JP2009114478A - Method of manufacturing transparent electroconductive film - Google Patents

Method of manufacturing transparent electroconductive film Download PDF

Info

Publication number
JP2009114478A
JP2009114478A JP2007286144A JP2007286144A JP2009114478A JP 2009114478 A JP2009114478 A JP 2009114478A JP 2007286144 A JP2007286144 A JP 2007286144A JP 2007286144 A JP2007286144 A JP 2007286144A JP 2009114478 A JP2009114478 A JP 2009114478A
Authority
JP
Japan
Prior art keywords
transparent conductive
film
conductive film
diamond
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007286144A
Other languages
Japanese (ja)
Other versions
JP4896854B2 (en
Inventor
Takashi Kuchiyama
崇 口山
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007286144A priority Critical patent/JP4896854B2/en
Publication of JP2009114478A publication Critical patent/JP2009114478A/en
Application granted granted Critical
Publication of JP4896854B2 publication Critical patent/JP4896854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that, in order to perform the mass production of transparent electroconductive films of a large area, it has been important to keep the film deposition temperature to be close to the room temperature as much as possible, and the mass production has been difficult since the crystallinity of a transparent electroconductive layer is poor at low temperature, and the transmittance has a problem. <P>SOLUTION: A material for a transparent electroconductive layer is formed of zinc oxide having excellent crystallinity even at the temperature close to the room temperature, and the uniform film deposition of large area is performed by the magnetron sputtering method, enabling the mass production of the transparent electroconductive film having excellent transparency. Mass production of the transparent electroconductive films can be performed even by the roll-to-roll method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主としてタッチパネルやPDP、LCDやエレクトロルミネッセンス(EL)ディスプレイ材料、太陽電池、表面弾性波素子、赤外線カットなどを目的とした窓ガラスコーティング、ガスセンサー、非線形光学を活用したプリズムシート、透明磁性体、光学記録素子、光スイッチ、光導波路、光スプリッタ、光音響材料への活用、高温発熱ヒーター材料において、高い光線透過率を達成し、且つ大面積での大量生産が可能な透明導電膜の製造方法に関するものである。   The present invention mainly includes touch panel, PDP, LCD, electroluminescence (EL) display material, solar cell, surface acoustic wave device, window glass coating for infrared cut, gas sensor, prism sheet utilizing nonlinear optics, transparent Transparent conductive film that achieves high light transmittance and can be mass-produced in a large area in magnetic materials, optical recording elements, optical switches, optical waveguides, optical splitters, photoacoustic materials, and high-temperature heating heater materials It is related with the manufacturing method.

タッチパネルやディスプレイ材料、太陽電池などに使用される透明導電膜は、その透明導電層として酸化インジウム錫(ITO)や酸化錫、酸化亜鉛などが広く使用されている。このような透明導電層はマグネトロンスパッタ法やモレキュラービームエピタキシー法などの物理気相堆積法(PVD法)や熱CVDやプラズマCVDなどの化学気相堆積法(CVD法)などにより形成されるほか、無電解めっき法により形成される方法が知られている。中でもインジウム−錫複合酸化物(ITO)は透明導電材料として非常に優れた材料であり、現在広く透明導電層に使用されている。しかしながら、近年、太陽電池や薄型テレビなどの大量生産が進み原料のインジウムの減少、およびそれに伴って原料費が向上する可能性があり、資源的にもコスト的にもITOに替わる材料の探索が急務となっている。ITOに替わる材料としては酸化亜鉛(ZnO)が代表として挙げられる。ZnOはITOと比較して透明性に優れる反面、水分や熱に対する安定性に劣ることが非特許文献1に記載されている。   In transparent conductive films used for touch panels, display materials, solar cells, and the like, indium tin oxide (ITO), tin oxide, zinc oxide, and the like are widely used as the transparent conductive layer. Such a transparent conductive layer is formed by a physical vapor deposition method (PVD method) such as a magnetron sputtering method or a molecular beam epitaxy method or a chemical vapor deposition method (CVD method) such as thermal CVD or plasma CVD. A method of forming by an electroless plating method is known. Among them, indium-tin composite oxide (ITO) is a very excellent material as a transparent conductive material, and is currently widely used for a transparent conductive layer. However, in recent years, mass production of solar cells and flat-screen TVs has progressed, and there is a possibility that raw material costs will be reduced due to a decrease in raw material indium. It is an urgent need. A representative example of a material replacing ITO is zinc oxide (ZnO). Non-patent document 1 describes that ZnO is excellent in transparency as compared with ITO, but is inferior in stability to moisture and heat.

透明導電膜をタッチパネル用途に使用する場合、用途の性質上から耐衝撃性が必要である場合が多く、特許文献1〜3に透明導電膜上に被覆層を形成することで、耐衝撃性が向上すると述べられているが、記載されている窒化物や酸化物などは、水分や熱に対する安定性に優れる可能性があるが、導電性に課題が残る。一方カーボン材料は、一部導電性に優れるものもあるが、記載されているカーボン膜では上記の水分や熱に対する安定性には効果がない。   When using a transparent conductive film for touch panel applications, impact resistance is often necessary due to the nature of the application, and by forming a coating layer on the transparent conductive film in Patent Documents 1 to 3, impact resistance is improved. Although described to improve, the described nitrides and oxides may be excellent in stability against moisture and heat, but there remains a problem in conductivity. On the other hand, some carbon materials are excellent in conductivity, but the described carbon film has no effect on the above-described stability against moisture and heat.

このようなタッチパネル用途のみならず、透明導電膜の重要な要素としては、「透明性」「物理的耐久性」「特に水分や熱に対する特性の化学的耐久性」「導電性」が考えられるが、現在主流となっているITO以上にすぐれた材料は実用化に至っていない。
透明導電膜、6ページより(シーエムシー出版) 特開2001−283643号公報 特開2003−34860号公報 特開2003−109434号公報
In addition to such touch panel applications, important factors for transparent conductive films include “transparency”, “physical durability”, “chemical durability especially for moisture and heat”, and “conductivity”. However, a material superior to ITO, which is currently mainstream, has not been put into practical use.
Transparent conductive film, starting from page 6 (CMC Publishing) JP 2001-283634 A Japanese Patent Laid-Open No. 2003-34860 JP 2003-109434 A

近年、特に太陽電池や薄型テレビでは大面積化が進み、同時に大量生産による生産量の確保が重要な課題となっている。   In recent years, especially in solar cells and flat-screen TVs, the area has been increased, and at the same time, securing production by mass production has become an important issue.

上記技術分野に記載される透明導電膜は、少なくとも可視光領域において透明であることが必要である。現在透明導電層として広く使用されている酸化物透明導電層は結晶状態では良好な透明性を示すことが知られているが、例えばITOでは良好な結晶状態を得るためには150℃以上で製膜または製膜後のアニール処理をする必要があり、基板の事前加熱またはアニールに時間や工程数を費やしている。これに対し、酸化亜鉛は室温付近でも良好な結晶状態を示すため、加熱処理などが不要となり、大量生産に適した透明導電層材料である。さらに、加熱処理に耐えられない熱可塑性樹脂フィルムなどにも良好な透明導電層を形成可能なことから、次世代の透明導電層材料として有望である。しかし、酸化亜鉛透明導電層は大気中に放置すると、導電性が著しく低下するという課題がある。特許文献4には3価の金属カチオンを含有する水溶液で処理することで上記課題を抑えるという技術が記載されているが、水溶液塗布後の乾燥工程などあり、大量生産が困難であることが予想される他、大面積化に対応可能かどうかの課題も残る。本発明には水素を含有するスパッタによって形成されるカーボン膜による酸化亜鉛の表面被覆である点に特徴がある。カーボン膜をスパッタを用いて被覆する報告については上記特許文献1〜3に記載されている内容があるが、酸化亜鉛透明導電膜で最も重要な課題の一つである「水分や熱に対する特性の安定性」には効果がない。
特開2001−39712号公報
The transparent conductive film described in the above technical field needs to be transparent at least in the visible light region. An oxide transparent conductive layer widely used as a transparent conductive layer is known to exhibit good transparency in a crystalline state. For example, in order to obtain a good crystalline state in ITO, it is manufactured at 150 ° C. or higher. An annealing process after film formation or film formation is required, and time and the number of processes are spent on preheating or annealing the substrate. On the other hand, zinc oxide shows a good crystal state even near room temperature, and thus does not require heat treatment and is a transparent conductive layer material suitable for mass production. Furthermore, since a favorable transparent conductive layer can be formed even on a thermoplastic resin film that cannot withstand heat treatment, it is promising as a next-generation transparent conductive layer material. However, when the zinc oxide transparent conductive layer is left in the atmosphere, there is a problem that the conductivity is remarkably lowered. Patent Document 4 describes a technique for suppressing the above problem by treating with an aqueous solution containing a trivalent metal cation, but there is a drying step after application of the aqueous solution, and it is expected that mass production is difficult. In addition, there remains a problem whether it can cope with an increase in area. The present invention is characterized in that the surface is coated with zinc oxide by a carbon film formed by sputtering containing hydrogen. Although there is a content described in Patent Documents 1 to 3 for reports on coating a carbon film by sputtering, one of the most important issues in a zinc oxide transparent conductive film is “characteristics for moisture and heat”. “Stability” has no effect.
JP 2001-39712 A

上記課題を解決する為に本発明者らは鋭意検討を重ねた結果、酸化亜鉛透明導電層および硬質炭素膜を室温付近の基板温度で気相堆積法により製膜することで、大量生産に適した大面積の透明導電膜が製造可能であることを見出した。   As a result of intensive studies to solve the above problems, the inventors of the present invention are suitable for mass production by forming a zinc oxide transparent conductive layer and a hard carbon film by vapor deposition at a substrate temperature near room temperature. It was found that a transparent conductive film having a large area can be produced.

すなわち本願発明は、透明基板上に少なくとも1層からなる、酸化亜鉛を主成分とする透明導電層、さらにその上に構造中に水素を含有するダイヤモンドライクカーボン膜からなる透明導電膜であり、かつ該透明導電膜の550nmの波長での光線透過率が85%である透明導電膜の製造方法において、上記ダイヤモンドライクカーボン膜がターゲット材料としてカーボンを用い、キャリアガスとして水素を75〜100体積%、メタン・アルゴンから少なくとも1種類以上選択されたガスを25体積%以下含むガスを使用し、電力密度が0.05〜5.00W/cmの範囲から選択される電力を印加するDCマグネトロンスパッタ法によって形成されることを特徴とする透明導電膜の製造方法。(1)。上記透明導電層及びダイヤモンドライクカーボン膜が、基板温度20℃以上120℃以下で製膜されることを特徴とする透明導電膜の製造方法(2)。透明導電膜形成直後の表面抵抗と、85℃/85%RH環境下で1週間放置した後の表面抵抗の比が0.5〜1.5であることを特徴とする透明導電膜の製造方法(3)。に関するものである。 That is, the present invention is a transparent conductive film comprising at least one layer on a transparent substrate, a transparent conductive layer mainly composed of zinc oxide, and further a diamond-like carbon film containing hydrogen in the structure thereon, and In the method for producing a transparent conductive film having a light transmittance of 85% at a wavelength of 550 nm of the transparent conductive film, the diamond-like carbon film uses carbon as a target material, and 75 to 100% by volume of hydrogen as a carrier gas, DC magnetron sputtering method in which a gas containing at least 25% by volume of a gas selected from methane / argon is used and a power density is applied within a range of 0.05 to 5.00 W / cm 2. The manufacturing method of the transparent conductive film characterized by the above-mentioned. (1). The method for producing a transparent conductive film (2), wherein the transparent conductive layer and the diamond-like carbon film are formed at a substrate temperature of 20 ° C. or higher and 120 ° C. or lower. A method for producing a transparent conductive film, wherein the ratio of the surface resistance immediately after the formation of the transparent conductive film and the surface resistance after standing for 1 week in an environment of 85 ° C./85% RH is 0.5 to 1.5 (3). It is about.

本願発明により、室温付近での連続製膜による透明導電膜の製造が可能となる。また気相堆積法により大面積に均一に透明導電層の製膜が可能となる。これらの結果、大面積の透明導電膜を大量生産可能となる。   According to the present invention, it is possible to produce a transparent conductive film by continuous film formation near room temperature. Further, the transparent conductive layer can be uniformly formed over a large area by the vapor deposition method. As a result, a large-area transparent conductive film can be mass-produced.

本願発明は「透明基板上に少なくとも1層からなる酸化亜鉛を主成分とする透明導電層、さらにその上に構造中に水素を含むダイヤモンドライクカーボン膜からなる透明導電膜の製造方法において、透明導電層・硬質炭素膜が各々気相堆積法により形成されることを特徴とする透明導電膜の製造方法」に関するものである。   The present invention is “in a method for producing a transparent conductive layer comprising a transparent conductive layer mainly composed of zinc oxide on a transparent substrate, the main component being zinc oxide, and further comprising a diamond-like carbon film containing hydrogen in the structure. The present invention relates to a method for producing a transparent conductive film, wherein the layer and the hard carbon film are each formed by a vapor deposition method.

透明導電層に用いられる、ITOに代表される透明金属酸化物は、結晶性が良いものほど高い透過率や高い導電性が期待できるが、ITOでは結晶性を上げるための温度が、フィルム透明基板に用いられる熱可塑性樹脂のガラス転移温度以上であることが場合多く、結晶性の良いITO膜を得ることは困難である。一方で、酸化亜鉛は室温付近でも結晶性の良い薄膜を形成可能であることから、ガラス基板でのインライン生産やフィルム基板でのロールトゥロール方式生産など多くの生産方式で。生産速度を上げることが可能であると期待される。   Transparent metal oxides typified by ITO used for transparent conductive layers can be expected to have higher transmittance and higher conductivity as the crystallinity is better. In ITO, the temperature for increasing the crystallinity is a film transparent substrate. In many cases, the glass transition temperature is higher than the glass transition temperature of the thermoplastic resin used in the process, and it is difficult to obtain an ITO film having good crystallinity. On the other hand, zinc oxide can form thin films with good crystallinity near room temperature, so it can be used in many production systems, including in-line production on glass substrates and roll-to-roll production on film substrates. It is expected that the production speed can be increased.

さらに、結晶性の良い透明導電層は、タッチパネルのように接触電極として使用される際の耐久性に優れることが期待される。   Furthermore, a transparent conductive layer with good crystallinity is expected to be excellent in durability when used as a contact electrode like a touch panel.

一般的に、ダイヤモンドライクカーボン膜は、表面の摩擦低下を目的としてコーティングされている。また食品用途としては、非特許文献2など多くの文献で紹介されているように、ペットボトルのガスバリア材料として使用可能であることが広く知られている。
人造ダイヤモンド技術ハンドブック(サイエンスフォーラム社、134ページ) 以下、本願発明に係る透明導電膜の代表的な態様を説明する。図1は、本発明に係る透明導電膜の断面説明図である。この透明導電膜は厚さ0.05〜1mmの透明基板1上に、酸化亜鉛を主成分とする透明導電層2が設けられる。ダイヤモンドライクカーボン膜3は透明導電層2の表面に被覆される。
Generally, the diamond-like carbon film is coated for the purpose of reducing the friction on the surface. As food applications, as introduced in many documents such as Non-Patent Document 2, it is widely known that it can be used as a gas barrier material for PET bottles.
Artificial Diamond Technology Handbook (Science Forum, page 134) Hereinafter, typical embodiments of the transparent conductive film according to the present invention will be described. FIG. 1 is an explanatory cross-sectional view of a transparent conductive film according to the present invention. This transparent conductive film is provided with a transparent conductive layer 2 mainly composed of zinc oxide on a transparent substrate 1 having a thickness of 0.05 to 1 mm. The diamond-like carbon film 3 is coated on the surface of the transparent conductive layer 2.

上記透明基板1については、少なくとも可視光領域で無色透明であり透明導電層を形成可能なものであり、透明基板のガラス転移温度が酸化亜鉛生成反応温度である125℃以上であれば、硬質または軟質な材料に限定されずに使用することができる。硬質な材料であれば、例えばソーダガラスやホウ珪酸ガラスなどのガラス基板やサファイヤ基板、セラミックや硬質プラスチックなどが挙げられる。軟質な材料であれば、例えばポリエチレンテレフタレート(PET)やポリブチレンテレフテレート(PBT)やポリエチレンナフタレート(PEN)などのポリエステルフィルムやシクロオレフィン系樹脂、ポリカーボネート樹脂、ポリイミド樹脂などが挙げられる。   The transparent substrate 1 is colorless or transparent at least in the visible light region and can form a transparent conductive layer. If the glass transition temperature of the transparent substrate is 125 ° C. or higher which is a zinc oxide production reaction temperature, it is hard or It can be used without being limited to a soft material. Examples of the hard material include glass substrates such as soda glass and borosilicate glass, sapphire substrates, ceramics, and hard plastics. Examples of soft materials include polyester films such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), cycloolefin resins, polycarbonate resins, and polyimide resins.

上記透明基板1には、透明導電層の付着性を向上させる目的で表面処理を施すことができる。表面処理としては、例えばカップリング剤による処理や、接着剤を薄膜コーティングする処理などが挙げられる。処理方法については、透明基板表面を均一に処理可能な方法であれば公知の方法で実施することができる。例えば、スプレー塗布やディッピングによる塗布、ロールコートやスピンコート法などの手法や、CVD法などによる手段が挙げられる。また、プラスチック基板やプラスチックフィルムを透明基板として使用する場合、透湿性が高いために酸化亜鉛透明導電膜が劣化する可能性があるので、透明基板上にバリア層を設けることでより高品質な透明導電膜を得ることができる。バリア層材料は、一般的に用いられている二酸化珪素などでも十分な効果を得ることが可能である。   The transparent substrate 1 can be subjected to a surface treatment for the purpose of improving the adhesion of the transparent conductive layer. Examples of the surface treatment include a treatment with a coupling agent and a treatment for coating an adhesive with a thin film. About a processing method, if it is a method which can process a transparent substrate surface uniformly, it can implement by a well-known method. Examples thereof include spray coating and dipping coating, roll coating and spin coating methods, and CVD methods. In addition, when plastic substrates and plastic films are used as transparent substrates, the zinc oxide transparent conductive film may be deteriorated due to its high moisture permeability. A conductive film can be obtained. As the barrier layer material, it is possible to obtain a sufficient effect even with generally used silicon dioxide or the like.

さらに、本発明をディスプレイ材料や太陽電池などの光学素子に使用する場合、透明基板1には用途により光閉じ込め効果や光取り出し効果、反射防止効果などを目的とした表面処理を施すことができる。処理は微粒子を透明基板上に均一に分散させる方法や、型を用いて透明基板上に凹凸部を形成する方法などが挙げられる。   Furthermore, when using this invention for optical elements, such as a display material and a solar cell, the surface treatment for the purpose of the light confinement effect, the light extraction effect, an antireflection effect, etc. can be given to the transparent substrate 1 by a use. Examples of the treatment include a method of uniformly dispersing fine particles on a transparent substrate, a method of forming an uneven portion on a transparent substrate using a mold, and the like.

さらに上記透明基板1の両面または片面に、ガスバリア性の付与を目的とした(ガスバリア)層を設けることができる。前記(ガスバリア)層としては、無機化合物が薄膜で効果を得やすく、例えば酸化珪素や窒化珪素およびその混合物、酸化アルミニウムや窒化アルミニウム、弗化マグネシウムや硬質炭素膜などの化合物を1種類または複数種類を任意に選択することができる。これらの層の形成方法としては、液相堆積法(塗布法)や気相堆積法があり、どの方法も使用可能であるが、均一な薄膜を形成する手段として気相堆積法が好ましい。   Furthermore, a (gas barrier) layer for the purpose of imparting gas barrier properties can be provided on both surfaces or one surface of the transparent substrate 1. As the (gas barrier) layer, an inorganic compound is a thin film, and it is easy to obtain an effect. For example, one or more kinds of compounds such as silicon oxide, silicon nitride and a mixture thereof, aluminum oxide, aluminum nitride, magnesium fluoride, and a hard carbon film Can be arbitrarily selected. As a method for forming these layers, there are a liquid phase deposition method (coating method) and a vapor phase deposition method, and any method can be used, but a vapor phase deposition method is preferable as a means for forming a uniform thin film.

本発明における透明導電層2には透明導電酸化物の中でも、透明性の高さと硬質炭素膜の製膜時に発生する水素プラズマに対して還元反応が起こらないという点から酸化亜鉛が用いられる。上記透明導電酸化物には抵抗制御や安定性を目的としてドーピング剤を添加することができる。ドーピング剤としては例えば、アルミニウムやホウ素を含む化合物やリン、窒素を含む化合物などが挙げられるが、特にこれらに限定されるものではない。   Among the transparent conductive oxides, zinc oxide is used for the transparent conductive layer 2 in the present invention because it has high transparency and does not cause a reduction reaction against hydrogen plasma generated during the formation of a hard carbon film. A doping agent can be added to the transparent conductive oxide for the purpose of resistance control and stability. Examples of the doping agent include a compound containing aluminum or boron, a compound containing phosphorus, or nitrogen, but are not particularly limited thereto.

透明導電層の形成方法としては、気相堆積法が適している。その他の透明導電層の形成方法としてはゾル−ゲル液の塗布および焼成や、有機金属化合物の塗布および焼成などがあるが、大面積に均一に製膜可能である点と、大量生産に適している点から気相堆積法が好ましい。
気相堆積法で透明導電層を形成する場合、透明基板の温度は、生産性の観点から20℃〜120℃が好ましく、さらに好ましくは20℃〜80℃程度が好ましい。製膜時の基板温度を低く設定することで、製膜前の基板の温度上昇を待つ時間を削除することができ、連続運転による大量生産が可能となる。特にフィルム基板上にロールトゥロール方式で製膜する場合、常時基板が動き続けるので基板の温度上昇が困難であることからも、基板温度は低めに設定することが好ましい。
透明導電層の形成には必要に応じてプラズマ放電を利用することができる。電力の供給方式はDC方式やRF方式またはVHF方式など任意の方式を利用できる。電力密度については特に制限はないが、生産性や結晶性の観点から0.1W/cm〜5W/cmが好ましい。低すぎる場合には製膜されない可能性がある。高すぎる場合には透明基板へのダメージや装置へのダメージが懸念される。透明導電層の形成に使用するキャリアガスは一般的な気相堆積法に使用されるガスを使用することができる。例えばアルゴンや水素、酸素や窒素ガスを使用することができる。
As a method for forming the transparent conductive layer, a vapor deposition method is suitable. Other methods for forming the transparent conductive layer include sol-gel solution coating and baking, and organometallic compound coating and baking, etc., but it is suitable for mass production and is suitable for mass production. Therefore, the vapor deposition method is preferable.
When forming a transparent conductive layer by a vapor deposition method, the temperature of the transparent substrate is preferably 20 ° C. to 120 ° C., more preferably about 20 ° C. to 80 ° C. from the viewpoint of productivity. By setting the substrate temperature at the time of film formation low, the time for waiting for the temperature rise of the substrate before film formation can be eliminated, and mass production by continuous operation becomes possible. In particular, when a film is formed on a film substrate by a roll-to-roll method, it is preferable that the substrate temperature is set low because the substrate keeps moving and it is difficult to raise the temperature of the substrate.
For the formation of the transparent conductive layer, plasma discharge can be used as necessary. As a power supply method, an arbitrary method such as a DC method, an RF method, or a VHF method can be used. There is no particular limitation on the power density, preferably 0.1W / cm 2 ~5W / cm 2 from the viewpoint of productivity and crystallinity. If it is too low, the film may not be formed. If it is too high, there is a concern about damage to the transparent substrate and damage to the device. As the carrier gas used for forming the transparent conductive layer, a gas used in a general vapor deposition method can be used. For example, argon, hydrogen, oxygen, or nitrogen gas can be used.

上記ダイヤモンドライクカーボン膜3は、酸化亜鉛透明導電膜の空気や水分に対する保護や透明導電層表面の物理的衝撃に対する耐久性向上を目的として使用される。ダイヤモンドライクカーボン膜3にはダイヤモンドライクカーボンは、炭素原子のsp平面構造(グラファイト構造)とsp四面体構造(ダイヤモンド構造)が混在した非晶質炭素である。本発明に好ましく利用されるダイヤモンドライクカーボン膜は、構造中に水素を含むハイドロカーボンが好ましく、物理的強度や透明性の観点から、アモルファスハイドロカーボンやテトラヘドラルアモルファスハイドロカーボンがより好ましく使用される。 The diamond-like carbon film 3 is used for the purpose of protecting the zinc oxide transparent conductive film against air and moisture and improving durability against physical impact on the surface of the transparent conductive layer. The diamond-like carbon in the diamond-like carbon film 3 is amorphous carbon in which a sp 2 planar structure (graphite structure) and an sp 3 tetrahedral structure (diamond structure) of carbon atoms are mixed. The diamond-like carbon film preferably used in the present invention is preferably a hydrocarbon containing hydrogen in the structure, and amorphous hydrocarbon and tetrahedral amorphous hydrocarbon are more preferably used from the viewpoint of physical strength and transparency. .

ダイヤモンドライクカーボンの製造方法としては、CVD法やイオン蒸着法などが挙げられるが、フィルム基板をロールトゥロール方式で製膜する場合などに有効である等の理由からスパッタ製膜が好ましい。ターゲット材料としてはカーボンが利用される。スパッタの電力の供給方式はDC方式やRF方式またはVHF方式など任意の方式が挙げられるが、DC方式が好ましい。DC方式が好ましい理由は諸説考えられるが、形成されるダイヤモンドライクカーボン膜の構造が異なることが最も大きな理由だと考えられる。RF方式やVHF方式によるスパッタでは、本発明に好ましい非晶質炭素のダイヤモンドライクカーボン膜を得ることはできない。   Examples of the method for producing diamond-like carbon include a CVD method and an ion deposition method, but sputtering is preferable because it is effective when a film substrate is formed by a roll-to-roll method. Carbon is used as the target material. The sputtering power supply system may be any system such as DC system, RF system or VHF system, but the DC system is preferred. There are various theories why the DC method is preferable, but it is thought that the most important reason is that the structure of the formed diamond-like carbon film is different. Sputtering by RF method or VHF method cannot obtain a diamond-like carbon film of amorphous carbon preferable for the present invention.

電力密度については特に制限はないが、生産性や分子構造の観点から0.05W/cm〜5.00W/cmが好ましい。電力密度が低い場合、製膜速度が遅くなり生産性に悪影響を及ぼす可能性がある。逆に電力密度が高くなりすぎると、ダイヤモンドライクカーボン中のsp構造の割合が多くなりやすく、光線透過率や耐久性に劣ることや、基板側の透明導電層を逆スパッタすることで透明導電層が失われる可能性があるため好ましくない。 There is no particular limitation on the power density, preferably 0.05W / cm 2 ~5.00W / cm 2 from the viewpoint of productivity and molecular structure. When the power density is low, the film forming speed is slow, which may adversely affect productivity. On the other hand, if the power density becomes too high, the proportion of sp 2 structure in diamond-like carbon tends to increase, resulting in poor light transmittance and durability, and transparent conductivity by reverse sputtering of the transparent conductive layer on the substrate side. This is not preferred because the layer may be lost.

使用するキャリアガスには水素を必須成分として、必要に応じてメタンやアルゴンを添加することができる。水素の割合は75体積%〜100体積%が分子構造の観点から好ましい。水素が少なすぎる場合には、ダイヤモンドライクカーボン中のsp構造形成が促進されず、sp構造の割合が多くなり、光線透過率や耐久性に劣る。メタンは、カーボン膜の屈折率制御の目的で添加され、光学制御に有効な手段として使用できる。メタンは0〜25体積%添加することができ、これ以上添加すると、本発明に必要な、高温高湿環境に対する耐久性が低下するため好ましくない。アルゴンはカーボン膜の導電性を制御する目的で添加される。アルゴンは0〜25体積%添加することができ、これ以上添加すると、本発明に必要な、高温高湿環境に対する耐久性が低下するため好ましくない。 The carrier gas used may contain hydrogen as an essential component, and methane or argon may be added as necessary. The proportion of hydrogen is preferably 75% by volume to 100% by volume from the viewpoint of molecular structure. If hydrogen is too small, sp 3 structure formation in diamond-like carbon is not promoted, the more the proportion of sp 2 structure, poor light transmittance and durability. Methane is added for the purpose of controlling the refractive index of the carbon film, and can be used as an effective means for optical control. Methane can be added in an amount of 0 to 25% by volume. Adding more than this is not preferable because the durability against high-temperature and high-humidity environment required for the present invention is reduced. Argon is added for the purpose of controlling the conductivity of the carbon film. Argon can be added in an amount of 0 to 25% by volume, and adding more than this is not preferable because durability against a high-temperature and high-humidity environment necessary for the present invention is lowered.

ダイヤモンドライクカーボン膜を製膜する際の透明基板の温度は、生産性の観点から20℃〜120℃が好ましく、さらに好ましくは20℃〜80℃程度が好ましい。製膜時の基板温度を低く設定することで、製膜前の基板の温度上昇を待つ時間を削除することができ、連続運転による大量生産が可能となる。特にフィルム基板上にロールトゥロール方式で製膜する場合、常時基板が動き続けるので基板の温度上昇が困難であることからも、基板温度は低めに設定することが好ましい。   The temperature of the transparent substrate at the time of forming the diamond-like carbon film is preferably 20 ° C. to 120 ° C., more preferably about 20 ° C. to 80 ° C. from the viewpoint of productivity. By setting the substrate temperature at the time of film formation low, the time for waiting for the temperature rise of the substrate before film formation can be eliminated, and mass production by continuous operation becomes possible. In particular, when a film is formed on a film substrate by a roll-to-roll method, it is preferable that the substrate temperature is set low because the substrate keeps moving and it is difficult to raise the temperature of the substrate.

透明導電層とダイヤモンドライクカーボン膜の膜厚は使用する用途により異なるが、「(A)透明導電層の膜厚が500Å以上2000Å以下であり、且つダイヤモンドライクカーボン膜の膜厚が10Å以上500Å以下である」または「(B)透明導電層の膜厚が50Å以上500Å以下であり、且つダイヤモンドライクカーボン膜の膜厚が100Å以上5000Å以下」であることが好ましい。上記(A)では、比較的低抵抗な領域で使用されるものであり、酸化亜鉛透明導電層で得られる導電性を損なわないために、低導電性であるダイヤモンドライクカーボン膜の膜厚を上記範囲にすることが好ましい。(B)では、高抵抗な領域で使用されるものであり、水分や空気に対して極めて不安定な酸化亜鉛透明導電層の保護にために厚膜のダイヤモンドライクカーボン膜を設けるために上記範囲にすることが好ましい。
透明導電膜の表面抵抗は、JISK7194に記載されている四探針圧接測定で測定した。表面抵抗の値は、使用するアイテムに必要とされる特性により異なるが、5〜2000Ω/□が好ましい。これ以上大きい表面抵抗では、透明導電層の膜厚が薄過ぎ、透明導電膜の表面抵抗が安定にならず、特に高温高湿環境下に放置すると表面抵抗が容易に上昇する。逆にこれ以上小さい表面抵抗では、透明導電層の膜厚が大きくなり、その応力により透明導電層が割れやすくなることや、また透過率の低下やコスト面での課題が発生する。550nmの波長での光線透過率は、JISK7105に記載されている積分球式光線透過率測定装置を用いて測定した。表面抵抗および透過率の測定には、三菱化学(株)製抵抗率測定器「ロレスタGP MCP−T610」および(株)日立ハイテクノロジーズ「分光光度計U−4000」を使用した。
上記の透明導電膜の製造方法について説明する。透明導電膜の製造方法は、上記に説明した気相堆積法に対応した設備であれば特に限定されない。ガラス基板のような硬質基板を用いる場合は、枚葉式やバッチ式などの手法があり、設備の大きさや生産量にあわせて任意に選択することができる。フィルム基板のようなフレキシブル基板を用いる場合は、ある程度の大きさに切断したフィルムを硬質基板上に貼り付けて枚葉式やバッチ式の装置で生産する手法の他に、ロールトゥロール方式で連続生産する手法もあり、容易に大量生産が可能となる。いずれの手法においても、製膜温度を室温付近に設定することで、基板の予備過熱の必要がなく、透明導電膜を大量生産することが可能となる。
The film thicknesses of the transparent conductive layer and the diamond-like carbon film vary depending on the application to be used. “(A) The film thickness of the transparent conductive layer is 500 to 2000 mm and the film thickness of the diamond-like carbon film is 10 to 500 mm. Or “(B) the film thickness of the transparent conductive layer is 50 to 500 mm and the film thickness of the diamond-like carbon film is preferably 100 to 5000 mm”. In the above (A), the diamond-like carbon film having a low conductivity is used in order to prevent the conductivity obtained by the zinc oxide transparent conductive layer from being used in a relatively low resistance region. It is preferable to make it into a range. (B) is used in a high resistance region, and the above range is used to provide a thick diamond-like carbon film for protecting a zinc oxide transparent conductive layer that is extremely unstable to moisture and air. It is preferable to make it.
The surface resistance of the transparent conductive film was measured by four-probe pressure measurement described in JISK7194. The value of the surface resistance varies depending on the properties required for the item to be used, but is preferably 5 to 2000Ω / □. If the surface resistance is larger than this, the film thickness of the transparent conductive layer is too thin, and the surface resistance of the transparent conductive film is not stable. In particular, the surface resistance easily rises when left in a high temperature and high humidity environment. On the other hand, when the surface resistance is smaller than this, the film thickness of the transparent conductive layer becomes large, and the transparent conductive layer easily breaks due to the stress, and a decrease in transmittance and a problem in cost occur. The light transmittance at a wavelength of 550 nm was measured using an integrating sphere light transmittance measuring device described in JISK7105. For the measurement of surface resistance and transmittance, a resistivity measuring instrument “Loresta GP MCP-T610” manufactured by Mitsubishi Chemical Corporation and Hitachi High-Technologies “Spectrophotometer U-4000” were used.
The manufacturing method of said transparent conductive film is demonstrated. The manufacturing method of a transparent conductive film will not be specifically limited if it is the installation corresponding to the vapor deposition method demonstrated above. When a hard substrate such as a glass substrate is used, there are methods such as a single wafer type and a batch type, which can be arbitrarily selected according to the size of the equipment and the production amount. When using a flexible substrate such as a film substrate, a roll-to-roll method is used in addition to the method of producing a single-wafer or batch-type device by attaching a film cut to a certain size on a rigid substrate. There is also a production method, which makes mass production easy. In any method, by setting the film forming temperature to around room temperature, it is not necessary to preheat the substrate, and the transparent conductive film can be mass-produced.

以下に、実施例をもって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
無アルカリガラス(商品名OA−10、膜厚700μm、日本電気硝子社製)に、酸化亜鉛をスパッタ製膜した。製膜条件は、基板温度を30℃、キャリアガスとしてアルゴンガスを20sccm使用し、8Paの圧力で電力密度2.5W/cmのDCパワーをかけ、5分間製膜することで、500Åの酸化亜鉛透明導電層を作製した。さらにその上にダイヤモンドライクカーボン膜をスパッタ製膜した。製膜条件は、基板温度を30℃、カーボンターゲットを用い、水素ガス10sccm使用し、8Paの圧力で電力密度0.15W/cmのDCパワーをかけ、60分間製膜することで、100Åのダイヤモンドライクカーボン膜を作製した。このようにして作製した透明導電膜の表面抵抗は350Ω/□であり、550nmの波長での光線透過率は88%であった。この透明導電膜を85℃/85%RH環境で1週間放置したところ、表面抵抗は360Ω/□であり、550nmの波長での光線透過率は88%であった。
Example 1
Zinc oxide was sputtered on alkali-free glass (trade name OA-10, film thickness 700 μm, manufactured by Nippon Electric Glass Co., Ltd.). The film forming conditions are as follows: substrate temperature is 30 ° C., argon gas is used as a carrier gas at 20 sccm, DC power of 2.5 W / cm 2 is applied at a pressure of 8 Pa, and the film is formed for 5 minutes, thereby oxidizing 500 μm. A zinc transparent conductive layer was produced. Further, a diamond-like carbon film was formed thereon by sputtering. The film forming conditions were as follows: the substrate temperature was 30 ° C., a carbon target was used, 10 sccm of hydrogen gas was used, a DC power of 0.15 W / cm 2 was applied at a pressure of 8 Pa, and the film was formed for 60 minutes. A diamond-like carbon film was prepared. The surface resistance of the transparent conductive film thus prepared was 350Ω / □, and the light transmittance at a wavelength of 550 nm was 88%. When this transparent conductive film was left in an environment of 85 ° C./85% RH for 1 week, the surface resistance was 360Ω / □ and the light transmittance at a wavelength of 550 nm was 88%.

(実施例2)
ポリシクロオレフィンフィルム(商品名ゼオノアフィルムZF−14、日本ゼオン社製)に、酸化亜鉛をスパッタ製膜した。製膜には巻き取り式スパッタ装置を使用した(装置名SPW−050S、アルバック社製)。製膜条件は、基板温度を30℃、キャリアガスとしてアルゴンガスを200sccm使用し、8Paの圧力で電力密度2.5W/cmのDCパワーをかけ、0.1m/sの巻き取り速度で走査し、500Åの酸化亜鉛透明導電層を作製した。さらに連続して、その上にダイヤモンドライクカーボン膜をスパッタ製膜した。製膜条件は、基板温度を30℃、カーボンターゲットを用い、水素ガス100sccm使用し、8Paの圧力で0.15W/cmのDCパワーをかけ、0.1m/sの巻き取り速度で走査し、200Åのダイヤモンドライクカーボン膜を作製した。このようにして作製した透明導電膜の表面抵抗は320Ω/□であり、550nmの波長での光線透過率は87%であった。この透明導電膜を85℃/85%RH環境で1週間放置したところ、表面抵抗は400Ω/□であり、550nmの波長での光線透過率は87%であった。
(Example 2)
Zinc oxide was sputtered onto a polycycloolefin film (trade name ZEONOR film ZF-14, manufactured by Nippon Zeon Co., Ltd.). A roll-up type sputtering device was used for film formation (device name: SPW-050S, manufactured by ULVAC). The film forming conditions are as follows: substrate temperature is 30 ° C., argon gas is used as carrier gas at 200 sccm, DC power of 2.5 W / cm 2 is applied at a pressure of 8 Pa, and scanning speed is 0.1 m / s. Then, a 500-mm zinc oxide transparent conductive layer was produced. Further continuously, a diamond-like carbon film was formed thereon by sputtering. The film forming conditions were as follows: substrate temperature was 30 ° C., carbon target was used, hydrogen gas was used at 100 sccm, DC power of 0.15 W / cm 2 was applied at a pressure of 8 Pa, and scanning was performed at a winding speed of 0.1 m / s. A 200 cm diamond-like carbon film was prepared. The surface resistance of the transparent conductive film thus produced was 320Ω / □, and the light transmittance at a wavelength of 550 nm was 87%. When this transparent conductive film was left in an environment of 85 ° C./85% RH for 1 week, the surface resistance was 400Ω / □ and the light transmittance at a wavelength of 550 nm was 87%.

(実施例3)
ダイヤモンドライクカーボン膜製膜時の電力密度を0.05W/cmとし、製膜時間を20分間とする以外は、実施例1と同様にして透明導電膜を作製した。このようにして作製した透明導電膜の表面抵抗は350Ω/□であり、550nmの波長での光線透過率は88%であった。この透明導電膜を85℃/85%RH環境で1週間放置したところ、表面抵抗は360Ω/□であり、550nmの波長での光線透過率は88%であった。
(Example 3)
A transparent conductive film was produced in the same manner as in Example 1 except that the power density at the time of diamond-like carbon film formation was 0.05 W / cm 2 and the film formation time was 20 minutes. The surface resistance of the transparent conductive film thus prepared was 350Ω / □, and the light transmittance at a wavelength of 550 nm was 88%. When this transparent conductive film was left in an environment of 85 ° C./85% RH for 1 week, the surface resistance was 360Ω / □ and the light transmittance at a wavelength of 550 nm was 88%.

(実施例4)
ダイヤモンドライクカーボン膜製膜時の電力密度を5.00W/cmとし、製膜時間を5分間とする以外は、実施例1と同様にして透明導電膜を作製した。このようにして作製した透明導電膜の表面抵抗は350Ω/□であり、550nmの波長での光線透過率は88%であった。この透明導電膜を85℃/85%RH環境で1週間放置したところ、表面抵抗は360Ω/□であり、550nmの波長での光線透過率は88%であった。
Example 4
A transparent conductive film was produced in the same manner as in Example 1 except that the power density at the time of forming the diamond-like carbon film was 5.00 W / cm 2 and the film formation time was 5 minutes. The surface resistance of the transparent conductive film thus prepared was 350Ω / □, and the light transmittance at a wavelength of 550 nm was 88%. When this transparent conductive film was left in an environment of 85 ° C./85% RH for 1 week, the surface resistance was 360Ω / □ and the light transmittance at a wavelength of 550 nm was 88%.

(実施例5)
ダイヤモンドライクカーボン膜製膜時のキャリアガスを水素7.5sccm、アルゴン2.5sccmとした以外は、実施例1と同様にして透明導電膜を作製した。このようにして作製した透明導電膜の表面抵抗は330Ω/□であり、550nmの波長での光線透過率は86%であった。この透明導電膜を85℃/85%RH環境で1週間放置したところ、表面抵抗は380Ω/□であり、550nmの波長での光線透過率は86%であった。
(Example 5)
A transparent conductive film was produced in the same manner as in Example 1 except that the carrier gas used for forming the diamond-like carbon film was 7.5 sccm of hydrogen and 2.5 sccm of argon. The surface resistance of the transparent conductive film thus produced was 330Ω / □, and the light transmittance at a wavelength of 550 nm was 86%. When this transparent conductive film was left in an environment of 85 ° C./85% RH for 1 week, the surface resistance was 380Ω / □ and the light transmittance at a wavelength of 550 nm was 86%.

(実施例6)
ダイヤモンドライクカーボン膜製膜時のキャリアガスを水素7.5sccm、メタン2.5sccmとした以外は、実施例1と同様にして透明導電膜を作製した。このようにして作製した透明導電膜の表面抵抗は320Ω/□であり、550nmの波長での光線透過率は86%であった。この透明導電膜を85℃/85%RH環境で1週間放置したところ、表面抵抗は380Ω/□であり、550nmの波長での光線透過率は86%であった。
(Example 6)
A transparent conductive film was produced in the same manner as in Example 1 except that the carrier gas at the time of forming the diamond-like carbon film was 7.5 sccm of hydrogen and 2.5 sccm of methane. The surface resistance of the transparent conductive film thus produced was 320Ω / □, and the light transmittance at a wavelength of 550 nm was 86%. When this transparent conductive film was left in an environment of 85 ° C./85% RH for 1 week, the surface resistance was 380Ω / □ and the light transmittance at a wavelength of 550 nm was 86%.

(比較例1)
無アルカリガラス(商品名OA−10、膜厚700μm、日本電気硝子社製)に、ダイヤモンドライクカーボン膜製膜時の電力密度を6.00W/cmとし、製膜時間を10分間とする以外は、実施例1と同様にして透明導電膜を作製した。このようにして得られた透明導電膜の表面抵抗は1800Ω/□であり、酸化亜鉛透明導電層がエッチングされており、ダイヤモンドライクカーボン膜は製膜されていなかった。この透明導電膜を85℃/85%RH環境で1週間放置したところ、表面抵抗は10×10Ω/□であった。
(Comparative Example 1)
Except for alkali-free glass (trade name: OA-10, film thickness: 700 μm, manufactured by Nippon Electric Glass Co., Ltd.), power density at the time of diamond-like carbon film formation is 6.00 W / cm 2 and film formation time is 10 minutes. Produced a transparent conductive film in the same manner as in Example 1. The surface resistance of the transparent conductive film thus obtained was 1800Ω / □, the zinc oxide transparent conductive layer was etched, and the diamond-like carbon film was not formed. When this transparent conductive film was left in an environment of 85 ° C./85% RH for 1 week, the surface resistance was 10 × 10 6 Ω / □.

(比較例2)
無アルカリガラス(商品名OA−10、膜厚700μm、日本電気硝子社製)に、ダイヤモンドライクカーボン膜の製膜条件をDCからRFにする以外は、実施例1と同様にして透明導電膜を作製した。このようにして得られた透明導電膜の表面抵抗は310Ω/□であり、550nmの波長での光線透過率は85%だった。この透明導電膜を85℃/85%RH環境で1週間放置したところ、表面抵抗は1000Ω/□であり、550nmの波長での光線透過率は87%であった。
(Comparative Example 2)
A transparent conductive film was formed in the same manner as in Example 1 except that the film forming condition of the diamond-like carbon film was changed from DC to RF on non-alkali glass (trade name OA-10, film thickness 700 μm, manufactured by Nippon Electric Glass Co., Ltd.). Produced. The surface resistance of the transparent conductive film thus obtained was 310Ω / □, and the light transmittance at a wavelength of 550 nm was 85%. When this transparent conductive film was allowed to stand in an environment of 85 ° C./85% RH for 1 week, the surface resistance was 1000Ω / □ and the light transmittance at a wavelength of 550 nm was 87%.

(比較例3)
無アルカリガラス(商品名OA−10、膜厚700μm、日本電気硝子社製)に、ITOをスパッタリング製膜した。製膜条件は、基板温度を30℃、キャリアガスとしてアルゴンガスを20sccm、8Paの圧力で200WのDCパワーをかけ、8分間製膜することで、500ÅのITO透明導電層を作製した。このようにして作製した透明導電膜の表面抵抗は400Ω/□であり、550nmの波長での光線透過率は80%であった。この透明導電膜を85℃/85%RH環境で1週間放置したところ、表面抵抗は450Ω/□であり、550nmの波長での光線透過率は80%であった。
(Comparative Example 3)
ITO was sputtered onto alkali-free glass (trade name OA-10, film thickness 700 μm, manufactured by Nippon Electric Glass Co., Ltd.). The film forming conditions were as follows: a substrate temperature was 30 ° C., argon gas was 20 sccm as a carrier gas, 200 W DC power was applied at a pressure of 8 Pa, and a film was formed for 8 minutes, thereby producing a 500 mm ITO transparent conductive layer. The surface resistance of the transparent conductive film thus produced was 400Ω / □, and the light transmittance at a wavelength of 550 nm was 80%. When this transparent conductive film was allowed to stand in an environment of 85 ° C./85% RH for 1 week, the surface resistance was 450Ω / □ and the light transmittance at a wavelength of 550 nm was 80%.

(参考例)
無アルカリガラス(商品名OA−10、厚さ0.7mm、日本電気硝子社製)に、基板温度を200℃にする以外は、比較例1と同様にしてITOを500Åの膜厚で製膜した。このようにして作製した透明導電膜の表面抵抗は200Ω/□であり、550nmの波長での光線透過率は85%であった。
(Reference example)
An ITO film is formed in a thickness of 500 mm in the same manner as in Comparative Example 1 except that the substrate temperature is 200 ° C. on alkali-free glass (trade name OA-10, thickness 0.7 mm, manufactured by Nippon Electric Glass Co., Ltd.). did. The surface resistance of the transparent conductive film thus prepared was 200Ω / □, and the light transmittance at a wavelength of 550 nm was 85%.

参考例のように基板温度をITOの結晶化温度(約150℃程度)以上にすることで550nmの波長での光線透過率を85%とすることが可能であったが、30℃程度の低温でITOを透明導電層として形成すると、550nmの波長での光線透過率を85%にすることはできなかった。一方、形成する透明導電層を酸化亜鉛透明導電層とすることで、透明性にすぐれた透明導電膜を作製することが可能となる。実施例1では、枚葉式またはバッチ式で生産する場合に基板の加熱時間が不要であるので大量生産に適している。また、実施例2のようなロールトゥロール方式においても、高品質な透明導電膜を大量に生産することが可能となる。   The light transmittance at a wavelength of 550 nm can be made 85% by setting the substrate temperature to be equal to or higher than the crystallization temperature of ITO (about 150 ° C.) as in the reference example. When ITO was formed as a transparent conductive layer, the light transmittance at a wavelength of 550 nm could not be 85%. On the other hand, a transparent conductive film excellent in transparency can be produced by forming the transparent conductive layer to be formed as a zinc oxide transparent conductive layer. The first embodiment is suitable for mass production because it does not require heating time of the substrate when producing a single wafer type or a batch type. Further, even in the roll-to-roll system as in the second embodiment, it is possible to produce a large amount of high-quality transparent conductive film.

透明導電膜の断面説明図Cross-sectional explanatory drawing of transparent conductive film

符号の説明Explanation of symbols

1 透明基板
2 透明導電層
3 ダイヤモンドライクカーボン膜
1 Transparent substrate 2 Transparent conductive layer 3 Diamond-like carbon film

Claims (3)

透明基板上に少なくとも1層からなる、酸化亜鉛を主成分とする透明導電層、さらにその上に構造中に水素を含有するダイヤモンドライクカーボン膜からなる透明導電膜であり、かつ、該透明導電膜の550nmの波長での光線透過率が85%である透明導電膜の製造方法において、上記ダイヤモンドライクカーボン膜がターゲット材料としてカーボンを用い、キャリアガスとして水素を75〜100体積%、メタン・アルゴンから少なくとも1種類以上選択されたガスを25体積%以下含むガスを使用し、電力密度が0.05〜5.00W/cmの範囲から選択される電力を印加するDCマグネトロンスパッタ法によって形成されることを特徴とする透明導電膜の製造方法。 A transparent conductive layer comprising at least one layer on a transparent substrate, the main component being zinc oxide, and a transparent conductive film comprising a diamond-like carbon film containing hydrogen in the structure thereon, and the transparent conductive film In the method for producing a transparent conductive film having a light transmittance of 85% at a wavelength of 550 nm, the diamond-like carbon film uses carbon as a target material, hydrogen as a carrier gas is 75 to 100% by volume, and from methane / argon. It is formed by a DC magnetron sputtering method using a gas containing 25% by volume or less of at least one selected gas and applying a power selected from a power density range of 0.05 to 5.00 W / cm 2. A method for producing a transparent conductive film. 上記透明導電層及びダイヤモンドライクカーボン膜が、基板温度20℃以上120℃以下で製膜されることを特徴とする、請求項1に記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 1, wherein the transparent conductive layer and the diamond-like carbon film are formed at a substrate temperature of 20 ° C. or higher and 120 ° C. or lower. 透明導電膜形成直後の透明導電膜の表面抵抗と、85℃/85%RH環境下で1週間放置した後の透明導電膜の表面抵抗の比が0.5〜1.5であることを特徴とする、請求項1または請求項2のいずれかに記載の透明導電膜の製造方法。   The ratio between the surface resistance of the transparent conductive film immediately after the formation of the transparent conductive film and the surface resistance of the transparent conductive film after standing for 1 week in an environment of 85 ° C./85% RH is 0.5 to 1.5. The manufacturing method of the transparent conductive film in any one of Claim 1 or Claim 2.
JP2007286144A 2007-11-02 2007-11-02 Method for producing transparent conductive film Expired - Fee Related JP4896854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286144A JP4896854B2 (en) 2007-11-02 2007-11-02 Method for producing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286144A JP4896854B2 (en) 2007-11-02 2007-11-02 Method for producing transparent conductive film

Publications (2)

Publication Number Publication Date
JP2009114478A true JP2009114478A (en) 2009-05-28
JP4896854B2 JP4896854B2 (en) 2012-03-14

Family

ID=40781940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286144A Expired - Fee Related JP4896854B2 (en) 2007-11-02 2007-11-02 Method for producing transparent conductive film

Country Status (1)

Country Link
JP (1) JP4896854B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117071A (en) * 2007-11-02 2009-05-28 Kaneka Corp Transparent conductive film
JP2010003502A (en) * 2008-06-19 2010-01-07 Kaneka Corp Manufacturing method of transparent conductive film
JP2011043628A (en) * 2009-08-20 2011-03-03 Gunze Ltd Retardation film, method for producing transparent conductive laminate for touch panel, and the touch panel
WO2011070801A1 (en) * 2009-12-10 2011-06-16 凸版印刷株式会社 Conductive substrate, method for producing same, and touch panel
KR20120030405A (en) * 2009-06-05 2012-03-28 쌩-고벵 글래스 프랑스 Method for depositing a thin film, and resulting material
JP2012227473A (en) * 2011-04-22 2012-11-15 Ulvac Japan Ltd Semiconductor device manufacturing method
KR20150102719A (en) * 2014-02-28 2015-09-07 티피케이 터치 솔루션즈 (씨아먼) 인코포레이티드 Composite substrate structure and touch panel having the same
JP2015165402A (en) * 2014-02-28 2015-09-17 ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド Composite substrate structure and touch panel having the same
KR20160044599A (en) * 2013-10-17 2016-04-25 쌩-고벵 글래스 프랑스 Method for producing a substrate coated with a stack including a conductive transparent oxide film
CN115207158A (en) * 2022-07-07 2022-10-18 通威太阳能(安徽)有限公司 Preparation method of solar cell, solar cell film-coating carrier plate and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102109A (en) * 1986-10-17 1988-05-07 旭硝子株式会社 Transparent conducting film
JP2001283643A (en) * 2000-03-31 2001-10-12 Toyobo Co Ltd Transparent conductive film, transparent conductive sheet and touch panel
JP2002208180A (en) * 2000-11-13 2002-07-26 Ricoh Co Ltd Structure of optical recording medium and its manufacturing method
JP2003034860A (en) * 2001-07-24 2003-02-07 Bridgestone Corp Transparent electroconductive film and touch panel
JP2006199989A (en) * 2005-01-19 2006-08-03 Ulvac Japan Ltd Film deposition apparatus
WO2008099932A1 (en) * 2007-02-16 2008-08-21 Kaneka Corporation Transparent electroconductive film and process for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102109A (en) * 1986-10-17 1988-05-07 旭硝子株式会社 Transparent conducting film
JP2001283643A (en) * 2000-03-31 2001-10-12 Toyobo Co Ltd Transparent conductive film, transparent conductive sheet and touch panel
JP2002208180A (en) * 2000-11-13 2002-07-26 Ricoh Co Ltd Structure of optical recording medium and its manufacturing method
JP2003034860A (en) * 2001-07-24 2003-02-07 Bridgestone Corp Transparent electroconductive film and touch panel
JP2006199989A (en) * 2005-01-19 2006-08-03 Ulvac Japan Ltd Film deposition apparatus
WO2008099932A1 (en) * 2007-02-16 2008-08-21 Kaneka Corporation Transparent electroconductive film and process for producing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117071A (en) * 2007-11-02 2009-05-28 Kaneka Corp Transparent conductive film
JP2010003502A (en) * 2008-06-19 2010-01-07 Kaneka Corp Manufacturing method of transparent conductive film
US9199874B2 (en) 2009-06-05 2015-12-01 Saint-Gobain Glass France Method for depositing a thin film, and resulting material
KR20120030405A (en) * 2009-06-05 2012-03-28 쌩-고벵 글래스 프랑스 Method for depositing a thin film, and resulting material
JP2012528779A (en) * 2009-06-05 2012-11-15 サン−ゴバン グラス フランス Thin film layer deposition method and resulting product
KR101677783B1 (en) 2009-06-05 2016-11-18 쌩-고벵 글래스 프랑스 Method for depositing a thin film, and resulting material
JP2011043628A (en) * 2009-08-20 2011-03-03 Gunze Ltd Retardation film, method for producing transparent conductive laminate for touch panel, and the touch panel
WO2011070801A1 (en) * 2009-12-10 2011-06-16 凸版印刷株式会社 Conductive substrate, method for producing same, and touch panel
JP4780254B2 (en) * 2009-12-10 2011-09-28 凸版印刷株式会社 Conductive substrate, manufacturing method thereof, and touch panel
CN102652340A (en) * 2009-12-10 2012-08-29 凸版印刷株式会社 Conductive substrate, method for producing same, and touch panel
JPWO2011070801A1 (en) * 2009-12-10 2013-04-22 凸版印刷株式会社 Conductive substrate, manufacturing method thereof, and touch panel
JP2012227473A (en) * 2011-04-22 2012-11-15 Ulvac Japan Ltd Semiconductor device manufacturing method
KR101675252B1 (en) 2013-10-17 2016-11-10 쌩-고벵 글래스 프랑스 Method for producing a substrate coated with a stack including a conductive transparent oxide film
KR20160044599A (en) * 2013-10-17 2016-04-25 쌩-고벵 글래스 프랑스 Method for producing a substrate coated with a stack including a conductive transparent oxide film
JP2015165401A (en) * 2014-02-28 2015-09-17 ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド Composite substrate structure and touch panel having the same
JP2015165402A (en) * 2014-02-28 2015-09-17 ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド Composite substrate structure and touch panel having the same
KR20150102719A (en) * 2014-02-28 2015-09-07 티피케이 터치 솔루션즈 (씨아먼) 인코포레이티드 Composite substrate structure and touch panel having the same
KR101696235B1 (en) * 2014-02-28 2017-01-13 티피케이 터치 솔루션즈 (씨아먼) 인코포레이티드 Composite substrate structure and touch panel having the same
US9760193B2 (en) 2014-02-28 2017-09-12 Tpk Touch Solutions (Xiamen) Inc. Composite substrate structure and touch panel having the same
KR101802365B1 (en) * 2014-02-28 2017-11-29 티피케이 터치 솔루션즈 (씨아먼) 인코포레이티드 Composite substrate structure and touch panel having the same
CN115207158A (en) * 2022-07-07 2022-10-18 通威太阳能(安徽)有限公司 Preparation method of solar cell, solar cell film-coating carrier plate and application thereof
CN115207158B (en) * 2022-07-07 2023-10-13 通威太阳能(安徽)有限公司 Preparation method of solar cell, solar cell coating carrier plate and application thereof

Also Published As

Publication number Publication date
JP4896854B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4896854B2 (en) Method for producing transparent conductive film
JP5285438B2 (en) Substrate with transparent conductive film and method for producing the same
JP6101214B2 (en) Substrate with transparent electrode and manufacturing method thereof
TWI381401B (en) Transparent conductive film and manufacturing method thereof
EP1944386B1 (en) Transparent conductive film and method for producing the same
JP2003151358A (en) Transparent conductive film and touch panel
KR20070084121A (en) Substratum with conductive film and process for producing the same
JP5156336B2 (en) Transparent conductive film
JP5362231B2 (en) Method for producing transparent conductive film
CN111356665A (en) Glass sheet with transparent conductive film, glass roll with transparent conductive film, and method for producing same
JP5468801B2 (en) Substrate with transparent electrode and manufacturing method thereof
JP5390776B2 (en) Method for producing transparent conductive film and transparent conductive film produced according to the method
JP5185646B2 (en) Transparent conductive film
JP2010020951A (en) Method for manufacturing transparent conductive film
JP3501820B2 (en) Transparent conductive film with excellent flexibility
JP5270976B2 (en) Method for producing transparent conductive film
JPH09226046A (en) Transparent conductive layered body and its manufacture
JP5192792B2 (en) Transparent conductive film and manufacturing method thereof
JP2009231246A (en) Manufacturing method of transparent conductive film and transparent conductive film produced by that method
JP2011098464A (en) Substrate with transparent electrode
JP6404064B2 (en) Transparent conductive film and method for producing the same
KR101572712B1 (en) Transparent conductive film and manufacturing method thereof
KR20130015667A (en) Transparent conductive film and method for fabricating the same
JP2009116446A (en) Touch panel using transparent conductive film
KR101174357B1 (en) Method for manufacturing transparency electrode using multi-component metal oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4896854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees