとなる。   Since it is easy to form a protective film relatively thinly, its absorption coefficient does not have to be as low as that of a pellicle film, but the absorption coefficient for light having a wavelength of 13.5 nm is set to 0.05 / nm or less. It is preferable. When a protective film is provided, the thickness and the like of both are designed so that the transmittance of the EUV light transmitted through the protective film and the pellicle film is 50% or more.

シリコン結晶は、ペリクルフレーム12の材質としても選択することができる。シリコン結晶(特に単結晶)は純度が高く且つ機械的強度も確保でき、更に、ペリクルフレームとした際の発塵も抑制することができるという利点がある。   Silicon crystal can also be selected as the material of the pellicle frame 12. Silicon crystals (especially single crystals) have high purity and mechanical strength, and also have the advantage that dust generation when a pellicle frame is formed can be suppressed.

なお、透過膜(ペリクル膜および保護膜)が汚れたり亀裂が生じたりした場合には当該透過膜の貼替えが必要となる。このため、透過膜の脱着・装着が容易に行なえることが好ましい。従って、ペリクルフレームとペリクル膜との接着は、一般的な接着剤や半田を用いた固定方法によるものとせず、脱着・装着が可能な粘着剤、磁石、静電チャック、あるいはホックなどの機械的な固定方法によるものとすることが好ましい。このような機械的固定部材は、EUV光の照射により劣化し難いものであるか、或いは、EUV光から遮蔽されるように設けられることが好ましい。   In addition, when the permeable membrane (pellicle membrane and protective film) is soiled or cracked, it is necessary to replace the permeable membrane. For this reason, it is preferable that the permeable membrane can be easily attached and detached. Therefore, the adhesion between the pellicle frame and the pellicle film is not based on a fixing method using a general adhesive or solder, but a mechanical adhesive such as a removable adhesive, magnet, electrostatic chuck, or hook. It is preferable that the fixing method be used. Such a mechanical fixing member is preferably not easily deteriorated by irradiation with EUV light, or is preferably provided so as to be shielded from EUV light.

ペリクルをフォトマスクに貼り付ける作業は、通常は常圧下で行なわれるが、EUV露光は真空下で行なわれる。このため、ペリクルフレームには圧力調整機構を設けておくことが望ましい。このような圧力調整機構は、気体の流出入時に異物が混入しないような構造のものである必要がある。従って、圧力調整機構にULPAのような極めて微細な異物をも捕獲可能なフィルタを設けておくことが好ましい。そのようなフイルタは、透過膜が不均一な圧力差で大きく伸縮したり、あるいは破損したりすることがないような面積のものとすることが重要である。   The operation of attaching the pellicle to the photomask is usually performed under normal pressure, but EUV exposure is performed under vacuum. For this reason, it is desirable to provide a pressure adjustment mechanism in the pellicle frame. Such a pressure adjusting mechanism needs to have a structure that prevents foreign matters from entering when the gas flows in and out. Therefore, it is preferable to provide a filter capable of capturing even extremely fine foreign matter such as ULPA in the pressure adjusting mechanism. It is important that such a filter has an area such that the permeable membrane does not greatly expand or contract or break due to a non-uniform pressure difference.

図3は、本発明のペリクル製造方法のプロセス例を説明するための図である。図3(A)に図示されたSOI(Silicon On Insulator)基板の支持基板1は表面にシリコン基板1a上に酸化膜1bが設けられている基板であり、SOQ(Silicon On Quartz)基板およびSOG(Silicon On Glass)基板の支持基板1はそれぞれ、石英基板およびガラス基板である。これらの支持基板1の主面には単結晶のシリコン結晶膜2が設けられており、このシリコン結晶膜2がペリクル膜となる。   FIG. 3 is a diagram for explaining a process example of the pellicle manufacturing method of the present invention. A support substrate 1 of an SOI (Silicon On Insulator) substrate illustrated in FIG. 3A is a substrate having a surface on which an oxide film 1b is provided on a silicon substrate 1a, and an SOQ (Silicon On Quartz) substrate and an SOG (SOG) substrate. The support substrates 1 of the (Silicon On Glass) substrate are a quartz substrate and a glass substrate, respectively. A single crystal silicon crystal film 2 is provided on the main surface of the support substrate 1, and this silicon crystal film 2 becomes a pellicle film.

SOI基板の支持基板となるシリコン基板1aは、例えば、CZ法(チョクラルスキ法)により育成された一般に市販されている単結晶シリコン基板であり、この単結晶シリコン基板1aの表面に、熱酸化などの方法によって予め酸化膜1bが100nm程度形成され、その上にSOI層としての単結晶のシリコン結晶膜2が形成されている。   The silicon substrate 1a serving as a support substrate for the SOI substrate is a commercially available single crystal silicon substrate grown by, for example, the CZ method (Czochralski method), and the surface of the single crystal silicon substrate 1a is subjected to thermal oxidation or the like. An oxide film 1b is previously formed to a thickness of about 100 nm by a method, and a single crystal silicon crystal film 2 as an SOI layer is formed thereon.

これらの支持基板上に設けられたシリコン結晶膜2は何れも、COP等の結晶欠陥が少ないシリコン単結晶(Nearly Perfect Crystal: NPC)薄膜であり、EUV光の吸収係数が概ね0.0015nm−1の、膜厚70nm程度の膜である。 Each of the silicon crystal films 2 provided on these support substrates is a silicon single crystal (Nearly Perfect Crystal: NPC) thin film with few crystal defects such as COP, and the absorption coefficient of EUV light is approximately 0.0015 nm −1. The film has a thickness of about 70 nm.

これらSOI基板、SOQ基板、およびSOG基板は、短辺122mmと長辺149mmの矩形の基板であり、この矩形基板の表面側であるシリコン結晶膜2にシリコン結晶からなるペリクルフレーム12を接着する(図3(B))。そして、支持基板1の裏面側から研磨とエッチングを施して(図3(C))、ペリクルフレーム12に保持されたシリコン結晶膜2を得る(図3(D))。なお、このペリクルフレーム12は、高さ7mmで厚み2mmであり、側面にはULPAフィルタ取付用の複数の開口部が設けられており、裏面の最外周には、幅1mm、深さ2mmの溝が形成されている。   These SOI substrate, SOQ substrate, and SOG substrate are rectangular substrates having a short side of 122 mm and a long side of 149 mm, and a pellicle frame 12 made of silicon crystal is bonded to the silicon crystal film 2 on the surface side of the rectangular substrate ( FIG. 3 (B)). Then, polishing and etching are performed from the back side of the support substrate 1 (FIG. 3C) to obtain the silicon crystal film 2 held on the pellicle frame 12 (FIG. 3D). The pellicle frame 12 has a height of 7 mm and a thickness of 2 mm. A plurality of openings for mounting the ULPA filter are provided on the side surface, and a groove having a width of 1 mm and a depth of 2 mm is provided on the outermost periphery of the back surface. Is formed.

SOI基板の場合には、先ず、支持基板であるシリコン基板1aを100μm程度まで薄くした後に、残りのシリコン部分をKOHエッチャントでエッチング除去して酸化膜1bを露出させ、その後にHFにより酸化膜1bを除去してシリコン結晶膜2のみとする。   In the case of an SOI substrate, first, the silicon substrate 1a as a supporting substrate is thinned to about 100 μm, and then the remaining silicon portion is etched away with a KOH etchant to expose the oxide film 1b, and then the oxide film 1b is formed with HF. To remove only the silicon crystal film 2.

SOQ基板およびSOG基板の場合には、支持基板1を裏面から研磨して100μm程度まで薄くした後に、残りのSiO部分をHFにより除去してシリコン結晶膜2のみとすることができる。 In the case of the SOQ substrate and the SOG substrate, the supporting substrate 1 can be polished from the back surface to be thinned to about 100 μm, and then the remaining SiO 2 portion can be removed by HF to make only the silicon crystal film 2.

最後に、シリコン結晶膜2と一体化した状態のペリクルフレーム12にULPAフィルタを取り付け、更に、このペリクルフレーム12の裏面最外周部に設けられた溝に、露光光遮蔽用のシリコーン粘着剤を注入してペリクル10とした。   Finally, a ULPA filter is attached to the pellicle frame 12 that is integrated with the silicon crystal film 2, and a silicone adhesive for shielding exposure light is injected into the groove provided on the outermost periphery of the back surface of the pellicle frame 12. Thus, a pellicle 10 was obtained.

本発明のように、SOI基板、SOQ基板、或いはSOG基板を用いてシリコン結晶膜のペリクル膜を形成すると、支持基板を除去してシリコン結晶膜単独のペリクル膜とする課程で極度の応力が加わることがなく、しかも室温程度の温度下でペリクル膜形成が完了するために歪みが導入されることもない。   When a silicon crystal pellicle film is formed using an SOI substrate, an SOQ substrate, or an SOG substrate as in the present invention, extreme stress is applied in the process of removing the support substrate to form a silicon crystal film alone. In addition, since the formation of the pellicle film is completed at a temperature of about room temperature, no distortion is introduced.

なお、図3(D)のように得られたペリクルフレーム12に支持されたシリコン結晶膜11の表裏面に、図1で図示したような保護膜を形成するようにしてもよいし、支持基板の薄膜化に先立って予めシリコン結晶膜2上に保護膜を形成しておくようにしてもよい。   A protective film as shown in FIG. 1 may be formed on the front and back surfaces of the silicon crystal film 11 supported by the pellicle frame 12 obtained as shown in FIG. Prior to the thinning, a protective film may be formed on the silicon crystal film 2 in advance.

図3で示した工程に従ってペリクルフレーム12に支持されたシリコン結晶膜11を得た。なお、本実施例のシリコン結晶膜11の厚みは20nmである。そして、このシリコン結晶膜11の表面と裏面のそれぞれに、数nmの厚みのSiC薄膜をガスクラスタ・イオンビーム蒸着法で蒸着してシリコン結晶膜を被覆した。   A silicon crystal film 11 supported on the pellicle frame 12 was obtained according to the process shown in FIG. Note that the thickness of the silicon crystal film 11 of this example is 20 nm. Then, an SiC thin film having a thickness of several nanometers was deposited on each of the front and back surfaces of the silicon crystal film 11 by gas cluster ion beam deposition to cover the silicon crystal film.

実施例1および実施例2で得られたペクリルは何れも、EUV光の透過率が50%以上であり、EUV露光時のスループットも実用的レベルであり、異物によるデバイスの歩留まり低下は全く認められないことが確認された。   Each of the pecrils obtained in Example 1 and Example 2 has an EUV light transmittance of 50% or more, and the throughput during EUV exposure is at a practical level, and a decrease in device yield due to foreign matter is completely observed. Not confirmed.

本発明により、高透過性と化学的安定性に優れた実用的なEUV用ペリクル膜を備えたペリクルが提供される。   According to the present invention, a pellicle provided with a practical EUV pellicle film excellent in high permeability and chemical stability is provided.

本発明のペリクルの構造例を説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the structural example of the pellicle of this invention. 13.5nm近傍の波長の光に対する単結晶シリコンと非晶質シリコンの吸収係数を比較した例である。This is an example in which absorption coefficients of single crystal silicon and amorphous silicon with respect to light having a wavelength near 13.5 nm are compared. 本発明のペリクル製造方法のプロセス例を説明するための図である。It is a figure for demonstrating the process example of the pellicle manufacturing method of this invention.

符号の説明Explanation of symbols

1 支持基板
2 シリコン結晶膜
10 ペリクル
11 ペリクル膜
12 ペリクルフレーム
13 保護膜
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Silicon crystal film 10 Pellicle 11 Pellicle film 12 Pellicle frame 13 Protective film

Claims (11)

13.5nmの波長の光に対する吸収係数が0.005/nm以下であるシリコン結晶膜をペリクル膜として備えていることを特徴とするペリクル。 A pellicle comprising a silicon crystal film having an absorption coefficient of 0.005 / nm or less for light having a wavelength of 13.5 nm as a pellicle film. 前記シリコン結晶膜は単結晶シリコン膜である請求項1に記載のペリクル。 The pellicle according to claim 1, wherein the silicon crystal film is a single crystal silicon film. 前記単結晶シリコン膜はSOI基板を薄膜化して得られたものである請求項2に記載のペリクル。 The pellicle according to claim 2, wherein the single crystal silicon film is obtained by thinning an SOI substrate. 前記単結晶シリコン膜の結晶面方位は(100)面である請求項2又は3に記載のペリクル。 The pellicle according to claim 2 or 3, wherein a crystal plane orientation of the single crystal silicon film is a (100) plane. 前記シリコン結晶膜の少なくとも一方の主面に保護膜を備えている請求項1乃至4の何れか1項に記載のペリクル。 The pellicle according to any one of claims 1 to 4, further comprising a protective film on at least one main surface of the silicon crystal film. 前記保護膜の13.5nmの波長の光に対する吸収係数が0.05/nm以下である請求項5に記載のペリクル。 6. The pellicle according to claim 5, wherein the protective film has an absorption coefficient of 0.05 / nm or less for light having a wavelength of 13.5 nm. 前記保護膜は、SiC、SiO、Si、SiON、Y、YN、Mo、Ru、及びRhからなる群のうちの少なくとも1つの材料からなるものである請求項5又は6に記載のペリクル。 The protective layer, SiC, SiO 2, Si 3 N 4, SiON, Y 2 O 3, YN, Mo, Ru, and is made of at least one material of the group consisting of Rh claim 5 or 6 The pellicle according to 1. 一方主面にシリコン結晶膜が形成されたSOI基板にペリクル膜保持部を設ける工程と、前記SOI基板の他方主面側から支持基板を除去して前記シリコン結晶膜をペリクル膜とする工程とを備え、前記シリコン結晶膜は13.5nmの波長の光に対する吸収係数が0.005/nm以下であることを特徴とするペリクルの製造方法。 A step of providing a pellicle film holding portion on an SOI substrate having a silicon crystal film formed on one main surface; and a step of removing the support substrate from the other main surface side of the SOI substrate to make the silicon crystal film a pellicle film. And the silicon crystal film has an absorption coefficient for light having a wavelength of 13.5 nm of 0.005 / nm or less. 前記シリコン結晶膜の少なくとも一方の面に保護膜を形成する工程を更に備えている請求項8に記載のペリクルの製造方法。 The method for manufacturing a pellicle according to claim 8, further comprising a step of forming a protective film on at least one surface of the silicon crystal film. 前記保護膜の形成が、SiC、SiO、Si、SiON、Y、YN、Mo、Ru、及びRhからなる群のうちの少なくとも1つの材料からなる膜を被膜することにより実行される請求項9に記載のペリクルの製造方法。 The protective film is formed by coating a film made of at least one material selected from the group consisting of SiC, SiO 2 , Si 3 N 4 , SiON, Y 2 O 3 , YN, Mo, Ru, and Rh. The manufacturing method of the pellicle of Claim 9 performed. 前記保護膜の被膜方法がガスクラスタ・イオンビーム蒸着法である請求項10に記載のペリクルの製造方法。 The method for producing a pellicle according to claim 10, wherein the coating method of the protective film is a gas cluster ion beam deposition method.
JP2007293692A 2007-10-18 2007-11-12 Pellicle and method for manufacturing pellicle Active JP4861963B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007293692A JP4861963B2 (en) 2007-10-18 2007-11-12 Pellicle and method for manufacturing pellicle
DE200860003641 DE602008003641D1 (en) 2007-10-18 2008-10-14 Pellicle and process for its preparation
EP08017973A EP2051139B1 (en) 2007-10-18 2008-10-14 Pellicle and method for manufacturing the same
US12/251,582 US7901846B2 (en) 2007-10-18 2008-10-15 Pellicle and method for manufacturing the same
KR1020080102204A KR101382414B1 (en) 2007-10-18 2008-10-17 Pellicle and method for manufacturing pellicle
TW97139865A TWI414883B (en) 2007-10-18 2008-10-17 Pellicle and method of manufacturing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007270843 2007-10-18
JP2007270843 2007-10-18
JP2007293692A JP4861963B2 (en) 2007-10-18 2007-11-12 Pellicle and method for manufacturing pellicle

Publications (2)

Publication Number Publication Date
JP2009116284A true JP2009116284A (en) 2009-05-28
JP4861963B2 JP4861963B2 (en) 2012-01-25

Family

ID=40594710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293692A Active JP4861963B2 (en) 2007-10-18 2007-11-12 Pellicle and method for manufacturing pellicle

Country Status (4)

Country Link
JP (1) JP4861963B2 (en)
CN (1) CN101414118A (en)
DE (1) DE602008003641D1 (en)
TW (1) TWI414883B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271262A (en) * 2008-05-02 2009-11-19 Shin Etsu Chem Co Ltd Pellicle and method of producing pellicle
JP2009282298A (en) * 2008-05-22 2009-12-03 Shin-Etsu Chemical Co Ltd Pellicle and method for manufacturing pellicle
JP2012078729A (en) * 2010-10-05 2012-04-19 Toppan Printing Co Ltd Pellicle and exposure device
JP2014211426A (en) * 2013-04-02 2014-11-13 リソテック ジャパン株式会社 Measuring method of light transmittance
WO2014188710A1 (en) 2013-05-24 2014-11-27 三井化学株式会社 Pellicle and euv exposure device comprising same
JP5686394B1 (en) * 2014-04-11 2015-03-18 レーザーテック株式会社 Pellicle inspection device
KR101624078B1 (en) * 2015-04-24 2016-05-25 한양대학교 에리카산학협력단 Pellicle and method of fabricating the same
KR20160063235A (en) * 2014-11-26 2016-06-03 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Pellicle for euv mask and fabrication thereof
KR20160138160A (en) 2014-05-02 2016-12-02 미쯔이가가꾸가부시끼가이샤 Pellicle frame, pellicle and manufacturing method thereof, exposure original plate and manufacturing method thereof, exposure device, and semiconductor device manufacturing method
KR20160145073A (en) 2014-05-19 2016-12-19 미쯔이가가꾸가부시끼가이샤 Pellicle film, pellicle, exposure master, exposure device, and method for manufacturing semiconductor device
US9709884B2 (en) 2014-11-26 2017-07-18 Taiwan Semiconductor Manufacturing Company, Ltd. EUV mask and manufacturing method by using the same
WO2018043347A1 (en) * 2016-08-29 2018-03-08 エア・ウォーター株式会社 Pellicle production method
JP2018060234A (en) * 2012-08-03 2018-04-12 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and method
JP2018536902A (en) * 2015-12-14 2018-12-13 エーエスエムエル ネザーランズ ビー.ブイ. Film for EUV lithography
KR20190053706A (en) * 2017-11-10 2019-05-20 주식회사 에스앤에스텍 Pellicle for Extreme Ultraviolet Lithography
JP2020134870A (en) * 2019-02-25 2020-08-31 エア・ウォーター株式会社 Pellicle intermediate, pellicle, method for producing pellicle intermediate, and method for producing pellicle
KR102375433B1 (en) * 2020-12-02 2022-03-18 한국전자기술연구원 Pellicle for extreme ultraviolet exposure including a three-component core layer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676459B (en) * 2012-09-13 2016-08-31 中芯国际集成电路制造(上海)有限公司 Light shield apparatus
TWI556055B (en) * 2014-08-12 2016-11-01 Micro Lithography Inc A mask protective film module and manufacturing method thereof
US9835940B2 (en) 2015-09-18 2017-12-05 Taiwan Semiconductor Manufacturing Company, Ltd. Method to fabricate mask-pellicle system
US10001701B1 (en) * 2016-12-15 2018-06-19 Taiwan Semiconductor Manufacturing Co., Ltd. Pellicle structures and methods of fabricating thereof
WO2019101517A1 (en) * 2017-11-21 2019-05-31 Asml Netherlands B.V. Porous graphitic pellicle
CN113253566B (en) * 2020-02-10 2024-04-09 永恒光实业股份有限公司 Composite fine mask

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262651A (en) * 1987-04-21 1988-10-28 Seiko Epson Corp Photomask protective film
JPH0262542A (en) * 1988-08-29 1990-03-02 Shin Etsu Chem Co Ltd Pellicle for excimer laser lithography
JPH02230245A (en) * 1989-03-03 1990-09-12 Shin Etsu Chem Co Ltd Pellicle for lithography
JPH11231508A (en) * 1998-02-17 1999-08-27 Shin Etsu Chem Co Ltd Method for preparing reproduced reticle and reproduced reticle
JP2000292908A (en) * 1999-04-02 2000-10-20 Shin Etsu Chem Co Ltd Pellicle for lithography
JP2005070120A (en) * 2003-08-27 2005-03-17 Shin Etsu Chem Co Ltd Pellicle for lithography
JP2005215508A (en) * 2004-01-30 2005-08-11 Nikon Corp Substrate, exposure apparatus and exposure system
JP2007506149A (en) * 2003-09-23 2007-03-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for correcting gravitational effects on a pellicle used to protect the reticle from contamination
JP2008191656A (en) * 2007-01-31 2008-08-21 Internatl Business Mach Corp <Ibm> Pellicle and method (pellicle film optimized for immersion lithography system with na>1)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935733A (en) * 1996-04-05 1999-08-10 Intel Corporation Photolithography mask and method of fabrication
US6171982B1 (en) * 1997-12-26 2001-01-09 Canon Kabushiki Kaisha Method and apparatus for heat-treating an SOI substrate and method of preparing an SOI substrate by using the same
DE10016008A1 (en) * 2000-03-31 2001-10-11 Zeiss Carl Village system and its manufacture
US6623893B1 (en) * 2001-01-26 2003-09-23 Advanced Micro Devices, Inc. Pellicle for use in EUV lithography and a method of making such a pellicle
US20030228529A1 (en) * 2002-06-10 2003-12-11 Dupont Photomasks, Inc. Photomask and method for repairing defects

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262651A (en) * 1987-04-21 1988-10-28 Seiko Epson Corp Photomask protective film
JPH0262542A (en) * 1988-08-29 1990-03-02 Shin Etsu Chem Co Ltd Pellicle for excimer laser lithography
JPH02230245A (en) * 1989-03-03 1990-09-12 Shin Etsu Chem Co Ltd Pellicle for lithography
JPH11231508A (en) * 1998-02-17 1999-08-27 Shin Etsu Chem Co Ltd Method for preparing reproduced reticle and reproduced reticle
JP2000292908A (en) * 1999-04-02 2000-10-20 Shin Etsu Chem Co Ltd Pellicle for lithography
JP2005070120A (en) * 2003-08-27 2005-03-17 Shin Etsu Chem Co Ltd Pellicle for lithography
JP2007506149A (en) * 2003-09-23 2007-03-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for correcting gravitational effects on a pellicle used to protect the reticle from contamination
JP2005215508A (en) * 2004-01-30 2005-08-11 Nikon Corp Substrate, exposure apparatus and exposure system
JP2008191656A (en) * 2007-01-31 2008-08-21 Internatl Business Mach Corp <Ibm> Pellicle and method (pellicle film optimized for immersion lithography system with na>1)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271262A (en) * 2008-05-02 2009-11-19 Shin Etsu Chem Co Ltd Pellicle and method of producing pellicle
JP2009282298A (en) * 2008-05-22 2009-12-03 Shin-Etsu Chemical Co Ltd Pellicle and method for manufacturing pellicle
JP2012078729A (en) * 2010-10-05 2012-04-19 Toppan Printing Co Ltd Pellicle and exposure device
JP2018060234A (en) * 2012-08-03 2018-04-12 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and method
JP2014211426A (en) * 2013-04-02 2014-11-13 リソテック ジャパン株式会社 Measuring method of light transmittance
WO2014188710A1 (en) 2013-05-24 2014-11-27 三井化学株式会社 Pellicle and euv exposure device comprising same
KR20150145256A (en) 2013-05-24 2015-12-29 미쯔이가가꾸가부시끼가이샤 Pellicle and euv exposure device comprising same
US9703187B2 (en) 2013-05-24 2017-07-11 Mitsui Chemicals, Inc. Pellicle and EUV exposure device comprising same
US9588421B2 (en) 2014-04-11 2017-03-07 Lasertec Corporation Pellicle inspection apparatus
JP5686394B1 (en) * 2014-04-11 2015-03-18 レーザーテック株式会社 Pellicle inspection device
KR20160138160A (en) 2014-05-02 2016-12-02 미쯔이가가꾸가부시끼가이샤 Pellicle frame, pellicle and manufacturing method thereof, exposure original plate and manufacturing method thereof, exposure device, and semiconductor device manufacturing method
US10216081B2 (en) 2014-05-02 2019-02-26 Mitsui Chemicals, Inc. Pellicle frame, pellicle and method of manufacturing the same, original plate for exposure and method of manufacturing the same, exposure device, and method of manufacturing semiconductor device
KR20160145073A (en) 2014-05-19 2016-12-19 미쯔이가가꾸가부시끼가이샤 Pellicle film, pellicle, exposure master, exposure device, and method for manufacturing semiconductor device
KR20180072844A (en) 2014-05-19 2018-06-29 미쯔이가가꾸가부시끼가이샤 Pellicle film, pellicle, exposure master, exposure device, and method for manufacturing semiconductor device
US10108084B2 (en) 2014-05-19 2018-10-23 Mitsui Chemicals, Inc. Pellicle membrane, pellicle, original plate for exposure, exposure apparatus, and method of producing semiconductor device
KR101722855B1 (en) * 2014-11-26 2017-04-05 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Pellicle for euv mask and fabrication thereof
KR20160063235A (en) * 2014-11-26 2016-06-03 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Pellicle for euv mask and fabrication thereof
US9709884B2 (en) 2014-11-26 2017-07-18 Taiwan Semiconductor Manufacturing Company, Ltd. EUV mask and manufacturing method by using the same
TWI595309B (en) * 2014-11-26 2017-08-11 台灣積體電路製造股份有限公司 Method of fabricating pellicle
US10520806B2 (en) 2014-11-26 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Pellicle for EUV mask and fabrication thereof
US10831094B2 (en) 2014-11-26 2020-11-10 Taiwan Semiconductor Manufacturing Company, Ltd. Pellicle for EUV mask and fabrication thereof
US10031411B2 (en) 2014-11-26 2018-07-24 Taiwan Semiconductor Manufacturing Company, Ltd. Pellicle for EUV mask and fabrication thereof
WO2016171514A1 (en) * 2015-04-24 2016-10-27 한양대학교에리카산학협력단 Pellicle and manufacturing method therefor
KR101624078B1 (en) * 2015-04-24 2016-05-25 한양대학교 에리카산학협력단 Pellicle and method of fabricating the same
JP7258068B2 (en) 2015-12-14 2023-04-14 エーエスエムエル ネザーランズ ビー.ブイ. Films for EUV lithography
US11320731B2 (en) 2015-12-14 2022-05-03 Asml Netherlands B.V. Membrane for EUV lithography
JP2018536902A (en) * 2015-12-14 2018-12-13 エーエスエムエル ネザーランズ ビー.ブイ. Film for EUV lithography
JP2021105730A (en) * 2015-12-14 2021-07-26 エーエスエムエル ネザーランズ ビー.ブイ. Membrane for EUV lithography
WO2018043347A1 (en) * 2016-08-29 2018-03-08 エア・ウォーター株式会社 Pellicle production method
US11119402B2 (en) 2016-08-29 2021-09-14 Air Water Inc. Method for manufacturing of pellicle
KR101981950B1 (en) * 2017-11-10 2019-05-24 주식회사 에스앤에스텍 Pellicle for Extreme Ultraviolet Lithography
KR20190053706A (en) * 2017-11-10 2019-05-20 주식회사 에스앤에스텍 Pellicle for Extreme Ultraviolet Lithography
WO2020175355A1 (en) 2019-02-25 2020-09-03 エア・ウォーター株式会社 Pellicle intermediate, pellicle, method for manufacturing pellicle intermediate, and method for manufacturing pellicle
JP2020134870A (en) * 2019-02-25 2020-08-31 エア・ウォーター株式会社 Pellicle intermediate, pellicle, method for producing pellicle intermediate, and method for producing pellicle
KR20210129078A (en) 2019-02-25 2021-10-27 에어 워터 가부시키가이샤 Pellicle intermediate, pellicle, method for producing pellicle intermediate, and method for producing pellicle
JP7319059B2 (en) 2019-02-25 2023-08-01 エア・ウォーター株式会社 Method for producing pellicle intermediate and method for producing pellicle
US12001136B2 (en) 2019-02-25 2024-06-04 Air Water Inc. Pellicle intermediary body, pellicle, method for manufacturing of pellicle intermediary body, and pellicle manufacturing method
KR102375433B1 (en) * 2020-12-02 2022-03-18 한국전자기술연구원 Pellicle for extreme ultraviolet exposure including a three-component core layer

Also Published As

Publication number Publication date
TWI414883B (en) 2013-11-11
TW200919082A (en) 2009-05-01
DE602008003641D1 (en) 2011-01-05
CN101414118A (en) 2009-04-22
JP4861963B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4861963B2 (en) Pellicle and method for manufacturing pellicle
JP4928494B2 (en) Pellicle and method for manufacturing pellicle
KR101382414B1 (en) Pellicle and method for manufacturing pellicle
JP4934099B2 (en) Pellicle and method for manufacturing pellicle
JP5394808B2 (en) Pellicle for lithography and method for manufacturing the same
KR101900720B1 (en) Pellicle for Extreme Ultraviolet(EUV) Lithography and Method for fabricating the same
KR20120083208A (en) A pellicle film and a pellicle for euv application, and a method for manufacturing the film
KR20190053706A (en) Pellicle for Extreme Ultraviolet Lithography
JP2016130789A (en) Pellicle for EUV mask
KR20190053766A (en) Pellicle for Extreme Ultraviolet(EUV) Lithography and Method for fabricating the same
KR101860987B1 (en) Method of manufacturing Pellicle for EUV Lithography using Photosensitive glass
JP2023142943A (en) Material for pellicle, pellicle, and method for manufacturing material for pellicle
JP2000182944A (en) Manufacture of x-ray exposure mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Ref document number: 4861963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3