JP2009115479A - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
JP2009115479A
JP2009115479A JP2007285812A JP2007285812A JP2009115479A JP 2009115479 A JP2009115479 A JP 2009115479A JP 2007285812 A JP2007285812 A JP 2007285812A JP 2007285812 A JP2007285812 A JP 2007285812A JP 2009115479 A JP2009115479 A JP 2009115479A
Authority
JP
Japan
Prior art keywords
inspection
substrate
inspection window
image
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007285812A
Other languages
Japanese (ja)
Inventor
Shigeki Kobayashi
茂樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007285812A priority Critical patent/JP2009115479A/en
Publication of JP2009115479A publication Critical patent/JP2009115479A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize automatic inspection under a uniform condition of the whole inspection window, in an inspection device using a one-dimensional image sensor camera. <P>SOLUTION: A substrate is imaged by the one-dimensional image sensor camera, and a component domain is set following the mounting position, the size and the mounting direction of a component on the substrate, and an enlargement rate when enlarging automatically the component domain in the periphery and forming an inspection window is taught. Then, a pixel value in the inspection window of a reference substrate whole surface image and a corresponding pixel value in the inspection window of a specimen substrate whole surface image are subjected to a differential image processing with a uniform pixel density relative to the whole inspection window, and the quality is determined by a uniform acceptance determination standard, to thereby enable automatic inspection of the mounting substrate wherein excessive detection is minimized by simple teaching. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エレクトロニクス工場等において、1次元イメージセンサカメラにより部品実装基板を撮像して外観検査を行う検査装置に関する。   The present invention relates to an inspection apparatus that performs an appearance inspection by imaging a component mounting board with a one-dimensional image sensor camera in an electronics factory or the like.

部品実装基板の実装品質を検査するための検査装置には、2次元のエリアイメージセンサカメラを用いるものと1次元イメージセンサカメラを利用するものとに大別される。後者は、スキャナのように画像を取込むために、高速化が図れる点で優れているが、実装部品の種類やはんだ付の良否を検査するために、部品搭載領域だけに限って画像検査を行うために、検査ウィンドウを設定することが一般的であり、この点ではエリアイメージセンサカメラ利用検査機と同様であった。検査ウィンドウの設定やウィンドウごと、あるいは部品やはんだ接合の種類ごとに検査アルゴリズムを張りつける検査データ作成は、手間がかかるばかりでなく、多分に操作者のスキルにも依存するので、実用的な自動検査パフォーマンスがなかなか実現しない、などの問題があった。   Inspection apparatuses for inspecting the mounting quality of a component mounting board are roughly classified into those using a two-dimensional area image sensor camera and those using a one-dimensional image sensor camera. The latter is superior in terms of speeding up to capture images like a scanner, but in order to inspect the type of mounted components and soldering quality, image inspection is limited to the component mounting area only. In order to do this, it is common to set an inspection window, and in this respect, it is similar to an inspection machine using an area image sensor camera. Inspection data creation for attaching inspection algorithms for each window setting or for each type of part or solder joint is not only labor-intensive, but also depends on the skill of the operator. There were problems such as performance not being realized easily.

これに対して出願人は、1次元イメージセンサカメラ利用の検査機において、検査ウィンドウの設定を省略する技術をすでに開示している(特許文献1〜5参照)。これは、基準基板の全面画像と検査基板の全面画像とを差画像処理により比較するものであり、上記教示の手間や要求スキルの大幅な軽減を目的とするものである。
特開2004−296564 特開2005−265493 特開2006−242873 特開2007−101415 特開2007−147320
On the other hand, the applicant has already disclosed a technique for omitting the setting of an inspection window in an inspection machine using a one-dimensional image sensor camera (see Patent Documents 1 to 5). This is to compare the entire image of the reference substrate and the entire image of the inspection substrate by difference image processing, and is intended to greatly reduce the time and skill required for the teaching.
JP 2004-296564 A JP 2005-265493 A JP 2006-242873 A JP2007-101415A JP2007-147320

ところが、基板全面画像を均一の画像処理条件で差画像処理すると、部品の実装品質にかかわらない基板上の印刷やその他の微小な変動までもすべて検出し、いわゆる過検出の多発もしばしば発生する。このために、1次元イメージセンサカメラ利用の検査機においても、上述のように検査ウィンドウを設定することが、必要とされていた。
しかしながら、1次元イメージセンサカメラ利用の検査機において、その操作簡易化はなお強く要望されていて、課題として残されていた。
However, when the image of the entire surface of the board is subjected to differential image processing under uniform image processing conditions, printing on the board and other minute fluctuations that are not related to the component mounting quality are all detected, and so-called overdetection often occurs. For this reason, it is necessary to set an inspection window as described above even in an inspection machine using a one-dimensional image sensor camera.
However, in the inspection machine using a one-dimensional image sensor camera, the simplification of the operation is still strongly demanded and left as a problem.

解決しようとする問題点は、1次元イメージセンサカメラ利用の検査装置において、検査ウィンドウの教示を必要としない基板全面の差画像処理の長所を生かそうとすると、品質に無関係の箇所に過検出が発生していた点である。   The problem to be solved is that in an inspection apparatus using a one-dimensional image sensor camera, if an advantage of differential image processing on the entire surface of the substrate that does not require teaching of an inspection window is to be utilized, over-detection occurs at a location unrelated to quality. This is what happened.

本発明は、1次元イメージセンサカメラに対して、イメージセンサのピクセル配置に直交する方向に基板を相対移動することによって基板画像を獲得する検査装置において、基板上の部品の実装位置とサイズと実装方向に従って部品領域を設定し、部品領域を周囲に自動拡大して検査ウィンドウを作成する際の拡大率を教示し、差分画像処理に適用する画素密度と良否判定基準を設定し、基準基板全面画像の検査ウィンドウ内画素値と、検体基板全面画像の対応する検査ウィンドウ内画素値とを差分画像処理し、全検査ウィンドウについて均一の画素密度と良否判定基準で部品の実装品質とはんだ付品質を判定することを主要な特徴とする。
また本発明は、1次元イメージセンサカメラに対して、イメージセンサのピクセル配置に直交する方向に基板を相対移動することによって基板画像を獲得する検査装置において、良否判定基準として差分画素値の閾値あるいは検査ウィンドウと部品領域に囲まれた部品周辺域における異常画像の許容範囲を設定することを主要な特徴とする。
The present invention relates to a mounting position, size, and mounting of components on a substrate in an inspection apparatus that acquires a substrate image by moving the substrate relative to a one-dimensional image sensor camera in a direction orthogonal to the pixel arrangement of the image sensor. Set the part area according to the direction, teach the enlargement ratio when creating the inspection window by automatically enlarging the part area around, set the pixel density and pass / fail judgment criteria applied to the differential image processing, and the reference board whole image Difference image processing between the pixel value in the inspection window and the corresponding pixel value in the inspection window of the entire image of the specimen substrate, and the mounting quality and soldering quality of the component are judged with uniform pixel density and pass / fail criteria for all inspection windows The main feature is to do.
The present invention also provides a threshold value of a difference pixel value as a pass / fail criterion in an inspection apparatus that acquires a substrate image by moving the substrate relative to a one-dimensional image sensor camera in a direction orthogonal to the pixel arrangement of the image sensor. The main feature is that an allowable range of an abnormal image is set in a peripheral region surrounded by the inspection window and the component region.

本発明の検査装置は、1次元イメージセンサカメラが基板画像を獲得する検査装置において、部品領域を周囲に自動拡大して検査ウィンドウを作成する際の拡大率を教示し、基準基板全面画像の検査ウィンドウ内画素値と、検体基板全面画像の対応する検査ウィンドウ内画素値とを、全検査ウィンドウについて均一の画素密度で差分画像処理し、かつ均一の良否判定基準で品質を判定するので、検査データの教示を部品領域教示のみに極小化して部品実装品質が検査できるという利点がある。   The inspection apparatus of the present invention teaches an enlargement ratio when an inspection window is created by automatically enlarging a component area around a one-dimensional image sensor camera to acquire a substrate image, and inspects a reference substrate whole surface image. The difference between the pixel value in the window and the pixel value in the inspection window corresponding to the entire image of the specimen substrate is subjected to differential image processing with a uniform pixel density for all the inspection windows, and the quality is determined based on the uniform quality criterion. There is an advantage that the component mounting quality can be inspected by minimizing the above teaching to only the component area teaching.

検査データ教示が簡易でかつ過検出の少ない1次元イメージセンサカメラ利用の検査装置を実現するという目的を、部品領域を周囲に自動拡大して検査ウィンドウを作成する際の拡大率を教示し、基準基板全面画像の検査ウィンドウ内画素値と、検体基板全面画像の対応する検査ウィンドウ内画素値とを、全検査ウィンドウについて均一の画素密度で差分画像処理し、かつ均一の良否判定基準で品質を判定することによって実現した。   The purpose of realizing an inspection device using a one-dimensional image sensor camera with simple inspection data teaching and less over-detection is to teach the enlargement ratio when creating an inspection window by automatically enlarging the part area around Difference image processing is performed on the pixel values in the inspection window of the entire substrate image and the corresponding pixel values in the inspection window of the entire surface image of the specimen substrate at a uniform pixel density for all inspection windows, and the quality is determined based on the uniform quality criterion. Realized by doing.

図1は、本発明検査装置実施例の全体構成図であって、基板1上には部品2がはんだ付され、基板1はテーブル3に保持されている。基板1の上方には、1次元イメージセンサカメラ4が配置されている。   FIG. 1 is an overall configuration diagram of an embodiment of the inspection apparatus according to the present invention. A one-dimensional image sensor camera 4 is disposed above the substrate 1.

1次元イメージセンサカメラ4は、制御装置5に接続され、制御装置5は、1次元センサ撮像ユニット6、画像保存ユニット7、画像処理演算ユニット8、システム全体を制御する統合システム制御ユニット9、教示ユニット10、および良否判定ユニット11を有し、6〜11の各ユニットは、バス16を通じてデータの交換を行う。   The one-dimensional image sensor camera 4 is connected to a control device 5. The control device 5 includes a one-dimensional sensor imaging unit 6, an image storage unit 7, an image processing arithmetic unit 8, an integrated system control unit 9 for controlling the entire system, and teaching. A unit 10 and a pass / fail judgment unit 11 are provided, and each of the units 6 to 11 exchanges data through the bus 16.

また、制御装置5には、教示データ等の入力を行う入力ユニット12と、検査結果等を印字する出力ユニット13と、外部装置との間でデータ送受を行う通信ユニット14と、画像や検査結果等を表示する表示ユニット15が接続されている。   Further, the control device 5 includes an input unit 12 for inputting teaching data and the like, an output unit 13 for printing inspection results and the like, a communication unit 14 for transmitting and receiving data to and from an external device, and images and inspection results. A display unit 15 for displaying the above is connected.

次に、図2(A)のフロー図に従って、この実施例検査装置の教示ステップを説明する。まず基準基板1(図1)をテーブル3に装填し(ST1)、基板のIDデータを教示し(ST2)、その後基準基板をテーブル3で移動して1次元イメージセンサカメラ4でスキャン撮像する(ST3)。獲得した基準基板の全面画像を画像保存ユニット7に保存し(ST4)、表示ユニット15に表示する(ST5)(図示せず)。   Next, the teaching steps of this embodiment inspection apparatus will be described with reference to the flowchart of FIG. First, the reference substrate 1 (FIG. 1) is loaded on the table 3 (ST1), the ID data of the substrate is taught (ST2), and then the reference substrate is moved on the table 3 and scanned with the one-dimensional image sensor camera 4 (FIG. 1). ST3). The acquired entire image of the reference board is stored in the image storage unit 7 (ST4) and displayed on the display unit 15 (ST5) (not shown).


次に、表示された基準基板画像上に部品領域を設定する(ST6)。部品領域の設定は、表示画像を見ながらマニュアル操作で部品画像を囲むようにして設定してもよいし、また基板の設計データ(CADデータ)あるいはマウンタ・データ等を利用することもできる。すべての部品領域が正しく設定されたら、検査ウィンドウの教示に進む(ST7)。検査ウィンドウは、指示された拡大比率に従って各部品領域を自動拡大して作成する(図3参照)。この自動拡大は、画像処理演算ユニット8が備える検査ウィンドウ設定プログラムが、個々の部品領域の重心位置を算定し、部品領域の長辺と短辺に応じて定率で拡大し、検査ウィンドウとして設定する。拡大率は、あらかじめ入力することができる。拡大領域を設定する理由は、部品の搭載ずれ不良やはんだブリッジを、検査ウィンドウと部品領域に囲まれた部品周辺域における異常画像として検出するためである。

Next, a component area is set on the displayed reference board image (ST6). The part area may be set by surrounding the part image manually while viewing the display image, or board design data (CAD data) or mounter data may be used. When all the component areas are set correctly, the process proceeds to teaching of the inspection window (ST7). The inspection window is created by automatically enlarging each part area in accordance with the designated enlargement ratio (see FIG. 3). In this automatic enlargement, the inspection window setting program provided in the image processing arithmetic unit 8 calculates the position of the center of gravity of each part area, enlarges it at a fixed rate according to the long side and the short side of the part area, and sets it as an inspection window. . The enlargement ratio can be input in advance. The reason for setting the enlarged region is to detect a component mounting error or a solder bridge as an abnormal image in the peripheral region surrounded by the inspection window and the component region.

次に、テスト基板をテーブル3に装填して(ST8)、スキャン撮像し(ST9)、得られたテスト基板画像と基準基板画像との差画像処理を画像処理演算ユニット8が行う(ST10)。この差画像処理は、デフォルトの画素密度と良否判定基準で試行する。この差分結果を表示ユニット15に表示し(ST11)、不良の見逃しまたは良品の見過ぎなどの誤判定があれば、デフォルトの差分画像処理に利用する画素密度あるいは良否判定基準を調節することにより、この基板に最適な画像処理条件を設定する(ST12)。   Next, a test substrate is loaded on the table 3 (ST8), scan imaging is performed (ST9), and the image processing arithmetic unit 8 performs difference image processing between the obtained test substrate image and the reference substrate image (ST10). This difference image processing is tried with a default pixel density and pass / fail judgment criteria. This difference result is displayed on the display unit 15 (ST11), and if there is a misjudgment such as missing a defect or overlooking a non-defective product, by adjusting the pixel density or pass / fail judgment criteria used for default difference image processing, Image processing conditions optimum for this substrate are set (ST12).

次に、この実施例における自動検査の動作を、図2(B)のフロー図に沿って説明する。
まず、図1において検体基板1をテーブル3に装填し(ST21)、検体基板のIDデータを入力するか又は読取ると(ST22)、制御装置5の指令で検体基板1を1次元移動し、1次元センサ撮像ユニット6の制御によって1次元イメージセンサカメラ4が検体基板1の全面をスキャン撮像する(ST23)。このとき、画像保存ユニット7が検体基板の全面画像を保存した後、以降のプロセスに進んでもよい。
Next, the automatic inspection operation in this embodiment will be described with reference to the flowchart of FIG.
First, in FIG. 1, the sample substrate 1 is loaded on the table 3 (ST21), and when the ID data of the sample substrate is input or read (ST22), the sample substrate 1 is moved one-dimensionally in response to a command from the control device 5. The one-dimensional image sensor camera 4 scans and images the entire surface of the sample substrate 1 under the control of the dimension sensor imaging unit 6 (ST23). At this time, after the image storage unit 7 stores the entire image of the sample substrate, the process may proceed to the subsequent processes.

そこで画像処理演算ユニット8が、基準基板画像と検体基板画像の各検査ウィンドウ内画素について、差分画像処理を行い(ST24)、不良画像が発生した検査ウィンドウがあれば、ウィンドウ枠を指示表示してその存在を示し、検査ウィンドウのアドレスとともに検査結果データを報告し(ST25)、検体基板をステージ3より除去する(ST26)。   Therefore, the image processing arithmetic unit 8 performs differential image processing for each pixel in the inspection window of the reference substrate image and the sample substrate image (ST24), and if there is an inspection window in which a defective image has occurred, the window frame is indicated and displayed. The presence is indicated, inspection result data is reported together with the address of the inspection window (ST25), and the sample substrate is removed from the stage 3 (ST26).

本実施例は、差分画像処理の画素密度の設定、あるいは差分画素値の閾値の設定、あるいは検査ウィンドウと部品領域に囲まれた部品周辺域における異常画像の許容範囲の設定ができるようにしているので、全検査ウィンドウを均一の条件で自動検査できるようになった。   In this embodiment, it is possible to set the pixel density of the differential image processing, the threshold value of the differential pixel value, or the allowable range of the abnormal image in the component peripheral area surrounded by the inspection window and the component region. As a result, all inspection windows can be automatically inspected under uniform conditions.

1次元イメージセンサカメラで基板を撮像し、基板上の部品の実装位置とサイズと実装方向に従って部品領域を設定し、部品領域を周囲に自動拡大して検査ウィンドウを作成する際の拡大率を教示し、基準基板全面画像の検査ウィンドウ内画素値と、検体基板全面画像の対応する検査ウィンドウ内画素値とを、全検査ウィンドウについて均一の画素密度で差分画像処理し、均一の良否判定基準で品質を判定して、検査ウィンドウ単位の検査結果を報告する検査装置に適用できる。   The board is imaged with a one-dimensional image sensor camera, the part area is set according to the mounting position, size, and mounting direction of the part on the board, and the enlargement ratio when the inspection window is created by automatically enlarging the part area around is taught. Then, differential image processing is performed on the pixel values in the inspection window of the reference substrate whole surface image and the corresponding pixel values in the inspection window of the whole surface image of the specimen substrate with a uniform pixel density for all inspection windows, and the quality is determined according to the uniform quality criterion. And can be applied to an inspection apparatus that reports an inspection result for each inspection window.

検査装置の全体構成を示した説明図である。It is explanatory drawing which showed the whole structure of the test | inspection apparatus. 検査装置における教示と自動検査の動作を示したフロー図である。It is the flowchart which showed the operation | movement of the teaching and automatic test | inspection in a test | inspection apparatus. 検査装置における部品領域と検査ウィンドウの設定を説明する図である。It is a figure explaining the setting of the components area | region and inspection window in an inspection apparatus.

符号の説明Explanation of symbols

1 基板
2 部品
4 1次元イメージセンサカメラ
5 制御装置
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Components 4 One-dimensional image sensor camera 5 Control apparatus

Claims (2)

1次元イメージセンサカメラに対して、イメージセンサのピクセル配置に直交する方向に基板を相対移動することによって基板画像を獲得する撮像手段と、
基板上の部品の実装位置とサイズと実装方向に従って部品領域を設定する領域設定手段と、
部品領域を周囲に自動拡大して検査ウィンドウを作成する際の拡大率を教示し、差分画像処理に適用する画素密度と良否判定基準を設定する教示手段と、
基準基板全面画像の検査ウィンドウ内画素値と、検体基板全面画像の対応する検査ウィンドウ内画素値とを、差分画像処理する画像処理手段と、
全検査ウィンドウについて均一の画素密度と良否判定基準で部品の実装品質とはんだ付品質を判定する判定手段と
より成る検査装置。
Imaging means for acquiring a substrate image by relatively moving the substrate in a direction orthogonal to the pixel arrangement of the image sensor with respect to the one-dimensional image sensor camera;
Area setting means for setting a component area according to the mounting position and size of the component on the board and the mounting direction;
Teaching means for automatically enlarging a part area around and creating an inspection window, and setting a pixel density and pass / fail judgment criteria applied to differential image processing;
An image processing means for performing differential image processing on the pixel value in the inspection window of the reference substrate entire surface image and the corresponding pixel value in the inspection window of the specimen substrate entire image;
An inspection apparatus comprising determination means for determining a component mounting quality and a soldering quality based on a uniform pixel density and pass / fail criteria for all inspection windows.
前記教示手段が設定する良否判定基準は、差分画素値の閾値あるいは検査ウィンドウと部品領域に囲まれた部品周辺域における異常画像の許容範囲であることを特徴とする請求項1記載の検査装置。   2. The inspection apparatus according to claim 1, wherein the quality determination criterion set by the teaching unit is a threshold value of a difference pixel value or an allowable range of an abnormal image in a component peripheral area surrounded by an inspection window and a component region.
JP2007285812A 2007-11-02 2007-11-02 Inspection device Pending JP2009115479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285812A JP2009115479A (en) 2007-11-02 2007-11-02 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285812A JP2009115479A (en) 2007-11-02 2007-11-02 Inspection device

Publications (1)

Publication Number Publication Date
JP2009115479A true JP2009115479A (en) 2009-05-28

Family

ID=40782792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285812A Pending JP2009115479A (en) 2007-11-02 2007-11-02 Inspection device

Country Status (1)

Country Link
JP (1) JP2009115479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149736A (en) * 2010-01-19 2011-08-04 Saki Corp:Kk Appearance inspection apparatus and appearance inspection method
US20160363791A1 (en) * 2014-12-18 2016-12-15 Boe Technology Group Co., Ltd. Substrate inspection device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149736A (en) * 2010-01-19 2011-08-04 Saki Corp:Kk Appearance inspection apparatus and appearance inspection method
US20160363791A1 (en) * 2014-12-18 2016-12-15 Boe Technology Group Co., Ltd. Substrate inspection device and method
US9880408B2 (en) * 2014-12-18 2018-01-30 Boe Technology Group Co., Ltd. Substrate inspection device and method

Similar Documents

Publication Publication Date Title
JP4699873B2 (en) Defect data processing and review equipment
US7869643B2 (en) Advanced cell-to-cell inspection
JP2004012325A (en) Method and apparatus for inspection of defect
JP5158365B2 (en) Substrate defect inspection system
JP2014190821A (en) Defect detection device, and defect detection method
JP2019191117A (en) Image processing device, image processing method, and program
WO2018198991A1 (en) Image inspection device, production system, image inspection method, program, and storage medium
JP5018868B2 (en) Sample observation method and apparatus
JP4649051B2 (en) Inspection screen display method and substrate inspection system
WO2014208193A1 (en) Wafer appearance inspection device
JP2009115479A (en) Inspection device
JP6049052B2 (en) Wafer visual inspection apparatus and sensitivity threshold setting method in wafer visual inspection apparatus
JP5178781B2 (en) Sensor output data correction device and sensor output data correction method
JP2018091771A (en) Method for inspection, preliminary image selection device, and inspection system
TW201506387A (en) Map comparison apparatus, comparison method, and comparison program
JP2008186879A (en) Substrate inspection method
JP4415285B1 (en) Wire inspection apparatus, wire inspection method, and wire inspection program
JP2019219357A (en) Imaging apparatus, imaging method, and imaging program
US20230138331A1 (en) Motion in images used in a visual inspection process
JP2007147320A (en) Inspection device
WO2021261302A1 (en) Defect inspection device
JP2007101415A (en) Inspection device
JP2007273581A (en) Method and device for inspecting semiconductor wafer
JP2006242884A (en) Visual inspection device
JP2006098126A (en) Work surface flaw inspection device