JP2009114596A - Tubular strand and method for producing the same - Google Patents

Tubular strand and method for producing the same Download PDF

Info

Publication number
JP2009114596A
JP2009114596A JP2007291731A JP2007291731A JP2009114596A JP 2009114596 A JP2009114596 A JP 2009114596A JP 2007291731 A JP2007291731 A JP 2007291731A JP 2007291731 A JP2007291731 A JP 2007291731A JP 2009114596 A JP2009114596 A JP 2009114596A
Authority
JP
Japan
Prior art keywords
tubular body
tubular
strand
strands
twisted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007291731A
Other languages
Japanese (ja)
Other versions
JP5057455B2 (en
Inventor
Tomoya Maekawa
智哉 前川
Yoshihiko Higashida
義彦 東田
Minoru Nakano
稔 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2007291731A priority Critical patent/JP5057455B2/en
Publication of JP2009114596A publication Critical patent/JP2009114596A/en
Application granted granted Critical
Publication of JP5057455B2 publication Critical patent/JP5057455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To secure the flexibility of a tubular body as a core material of a tubular strand, thereby ensuring smooth grout injection into the tubular strand. <P>SOLUTION: A metallic tubular body 1 having its surface formed with multiple annular grooves, is passed through the center of a rotor 5 having wire feed bobbins 4 arranged circumferentially, and is inserted into the center holes of respective twisting mechanisms 6 and 7. Wires 2 are each inserted into the side wire holes of the respective twisting mechanisms 6 and 7. The rotor 5 and the respective twisting mechanisms 6 and 7 are revolved in the same direction to form a strand 14 by the twisting mechanism 6 at a first stage so as to circumscribe on an imaginary circle with a diameter larger than the outer diameter of the tubular body 1. Subsequently, the strand 14 is laid by the twisting mechanism 7 at a second stage so as to follow the outer circumferential surface of the tubular body 1 to reduce the stress from the wires 2 against the projections between the grooves in the surface of the tubular body 1 relative to that of a conventional one, thereby producing the tubular strand having a recessed amount of the projections of the tubular body 1, smaller than its wall thickness, with substantially no distortion of the inner circumferential profile. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地盤アンカーやプレストレストコンクリート構造物等の緊張材として用いられる管状ストランドとその製造方法に関する。   The present invention relates to a tubular strand used as a tension material for a ground anchor, a prestressed concrete structure or the like, and a method for producing the same.

地盤アンカーやプレストレストコンクリート構造物等の緊張材には、通常、中実構造のPC鋼棒やPC鋼撚り線等が用いられる。しかし、これらの中実構造の緊張材を地盤アンカー材として用いる場合は、アンカー材をその数倍の径で掘削した孔に挿入して、その周囲に定着用グラウトを注入しているため、グラウト使用量が多いという問題があった。また、アンカー材の打設方向によっては、掘削した孔の最深部までグラウトを充填することができず、アンカー材の定着状態が不安定になるおそれもあった。そこで、これらの問題を解決するものとして、例えば図3に示すように、可撓性を有する管状体1を芯材とし、その外周面に沿うように複数の素線2を撚り合わせた中空構造の緊張材(以下、「管状ストランド」と記す。)が提案されている。この管状ストランドは、管状体1の内部をグラウト注入通路として使用できるので、打設方向によらず安定した定着状態が確保でき、グラウト使用量低減によるコスト削減も図れるとされている(特許文献1参照)。
特開平5−44301号公報
As tension materials such as ground anchors and prestressed concrete structures, solid steel PC bars and PC steel strands are usually used. However, when these solid tension materials are used as ground anchor materials, the anchor material is inserted into a hole excavated with several times its diameter, and a fixing grout is injected around it. There was a problem that the amount used was large. In addition, depending on the anchoring direction of the anchor material, the grout cannot be filled up to the deepest part of the excavated hole, and the anchor material may be unstable. In order to solve these problems, for example, as shown in FIG. 3, a hollow structure in which a tubular body 1 having flexibility is used as a core and a plurality of strands 2 are twisted along the outer peripheral surface thereof. The tension material (hereinafter referred to as “tubular strand”) has been proposed. Since this tubular strand can use the inside of the tubular body 1 as a grout injection passage, a stable fixing state can be secured regardless of the placement direction, and the cost can be reduced by reducing the amount of grout used (Patent Document 1). reference).
Japanese Patent Laid-Open No. 5-44301

ところで、上記のような管状ストランドは、通常の撚り線加工と同様の製造方法で製造される。例えば、上記特許文献1にも記載されているように、素線が巻き付けられた複数のボビンを周方向に沿って複数配置した回転体の下流側に、中心孔を有するボイスと呼ばれる撚線機構を設け、回転体の中心部を貫通させた管状体と各ボビンから巻き戻された素線をボイスの中心孔に導いて管状体の外周面に各素線を配置し、管状体と各素線を所定の速度でボイスの下流側へ引き出しながら、回転体を回転させて撚り加工を行う方法を採用することができる。また、ボイスに代えて、管状体を通す中心孔の周囲に素線を通す側線孔が複数形成された撚線機構を設け、この撚線機構を回転体と同一方向に回転させて、素線を管状体の外周面に沿うように撚り合わせる方法もある。   By the way, the above tubular strand is manufactured with the manufacturing method similar to a normal strand wire process. For example, as described in Patent Document 1 above, a twisted wire mechanism called a voice having a center hole on the downstream side of a rotating body in which a plurality of bobbins wound with strands are arranged along the circumferential direction. The tubular body penetrating through the center of the rotating body and the wire unwound from each bobbin are guided to the center hole of the voice, and the respective strands are arranged on the outer peripheral surface of the tubular body. A method of twisting by rotating the rotating body while drawing the wire to the downstream side of the voice at a predetermined speed can be adopted. Further, instead of the voice, a twisted wire mechanism in which a plurality of side wire holes through which the strands are passed is formed around the central hole through which the tubular body is passed, and the strands are rotated in the same direction as the rotating body, There is also a method of twisting the two along the outer peripheral surface of the tubular body.

しかしながら、上記のように通常の撚り線加工と同様の製造方法で製造された管状ストランドでは、以下のような問題が生じるおそれがある。すなわち、このような管状ストランドは、ある程度の可撓性と強度が必要とされることから、芯材となる管状体の素管として薄肉で比較的強度の低い金属製のものを使用し、その外周側からのローラ加工等により表面に複数の環状溝または螺旋状溝を形成していることが多い。その場合、管状体表面の溝間の凸部は、加工を受けていないため溝部に比較して強度が低く、素線を管状体に巻き付けていく過程で素線から大きな応力を受けることによって変形しやすい。そして、図4に示すように、素線2と接触する管状体1凸部のへこみ量が管状体1の肉厚よりも大きくなって内周形状が変形するようになると、可撓性が低下するだけでなく、管状体1内部に注入したグラウトの流れが管状体1内周面から受ける抵抗が大きくなり、グラウト注入に支障をきたすことがある。なお、これに対して、管状体の変形が内周形状に大きく影響しないように管状体の肉厚を厚くしたり、高強度の材料を使用したりすることも考えられるが、管状体全体の可撓性が低下するため好ましくない。   However, in the tubular strand manufactured by the same manufacturing method as the normal stranded wire processing as described above, the following problems may occur. That is, since such a tubular strand requires a certain degree of flexibility and strength, a thin-walled and relatively low-strength metal tube is used as an element tube of a tubular body serving as a core material. In many cases, a plurality of annular grooves or spiral grooves are formed on the surface by roller machining or the like from the outer peripheral side. In that case, the convex part between the grooves on the surface of the tubular body is not processed and thus has a lower strength than the groove part, and is deformed by receiving a large stress from the strand in the process of winding the strand around the tubular body. It's easy to do. Then, as shown in FIG. 4, when the dent amount of the convex portion of the tubular body 1 that contacts the element wire 2 is larger than the thickness of the tubular body 1 and the inner peripheral shape is deformed, the flexibility is lowered. In addition, the resistance of the flow of the grout injected into the tubular body 1 from the inner peripheral surface of the tubular body 1 is increased, which may hinder the grout injection. In contrast, it is conceivable to increase the thickness of the tubular body or use a high-strength material so that the deformation of the tubular body does not greatly affect the inner peripheral shape. Since flexibility falls, it is not preferable.

そこで、本発明の課題は、管状ストランドの芯材となる管状体の可撓性を確保し、かつその内部へのグラウト注入がスムーズに行えるようにすることである。   Therefore, an object of the present invention is to ensure the flexibility of the tubular body that is the core material of the tubular strand and to smoothly inject grout into the inside thereof.

上記の課題を解決するために、本発明の管状ストランドは、表面に複数の環状溝または螺旋状溝が形成された金属製管状体を芯材とし、前記管状体の外径よりも大きい径の仮想円に外接するように撚り合わされた複数の素線からなる撚り線状体を、前記管状体の外周面に沿うように撚り合わせて、前記管状体の溝間の凸部のへこみ量を管状体の肉厚よりも小さくしたものとした。   In order to solve the above-mentioned problems, the tubular strand of the present invention has a metal tubular body having a plurality of annular grooves or spiral grooves formed on the surface thereof as a core material, and has a diameter larger than the outer diameter of the tubular body. A twisted linear body composed of a plurality of strands twisted so as to circumscribe a virtual circle is twisted along the outer peripheral surface of the tubular body, and the amount of indentation of the convex portion between the grooves of the tubular body is tubular. It was assumed to be smaller than the thickness of the body.

すなわち、複数の素線を2段階に分けて撚り合わせた構成とすることにより、従来のものに比べて管状体表面の溝間の凸部が素線から受ける応力が小さく、管状体の変形が内周形状に大きく影響しないようにしたのである。このように管状体の変形を抑えることにより、管状体の可撓性が確保され、かつその内部へのグラウト注入がスムーズに行えるようになる。なお、管状ストランドの強度を重視する場合は、管状体表面の溝を螺旋状溝とすることが好ましい。   That is, by forming a structure in which a plurality of strands are twisted in two stages, the stress between the projections on the surface of the tubular body is smaller than that of the conventional one and the deformation of the tubular body is reduced. The inner peripheral shape is not greatly affected. By suppressing the deformation of the tubular body in this way, the flexibility of the tubular body is ensured and the grout can be smoothly injected into the inside thereof. When importance is attached to the strength of the tubular strand, the groove on the surface of the tubular body is preferably a spiral groove.

ここで、前記金属製管状体としては、コルゲート管を採用することができる。   Here, a corrugated pipe can be adopted as the metal tubular body.

また、前記各素線が鋼製の場合は、これらの各鋼製素線に合成樹脂を被覆することにより、屋外に放置しても鋼製素線の錆に起因する遅れ破壊等のトラブルが発生しにくく、保管が容易な管状ストランドとすることができる。   In addition, when each of the strands is made of steel, by covering these steel strands with a synthetic resin, troubles such as delayed fracture due to rust of the steel strands even if left outdoors It can be made into the tubular strand which is hard to generate | occur | produce and is easy to store.

上述した構成の管状ストランドを製造する際には、前記素線が巻き付けられたボビンを周方向に沿って複数配置した回転体の下流側に、回転可能に支持され、その軸方向の中心孔の周囲に複数の側線孔が形成された撚線機構を2段に設けて、前記回転体の中心部を貫通させた管状体を各撚線機構の中心孔に通し、前記各ボビンから巻き戻された素線を各撚線機構の側線孔に1本ずつ通して、前記管状体と各素線を所定の速度で2段目の撚線機構の下流側へ引き出しながら、前記回転体と各撚線機構を同一方向に回転させることにより、1段目の撚線機構で前記管状体の外径よりも大きい径の仮想円に外接する撚り線状体を形成した後、2段目の撚線機構で前記撚り線状体を管状体の外周面に沿うように撚り合わせていく方法を採用することができる。   When manufacturing the tubular strand having the above-described configuration, the bobbin around which the wire is wound is rotatably supported on the downstream side of the rotating body arranged in the circumferential direction, and the axial center hole of the bobbin is wound. A twisted wire mechanism having a plurality of side wire holes formed in the periphery is provided in two stages, and a tubular body penetrating the central portion of the rotating body is passed through the center hole of each twisted wire mechanism and unwound from each bobbin. One strand of wire is passed through each side wire hole of each twisted wire mechanism, and the rotating body and each twisted wire are pulled out to the downstream side of the second-stage twisted wire mechanism at a predetermined speed. After the wire mechanism is rotated in the same direction, a twisted wire body circumscribing a virtual circle having a diameter larger than the outer diameter of the tubular body is formed by the first-stage twisted wire mechanism, and then the second-stage twisted wire It is possible to adopt a method of twisting the stranded wire body along the outer peripheral surface of the tubular body by a mechanism. Kill.

上述したように、本発明の管状ストランドは、その芯材となる金属製管状体の変形を小さくしたものであるから、管状体の可撓性が確保され、かつその内部へのグラウト注入をスムーズに行うことができる。   As described above, since the tubular strand of the present invention is obtained by reducing the deformation of the metal tubular body that is the core material, the flexibility of the tubular body is ensured, and the grout injection into the inside is smooth. Can be done.

そして、本発明の管状ストランドの製造方法によれば、確実に上記の特性を有する管状ストランドを製造することができる。   And according to the manufacturing method of the tubular strand of this invention, the tubular strand which has said characteristic can be manufactured reliably.

以下、図面に基づき、本発明の実施形態を説明する。図1は実施形態の管状ストランドの製造工程の概略を示す。この製造工程では、その最上流部に、鋼製管状体1が巻き付けられた管状体供給ボビン3と、鋼製素線2が巻き付けられた素線供給ボビン4を周方向に沿って9個配置した回転体5が設けられている。管状体1には、鋼種S10C(JIS G 4051)、外径13mm、肉厚0.7mmで、表面に環状溝が6mmピッチで形成されたコルゲート管を用い、素線2には、鋼種がSWRS82B(JIS G 3502)で線径5.6mmのものを用いている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the outline of the manufacturing process of the tubular strand of embodiment. In this manufacturing process, the tubular body supply bobbin 3 around which the steel tubular body 1 is wound and the strand supply bobbin 4 around which the steel strand 2 is wound are arranged in the most upstream part along the circumferential direction. A rotating body 5 is provided. For the tubular body 1, a corrugated pipe having a steel type S10C (JIS G 4051), an outer diameter of 13 mm, a wall thickness of 0.7 mm, and annular grooves formed on the surface at a pitch of 6 mm is used. (JIS G 3502) with a wire diameter of 5.6 mm is used.

前記回転体5の下流側には、回転可能に支持され、その軸方向の中心孔の周囲に複数の側線孔が形成された撚線機構6、7が2段に設けられている。その中心孔は管状体1外径とほぼ同じ内径に、側線孔は素線2外径とほぼ同じ内径に形成されている。また、各撚線機構6、7の側線孔はそれぞれ一つの円周上に位置し、1段目の方が2段目よりも中心孔から離れた位置に配されている。   On the downstream side of the rotating body 5, twisted wire mechanisms 6 and 7 that are rotatably supported and have a plurality of side wire holes formed around the axial center hole are provided in two stages. The central hole has an inner diameter substantially the same as the outer diameter of the tubular body 1, and the side wire hole has an inner diameter substantially the same as the outer diameter of the strand 2. In addition, the side wire holes of the stranded wire mechanisms 6 and 7 are located on one circumference, respectively, and the first stage is arranged at a position farther from the center hole than the second stage.

そして、2段目の撚線機構7の下流側に、ブルーイング加熱炉8、緩解機9、誘導加熱装置10、静電粉体塗装装置11、冷却装置12が順に設けられ、最下流部に巻取機13が設けられている。   Then, on the downstream side of the second-stage twisted wire mechanism 7, a bluing heating furnace 8, a loosening machine 9, an induction heating device 10, an electrostatic powder coating device 11, and a cooling device 12 are provided in this order, and in the most downstream part A winder 13 is provided.

この製造工程による管状ストランドの製造方法は、まず上流側で、管状体供給ボビン3から巻き戻した管状体1を回転体5の中心部を貫通させて各撚線機構6、7の中心孔に通し、各素線供給ボビン4から巻き戻した素線2を各撚線機構6、7の側線孔に1本ずつ通す。そして、巻取機13の回転により管状体1と各素線2を所定の速度で2段目の撚線機構7の下流側へ引き出しながら、回転体5と各撚線機構6、7を同一方向に回転させる。これにより、1段目の撚線機構6で管状体1の外径よりも大きい径の仮想円Aに外接する撚り線状体14が形成され(図2(a))、この撚り線状体14が2段目の撚線機構7で管状体1の外周面に沿うように撚り合わされて、9本撚りの管状ストランドとなる(図2(b))。これをブルーイング加熱炉8に通し、350℃×30秒の条件でブルーイング処理を行う。ブルーイング処理を受けたストランドはそのままで製品とすることもできるが、この実施形態では、防食性を高めるために、引き続き次のように下流側工程で合成樹脂被覆処理を行う。   In the manufacturing method of the tubular strand by this manufacturing process, first, on the upstream side, the tubular body 1 unwound from the tubular body supply bobbin 3 is passed through the central portion of the rotating body 5 to form the central holes of the stranded wire mechanisms 6 and 7. The strands 2 unwound from the strand supply bobbins 4 are passed through the side wire holes of the twisting mechanisms 6 and 7 one by one. Then, while rotating the winder 13, the tubular body 1 and each strand 2 are pulled out to the downstream side of the second stage twisting mechanism 7 at a predetermined speed, and the rotating body 5 and each twisting mechanism 6, 7 are the same. Rotate in the direction. Thus, a stranded wire body 14 circumscribing the virtual circle A having a diameter larger than the outer diameter of the tubular body 1 is formed by the first-stage stranded wire mechanism 6 (FIG. 2A), and this stranded wire body. 14 is twisted along the outer peripheral surface of the tubular body 1 by the second-stage twisted wire mechanism 7 to form a nine-stranded tubular strand (FIG. 2B). This is passed through the bluing heating furnace 8 and bluing is performed under the conditions of 350 ° C. × 30 seconds. The strand that has undergone the blueing treatment can be used as a product as it is, but in this embodiment, in order to improve the corrosion resistance, the synthetic resin coating treatment is subsequently performed in the downstream step as follows.

下流側工程では、まず、前記ブルーイング加熱炉8を通過したストランドを緩解機9に通し、素線2の撚りを一時的に緩解して管状体1と素線2とが分離された状態にする。そして、緩解機9の下流側で素線2を撚り戻す過程で、分離された管状体1と素線2をそれぞれ誘導加熱装置10で250℃に加熱した後、静電粉体塗装装置11に通してそれぞれの表面に平均厚さ0.6mmのエポキシ樹脂被膜15を塗装する(図2(c))。最後に、素線2を撚り戻されたストランドを冷却装置12で冷却して巻取機13で巻き取る。   In the downstream process, first, the strand that has passed through the brewing heating furnace 8 is passed through a loosening machine 9, and the strands of the strand 2 are temporarily loosened so that the tubular body 1 and the strand 2 are separated. To do. Then, in the process of twisting back the strand 2 on the downstream side of the loosening machine 9, the separated tubular body 1 and the strand 2 are each heated to 250 ° C. by the induction heating device 10, and then the electrostatic powder coating device 11. Then, an epoxy resin film 15 having an average thickness of 0.6 mm is applied to each surface (FIG. 2C). Finally, the strand from which the strand 2 is twisted back is cooled by the cooling device 12 and wound by the winder 13.

このようにして製造したストランド(実施例1)と、肉厚0.5mmの管状体1を用いて実施例1と同様に製造したストランド(実施例2)について、管状体1の変形状態を調査したところ、表面の溝間の凸部のへこみ量はそれぞれ0.1mm、0.2mmで肉厚よりも小さく、内周形状はほとんど変形していなかった。一方、これらの実施例と同じ管状体および素線を用い、図1に示した製造工程の1段目の撚線機構6を使用せずに通常の撚り線加工と同様の方法で製造した場合、管状体の肉厚が0.7mmのストランド(比較例1)では管状体凸部が1mm程度へこみ、管状体肉厚0.5mmのストランド(比較例2)では管状体凸部のへこみ量がさらに大きくなって、内周形状が全体的に大きく変形していた。この結果、この実施形態の製造方法により、従来よりも確実に可撓性が確保され、管状体内部へのグラウト注入がスムーズに行える管状ストランドを製造できることが確認された。   The deformation state of the tubular body 1 was investigated for the strand thus produced (Example 1) and the strand (Example 2) produced in the same manner as in Example 1 using the tubular body 1 having a thickness of 0.5 mm. As a result, the indentations of the convex portions between the grooves on the surface were 0.1 mm and 0.2 mm, respectively, which were smaller than the wall thickness, and the inner peripheral shape was hardly deformed. On the other hand, when the same tubular body and strand as those of the examples are used, and manufactured by the same method as the normal stranded wire processing without using the first stage stranded wire mechanism 6 of the manufacturing process shown in FIG. In the strand having a thickness of 0.7 mm (Comparative Example 1), the convex portion of the tubular body is recessed by about 1 mm, and in the strand having a thickness of 0.5 mm (Comparative Example 2), the amount of dent in the convex portion of the tubular body is Further, the inner peripheral shape was greatly deformed as a whole. As a result, it has been confirmed that the manufacturing method of this embodiment can manufacture a tubular strand that can ensure flexibility more than before and can smoothly inject grout into the tubular body.

また、各比較例では管状体表面に損耗や亀裂が生じていたが、各実施例ではそのような管状体表面の損壊は見られず、比較例に比べて寿命延長が図れることもわかった。   In each comparative example, wear and cracks were generated on the surface of the tubular body. However, in each example, such damage to the surface of the tubular body was not observed, and it was also found that the life could be extended as compared with the comparative example.

次に、実施例1と同じ管状体および素線を用いて、図1に示した製造工程のうちの緩解機9から冷却装置12までを使用せず、合成樹脂被覆処理を省略したストランドを製造した。そして、この樹脂被覆のないストランドと実施例1のストランドを同じ条件で屋外に放置したところ、樹脂被覆のないものでは3日後に管状体表面に錆が発生したが、実施例1のものは錆の発生が全くなかった。これにより、この実施形態の合成樹脂被覆処理による防食性向上効果が確認された。   Next, using the same tubular body and wire as in Example 1, the strands without the synthetic resin coating treatment are manufactured without using the relieving machine 9 to the cooling device 12 in the manufacturing process shown in FIG. did. And when this strand without resin coating and the strand of Example 1 were allowed to stand outdoors under the same conditions, rust was generated on the surface of the tubular body 3 days later without the resin coating. There was no outbreak. Thereby, the anti-corrosion improvement effect by the synthetic resin coating process of this embodiment was confirmed.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

例えば、図1に示した製造工程のうち、管状ストランドを形成する上流側工程と、合成樹脂被覆処理を行う下流側工程とは、分離して別々の製造ラインで実施するようにしてもよい。また、腐食性の厳しい条件下で使用される管状ストランドに対しては、実施形態のように管状体と各素線のいずれにも合成樹脂被覆を施すことが好ましいが、使用条件がそれほど厳しくない場合は、少なくともストランドの最表面に合成樹脂被膜が形成されていればよい。   For example, in the manufacturing process shown in FIG. 1, the upstream process for forming the tubular strand and the downstream process for performing the synthetic resin coating process may be separated and performed on separate manufacturing lines. For tubular strands used under severe corrosive conditions, it is preferable to apply a synthetic resin coating to both the tubular body and each strand as in the embodiment, but the use conditions are not so severe. In that case, a synthetic resin film may be formed on at least the outermost surface of the strand.

実施形態の管状ストランドの製造工程の概略図Schematic of manufacturing process of tubular strand of embodiment a、b、cは、それぞれ図1の製造工程における管状ストランドの製造過程を示す断面図a, b, and c are sectional views showing the manufacturing process of the tubular strand in the manufacturing process of FIG. 一般的な管状ストランドの構成を示す外観斜視図External perspective view showing the configuration of a general tubular strand 管状体凸部が変形した管状ストランドの断面図Sectional view of tubular strand with deformed tubular body protrusion

符号の説明Explanation of symbols

1 管状体
2 素線
3、4 ボビン
5 回転体
6、7 撚線機構
8 ブルーイング加熱炉
9 緩解機
10 誘導加熱装置
11 静電粉体塗装装置
12 冷却装置
13 巻取機
14 撚り線状体
15 樹脂被膜
A 仮想円
DESCRIPTION OF SYMBOLS 1 Tubular body 2 Elementary wire 3, 4 Bobbin 5 Rotating body 6, 7 Stranding mechanism 8 Brewing heating furnace 9 Relaxing machine 10 Induction heating apparatus 11 Electrostatic powder coating apparatus 12 Cooling apparatus 13 Winding machine 14 Stranded wire body 15 Resin coating A Virtual circle

Claims (4)

表面に複数の環状溝または螺旋状溝が形成された金属製管状体を芯材とし、複数の素線からなる撚り線状体を、前記管状体の外周面に沿うように撚り合わせて、前記管状体の溝間の凸部のへこみ量を管状体の肉厚よりも小さくした管状ストランド。   A metal tubular body having a plurality of annular grooves or spiral grooves formed on the surface is used as a core material, and a twisted linear body composed of a plurality of strands is twisted along the outer peripheral surface of the tubular body, Tubular strands in which the amount of indentation at the protrusions between the grooves of the tubular body is smaller than the thickness of the tubular body. 前記金属製管状体がコルゲート管であることを特徴とする請求項1に記載の管状ストランド。   The tubular strand according to claim 1, wherein the metal tubular body is a corrugated tube. 前記各素線が鋼製であり、これらの各鋼製素線に合成樹脂を被覆したことを特徴とする請求項1または2に記載の管状ストランド。   The tubular strand according to claim 1 or 2, wherein each of the strands is made of steel, and each of the strands of steel is coated with a synthetic resin. 請求項1乃至3のいずれかに記載の管状ストランドの製造方法において、前記素線が巻き付けられたボビンを周方向に沿って複数配置した回転体の下流側に、回転可能に支持され、その軸方向の中心孔の周囲に複数の側線孔が形成された撚線機構を2段に設けて、前記回転体の中心部を貫通させた管状体を各撚線機構の中心孔に通し、前記各ボビンから巻き戻された素線を各撚線機構の側線孔に1本ずつ通して、前記管状体と各素線を所定の速度で2段目の撚線機構の下流側へ引き出しながら、前記回転体と各撚線機構を同一方向に回転させることにより、1段目の撚線機構で前記管状体の外径よりも大きい径の仮想円に外接する撚り線状体を形成した後、2段目の撚線機構で前記撚り線状体を管状体の外周面に沿うように撚り合わせていくことを特徴とする管状ストランドの製造方法。   The method for manufacturing a tubular strand according to any one of claims 1 to 3, wherein the bobbin around which the strands are wound is rotatably supported downstream of a rotating body in which a plurality of bobbins are arranged along a circumferential direction. A twisted wire mechanism having a plurality of side wire holes formed around a central hole in the direction is provided in two stages, and a tubular body penetrating the central portion of the rotating body is passed through the center hole of each twisted wire mechanism, While passing the strands unwound from the bobbin one by one through the side wire holes of each twisted wire mechanism, pulling the tubular body and each strand at a predetermined speed to the downstream side of the second-stage twisted wire mechanism, After the rotating body and each twisted wire mechanism are rotated in the same direction, a twisted wire body circumscribing a virtual circle having a diameter larger than the outer diameter of the tubular body is formed by the first-stage twisted wire mechanism. The stranded wire body is twisted so as to be along the outer peripheral surface of the tubular body by the twisted wire mechanism of the step. Method of manufacturing a tubular strand and said and.
JP2007291731A 2007-11-09 2007-11-09 Tubular strand and method for producing the same Active JP5057455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291731A JP5057455B2 (en) 2007-11-09 2007-11-09 Tubular strand and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291731A JP5057455B2 (en) 2007-11-09 2007-11-09 Tubular strand and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009114596A true JP2009114596A (en) 2009-05-28
JP5057455B2 JP5057455B2 (en) 2012-10-24

Family

ID=40782045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291731A Active JP5057455B2 (en) 2007-11-09 2007-11-09 Tubular strand and method for producing the same

Country Status (1)

Country Link
JP (1) JP5057455B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104499321A (en) * 2014-12-16 2015-04-08 天津银龙预应力材料股份有限公司 Hollow prestressed steel strand
CN110067143A (en) * 2019-05-21 2019-07-30 贵州钢绳股份有限公司 15 × 7 structure single channel multistrand ropes of one kind and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017420962B2 (en) * 2017-06-30 2023-11-09 Sumitomo Electric Industries, Ltd. Stranded wire

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151492A (en) * 1983-12-09 1985-08-09 カーベルメタル・エレクトロ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Strand-shaped material having reinforcing member consisting of large number of wire rod and method and device for manufacturing said material
JPS6324298U (en) * 1986-07-29 1988-02-17
JPS6378919A (en) * 1986-09-19 1988-04-09 Taisei Corp Tension member for pc construction work
JPH01214616A (en) * 1988-02-24 1989-08-29 Taisei Corp Injector for sealant in earth anchor and water stopping method thereon
JPH0544301A (en) * 1991-08-14 1993-02-23 Nippon Steel Corp Tubular tension material
JPH06272247A (en) * 1993-03-24 1994-09-27 Okabe Co Ltd Joint unit with packer for permanent anchor
JPH0957382A (en) * 1995-08-22 1997-03-04 Eifu:Kk Manufacture of stranded steel wire with corrosion resistant covering
JPH09279575A (en) * 1996-04-10 1997-10-28 East Japan Railway Co Construction method for earth anchor and tension material used therefor
JP2005009307A (en) * 2003-06-17 2005-01-13 Korea Inst Of Construction Technology Reinforcing material for hybrid fiber reinforced polymer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151492A (en) * 1983-12-09 1985-08-09 カーベルメタル・エレクトロ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Strand-shaped material having reinforcing member consisting of large number of wire rod and method and device for manufacturing said material
JPS6324298U (en) * 1986-07-29 1988-02-17
JPS6378919A (en) * 1986-09-19 1988-04-09 Taisei Corp Tension member for pc construction work
JPH01214616A (en) * 1988-02-24 1989-08-29 Taisei Corp Injector for sealant in earth anchor and water stopping method thereon
JPH0544301A (en) * 1991-08-14 1993-02-23 Nippon Steel Corp Tubular tension material
JPH06272247A (en) * 1993-03-24 1994-09-27 Okabe Co Ltd Joint unit with packer for permanent anchor
JPH0957382A (en) * 1995-08-22 1997-03-04 Eifu:Kk Manufacture of stranded steel wire with corrosion resistant covering
JPH09279575A (en) * 1996-04-10 1997-10-28 East Japan Railway Co Construction method for earth anchor and tension material used therefor
JP2005009307A (en) * 2003-06-17 2005-01-13 Korea Inst Of Construction Technology Reinforcing material for hybrid fiber reinforced polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104499321A (en) * 2014-12-16 2015-04-08 天津银龙预应力材料股份有限公司 Hollow prestressed steel strand
CN110067143A (en) * 2019-05-21 2019-07-30 贵州钢绳股份有限公司 15 × 7 structure single channel multistrand ropes of one kind and its manufacturing method

Also Published As

Publication number Publication date
JP5057455B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JPS5816809A (en) Manufacture of truncated conical structure for reinforcing concrete coating layer of cylindrical body
JP5057455B2 (en) Tubular strand and method for producing the same
EP3009560B1 (en) Method of manufacturing a steel cord for a tire reinforcement
US8833050B2 (en) Double rustproof PC strand
CN108716150B (en) High-temperature-resistant prestressed steel strand
JP2009138365A (en) Polygonal strand and its manufacturing process
JP6030847B2 (en) Manufacturing method of stainless deformed wire rod for concrete rebar
JP2004263320A (en) Method for forming rust-preventing coating film on pc steel twisted cable
EP1504828B1 (en) Wire ring net for rocky wall barriers and method for making it
JP2018523027A (en) Hybrid stranded wire
JP4362484B2 (en) High strength fiber composite cable
JP2015225835A (en) Overhead transmission line and production method of overhead transmission wire
US7694909B1 (en) Method of winding a flexible core
EP3134341B1 (en) Conical winding of elongated material
JPH05302402A (en) Rustproof-coated deformed pc steel bar and its manufacture
EP2657407A1 (en) Wrapping wire with c-shaped cross-section, and cable wrapping structure and method using the same
JPH04197541A (en) Device for twisting wires
JP2010142004A (en) Coil manufacturing method
KR20160111522A (en) Shaping device, rope manufacturing apparatus, rope manufacturing method, and rope
JPH0853837A (en) Unbonded pc steel strand
JP2015082432A (en) Power transmission line and method of producing power transmission line
JP2003331659A (en) Superconducting transition segment conductor, and its manufacturing method
JP2004308065A (en) High-strength fiber composite material cable
JP4010080B2 (en) Bending correction method for high temperature superconducting cable core
JP2001118445A (en) Method for fabricating coil used for installing cable and apparatus

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250