JP2009115073A - Fuel cell-mounted type engine part 3 - Google Patents

Fuel cell-mounted type engine part 3 Download PDF

Info

Publication number
JP2009115073A
JP2009115073A JP2007322596A JP2007322596A JP2009115073A JP 2009115073 A JP2009115073 A JP 2009115073A JP 2007322596 A JP2007322596 A JP 2007322596A JP 2007322596 A JP2007322596 A JP 2007322596A JP 2009115073 A JP2009115073 A JP 2009115073A
Authority
JP
Japan
Prior art keywords
engine
ammonia
hydrogen
fuel cell
naphtha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007322596A
Other languages
Japanese (ja)
Inventor
Masaya Kuno
雅也 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007322596A priority Critical patent/JP2009115073A/en
Publication of JP2009115073A publication Critical patent/JP2009115073A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the necessity of a circulation compressor etc. in a hydrogen circulation system to easily achieve operation by performing catalytic cracking in hydrogen of refined naphtha in the presence of ammonia instead of circulation hydrogen gas in a fuel cell-mounted type engine. <P>SOLUTION: Refined naphtha is mixed with ammonia and decomposition is performed by using exhaust heat of the engine. Crude gasoline and hydrogen are generated and rotational energy is taken out. The refined naphtha and ammonia to be mixed with each other are treated at 1-4 of a molar ratio. A catalyst for decomposition of the refined naphtha and ammonia is prepared based on a Ni-based catalyst, and silica alumina and zeolite etc. are used as a carrier. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

燃料電池利用によるエンジンに関する省エネ技術分野Energy-saving technology related to engines using fuel cells

水素発生技術、炭化水素分解技術、省エネ技術Hydrogen generation technology, hydrocarbon decomposition technology, energy saving technology

燃料電池搭載型エンジンとして精製ナフサをエンジンの排熱を利用して脱水素環化反応を水素下で達成する特許(P2002−317188A)を発明し、かつ特許願(2005−175657)としてディーゼル用としてNHから水素をとり出す発明をしてきたがエンジンの排熱の熱回収方法としてNHを利用することが水素発生が容易であることが判明した。
循環水素ガスに代えて、アンモニア存在下で精製ナフサを水素下接触分解させる事によって、水素循環系の循環コンプレッサー等が不必要になり、運転が容易に達成される。
Invented a patent (P2002-317188A) that achieves a dehydrocyclization reaction under hydrogen using exhaust heat of the engine as a fuel cell-mounted engine, and as a patent application (2005-175657) for diesel Although the invention of extracting hydrogen from NH 3 has been made, it has been found that it is easy to generate hydrogen by using NH 3 as a heat recovery method for exhaust heat of the engine.
Instead of circulating hydrogen gas, purified naphtha is catalytically cracked under hydrogen in the presence of ammonia, thereby eliminating the need for a circulating compressor or the like of the hydrogen circulation system and easily achieving operation.

課題を解決する為の手段Means to solve the problem

精製ナフサから脱水素環化反応させるには水素の存在、触媒、吸熱反応を補完する熱源が必要となる。脱水素環化反応をすることにより精製ナフサはオクタン価の高い製品になり、それによりガソリンエンジンは稼動しやすくなるが通常のガソリンは精油所内で脱水素反応をされたものを市販店より購入し、運転しているが特許(P2002−317788A)の内容ではエンジンの排熱を利用して、燃料電池用の水素を精製ナフサからとり、同時に粗製ガソリンを発生させる仕組みについて言及している。この発明の欠点はひとつは脱水環化反応には高温と、水素下という条件が欠かせず、その水素をエンジンの一部を利用して、水素循環機として使用する煩雑さが組み込まれ、やや実現性に欠けるきらいがある。今ひとつは触媒に関して、充分な能力を発揮するものが発見されていないことがある。これらを解決する手段として、NHを利用すると、アンモニアは低温で水素を窒素に分解するので、結果的に水素、窒素雰囲気で精製ナフサを脱水環化反応装置に挿入出来ることになる。
アンモニアは常温で約10kg/cmGの圧力があるので、その圧力を使えば系内の圧損をcoverしつつ、一緒に圧入した精製ナフサを反応器へと導びくことが出来、機械的な煩雑さを一部さける事ができる。一方、窒素は熱媒体として利用出来、触媒上及び下流の燃料電池とっても問題ないものとなる。即ち、循環水素用compressorの不必要なシステムを提供出来ることになる。
In order to carry out the dehydrocyclization reaction from purified naphtha, the presence of hydrogen, a catalyst, and a heat source that complements the endothermic reaction are required. Purified naphtha becomes a product with a high octane number by dehydrocyclization reaction, which makes it easy to operate the gasoline engine, but purchase ordinary gasoline dehydrogenated in a refinery from a commercial store, Although it is operating, the content of the patent (P2002-317788A) refers to a mechanism that uses exhaust heat of the engine to take hydrogen for the fuel cell from purified naphtha and simultaneously generate crude gasoline. One of the disadvantages of this invention is that the dehydration cyclization reaction requires conditions of high temperature and under hydrogen, and the trouble of using the hydrogen as a hydrogen circulator using a part of the engine is incorporated. There is a lack of feasibility. The other thing is that no catalyst has been discovered that demonstrates sufficient capacity. As a means for solving these problems, when NH 3 is used, ammonia decomposes hydrogen into nitrogen at a low temperature. As a result, purified naphtha can be inserted into the dehydration cyclization reactor in a hydrogen and nitrogen atmosphere.
Since ammonia has a pressure of about 10 kg / cmG at room temperature, using that pressure can cover the pressure loss in the system and lead the purified naphtha injected together to the reactor. Can be avoided. On the other hand, nitrogen can be used as a heat medium, and there is no problem with the fuel cell on the catalyst and downstream. That is, an unnecessary system for circulating hydrogen compressor can be provided.

発明の効果The invention's effect

この方法を使用するとガソリンの消費量は半減以下になる。
燃料電池系の運転保持が改善される。
If this method is used, the consumption of gasoline will be halved or less.
Operational maintenance of the fuel cell system is improved.

エンジンの排熱の一部をBypassさせて、脱水素用の反応熱を確保し、精製ナフサはアンモニアと混合され、排ガス中ある熱交換器群によって順次、昇温され、反応塔に入る。この時の温度は600℃以上が望ましいが排ガスの温度は600〜900℃なので充分達成できる。アンモニアは液弁タンクに封入してあるのでその圧力10kg/cmG内外を利用してOne throughの流れを作る。図−1参照A part of the exhaust heat of the engine is bypassed to secure reaction heat for dehydrogenation, and the purified naphtha is mixed with ammonia, and the temperature is sequentially raised by a group of heat exchangers in the exhaust gas and enters the reaction tower. The temperature at this time is preferably 600 ° C. or higher, but the exhaust gas temperature is 600 to 900 ° C., which can be sufficiently achieved. Since ammonia is sealed in the liquid valve tank, the flow of One through is made using the inside and outside of the pressure 10 kg / cm 2 G. See Fig-1.

産業上の利用の可能性Industrial applicability

極めて高い、地球温暖化対策としてのCo削減、省エネにかなう。Extremely high, Co 2 reduction of as global warming, come true to energy saving.

全体図Overall view

符号の説明Explanation of symbols

A.エンジン H,H,H 熱交器
B.エンジン排気ガス a.空気
C.ターボ.チャージャー b,アンモニア
R.反応器 n,ナフサ
M.メンブラン,セパレーター h,水素リッチガス及び窒素ガス
F,燃料電池
,アンモニアタンク
,ナフサタンク
,粗成ガソリン
,水タンク
P,精密filter
A. Engine H 1 , H 2 , H 3 heat exchanger B. Engine exhaust gas a. Air C.I. turbo. Charger b, ammonia R. Reactor n, naphtha M. Membrane, separator h, hydrogen rich gas and nitrogen gas F, fuel cell D 1 , ammonia tank D 2 , naphtha tank D 3 , crude gasoline D 4 , water tank P, precision filter

Claims (13)

燃料電池搭載型エンジンにおいて、更に詳しくはガソリンエンジンにおいて、該ガソリンエンジンの燃料として精製ナフサを使用し、燃料電池用の水素源としてアンモニアを使用する方法において該精製ナフサと該アンモニアを混合させて該エンジンの排熱を利用して分解し、粗製ガソリンと水素を発生し、該精製ナフサを最大限有効に利用し、回転エネルギーをとり出す方法In a fuel cell-mounted engine, more specifically, in a gasoline engine, a refined naphtha is used as a fuel for the gasoline engine, and ammonia is used as a hydrogen source for a fuel cell. A method that uses engine exhaust heat to decompose, generate crude gasoline and hydrogen, use the refined naphtha as much as possible, and extract rotational energy 混合する該精製ナフサと該アンモニアをモル比で1ないし4にて処理する精求項1の方法The method according to claim 1, wherein the purified naphtha and the ammonia are mixed at a molar ratio of 1 to 4. 該精製ナフサと該アンモニアの分解は該エンジンの排熱の1/3ないし2/3を使用して行う請求項1の方法The method of claim 1 wherein the decomposition of the purified naphtha and the ammonia is performed using 1/3 to 2/3 of the exhaust heat of the engine. 該精製ナフサと該アンモニアの昇温はエンジンのintercode−1 turbo charger出口の熱交、排熱のバイパスLineの熱交等を使う請求項1の方法The method according to claim 1, wherein the temperature of the purified naphtha and the ammonia is increased by using heat exchange at an outlet of the engine intercode-1 turbo charger, heat exchange of a bypass line of exhaust heat, or the like. 該精製ナフサと該アンモニアの分解用触媒はNi系触媒を中心として作成し、担体としてシリカアルミナ、ゼオライト等を使用する〔請求項〕−1の方法The refined naphtha and the catalyst for decomposing ammonia are mainly made of a Ni-based catalyst, and silica alumina, zeolite or the like is used as a carrier. 該エンジンのturbo chargerは通常のturbo charge−より1.5倍以上にする精求項1の方法The method of claim 1, wherein the turbo charger of the engine is 1.5 times or more than a normal turbo charge-. 該エンジンの排熱lineに二重管を挿入し排熱温度を高温状態にする請求項1の方法。The method according to claim 1, wherein a double pipe is inserted into the exhaust heat line of the engine to bring the exhaust heat temperature to a high temperature state. 該燃料電池は発生した水素で稼動し、該エンジンは発生した該粗製ガソリン他を利用して稼動させる請求項1の方法2. The method of claim 1, wherein the fuel cell is operated with the generated hydrogen and the engine is operated using the generated crude gasoline or the like. 該燃料電池で発生した電力を使い該エンジンの稼動を補助すると同時に系内の必要電力を供給する請求項1の方法The method according to claim 1, wherein the electric power generated in the fuel cell is used to assist the operation of the engine and at the same time the necessary electric power in the system is supplied. 該燃料電池を効果的に稼動させる為に該turbo chargerで昇圧された空気を使う請求項1の方法The method of claim 1, wherein the turbocharger is used to boost the fuel cell to operate effectively. 該燃料電池を効果的に稼動させる為に該turbo chargerで昇圧された空気を更に精密filterに通し、Airを精製する請求項1の方法2. The method of claim 1, wherein air that has been pressurized by the turbocharger is further passed through a precision filter to effectively operate the fuel cell to purify Air. 該アンモニアには炭化水素、Hydriteを含む請求項1の方法The process of claim 1 wherein the ammonia comprises a hydrocarbon, Hydrolite. 該粗製ガソリンには徐水素物質、該アンモニアの一部水素を含む請求項1の方法The method of claim 1, wherein the crude gasoline contains a slow hydrogen material, a portion of the ammonia hydrogen.
JP2007322596A 2007-11-06 2007-11-06 Fuel cell-mounted type engine part 3 Pending JP2009115073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007322596A JP2009115073A (en) 2007-11-06 2007-11-06 Fuel cell-mounted type engine part 3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007322596A JP2009115073A (en) 2007-11-06 2007-11-06 Fuel cell-mounted type engine part 3

Publications (1)

Publication Number Publication Date
JP2009115073A true JP2009115073A (en) 2009-05-28

Family

ID=40782461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322596A Pending JP2009115073A (en) 2007-11-06 2007-11-06 Fuel cell-mounted type engine part 3

Country Status (1)

Country Link
JP (1) JP2009115073A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104675515A (en) * 2015-02-13 2015-06-03 王海斌 Gasoline and ammonia double-fuel supply device for automobile engine
CN109520822A (en) * 2018-12-17 2019-03-26 陕西化建工程有限责任公司 A kind of DCC device ultra-large volume reactor gas pressure test system and method
CN109520852A (en) * 2018-12-17 2019-03-26 陕西化建工程有限责任公司 A kind of DCC device ultra-large volume regenerator gas pressure test system and method
CN113294801A (en) * 2021-05-26 2021-08-24 华中科技大学 Combustion device capable of realizing high-efficiency clean combustion of pure ammonia and control method thereof
CN114876632A (en) * 2022-05-27 2022-08-09 北京工业大学 Ammonia fuel-based internal combustion engine-fuel cell hybrid power generation device and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104675515A (en) * 2015-02-13 2015-06-03 王海斌 Gasoline and ammonia double-fuel supply device for automobile engine
CN109520822A (en) * 2018-12-17 2019-03-26 陕西化建工程有限责任公司 A kind of DCC device ultra-large volume reactor gas pressure test system and method
CN109520852A (en) * 2018-12-17 2019-03-26 陕西化建工程有限责任公司 A kind of DCC device ultra-large volume regenerator gas pressure test system and method
CN113294801A (en) * 2021-05-26 2021-08-24 华中科技大学 Combustion device capable of realizing high-efficiency clean combustion of pure ammonia and control method thereof
CN114876632A (en) * 2022-05-27 2022-08-09 北京工业大学 Ammonia fuel-based internal combustion engine-fuel cell hybrid power generation device and control method thereof

Similar Documents

Publication Publication Date Title
JP6185129B2 (en) Reducing emissions from mobile pollution sources by on-board carbon dioxide conversion to fuel
JP6956665B2 (en) Method of methaneization of carbon dioxide in combustion exhaust gas and methane production equipment
KR100919357B1 (en) Method for on board decarbonization of hydrocarbon fuels in a vehicle
CN105102782B (en) The situ regeneration method of the denitrating catalyst of emission control system
WO2004086536A8 (en) Solid oxide fuel cell with selective anode tail gas circulation
WO2016076041A1 (en) Co2 recovery device of internal combustion engine
JP2014196685A5 (en)
CA3067143A1 (en) Separation system
CN105329853A (en) Portable mobile hydrogen making machine based on principle of making hydrogen through methyl alcohol water
JP2009115073A (en) Fuel cell-mounted type engine part 3
EP3045425B1 (en) Manufacturing device and manufacturing method for hydrogen and synthetic natural gas
CN104168978A (en) Process for removing carbon dioxide from a gas stream
GB2540798A (en) Method of recaiming and utilizing water and carbon dioxide from the exhaust system of an internal combustion engine to achieve a near zero greenhouse gas
JP2010254544A (en) Hydrogen separation type hydrogen production system having carbon dioxide separation recovery device attached thereto
CN108011119B (en) Method and system for clean power generation and resource utilization of hydrogen-containing waste gas coupled fuel cell
CN202018138U (en) Chemical chain combustion reaction device for stationary bed
JP4632532B2 (en) Hydrogen production method and system
CN101550846A (en) A chemical looping combustion power generation process and system using landfill gas
JP5348938B2 (en) Carbon monoxide gas generator and method
JP2016141599A (en) Production system and production method for liquefied ammonia
CN103372362A (en) Method and apparatus for purifying mixed gas
RU99779U1 (en) DEVICE FOR PROCESSING APPARATUS OIL GASES
JP2004224632A (en) Direct reforming composite system for low-grade hydrocarbon
JP7497242B2 (en) Gas production device, gas production system, and gas production method
WO2023100834A1 (en) Gas production apparatus