JP2005009307A - Reinforcing material for hybrid fiber reinforced polymer - Google Patents

Reinforcing material for hybrid fiber reinforced polymer Download PDF

Info

Publication number
JP2005009307A
JP2005009307A JP2004177235A JP2004177235A JP2005009307A JP 2005009307 A JP2005009307 A JP 2005009307A JP 2004177235 A JP2004177235 A JP 2004177235A JP 2004177235 A JP2004177235 A JP 2004177235A JP 2005009307 A JP2005009307 A JP 2005009307A
Authority
JP
Japan
Prior art keywords
reinforced polymer
fiber
reinforcing material
inner core
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004177235A
Other languages
Japanese (ja)
Inventor
Eisan Ryu
永燦 劉
Kizen Sai
起善 崔
Kokan Kim
亘煥 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Civil Engineering and Building Technology KICT
Original Assignee
Korea Institute of Construction Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Construction Technology filed Critical Korea Institute of Construction Technology
Publication of JP2005009307A publication Critical patent/JP2005009307A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B13/00Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose
    • F16B13/04Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front
    • F16B13/06Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve
    • F16B13/063Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve by the use of an expander
    • F16B13/065Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve by the use of an expander fastened by extracting the screw, nail or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid FRP reinforcing material designed as a reinforcing material for a structure to be manufactured with concrete so that the structure is softly destroyed. <P>SOLUTION: The reinforcing material is provided for the structure including a fiber reinforced polymer body arranged to wrap an internal core material. The internal core material is formed into a hollow tube having yield strength lower than the fiber reinforced polymer body. The fiber reinforced polymer body is arranged around the internal core material to wholly wrap the internal core material in a spiral form using twisted yarns of fiber reinforced polymer materials. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は鉄筋コンクリート構造物を含む構造物の内部または外部に設置されて構造物に作用する外部荷重に対して構造物が軟性破壊挙動するように機能する構造物用FRP補強材に関する。   The present invention relates to an FRP reinforcing material for a structure which is installed inside or outside a structure including a reinforced concrete structure and functions so that the structure behaves softly against an external load acting on the structure.

従来のコンクリート構造物においてコンクリートは圧縮には強いが引張には弱いので、引張応力が発生する部位に通常、鉄筋を配置させて引張応力を負担するようにしている。 即ち、コンクリートに作用する引張応力を鉄筋が負担するようにすることで、コンクリートと鉄筋、それぞれの材料的特性を最大に利用するコンクリート構造物の設計及び製作方法が利用されている。
このようなコンクリート構造物に使用される鉄筋は圧縮強度及び引張強度が大きくて、比較的に加工しやすい物性を有するので、コンクリート補強材として幅広く活用され、外部荷重によって降伏された後、追加的な応力の負担なしに変形率が増加する軟性的破壊挙動の特性を現わすので、コンクリートに配される鉄筋量を調節してコンクリート構造物の脆性破壊を防止することができる。
In conventional concrete structures, since concrete is strong against compression but weak against tension, a reinforcing bar is usually arranged at a site where tensile stress is generated so as to bear the tensile stress. That is, a concrete structure design and manufacturing method that utilizes the material properties of the concrete and the reinforcing bar to the maximum is used by making the reinforcing bars bear the tensile stress acting on the concrete.
Reinforcing bars used in such concrete structures have high compressive strength and tensile strength and are relatively easy to process. Therefore, they are widely used as concrete reinforcements, and after being yielded by external loads, additional Since it exhibits the characteristic of soft fracture behavior in which the deformation rate increases without burdening the stress, it is possible to prevent the brittle fracture of the concrete structure by adjusting the amount of reinforcing bars arranged in the concrete.

このような長所にもかかわらず、鉄筋はコンクリート被覆の損傷などの理由から外部に露出される場合、腐食が進行して構造物の耐久性が低下する恐れがあり、構造物の安全に深刻な影響をかけるだけではなく、相当の重量のため運び及び設置に多くの努力と費用が要求される問題があった。   In spite of these advantages, if the reinforcing bar is exposed to the outside due to damage to the concrete coating, the corrosion may progress and the durability of the structure may be reduced. In addition to the impact, there was a problem that a lot of effort and cost were required for transportation and installation due to its considerable weight.

よって、このような鉄筋を代替することができるコンクリート構造物の補強材の開発が要求されつつあり、このような要求を満足させることができるものの一つとして繊維強化ポリマー(Fiber Reinforced Polymer)で製造された補強材(以下「FRP補強材」と称する)である。
前記 FRP補強材は軽量であり、腐食されず、強度が大きくて、絶縁性が優秀であるのでコンクリート補強材として多様な形態で開発され、実用化されている。 一般に、FRP補強材に使われる複合繊維は炭素繊維、アラミド繊維、ガラスファイバーなどがある。
特にコンクリート構造物用補強材として利用される FRP補強材の場合、その利用形態及び適用対象によって多様な適用工法が開発され、それに当たるものにはシート型、板(laminate)型及び鉄筋のようなバー(Bar 又は Rod)型 FRP補強材などがある。
Therefore, development of a reinforcing material for a concrete structure that can replace such a reinforcing bar is being demanded, and it is manufactured with fiber reinforced polymer as one of the things that can satisfy such a demand. The reinforcing material (hereinafter referred to as “FRP reinforcing material”).
Since the FRP reinforcing material is lightweight, is not corroded, has high strength, and has excellent insulation, it has been developed and put into practical use in various forms as a concrete reinforcing material. In general, composite fibers used for FRP reinforcing materials include carbon fibers, aramid fibers, and glass fibers.
In particular, in the case of FRP reinforcements used as reinforcements for concrete structures, various application methods have been developed depending on the application form and application object, such as sheet molds, laminate molds, and reinforcing bars. There are Bar or Rod type FRP reinforcements.

例えば、「特許文献1」特開昭64−29276号公報には、樹脂含浸したガラスロービングを配して引抜成型する際、ガラスロービング層の外側に樹脂硬化により一体化される有機繊維を捲層し、この有機繊維層に樹脂を含浸せしめ、金属により所定のFRPパイプを引抜成型し、この FRPパイプの外側にブナのつき板を捲層点着した FRP製バーが記載されている。
しかし、このようなFRP補強材の材料的、構造的な長所にもかかわらず、外部荷重による破壊までの挙動を図示した応力(σ)-変形率(ε) グラフである図 1のように、炭素繊維を利用した炭素繊維FRP補強材(A)、アラミド繊維を利用したアラミド繊維FRP補強材(B)及びガラス・ファイバーを利用したガラス・ファイバーFRP補強材(C)、それぞれは弾性挙動区間(E1、E2、E3)を経由して降伏(Y1、Y2、Y3)以後には脆性的な破壊挙動(応力曲線の急落)を示し、その利用において最大の障害物として指摘されて来た。
特開昭64−29276号公報
For example, in “Patent Document 1”, Japanese Patent Application Laid-Open No. 64-29276, when a resin-impregnated glass roving is arranged and pultruded, an organic fiber integrated by resin curing is formed on the outer side of the glass roving layer. In addition, there is described an FRP bar in which the organic fiber layer is impregnated with a resin, a predetermined FRP pipe is drawn out of metal, and a beech plate is spotted on the outside of the FRP pipe.
However, in spite of the material and structural advantages of such FRP reinforcements, as shown in Fig. 1, which is a stress (σ) -deformation rate (ε) graph illustrating the behavior up to failure due to external load, Carbon fiber FRP reinforcement using carbon fiber (A), aramid fiber FRP reinforcement using aramid fiber (B) and glass fiber FRP reinforcement using glass fiber (C), each with elastic behavior section ( After yielding (Y1, Y2, Y3) via E1, E2, E3), it showed brittle fracture behavior (sudden drop of stress curve) and has been pointed out as the largest obstacle in its use.
JP-A 64-29276

そこで、望ましい混成 FRP補強材(D)の応力(σ)-変形率(ε)のグラフである図 2のようにFRP補強材の脆性的な挙動を防止し、軟性的な挙動を確保することができる混成FRP補強材(Hybrid Fiber Reinforced Polymer Reinforcing Material)に関する技術開発が試みされた。 即ち、FRP補強材の応力(σ)-変形率(ε)のグラフで混成FRP補強材(D)の場合のように弾性挙動区間(E)では所定の傾きを有する直線形態で挙動するが、混成FRP補強材の降伏(Y)以後、塑性変形区間(P)には応力の変化がほとんどない水平線の形態で外部荷重に対して挙動する混成FRP補強材の技術開発が試みされた。
図3は前記軟性的な挙動を確保することができる従来の混成FRP補強材に関する技術を図示する。
前記、図3の混成FRP補強材(10)は炭素繊維などで内部が満たされた一方向内部芯材(Unidirectional Core)を配置し、そのまわりに破断伸度が大きいアラミド繊維(またはガラス・ファイバー、11)のような外部補強繊維(Exterior Yarn)を螺旋形でくるむように形成されるFRP 補強バー(10)である。
Therefore, to prevent the brittle behavior of the FRP reinforcement as shown in Fig. 2 which is a graph of stress (σ) -deformation rate (ε) of the desired hybrid FRP reinforcement (D), and ensure the flexible behavior. Technological development related to a hybrid FRP reinforcing material (Hybrid Fiber Reinforced Polymer Reforming Material) that can be used has been attempted. That is, in the FRP reinforcement stress (σ) -deformation rate (ε) graph, the elastic behavior section (E) behaves in a linear form having a predetermined inclination as in the case of the hybrid FRP reinforcement (D). After the yield (Y) of the hybrid FRP reinforcement, technical development of a hybrid FRP reinforcement that behaves in response to an external load in the form of a horizontal line with almost no change in stress in the plastic deformation section (P) was attempted.
FIG. 3 illustrates a technique related to a conventional hybrid FRP reinforcement that can ensure the soft behavior.
The hybrid FRP reinforcing material (10) shown in FIG. 3 has an unidirectional internal core (unidirectional core) filled with carbon fiber or the like, and an aramid fiber (or glass fiber) having a high elongation at break. , 11) is an FRP reinforcing bar (10) formed so that an external reinforcing fiber (Exitor Yarn) is wrapped in a spiral shape.

しかし、図3に図示された従来の混成FRP補強バー(10)の場合、破断伸率の小さな内部芯材(12)が外部荷重によって先に破断された後、螺旋形で縒られた外部補強繊維(11)が反復的に部分的な破断及びスリップ(SliP)が発生されながら追後応力を負担する形態の力学挙動に伴うので、図4のように 前記弾性変形区間(E)から塑性変形区間(P)へ行く段階で急激な応力曲線の下降が発生して全体的な混成FRP補強材の破壊挙動が軟性破壊挙動の形態にならないので、図2のように望ましい混成FRP補強材(D)として利用するには適当ではないという問題があった。
本発明は、このような問題を解決するためのもので、本発明はコンクリートなどで製作される構造物の補強材として、混成FRP補強材の降伏(Y)以後、塑性変形区間(P)を通しながら急激な応力変化なしに、ほとんど水平線形態に挙動して、外部荷重に対して軟性破壊挙動の様相を示す混成FRP補強材を提供することにその目的がある。
However, in the case of the conventional hybrid FRP reinforcing bar (10) shown in FIG. 3, the external reinforcing member wound in a spiral shape after the inner core material (12) having a small elongation at break is first broken by an external load. Since the fiber (11) is accompanied by the mechanical behavior in which the post-stress is borne while the partial fracture and slip (SliP) are repeatedly generated, the plastic deformation from the elastic deformation section (E) as shown in FIG. Since a sudden drop in the stress curve occurs at the stage of going to the section (P) and the fracture behavior of the overall hybrid FRP reinforcement does not take the form of a soft fracture behavior, a desirable hybrid FRP reinforcement (D ) Was not suitable for use.
The present invention is for solving such a problem, and the present invention provides a plastic deformation section (P) after the yield (Y) of the hybrid FRP reinforcing material as a reinforcing material for a structure made of concrete or the like. The purpose is to provide a hybrid FRP reinforcement that behaves almost in the form of a horizontal line without abrupt stress changes while passing through and exhibits an aspect of soft fracture behavior with respect to external loads.

本発明は混成FRP補強材として内部芯材(110)をくるむように配置された繊維補強ポリマー体(120)を含んで構成するが、前記繊維補強ポリマー体(120)より降伏強度が低い内部芯材(110)がまず、外部荷重によって降伏状態に到逹すると、追加的な応力の負担なしに内部芯材の変形率が大きくなって混成FRP補強材が軟性的に挙動するようにし、さらに内部芯材(110)の降伏後には繊維補強ポリマー体(120)が外部荷重を負担するが螺旋形で縒られる繊維補強ポリマー体(120)が直径方向に内部芯材(110)に圧力を増加させて内部芯材(110)が坐屈などによって断面積(または直径)が減少されると繊維補強ポリマー体(120)も直径方向に変形を起こして追加的な応力の負担なしに変形率のみ大きくなることによって、結局、内部芯材の降伏及び内部芯材の断面積減少によって繊維補強ポリマーが追加的な応力の負担なしに変形率が増加されて混成FRP補強材が外部荷重に対して軟性的に挙動するようにする。
図5は前記内部芯材(110)と繊維補強ポリマー体(120)で構成された本発明の混成FRP補強材(100)が外部荷重を受ける場合の力学的な挙動(破壊挙動)を第1段階乃至第4段階に分けて図示した応力-変形率グラフである。
The present invention comprises a fiber reinforced polymer body (120) arranged so as to enclose the inner core material (110) as a hybrid FRP reinforcing material, but the inner core material has a lower yield strength than the fiber reinforced polymer body (120). When (110) first reaches the yield state by an external load, the deformation rate of the inner core material increases without burden of additional stress so that the hybrid FRP reinforcing material behaves softly. After the yield of the material (110), the fiber reinforced polymer body (120) bears an external load, but the fiber reinforced polymer body (120) wound in a spiral shape increases the pressure on the inner core material (110) in the diameter direction. When the cross-sectional area (or diameter) of the inner core material (110) is reduced due to buckling or the like, the fiber-reinforced polymer body (120) is also deformed in the diametrical direction, and the deformation rate can be reduced without additional stress. As a result, the yield rate of the inner core material and the reduction of the cross-sectional area of the inner core material increase the deformation rate of the fiber reinforced polymer without any additional stress, and the hybrid FRP reinforcement material is soft against the external load. To behave in a dynamic manner.
FIG. 5 shows the first mechanical behavior (fracture behavior) when the hybrid FRP reinforcing material (100) of the present invention composed of the inner core material (110) and the fiber-reinforced polymer body (120) is subjected to an external load. 6 is a stress-deformation rate graph divided into stages to fourth stages.

第1段階は内部芯材(110)の降伏強度より小さな外部荷重が加えられることに伴って内部芯材(110)及び繊維補強ポリマー体(120)が線形で挙動(一定な弾性係数を有する)する直線形態の線形区間である。最終頂点(A)にあたる応力が内部芯材の降伏強度である。
第2段階は内部芯材(110)が降伏する段階として内部芯材が降伏するに伴って追加的な応力の負担なしに、内部芯材の変形率が増加される区間である。最終頂点(B)にあたる応力は内部芯材が坐屈などによって直径方向に変形を起こす時点になる。
第3段階は内部芯材(110)の坐屈などのような物理的な変形によって追加的に繊維補強ポリマー体(120)が別途の応力の負担なしに変形が増加される区間である。即ち、内部芯材(120)を螺旋形態でくるんでいる繊維補強ポリマー体(120)が外部荷重を負担するによって内部芯材(120)に直径方向に圧縮応力が伝達され、これによって内部芯材(110)が局所的または全面的に坐屈などが発生されて断面積が減少され、これに伴って繊維補強ポリマー体(120)の断面積も減少されて繊維補強ポリマー体(120)の追加的な応力の負担なしに変形が増加される区間である。
従って、本発明の混成FRP補強材(100)は外部荷重に対して連続的(曲)線形態になって図2の混成FRP補強材(D)のように外部荷重に対する十分な軟性破壊挙動を確保することができるようになる。最終頂点(C)にあたる応力は内部芯材の坐屈の終了する終点になり、この区間以後には繊維補強ポリマー体(120)自体が外部荷重による応力を負担することになる。
第4段階は内部芯材(110)の坐屈などのような物理的変形が終わった後、繊維補強ポリマー体(120)が外部荷重に対して応力を負担しながら最終的に破断に至る区間である。
即ち、本発明においては従来の混成FRP補強材とは違い、内部芯材の物理的な変形によって繊維補強ポリマー体の応力の負担なしに変形が増加される区間を通すようになることで、全体的に図2のように望ましい混成FRP補強材の外部荷重に対する応力-変形率曲線(D)を得ることができ、結果的に外部荷重に対して軟性破壊挙動で作用するようになる。
In the first stage, the internal core (110) and the fiber-reinforced polymer body (120) behave linearly (having a constant elastic modulus) when an external load smaller than the yield strength of the internal core (110) is applied. It is a linear section of a straight line form. The stress corresponding to the final vertex (A) is the yield strength of the inner core material.
The second stage is a section in which the deformation rate of the internal core material is increased without the burden of additional stress as the internal core material yields as the stage where the internal core material (110) yields. The stress corresponding to the final vertex (B) is the time when the inner core material deforms in the diameter direction due to buckling or the like.
The third stage is a section where the deformation of the fiber-reinforced polymer body (120) is increased without additional stress due to physical deformation such as buckling of the inner core (110). That is, when the fiber reinforced polymer body (120) that wraps the inner core material (120) in a spiral form bears an external load, a compressive stress is transmitted to the inner core material (120) in the diametrical direction. (110) is locally or entirely buckled, and the cross-sectional area is reduced. Accordingly, the cross-sectional area of the fiber-reinforced polymer body (120) is also reduced and the fiber-reinforced polymer body (120) is added. This is a section where the deformation is increased without burden of the typical stress.
Therefore, the hybrid FRP reinforcing material (100) of the present invention has a continuous (curved) line shape with respect to the external load, and exhibits a sufficient soft fracture behavior with respect to the external load like the hybrid FRP reinforcing material (D) of FIG. It will be possible to secure. The stress corresponding to the final vertex (C) is the end point at which the buckling of the inner core ends, and the fiber-reinforced polymer body (120) itself bears the stress due to the external load after this section.
In the fourth stage, after physical deformation such as buckling of the inner core material (110) is finished, the fiber reinforced polymer body (120) finally breaks while bearing stress against the external load. It is.
That is, in the present invention, unlike the conventional hybrid FRP reinforcing material, by passing through the section where the deformation is increased without the burden of stress of the fiber reinforced polymer body due to the physical deformation of the inner core material, In particular, as shown in FIG. 2, a desirable stress-deformation curve (D) with respect to the external load of the hybrid FRP reinforcing material can be obtained, and as a result, it acts on the external load with a soft fracture behavior.

本発明によって降伏及び断面積(または直径)の減少が可能な内部芯材と繊維補強ポリマー体で構成された混成FRP補強材を提供することで、既存のFRP補強材で製作されたバー(Bar)、繊維補強板及び補強繊維シートとは違い、十分な軟性破壊挙動を確保することができて構造物の軟性破壊挙動を誘導することができるFRP補強材を提供することができる。
さらに、本発明の混成FRP補強材を鉄筋代替用で利用する場合、鉄筋コンクリート構造物の耐久性を増進させることができ、構造物の補修、補強による経済的損失を節減することができる。
By providing a hybrid FRP reinforcement composed of an inner core material and a fiber-reinforced polymer body capable of yielding and reducing a cross-sectional area (or diameter) according to the present invention, a bar made of an existing FRP reinforcement (Bar) ), Unlike the fiber reinforced plate and the reinforced fiber sheet, it is possible to provide an FRP reinforcing material capable of ensuring a sufficient soft fracture behavior and inducing the soft fracture behavior of the structure.
Furthermore, when the hybrid FRP reinforcing material of the present invention is used for replacing reinforcing bars, the durability of the reinforced concrete structure can be improved, and economic loss due to repair and reinforcement of the structure can be reduced.

以下、図面を参照して本発明の望ましい一実施例をより詳細に説明する。
本発明の混成FRP補強材(100)は内部芯材(110)をくるむように配置された繊維補強ポリマー体(120)を含む構造物の補強材として、
前記内部芯材(110)は繊維補強ポリマー体より降伏強度が低い中空管に形成され、前記繊維補強ポリマー体(120)は内部芯材のまわりを繊維補強ポリマー材質の縒られた糸(Yarn)を利用して全体的に内部芯材を螺旋形態でくるむように配置される。
このような本発明のFRP補強材は混成繊維補強ポリマー補強材(Hybrid fiber reinforcing polymer reinforcing material、以下 「混成FRP補強材」)と指称する。 図6は本発明の混成FRP補強材(100)の一部の斜視図として全体的な形状がバー(Bar)の形態で構成される。
前記内部芯材(110)は混成FRP補強材(100)の中央に配置され、そのまわりに形成された繊維補強ポリマー体(120)より降伏強度が低くて外部荷重に対して繊維補強ポリマー体(120)より先に降伏されて、追加的な応力の負担なしに変形率が増加される構造用鋼材の材料的な特性を有し、全体的な形状は混成FRP補強材の利用形態によって変更できるが、望ましくは管(Pipe)の形状に形成される。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings.
The hybrid FRP reinforcing material (100) of the present invention is a reinforcing material for a structure including a fiber-reinforced polymer body (120) disposed so as to surround an inner core material (110).
The inner core material (110) is formed in a hollow tube having a yield strength lower than that of a fiber reinforced polymer body, and the fiber reinforced polymer body (120) is wound around the inner core material with a yarn (Yarn) made of a fiber reinforced polymer material. ) And the inner core material is disposed so as to be spirally formed.
Such an FRP reinforcing material of the present invention is referred to as a hybrid fiber reinforced polymer reinforcing material (hereinafter referred to as “hybrid FRP reinforcing material”). FIG. 6 is a perspective view of a part of the hybrid FRP reinforcing material (100) of the present invention, and the overall shape is configured in the form of a bar.
The inner core material (110) is disposed at the center of the hybrid FRP reinforcing material (100), has a lower yield strength than the fiber reinforced polymer body (120) formed therearound, and the fiber reinforced polymer body ( 120) has the material properties of structural steel that yields before and increases the deformation rate without burdening additional stress, and the overall shape can be changed by the usage of the hybrid FRP reinforcement However, it is preferably formed in the shape of a pipe.

前記内部芯材(110)は繊維補強ポリマー体(120)が外部荷重を負担しながら直径方向に発生して伝わる内部圧力によって局所的な坐屈などのようにその断面積が小くなる物理的な変形(直径または厚さの減少などのような断面積減少)が可能だとすると繊維補強ポリマー体(FRP)、金属、非金属鋼材を全部含み、円形、四角形などその形状において制限がない。
望ましくはこのような内部芯材(110)として中が空いた円型鋼管または横長方向がもっと長い楕円形鋼管を使えば鋼材の材料的な特性及び局所坐屈のような物理的な変形を容易に確保することができるという長所がある。
本発明で内部芯材(110)は作用する外部荷重が内部芯材の降伏強度に到逹しながら発生される降伏段階以後、追加的な応力の負担なしに変形率が増加されることで外部荷重に対して混成FRP補強材が軟性挙動ができるようにする役割をし、
さらに、その降伏が完了した後、内部芯材(110)を取り囲んでいる繊維補強ポリマー体(120)が作用する外部荷重を負担する段階で、内部芯材(110)は前記繊維補強ポリマー体(120)から直径方向に伝達される内部圧力によって、その厚さまたは直径が減少される物理的な変形、即ち、断面積の減少によって内部芯材(110)を取り囲んでいる繊維補強ポリマー体(120)の断面積が自然に減少されるようにすることで、繊維補強ポリマー体(120)が外部荷重によって応力を追加的に負担しなくても変形率が増加されるようにする役割をする。
The internal core (110) is physically reduced in cross-sectional area such as local buckling due to internal pressure generated and transmitted in a diametrical direction while the fiber reinforced polymer body (120) bears an external load. If it is possible to make various deformations (cross-sectional area reduction such as reduction in diameter or thickness), it includes all fiber-reinforced polymer bodies (FRP), metals, and non-metallic steel materials, and there are no restrictions on the shape such as circular or square.
Desirably, if such a hollow circular steel pipe or an elliptical steel pipe having a longer lateral direction is used as the inner core material (110), the material characteristics of the steel material and physical deformation such as local buckling are facilitated. There is an advantage that can be secured.
In the present invention, the internal core (110) is subjected to external deformation by increasing the deformation rate without any additional stress after the yielding stage in which the applied external load reaches the yield strength of the internal core. The role of the hybrid FRP reinforcement to allow soft behavior against the load,
Furthermore, after the yielding is completed, the inner core material (110) bears the fiber-reinforced polymer body (110) at the stage of bearing an external load on which the fiber-reinforced polymer body (120) surrounding the inner core material (110) acts. 120) a fiber-reinforced polymer body (120) surrounding the inner core (110) by a physical deformation whose thickness or diameter is reduced by an internal pressure transmitted in a diametrical direction, i.e. by reducing the cross-sectional area. ) Is naturally reduced, the fiber-reinforced polymer body (120) serves to increase the deformation rate even if the stress is not additionally imposed by an external load.

即ち、本発明の内部芯材(110)はその自体の材料的な特性 降伏後応力の負担なしに変形率増加及び物理的な形状変形(伝達される内部圧力による断面積または直径減少)によって混成FRP補強材が外部荷重に対する挙動で軟性破壊挙動をするようにする機能を有する。
前記繊維補強ポリマー体(120)はFRP補強繊維として炭素繊維、アラミド繊維またはガラス・ファイバーなどが縒られる糸の形態(Yarn)で内部芯材(110)のまわりを全体的に螺旋形で包むように形成される。さらに、前記3種類以上の補強繊維は一つまたは二つ以上の組合で形成されることができる。
このような縒られた糸(Yarn) 形態の補強繊維は単純に長さ方向で直線形態に配置されるのと比べて本発明の混成FRP補強材に加えられるせんだん力に、より效率的に対応することができ、等しい量を基準として、より大きい破断伸率を確保することができるという長所がある。
また繊維補強ポリマー体(120)は板の形状の内部芯材(110)のまわりを全体的に螺旋形で取り囲むように形成されることができ、この場合は混成FRP補強材をシートまたは板の形態で本発明を利用する場合である。
即ち、本発明の混成FRP補強材(100)は板(Plate)の形態及びバー(Bar)の形態、その他の多くの形態で製作、利用されることができる。
That is, the inner core material (110) of the present invention is hybridized by increasing the deformation rate and deforming the physical shape (decreasing the cross-sectional area or diameter due to the transmitted internal pressure) without burdening the stress after yielding. The FRP reinforcing material has a function of causing a soft fracture behavior in response to an external load.
The fiber-reinforced polymer body (120) is wrapped around the inner core material (110) in a spiral shape in the form of yarn (Yarn) in which carbon fiber, aramid fiber, glass fiber or the like is wound as FRP reinforcing fiber. It is formed. Further, the three or more types of reinforcing fibers may be formed of one or two or more combinations.
Such a woven yarn-shaped reinforcing fiber is more effective to the force applied to the hybrid FRP reinforcing material of the present invention than simply being arranged in a linear shape in the length direction. There is an advantage that a larger elongation at break can be secured based on the same amount.
The fiber-reinforced polymer body (120) may be formed so as to surround the inner core (110) in the form of a plate as a whole in a spiral manner, in which case the hybrid FRP reinforcement is attached to the sheet or plate. This is a case where the present invention is used in a form.
That is, the hybrid FRP reinforcing material 100 of the present invention can be manufactured and used in a plate form, a bar form, and many other forms.

図7は本発明の混成FRP補強材(100)はバー(Bar)の形態で所定の長さを有するように製作し、まるで鉄棒または鋼燃線を含む PSC(Prestressed Concrete) 鋼材のように両端部が油圧のジャッキのような引張手段によって引張された後、固定手段(200)によって構造物(300)に固定された状態を図示する。   FIG. 7 shows that the hybrid FRP reinforcement (100) of the present invention is manufactured to have a predetermined length in the form of a bar, and both ends are like a PSC (Prestressed Concrete) steel material including a steel bar or a steel fuel wire. A state in which the part is pulled by a pulling means such as a hydraulic jack and then fixed to the structure (300) by the fixing means (200) is shown.

この時、前記混成FRP補強材(100)の両端部は固定する手段(200)を構成するコーン形状のウェッジ(210)によって固定具(220)に固定される。 本発明の混成FRP補強材(100)の内部芯材(110)は中空管形態に形成されて、前記固定時、端部に応力が局所的に集中されて結果的に内部芯材(110)の端部の破損される現象が発生する恐れがある。本発明ではそれを防止するため、内部芯材(110)の両端部に形成された中空に充填材(130)を形成させる。
前記充填材(130)は金属製または非金属製の棒を利用するか、或いは比較的に直径が小さな内部芯材の中空管に充填が容易くなるようにゲルの形態で存在していて、時間の経過、または加熱によって硬化される材料を利用することができ、望ましくはフッ素樹脂(PTFE(Poly Tetra Fluoro Ethylene)、FEP(Flourinated Ethylene Prophylene)、PFA(Per Fluoro Alkoxy))のような材質の充填材を利用することが望ましい。
At this time, both ends of the hybrid FRP reinforcing material (100) are fixed to the fixture (220) by a cone-shaped wedge (210) constituting the fixing means (200). The inner core material (110) of the hybrid FRP reinforcing material (100) of the present invention is formed in a hollow tube shape, and stress is locally concentrated at the end during the fixing, resulting in an inner core material (110). ) May be damaged. In the present invention, in order to prevent this, the filler (130) is formed in the hollow formed at both ends of the inner core (110).
The filler (130) may be a metal or non-metallic rod, or may be present in the form of a gel so that the hollow tube of the inner core having a relatively small diameter can be easily filled. A material that is cured over time or by heating can be used, and preferably a material such as fluororesin (PTFE (Poly Tetra Fluoro Ethylene), FEP (Florated Ethylene Prophylene), PFA (Per Fluoro Alkyoxy)). It is desirable to use a filler.

以上、本発明の実施例によって詳細に説明したが、本発明はこれに限定されず本発明が属する技術分野において通常の知識を有するものであれば本発明の思想と精神を離れることなく、本発明を修正または変更できる。   As described above, the embodiments of the present invention have been described in detail. However, the present invention is not limited thereto, and the present invention can be used without departing from the spirit and spirit of the present invention as long as it has ordinary knowledge in the technical field to which the present invention belongs. The invention can be modified or changed.

本発明の繊維補強ポリマー体及び内部芯材を含む混成FRP補強材はコンクリート構造物を建設する時、鉄筋または鋼燃線を代替することができる補強材として利用され、特にコンクリート構造物(ビーム、桁、補強板など)に引張応力が発生する部分に一定な収容溝を形成させ、収容溝の内部に本発明のFRP補強材を埋め立てた後、エポキシ樹脂などのような充填材で締めくくったり、コンクリート構造物の下部面に本発明の混成FRP補強材を付着させる方式を利用すると、コンクリート構造物に外部荷重が作用して特定部位に引張応力が発生する場合、前記混成FRP補強材が引張応力を負担するようになり、その破壊挙動を軟性破壊挙動に誘導することができる。さらに、本発明の混成FRP補強材はコンクリート構造物のたわみが発生して、このようなたわみを補償することができる構造物の補強材として利用することが可能である。   The hybrid FRP reinforcing material including the fiber reinforced polymer body and the inner core material of the present invention is used as a reinforcing material capable of replacing a reinforcing bar or a steel fuel wire when constructing a concrete structure, and particularly, a concrete structure (beam, A constant accommodation groove is formed in a portion where tensile stress is generated in a girder, a reinforcing plate, etc., and the FRP reinforcing material of the present invention is buried in the inside of the accommodation groove, and then tightened with a filler such as an epoxy resin, When the hybrid FRP reinforcing material of the present invention is applied to the lower surface of a concrete structure, when the external load acts on the concrete structure and a tensile stress is generated at a specific part, the hybrid FRP reinforcing material has a tensile stress. The fracture behavior can be induced to the soft fracture behavior. Furthermore, the hybrid FRP reinforcing material of the present invention can be used as a reinforcing material for a structure capable of compensating for such a deflection when a deflection of the concrete structure occurs.

従来のFRP補強材の応力-変形率グラフである。It is a stress-deformation rate graph of the conventional FRP reinforcement. 従来のFRP補強材の脆性破壊を防止するために開発しようとする望ましい混成FRP補強材の応力-変形率グラフである。6 is a stress-deformation rate graph of a desirable hybrid FRP reinforcement to be developed to prevent brittle fracture of a conventional FRP reinforcement. 従来の混成FRP補強材の断面図である。It is sectional drawing of the conventional hybrid FRP reinforcing material. 前記図3の混成FRP補強材の応力-変形率グラフである。4 is a stress-deformation rate graph of the hybrid FRP reinforcing material of FIG. 3. 本発明の混成FRP補強材の力学挙動が示された応力-変形率グラフである。It is a stress-deformation rate graph in which the dynamic behavior of the hybrid FRP reinforcement of this invention was shown. 本発明の混成FRP補強材の一部の斜視図である。It is a one part perspective view of the hybrid FRP reinforcement of this invention. 本発明の混成FRP補強材の両端部に充填材を満たした状態で固定手段によって構造物に固定された状態の切断面図である。It is a sectional view in the state where it was fixed to the structure by the fixing means in a state where both ends of the hybrid FRP reinforcing material of the present invention were filled with the filler.

符号の説明Explanation of symbols

100 混成FRP補強材
110 内部芯材
120 繊維補強ポリマー体
130 充填材
200 固定手段
210 ウェッジ
220 固定具
300 構造物
DESCRIPTION OF SYMBOLS 100 Hybrid FRP reinforcing material 110 Inner core material 120 Fiber reinforced polymer body 130 Filler 200 Fixing means 210 Wedge 220 Fixture 300 Structure

Claims (3)

内部芯材をくるむように配置された繊維補強ポリマー体を含む構造物の補強材として、
前記内部芯材は繊維補強ポリマー体より降伏強度が低い中空管に形成され、
前記繊維補強ポリマー体は内部芯材のまわりを繊維補強ポリマー材質の縒られた糸(Yarn)を利用して全体的に内部芯材を螺旋形態でくるむように配置されることを特徴とする混成繊維補強ポリマー補強材。
As a reinforcing material for a structure including a fiber-reinforced polymer body arranged so as to surround an inner core material,
The inner core is formed in a hollow tube having a lower yield strength than the fiber-reinforced polymer body,
The fiber reinforced polymer body is arranged so that the inner core material is entirely wrapped in a spiral shape by using a yarn (Yarn) made of a fiber reinforced polymer material around the inner core material. Reinforced polymer reinforcement.
前記中空管は繊維補強ポリマー管、金属管及び非金属管のうちいずれか一つで作られることを特徴とする請求項1記載の混成繊維補強ポリマー補強材。   The hybrid fiber-reinforced polymer reinforcing material according to claim 1, wherein the hollow tube is made of any one of a fiber-reinforced polymer tube, a metal tube, and a non-metal tube. 前記中空管は両端部から内部に充填材で充填され、充填されていない部分は中空に形成されたことを特徴とする請求項1または2記載の混成繊維補強ポリマー補強材。   The hybrid fiber reinforced polymer reinforcing material according to claim 1 or 2, wherein the hollow tube is filled with a filler from both ends, and the unfilled portion is hollow.
JP2004177235A 2003-06-17 2004-06-15 Reinforcing material for hybrid fiber reinforced polymer Pending JP2005009307A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0039139A KR100535217B1 (en) 2003-06-17 2003-06-17 Hybrid fiber reinforced polymer reinforcing material and concrete structure using the same

Publications (1)

Publication Number Publication Date
JP2005009307A true JP2005009307A (en) 2005-01-13

Family

ID=34101675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177235A Pending JP2005009307A (en) 2003-06-17 2004-06-15 Reinforcing material for hybrid fiber reinforced polymer

Country Status (2)

Country Link
JP (1) JP2005009307A (en)
KR (1) KR100535217B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108053A1 (en) * 2007-03-02 2008-09-12 Sumitomo (Sei) Steel Wire Corp. Strand
JP2009114596A (en) * 2007-11-09 2009-05-28 Sumitomo Denko Steel Wire Kk Tubular strand and method for producing the same
JP2009138365A (en) * 2007-12-04 2009-06-25 Sumitomo Denko Steel Wire Kk Polygonal strand and its manufacturing process
JP2012117324A (en) * 2010-12-02 2012-06-21 Shimizu Corp Junction method between concrete structures
CN104060767A (en) * 2014-06-19 2014-09-24 四川航天五源复合材料有限公司 Method of industrially preparing steel-continuous-fiber composite bar
CN104060765A (en) * 2014-06-16 2014-09-24 四川航天五源复合材料有限公司 Steel-continuous-fiber composite bar and preparation method thereof
CN104060768A (en) * 2014-06-19 2014-09-24 四川航天五源复合材料有限公司 Industrial preparation method of steel-continuous-fiber composite bar with rib texture
WO2018008652A1 (en) * 2016-07-06 2018-01-11 三菱重工業株式会社 Composite material, pultrusion device, and pultrusion method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666028B1 (en) * 2005-08-12 2007-01-09 한국건설기술연구원 Fiber reinforced polymer with flexibility and the making method
CN104060766A (en) * 2014-06-16 2014-09-24 四川航天五源复合材料有限公司 Steel-continuous-fiber composite bar for building
KR101541060B1 (en) * 2014-09-19 2015-07-31 휘수건설(주) Hybrid fiber composite bar and strengthening method of concrete structure using thereof
KR101974064B1 (en) * 2018-09-14 2019-04-30 민경기술 주식회사 Method for reinforcing concrete structure using preflex panel
CN113326609B (en) * 2021-05-17 2022-09-20 郑州大学 Method for designing HFRP rods with tensile ductility and different strength grades

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108053A1 (en) * 2007-03-02 2008-09-12 Sumitomo (Sei) Steel Wire Corp. Strand
JP2008248675A (en) * 2007-03-02 2008-10-16 Sumitomo Denko Steel Wire Kk Strand
US7886490B2 (en) 2007-03-02 2011-02-15 Sumitomo (Sei) Steel Wire Corp. Strand
JP2009114596A (en) * 2007-11-09 2009-05-28 Sumitomo Denko Steel Wire Kk Tubular strand and method for producing the same
JP2009138365A (en) * 2007-12-04 2009-06-25 Sumitomo Denko Steel Wire Kk Polygonal strand and its manufacturing process
JP2012117324A (en) * 2010-12-02 2012-06-21 Shimizu Corp Junction method between concrete structures
CN104060765A (en) * 2014-06-16 2014-09-24 四川航天五源复合材料有限公司 Steel-continuous-fiber composite bar and preparation method thereof
CN104060767A (en) * 2014-06-19 2014-09-24 四川航天五源复合材料有限公司 Method of industrially preparing steel-continuous-fiber composite bar
CN104060768A (en) * 2014-06-19 2014-09-24 四川航天五源复合材料有限公司 Industrial preparation method of steel-continuous-fiber composite bar with rib texture
WO2018008652A1 (en) * 2016-07-06 2018-01-11 三菱重工業株式会社 Composite material, pultrusion device, and pultrusion method
US11752710B2 (en) 2016-07-06 2023-09-12 Mitsubishi Heavy Industries, Ltd. Composite material, pultrusion device, and pultrusion method

Also Published As

Publication number Publication date
KR100535217B1 (en) 2005-12-08
KR20040108231A (en) 2004-12-23

Similar Documents

Publication Publication Date Title
JP2005009307A (en) Reinforcing material for hybrid fiber reinforced polymer
CN102936941B (en) Composite pipe concrete composite structure
US20080028740A1 (en) Cable Made Of High Strength Fiber Composite Material
KR100666028B1 (en) Fiber reinforced polymer with flexibility and the making method
JP2017520730A (en) Torsionally loaded bar components with various fiber reinforcements for tensile and compressive loads
US8864117B2 (en) Fiber-reinforced plastic spring
US9976315B2 (en) Elongate member reinforcement
KR101023424B1 (en) Curved device for frp rebars and construction method using the same
JPH02147749A (en) Fixing device for cylindrical tension member composed of fiber composite material
CN101575915A (en) Technology for anti-buckling and reinforcing metal structure by adopting fiber-reinforced composite
CN101886347B (en) Fiber prestress rope containing high-toughness wear-resistant sleeve and fabricating method thereof
US6325108B1 (en) Prestressed composite cryogenic piping
Abdallah et al. Experimental assessment and theoretical evaluation of axial behavior of short and slender CFFT columns reinforced with steel and CFRP bars
CN110360389B (en) Composite material pipeline and conveying pipeline expand by pulling
CN201809660U (en) Fiber pre-stressed rope with high-toughness wear-resistant sleeve
CN108240071A (en) FRP section bars-steel pipe concrete combination column
JP2006083572A (en) Prestressed concrete structure
CN113152791A (en) Combined column and construction method thereof
NO176368B (en) Bending-limiting device
US10961711B2 (en) Reinforcement system and a method of reinforcing a structure with a tendon
Thermou et al. Metallic fabric jackets: an innovative method for seismic retrofitting of substandard RC prismatic members
Ferracuti et al. Cyclic behaviour of FRP-wrapped columns under axial and flexural loadings
CN207686140U (en) FRP proximate matters-steel pipe concrete combination column
RU2709571C2 (en) Armature cable
KR20090072528A (en) Defferent material reinforcing bar for artificial structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070717

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108