JP2009108436A - Antimicrobial polyester conjugated fiber and method for producing the same - Google Patents

Antimicrobial polyester conjugated fiber and method for producing the same Download PDF

Info

Publication number
JP2009108436A
JP2009108436A JP2007281155A JP2007281155A JP2009108436A JP 2009108436 A JP2009108436 A JP 2009108436A JP 2007281155 A JP2007281155 A JP 2007281155A JP 2007281155 A JP2007281155 A JP 2007281155A JP 2009108436 A JP2009108436 A JP 2009108436A
Authority
JP
Japan
Prior art keywords
component
polyester
antibacterial
composite fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007281155A
Other languages
Japanese (ja)
Inventor
Shinichi Hiraishi
晋一 平石
Tadashi Koyanagi
小柳  正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2007281155A priority Critical patent/JP2009108436A/en
Publication of JP2009108436A publication Critical patent/JP2009108436A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent antimicrobial polyester conjugated fiber which does not cause an environmental problem, has the excellent antimicrobial property, and is not discolored with time, and to provide a method for producing the antimicrobial polyester conjugated fiber excellent in spinning stability. <P>SOLUTION: This polyester sheath-core type conjugated fiber having a sheath component/core component ratio of 10/90 to 80/20 is characterized in that the sheath component contains an inorganic antimicrobial agent carrying an antibacterial metal component which is at least partially silver component, and a silver component average content and a zinc content in the polyester conjugated fiber are 20-150 ppm and ≤10 ppm, respectively, and a coefficient of fiber-fiber dynamic friction is 0.20-0.35. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、抗菌性に優れたポリエステル複合繊維に関するものである。更に詳しくは、環境問題がなく優れた抗菌性を有するとともに、経時的な変色がない優れた抗菌性ポリエステル複合繊維、及び、紡糸安定性に優れた抗菌性ポリエステル複合繊維の製造方法に関するものである。   The present invention relates to a polyester composite fiber having excellent antibacterial properties. More specifically, the present invention relates to an excellent antibacterial polyester composite fiber that has no environmental problems and has excellent antibacterial properties and does not discolor over time, and a method for producing an antibacterial polyester composite fiber excellent in spinning stability. .

ポリエステル繊維は優れた力学特性、化学特性、加工性、イージーケアー性を有することから、衣料用、寝装具用、インテリア用、産業用資材用等に広く使用されている。
近年、これらの繊維用途において、快適性機能の一つとして抗菌性を付与した繊維に対する要望が高まってきている。
一般に、繊維に抗菌性を付与する方法として、芳香族ハロゲン化合物、有機シリコーン系第4アンモニウム塩、有機窒素化合物等を繊維に付着させる方法が採用されているが、これらの化合物は洗濯などにより脱落しやすいため、洗濯耐久性に問題があった。
洗濯耐久性を向上させる目的で、銀、亜鉛、銅イオンを担持させたゼオライト粒子などの無機系抗菌剤を繊維中に含有させた抗菌性ポリエステル繊維が多数知られている(特許文献1)。無機系抗菌剤を繊維中に含有させた抗菌性ポリエステル繊維が抗菌性能を発現する機構は、繊維表面に存在する銀、亜鉛、銅イオンが溶出し細菌に作用することによると推定されている。
Polyester fibers have excellent mechanical properties, chemical properties, processability, and easy care properties, and are therefore widely used for clothing, bedding, interiors, industrial materials, and the like.
In recent years, in these fiber applications, there is an increasing demand for fibers imparted with antibacterial properties as one of comfort functions.
In general, as a method for imparting antibacterial properties to fibers, a method in which an aromatic halogen compound, an organic silicone quaternary ammonium salt, an organic nitrogen compound, or the like is attached to the fibers is employed. As a result, there was a problem with washing durability.
Many antibacterial polyester fibers are known in which inorganic antibacterial agents such as zeolite particles supporting silver, zinc, and copper ions are contained in the fibers for the purpose of improving washing durability (Patent Document 1). The mechanism by which the antibacterial polyester fiber containing an inorganic antibacterial agent exhibits antibacterial performance is presumed to be due to the dissolution of silver, zinc and copper ions present on the fiber surface and acting on bacteria.

ポリエステル繊維は、繊維内部から繊維表面へのイオンの移動が少ないことと、精練や染色加工時に繊維表面に存在する抗菌剤が浴中へ溶出するために、所望の抗菌性能を得るには無機系抗菌剤をあらかじめ多量に含有することで、繊維表面に抗菌剤を存在させることが必要である。
このため、無機系抗菌剤を繊維中に含有させた抗菌性ポリエステル繊維は、以下に示す課題があることが明らかになった。
製糸性・耐摩耗性において、以下のような問題がある。
一般に、繊維用途に用いられる無機系抗菌剤の製造は、ゼオライトを微粉砕して平均粒子径が10μm以下にした後、イオン交換により抗菌性を付与される。このような粒子径の大きい無機系抗菌剤を繊維に含有すると、繊維の紡糸や延伸時に糸切れが生じるばかりか、ポリエステル繊維表面に抗菌剤粒子径に相応する突起が発生する。この突起が存在すると繊維―繊維間の摩擦係数が著しく低下し、パッケージやパーンの巻き崩れを起こし、安定した巻取が困難となることが明らかになった。更に、抗菌剤粒子径に相応する突起が繊維表面に存在すると、編織物にした際に耐磨耗性が著しく低下する欠点が生じることが明らかとなった。
Polyester fiber is inorganic in order to obtain the desired antibacterial performance because there is less ion migration from the inside of the fiber to the fiber surface and the antibacterial agent present on the fiber surface elutes into the bath during scouring and dyeing. It is necessary to make an antibacterial agent exist on the fiber surface by containing a large amount of the antibacterial agent in advance.
For this reason, it became clear that the antibacterial polyester fiber in which the inorganic antibacterial agent is contained in the fiber has the following problems.
There are the following problems in spinning and wear resistance.
In general, in the production of an inorganic antibacterial agent used for fiber applications, an antibacterial property is imparted by ion exchange after finely pulverizing zeolite to have an average particle size of 10 μm or less. When such an inorganic antibacterial agent having a large particle size is contained in the fiber, not only yarn breakage occurs during spinning or drawing of the fiber, but also a projection corresponding to the particle size of the antibacterial agent is generated on the polyester fiber surface. It was revealed that the presence of these protrusions significantly reduced the fiber-to-fiber friction coefficient, causing collapse of the package and pan, making stable winding difficult. Further, it has been clarified that when a protrusion corresponding to the particle diameter of the antibacterial agent is present on the fiber surface, there is a disadvantage that the abrasion resistance is remarkably lowered when the knitted fabric is formed.

無機系抗菌剤の粒子径を小さくすれば、繊維製造時の糸切れや後加工時のトラブルが減少することが予想されるが、従来の無機系抗菌剤の平均粒子径は5μm〜2μm程度が限界であった。このために、繊維製造時の糸切れや巻取安定性課題の解消には至らず、これらの課題を回避して安定に製造するには、繊維中に含有する無機系抗菌剤の比率を少なくすることが必要であった(特許文献2)。
経時変色については、以下のような問題がある。
無機系抗菌剤として銀イオンを用いた場合、繊維加工で使用される各種加工剤の影響や、酸素や大気中に含まれる酸性ガスと紫外線、水分などの作用により銀イオンが酸化され、繊維が経時的に黒褐色に変色するという問題がある。この現象は繊維中に含有される抗菌剤の濃度が高いほど顕著である。
銀系無機系抗菌剤を含有した繊維の変色防止対策として、メルカプト基を有しないアゾ
ール化合物を紡糸油剤に混ぜて付与する方法(特許文献3)や、ヒンダートフェノールを含有させる方法(特許文献4)等が開示されているが、繊維中の銀濃度を高くすると、その効果が不足する問題があり、課題の解消には至っていない。
経時変色を抑制する他の方法として、無機系抗菌剤に銀イオンと等量乃至過剰の亜鉛酸化物を含有させることが知られているが、繊維製品の後加工工程で亜鉛酸化物が排水中に溶出し、後述する環境問題となる。
If the particle size of the inorganic antibacterial agent is reduced, thread breakage during fiber production and troubles during post-processing are expected to decrease, but the average particle size of conventional inorganic antibacterial agents is about 5 μm to 2 μm. It was the limit. For this reason, thread breakage and winding stability problems during fiber production have not been solved, and in order to avoid these problems and produce stably, the ratio of the inorganic antibacterial agent contained in the fiber is reduced. It was necessary to do (patent document 2).
The color change with time has the following problems.
When silver ions are used as an inorganic antibacterial agent, silver ions are oxidized due to the effects of various processing agents used in fiber processing and the action of oxygen, atmospheric acid gases, ultraviolet rays, and moisture. There is a problem that the color changes to blackish brown over time. This phenomenon becomes more prominent as the concentration of the antibacterial agent contained in the fiber is higher.
As a measure for preventing discoloration of a fiber containing a silver-based inorganic antibacterial agent, a method of adding an azole compound not having a mercapto group to a spinning oil (Patent Document 3) or a method of adding a hindered phenol (Patent Document 4) However, if the silver concentration in the fiber is increased, there is a problem that the effect is insufficient, and the problem has not been solved.
As another method for suppressing discoloration over time, it is known that an inorganic antibacterial agent contains an equivalent amount or excess of zinc oxide to silver ions. It becomes an environmental problem described later.

環境問題については、以下のような問題がある。
近年環境への配慮から染色などの繊維加工時に排出される排水への規制が厳しくなり、特に亜鉛イオンの低減が求められている。特に、銀系無機系抗菌剤は、上記経時変色抑制を目的に亜鉛酸化物が多量に配合されていることから、精練・染色加工時の浴中への溶出は避けられない。亜鉛酸化物は、抗菌性能と経時変色を防止する効果があることが知られている。従って、無機系抗菌剤を非亜鉛系とした場合には、変色防止効果が低減することから、変色を抑制するにあたっては、繊維中に含有する無機系抗菌剤の比率を少なくする必要があった。このために、抗菌性能の低下は否めない。即ち、非亜鉛系の銀系無機系抗菌剤の使用にあっては、抗菌性能発現と変色抑制とが二律背反の課題となることが明らかになった。
十分な抗菌性能を得るのに必要な程度の、高い銀イオン含有割合においても、亜鉛酸化物を含有することなく経時変色を抑制することは極めて重要な課題であった。
上記のように、抗菌性能を向上させることと、製糸性・耐摩耗性、経時変色を抑制すること、更には環境問題を解決することとは、相互に相反する課題であった。
従って、環境問題がなく、染色や繰り返しの洗濯によっても抗菌性能の低下がなく優れた抗菌性能を発揮し、耐摩耗性に優れ、経時的な変色がない抗菌性ポリエステル複合繊維と、それを安定に製造する方法の出現が強く求められていた。
Regarding environmental problems, there are the following problems.
In recent years, due to environmental considerations, regulations on wastewater discharged during fiber processing such as dyeing have become stricter, and in particular, reduction of zinc ions is required. In particular, since silver-based inorganic antibacterial agents contain a large amount of zinc oxide for the purpose of suppressing the color change with time, elution into a bath during scouring and dyeing is inevitable. Zinc oxide is known to have antibacterial performance and the effect of preventing discoloration over time. Therefore, when the inorganic antibacterial agent is non-zinc-based, the anti-discoloration effect is reduced, and in order to suppress discoloration, it is necessary to reduce the ratio of the inorganic antibacterial agent contained in the fiber. . For this reason, a decline in antibacterial performance cannot be denied. That is, it became clear that the use of non-zinc-based silver-based inorganic antibacterial agents is a trade-off between antibacterial performance and discoloration suppression.
Even at a high silver ion content ratio necessary to obtain sufficient antibacterial performance, it has been an extremely important issue to suppress discoloration over time without containing zinc oxide.
As described above, improving antibacterial performance, suppressing yarn-making properties, abrasion resistance, temporal discoloration, and solving environmental problems were conflicting issues.
Therefore, there is no environmental problem, antibacterial performance is not deteriorated by dyeing or repeated washing, and excellent antibacterial performance is achieved. Therefore, the advent of a manufacturing method has been strongly demanded.

特公昭63−054013号公報Japanese Examined Patent Publication No. 63-054013 特開2004−360091号公報JP 2004-360091 A 特許2849017号公報Japanese Patent No. 2849017 特開平8−325844号公報JP-A-8-325844

本発明は、環境問題がなく優れた抗菌性を有するとともに、経時的な変色がない優れた抗菌性ポリエステル複合繊維、及び、紡糸安定性に優れた抗菌性ポリエステル複合繊維の製造方法を提供することを目的とする。   The present invention provides an excellent antibacterial polyester composite fiber that has no environmental problems and has excellent antibacterial properties and does not discolor over time, and a method for producing an antibacterial polyester composite fiber excellent in spinning stability. With the goal.

本発明者らは、上記課題を解決するにあたり、鞘芯型複合繊維の鞘成分に含有する銀成分を含む無機系抗菌剤の粒子分布と含有比率を特定範囲とし、その両者を反映した繊維―繊維間動摩擦係数を特定範囲としたポリエステル複合繊維とすることにより、環境問題を生じることなく、抗菌性の維持と、経時的な変色抑制を達成することができ、さらに、それを安定して製糸できることを見出し、発明を完成するに至った。
より具体的には、鞘成分に含有させる無機系抗菌剤の平均粒子径を0.1〜1.0μmにすることにより、繊維―繊維間動摩擦係数を特定範囲とし、その著しい低下を抑制し、しかも、酸化亜鉛を含まなくても極微量の含有率で高い抗菌性を維持できること、ひいては、経時的な変色を抑制できることを見出したものである。
In solving the above-mentioned problems, the present inventors set the particle distribution and content ratio of the inorganic antibacterial agent containing the silver component contained in the sheath component of the sheath-core type composite fiber within a specific range, and a fiber that reflects both of them. By using a polyester composite fiber with a dynamic coefficient of friction between fibers in a specific range, it is possible to maintain antibacterial properties and suppress discoloration over time without causing environmental problems. We found out what we could do and came to complete the invention.
More specifically, by setting the average particle size of the inorganic antibacterial agent to be contained in the sheath component to 0.1 to 1.0 μm, the fiber-to-fiber dynamic friction coefficient is set to a specific range, and the significant decrease thereof is suppressed. In addition, the present inventors have found that high antibacterial properties can be maintained with a very small content without containing zinc oxide, and that discoloration over time can be suppressed.

すなわち本発明は、以下のとおりである。
(1)鞘成分と芯成分の比率が10/90〜80/20からなるポリエステル鞘芯型複合繊維であって、鞘成分に少なくとも一部が銀成分である抗菌性金属成分が担持された無機
系抗菌剤を含有し、該ポリエステル複合繊維中の銀成分平均含有率が20〜150ppmで、亜鉛含有率が10ppm以下であり、かつ、繊維―繊維間動摩擦係数が0.20〜0.35であることを特徴とする抗菌性ポリエステル複合繊維。
(2)前記ポリエステル鞘芯型複合繊維において、鞘成分中の銀成分含有率が40〜300ppmであることを特徴とする(1)に記載の抗菌性ポリエステル複合繊維。
(3)50日保持後の白度保持率が70%以上であり、SEK法による抗菌性が2.2以上であることを特徴とする(1)又は(2)に記載の抗菌性ポリエステル複合繊維。
That is, the present invention is as follows.
(1) A polyester sheath-core composite fiber having a ratio of a sheath component to a core component of 10/90 to 80/20, wherein the sheath component is an inorganic material in which an antibacterial metal component at least part of which is a silver component is supported An antibacterial agent, the silver component average content in the polyester composite fiber is 20 to 150 ppm, the zinc content is 10 ppm or less, and the fiber-fiber dynamic friction coefficient is 0.20 to 0.35. An antibacterial polyester composite fiber characterized by being.
(2) The antibacterial polyester composite fiber according to (1), wherein the polyester sheath-core composite fiber has a silver component content in the sheath component of 40 to 300 ppm.
(3) The antibacterial polyester composite as described in (1) or (2), wherein the whiteness retention after 50 days is 70% or more and the antibacterial property by SEK method is 2.2 or more fiber.

(4)糸長方向のタフネス変動が、12(cN/dtex・%0.5)以下であることを特徴とする(1)〜(3)のいずれかに記載の抗菌性ポリエステル繊維。
(但し、タフネス=[強度]×[伸度]0.5であり、その最大値と最小値の差をタフネス変動とする。)
(5)単糸断面がW字状で、扁平度が2〜5であることを特徴とする(1)〜(4)のいずれかに記載の抗菌性ポリエステル複合繊維。
(6)ポリエステル成分が、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートの少なくとも1種から選ばれたポリエステルであることを特徴とする(1)〜(5)のいずれかに記載の抗菌性ポリエステル複合繊維。
(7)(1)〜(6)に記載の抗菌性ポリエステル複合繊維を用いたことを特徴とする織編物。
(4) The antibacterial polyester fiber according to any one of (1) to (3), wherein a toughness variation in a yarn length direction is 12 (cN / dtex ·% 0.5 ) or less.
(However, toughness = [strength] × [elongation] is 0.5 , and the difference between the maximum value and the minimum value is defined as toughness fluctuation.)
(5) The antibacterial polyester composite fiber according to any one of (1) to (4), wherein the cross section of the single yarn is W-shaped and the flatness is 2 to 5.
(6) The antibacterial polyester according to any one of (1) to (5), wherein the polyester component is a polyester selected from at least one of polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. Composite fiber.
(7) A woven or knitted fabric using the antibacterial polyester conjugate fiber according to (1) to (6).

(8)少なくとも一部が銀成分である抗菌性金属成分が担持された無機系抗菌剤をポリエステルに配合するにあたり、亜鉛成分含有率が10ppm以下であり、平均粒子径が0.1〜1.0μmで、かつ、粒子径が1.2μm以上の粒子の比率が20重量%以下である無機系抗菌剤を、ポリエステル成分に対し0.5〜2重量%混合したポリエステルを鞘成分とし、無機系抗菌剤を含有しないポリエステル成分を芯成分として、鞘成分と芯成分の比率を10/90〜80/20の鞘芯型複合繊維として繊維化することを特徴とする(1)に記載の抗菌性ポリエステル複合繊維の製造方法。
(9)無機系抗菌剤の含有率が5〜30重量%のマスターペレットとポリエステルペレットを溶融混合することを特徴とする(8)に記載の抗菌性ポリエステル複合繊維の製造方法。
(8) In blending the polyester with an inorganic antibacterial agent carrying an antibacterial metal component at least a part of which is a silver component, the zinc component content is 10 ppm or less and the average particle size is 0.1 to 1. An inorganic antibacterial agent in which 0.5 to 2% by weight of an inorganic antibacterial agent having a particle diameter of 0 μm and a particle diameter of 1.2 μm or more is 20% by weight or less is mixed with the polyester component as a sheath component. The antibacterial property according to (1), wherein a polyester component not containing an antibacterial agent is used as a core component, and the ratio of the sheath component to the core component is fiberized as a sheath core type composite fiber having a ratio of 10/90 to 80/20. A method for producing a polyester composite fiber.
(9) The method for producing an antibacterial polyester composite fiber according to (8), wherein a master pellet and a polyester pellet having an inorganic antibacterial content of 5 to 30% by weight are melt-mixed.

本発明によれば、亜鉛の含有率を10ppm以下と極微とすることが可能となり、環境問題がなく、染色などによっても抗菌性能の低下がなく優れた抗菌性を発揮し、耐摩耗性に優れ、経時的な変色がない抗菌性ポリエステル複合繊維と、それを安定に製造する方法を提供できるという効果を奏する。   According to the present invention, it is possible to make the zinc content as extremely small as 10 ppm or less, there is no environmental problem, the antibacterial performance is not deteriorated even by dyeing and the like, and excellent antibacterial properties are exhibited, and the wear resistance is excellent. There is an effect that it is possible to provide an antibacterial polyester composite fiber having no discoloration with time and a method for stably producing the same.

本発明について、以下に詳細に説明する。
本発明は、鞘成分と芯成分の比率が10/90〜80/20からなるポリエステル鞘芯型複合繊維において、鞘成分に少なくとも一部が銀成分である抗菌性金属成分が担持された無機系抗菌剤を含有している。鞘成分と芯成分の比率の好ましい範囲は20/80〜70/30、特に好ましくは30/70〜60/40である。
本発明において、鞘芯型複合繊維とする利点は、抗菌性能が鞘成分の銀成分含有率の影響を強く受け、一方、経時変色が複合繊維中の銀成分の平均含有率の影響を強く受けるということを新たに発見し、抗菌性能と経時変色の抑制という相反する目的を同時に解決可能としたことにある。単一の繊維に比較して、無機系抗菌剤の平均含有率を少なくできることからコスト低減からも利点である。更に、平均含有率が単一の繊維と等しい場合には、白度や白度保持率が高いことや、強度が高いこと、タフネス変動が小さいことなどの利点も有する。
The present invention will be described in detail below.
The present invention relates to a polyester sheath / core composite fiber having a sheath / core ratio of 10/90 to 80/20, wherein the sheath component is an inorganic system in which an antibacterial metal component at least part of which is a silver component is supported. Contains antibacterial agents. The preferred range of the ratio of the sheath component to the core component is 20/80 to 70/30, particularly preferably 30/70 to 60/40.
In the present invention, the advantage of the sheath-core composite fiber is that the antibacterial performance is strongly influenced by the silver component content of the sheath component, while the color change with time is strongly influenced by the average content of the silver component in the composite fiber. This is a new discovery that makes it possible to simultaneously solve the conflicting purposes of antibacterial performance and suppression of discoloration over time. Compared to a single fiber, the average content of the inorganic antibacterial agent can be reduced, which is also advantageous from the viewpoint of cost reduction. Further, when the average content is equal to that of a single fiber, there are advantages such as high whiteness and whiteness retention, high strength, and small toughness fluctuation.

本発明の鞘成分に含有される無機系抗菌剤は、少なくとも一部が銀成分である抗菌性金属成分を担持された無機系抗菌剤である。銀成分を担持させる無機化合物としては、例えば以下のものがある。
すなわち活性炭、活性アルミナ、シリカゲル等の無機系吸着剤、ゼオライト、ヒドロキシアパタイト、リン酸ジルコニウム、リン酸チタン、チタン酸カリウム、含水酸化アンチモン、含水酸化ビスマス、含水酸化ジルコニウム、含水酸化チタン及びハイドロタルサイト等の無機イオン交換体がある。
特にゼオライトに銀成分を担持させた抗菌剤は、銀成分の担持性に優れており、抗菌性能の安定性及び耐久性に優れ、ポリエステルに練り込んだ際の変色が少ない利点を有しているので好ましい。
The inorganic antibacterial agent contained in the sheath component of the present invention is an inorganic antibacterial agent carrying an antibacterial metal component, at least a part of which is a silver component. Examples of the inorganic compound that supports the silver component include the following.
That is, inorganic adsorbents such as activated carbon, activated alumina, silica gel, zeolite, hydroxyapatite, zirconium phosphate, titanium phosphate, potassium titanate, hydrous antimony, hydrous bismuth, hydrous zirconium, hydrous titanium and hydrotalcite Inorganic ion exchangers such as
In particular, an antibacterial agent in which a silver component is supported on zeolite has excellent silver component supportability, has excellent antibacterial performance stability and durability, and has the advantage of less discoloration when kneaded into polyester. Therefore, it is preferable.

これらの無機化合物に本発明でいう銀を担持させる方法には特に制限はなく、例えば物理吸着又は化学吸着により担持させる方法、イオン交換反応により担持させる方法、結合剤により担持させる方法、金属化合物を無機化合物に打ち込むことにより担持させる方法、蒸着、溶解析出反応、スパッタ等の薄膜形成法により無機化合物の表面に金属化合物の薄層を形成させることにより担持させる方法等がある。
また、ゼオライトに銀成分を担持させた抗菌剤中には、抗菌剤の凝集防止や銀イオンの過度のイオン溶出抑制を目的として、分散剤や隠蔽剤が併用されているのが好ましい。更に、抗菌剤中には変色防止安定剤として、リン酸化合物やアルカリ土類金属酸化物が配合されているのが好ましい。
There are no particular limitations on the method of supporting silver in the present invention on these inorganic compounds. For example, a method of supporting by physical adsorption or chemical adsorption, a method of supporting by ion exchange reaction, a method of supporting by a binder, a metal compound There are a method of supporting by injecting into an inorganic compound, a method of supporting by forming a thin layer of a metal compound on the surface of the inorganic compound by a thin film forming method such as vapor deposition, dissolution precipitation reaction, and sputtering.
Further, in the antibacterial agent in which a silver component is supported on zeolite, a dispersant or a concealing agent is preferably used in combination for the purpose of preventing aggregation of the antibacterial agent and suppressing excessive ion elution of silver ions. Further, the antibacterial agent preferably contains a phosphate compound or an alkaline earth metal oxide as a discoloration preventing stabilizer.

本発明では、ポリエステル複合繊維の鞘成分中の銀濃度をコントロールすることが抗菌性能の安定性、経時変色抑制の点から重要であり、ポリエステル複合繊維の鞘成分中の銀成分含有率は40〜300ppmであることが好ましい。鞘成分中の銀成分含有率が40ppm未満では、経時変色は抑制されるものの、抗菌性能の洗濯耐久性が低下する。銀成分含有率が300ppmを超えると、抗菌性能の洗濯耐久性は向上するものの、経時変色が大きくなる。ポリエステル複合繊維の鞘成分中に含有される好ましい銀成分濃度は、50〜200ppm、より好ましくは60〜150ppmである。
本発明のポリエステル複合繊維は、該ポリエステル複合繊維中の銀成分平均含有率が20〜150ppmであることが必要である。銀成分の平均含有率が20ppm未満では、抗菌性能の洗濯耐久性が低下する。銀成分の平均含有率が150ppmを超えると、抗菌性能の洗濯耐久性は向上するものの、経時変色が大きくなる。ポリエステル複合繊維に含有される銀成分の平均含有率は、好ましくは30〜100ppm、より好ましくは40〜80ppmである。
In the present invention, it is important to control the silver concentration in the sheath component of the polyester composite fiber from the viewpoint of stability of antibacterial performance and suppression of discoloration over time, and the silver component content in the sheath component of the polyester composite fiber is 40 to 300 ppm is preferred. When the silver component content in the sheath component is less than 40 ppm, discoloration with time is suppressed, but the washing durability of antibacterial performance decreases. When the silver component content exceeds 300 ppm, the washing durability of antibacterial performance is improved, but the color change with time increases. The preferable silver component concentration contained in the sheath component of the polyester composite fiber is 50 to 200 ppm, more preferably 60 to 150 ppm.
The polyester composite fiber of the present invention needs to have an average silver component content of 20 to 150 ppm in the polyester composite fiber. When the average content of the silver component is less than 20 ppm, the washing durability of the antibacterial performance decreases. When the average content of the silver component exceeds 150 ppm, the antibacterial washing durability is improved, but the color change with time increases. The average content of the silver component contained in the polyester composite fiber is preferably 30 to 100 ppm, more preferably 40 to 80 ppm.

一般に、抗菌性を高めるために、銀成分の含有率を高めると、経時的な変色が生じやすく、抗菌性の維持と経時的な変色の抑制効果とは、二律背反の関係にある。そのため、変色防止剤として、亜鉛などの化合物を用いることとなり、その結果環境問題を生じやすい。
本発明は、この問題を解決し、亜鉛の含有率を10ppm以下という極微量としても、SEK値で2.2以上の抗菌性で、かつ白度保持率70%以上とすることが出来、抗菌性能を損なうことなく、経時的な変色を抑制する効果を向上させうるポリエステル複合繊維を見出した。
図1に、本発明における、銀成分と抗菌性の関係を示した。図1に示す通り、銀成分の平均含有率が20ppm以上で顕著な抗菌性を示し、銀成分の含有率が20〜150ppmの範囲で、SEK法による抗菌性が2.2以上を示す。この様に、本発明においては、銀成分が低濃度域において顕著な抗菌性を示すものである。
一方、銀成分の含有率が多くなると白度保持率は低下傾向を示すものの、銀成分の含有率が20〜150ppmの範囲で、白度保持率は70%を維持でき、優れた経時的変色を
抑制する効果を有する。
In general, when the content of the silver component is increased in order to enhance antibacterial properties, discoloration with time tends to occur, and the antibacterial property maintenance and the effect of suppressing discoloration with time have a trade-off relationship. Therefore, a compound such as zinc is used as the anti-discoloring agent, and as a result, environmental problems are likely to occur.
The present invention solves this problem, and even if the zinc content is as low as 10 ppm or less, the antibacterial property of SEK value is 2.2 or more and the whiteness retention is 70% or more. The present inventors have found a polyester composite fiber that can improve the effect of suppressing discoloration over time without impairing performance.
FIG. 1 shows the relationship between the silver component and antibacterial properties in the present invention. As shown in FIG. 1, the antibacterial property is remarkable when the average content of the silver component is 20 ppm or more, and the antibacterial property by the SEK method is 2.2 or more when the silver component content is in the range of 20 to 150 ppm. Thus, in the present invention, the silver component exhibits remarkable antibacterial properties in a low concentration range.
On the other hand, although the whiteness retention rate tends to decrease as the silver component content increases, the whiteness retention rate can be maintained at 70% when the silver component content is in the range of 20 to 150 ppm, and the color change over time is excellent. Has the effect of suppressing

本発明の抗菌性ポリエステル複合繊維は、亜鉛含有率が10ppm以下であることが必要である。
亜鉛含有率が10ppm以下であれば、繊維表面から抗菌剤の一部が浴中に溶出したとしても、浴中の亜鉛濃度が極めて低く、環境への影響がない。亜鉛含有率は、好ましくは皆無である。
本発明の抗菌性ポリエステル複合繊維は、繊維―繊維間動摩擦係数(以下、F/F動摩擦係数という)が0.20〜0.35であることが必要である。
F/F動摩擦係数は、一般に仕上げ剤の選択等によっても変化するが、抗菌性ポリエステル複合繊維に含有される無機系抗菌剤が繊維表面に微少な突起を形成することの影響が大きい。即ち、無機系抗菌剤の粒径分布と含有率に強く影響を受けることが、本発明者らの検討によって初めて明らかになった。
The antibacterial polyester composite fiber of the present invention needs to have a zinc content of 10 ppm or less.
If the zinc content is 10 ppm or less, even if a part of the antibacterial agent is eluted from the fiber surface into the bath, the zinc concentration in the bath is extremely low and there is no environmental impact. The zinc content is preferably none at all.
The antibacterial polyester composite fiber of the present invention needs to have a fiber-fiber dynamic friction coefficient (hereinafter referred to as F / F dynamic friction coefficient) of 0.20 to 0.35.
The F / F dynamic friction coefficient generally varies depending on the choice of finishing agent and the like, but the influence of the inorganic antibacterial agent contained in the antibacterial polyester composite fiber forming minute protrusions on the fiber surface is large. That is, it has been clarified for the first time by the present inventors that it is strongly influenced by the particle size distribution and content of the inorganic antibacterial agent.

F/F動摩擦係数は、後述するように、繊維に含有する無機系抗菌剤の平均粒子径、含有率によって設定される。
F/F動摩擦係数が、0.2未満では繊維表面に粒子径の大きな無機系抗菌剤が多数突起しており、抗菌性能は優れるものの、経時変色が大きく、しかも、繊維製造時に糸切れや巻き形状異常が生じ安定した製造が困難となる。F/F動摩擦係数が0.35を超えると、繊維表面に無機系抗菌剤がほとんど存在せず、繊維製造時の巻き形状は正常となり、経時変色も抑制されるが、抗菌性能が不足する。
F/F動摩擦係数が本発明の範囲であれば、繊維製造が安定して可能となると同時に、経時変色も抑制され、しかも優れた抗菌性能が発現される。
好ましいF/F動摩擦係数は、0.22〜0.30である。
As will be described later, the F / F dynamic friction coefficient is set by the average particle diameter and content of the inorganic antibacterial agent contained in the fiber.
When the F / F dynamic friction coefficient is less than 0.2, a large number of inorganic antibacterial agents with large particle diameters are projected on the fiber surface, and although antibacterial performance is excellent, discoloration with time is large, and yarn breakage or winding during fiber production A shape abnormality occurs and stable manufacturing becomes difficult. When the F / F dynamic friction coefficient exceeds 0.35, there is almost no inorganic antibacterial agent on the fiber surface, the wound shape during fiber production becomes normal, and discoloration with time is suppressed, but the antibacterial performance is insufficient.
When the F / F dynamic friction coefficient is within the range of the present invention, fiber production can be stably performed, and at the same time, discoloration with time is suppressed, and excellent antibacterial performance is exhibited.
A preferable F / F dynamic friction coefficient is 0.22 to 0.30.

本発明の抗菌性ポリエステル複合繊維は、後述する白度保持試験による白度保持率が70%以上であることが好ましい。白色度は、高いほど経時変色が少ない。白度保持率が70%以上であれば、染色編織物では実用上使用可能である。白色度が75%以上であれば、抗菌性ポリエステル複合繊維と他の繊維との交編交織された場合には、実質的に経時変色が問題になることは少ない。より好ましい白度保持率は80%以上である。
本発明の抗菌性ポリエステル繊維は、糸長方向のタフネス変動が、12(cN/dtex・%0.5)以下であることが好ましい。但し、タフネスは後述する方法で測定される。
The antibacterial polyester composite fiber of the present invention preferably has a whiteness retention rate of 70% or more by a whiteness retention test described later. The higher the whiteness, the less the color change with time. If the whiteness retention is 70% or more, it can be used practically in dyed knitted fabrics. When the whiteness is 75% or more, when the antibacterial polyester composite fiber and other fibers are knitted and woven, the color change with time is hardly a problem. A more preferable whiteness retention is 80% or more.
Antibacterial polyester fiber of the present invention, yarn length direction of the toughness variation, is preferably 12 (cN / dtex ·% 0.5 ) or less. However, toughness is measured by the method described later.

更に、ポリエステル複合繊維中に粒子径が数ミクロン以上と大きい無機系抗菌剤を多量に含有した場合には、ポリエステル繊維のタフネスがその糸長方向で周期的に変動することが、本発明者らの検討で明らかになった。この理由は明らかではないが、無機系抗菌剤の完全な均一混合が困難であることから、無機系抗菌剤の含有率斑がタフネス斑を生じせしめているものと推定される。本発明では、後述する製造法に基づいて、無機系抗菌剤の粒子径の制御と、繊維への分散方法を見出したことにより、繊維の糸長方向のタフネス変動を縮小することを可能とした。糸長方向のタフネス変動は10(cN/dtex・%0.5)以下が好ましく、更に好ましくは8(cN/dtex・%0.5)以下である。 Furthermore, when the polyester composite fiber contains a large amount of an inorganic antibacterial agent having a large particle size of several microns or more, the toughness of the polyester fiber periodically varies in the yarn length direction. It became clear by examination. The reason for this is not clear, but since it is difficult to completely mix the inorganic antibacterial agent, it is presumed that the uneven content of the inorganic antibacterial agent causes toughness spots. In the present invention, the control of the particle size of the inorganic antibacterial agent and the method of dispersing in the fiber based on the production method described later have been found, thereby making it possible to reduce the toughness fluctuation in the yarn length direction of the fiber. . The toughness variation in the yarn length direction is preferably 10 (cN / dtex ·% 0.5 ) or less, and more preferably 8 (cN / dtex ·% 0.5 ) or less.

本発明でいうポリエステルとは、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートなどの繊維形成性ポリエステルをいう。より、汎用的には、ポリエチレンテレフタレートが用いられる。これらのポリエステルには、ジカルボン酸成分としてイソフタル酸、ナフタレンジカルボン酸、アジピン酸などのジカルボン酸や、プロピレングリコール、ブタンジオール、シクロヘキサンー1,4−ジメタノール、ポリエチレングリコールなどのジオール成分を共重合させてもよい。また、艶消し剤、制電剤、安定剤等の添加剤を含んでいても良い。
繊維の単糸断面形状は、特に限定されないが、丸断面以外にW、Y、I、X字状などが採用される。特に単糸断面形状がW字で、扁平度(外接長方形の短辺と長辺の長さ比)が2〜5の場合は、F/F動摩擦係数を本発明の範囲に設定することが容易であり、好ましい。更に、W字状断面のポリエステル複合繊維に、抗菌性能に加えて毛細管現象を利用して吸水性を付与するには、単糸の扁平度が2.0〜4.0であることが好ましい。
The polyester referred to in the present invention refers to a fiber-forming polyester such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. More generally, polyethylene terephthalate is used. These polyesters are copolymerized with dicarboxylic acid components such as isophthalic acid, naphthalenedicarboxylic acid, and adipic acid, and diol components such as propylene glycol, butanediol, cyclohexane-1,4-dimethanol, and polyethylene glycol. May be. Further, it may contain additives such as a matting agent, an antistatic agent, and a stabilizer.
The cross-sectional shape of the single yarn of the fiber is not particularly limited, but W, Y, I, X-shape, etc. are adopted in addition to the round cross section. In particular, when the single yarn cross-sectional shape is W-shaped and the flatness (the ratio of the length of the short side to the long side of the circumscribed rectangle) is 2 to 5, it is easy to set the F / F dynamic friction coefficient within the range of the present invention. It is preferable. Further, in order to impart water absorption to the polyester composite fiber having a W-shaped cross section by utilizing capillary action in addition to antibacterial performance, the flatness of the single yarn is preferably 2.0 to 4.0.

また抗菌性能、吸水性能を安定化させるため単糸断面形状はW字状で、各凹部の開口角度が100〜150度であることが好ましい。このことにより、単糸断面形状が吸水性を有するW字状断面となり、少量の抗菌剤の含有で優れた抗菌性能を有するとともにソフトな風合を有したポリエステル複合繊維が得られる。
本発明の抗菌性ポリエステル複合繊維は、長繊維のまま編織物に使用してもよく、また、短繊維として他の繊維と混用してもよい。
以下、本発明の抗菌性ポリエステル複合繊維の製造方法について説明する。
本発明の抗菌性ポリエステル複合繊維の製造においては、公知の複合紡糸機が採用される。
Moreover, in order to stabilize antibacterial performance and water absorption performance, the cross-sectional shape of the single yarn is preferably W-shaped, and the opening angle of each recess is preferably 100 to 150 degrees. As a result, the cross-sectional shape of the single yarn becomes a W-shaped cross-section having water absorption, and a polyester composite fiber having excellent antibacterial performance with a small amount of antibacterial agent and a soft texture can be obtained.
The antibacterial polyester composite fiber of the present invention may be used in a knitted fabric as a long fiber, or may be mixed with other fibers as a short fiber.
Hereinafter, the manufacturing method of the antimicrobial polyester composite fiber of this invention is demonstrated.
In the production of the antibacterial polyester composite fiber of the present invention, a known composite spinning machine is employed.

鞘成分である無機系抗菌剤のポリエステルへの配合方法としては、ポリエステル重合時に無機系抗菌剤をエチレングリコール等に分散して添加し、重合完了後チップ化し、溶融紡糸する方法がある。また、ポリエステルチップに無機系抗菌剤を直接練り込んで溶融紡糸する方法、マスターチップ化しポリエステルとポリエステルチップと混合した後、紡糸する方法等がある。重合時に銀成分を含む無機系抗菌剤を添加した場合、高温度に長時間保持され、ポリエステル重合に際して使用される触媒や添加剤により銀成分が変色し、ポリマー色調を悪化させることとなる。また、ポリエステルチップに無機系抗菌剤を直接練り込んで溶融紡糸する方法では無機系粒子のポリエステルへの分散が不十分であり、紡糸フィルター圧力の上昇や糸切れ等の欠点が顕在化することとなる。
一方、マスターチップによる無機系抗菌剤の練り込み方法はマスターチップ化される段階でのポリエステルへの練り込みに加え、紡糸工程で更にポリエステルとの混練が成され、2段階でポリエステルへの無機系粒子の練り込みが行われるため、無機系粒子の微分散が他の方法に比べ優れている。また、練り込み時間が短時間であることからポリエステルの色調変化が少なく色調が良好で均染な繊維が得られる。従って、ポリエステル複合繊維の物性、色調、生産性等の安定性の面から、マスターチップによる練り込み方法が最も好ましい方法といえる。
As a method for blending the inorganic antibacterial agent, which is a sheath component, into the polyester, there is a method in which the inorganic antibacterial agent is dispersed and added to ethylene glycol or the like at the time of polyester polymerization, chipped after polymerization is completed, and melt spinning. In addition, there are a method in which an inorganic antibacterial agent is directly kneaded into a polyester chip and melt spinning, a method in which a master chip is formed and the polyester and the polyester chip are mixed, and then spinning is performed. When an inorganic antibacterial agent containing a silver component is added at the time of polymerization, the silver component is discolored by a catalyst or additive used at the time of polyester polymerization, and the color of the polymer is deteriorated. In addition, the inorganic antibacterial agent is directly kneaded into the polyester chip and melt-spun, so that the inorganic particles are not sufficiently dispersed in the polyester, and defects such as an increase in spinning filter pressure and yarn breakage become obvious. Become.
On the other hand, the method of kneading the inorganic antibacterial agent with the master chip is not only kneading into the polyester at the stage of becoming the master chip, but further kneading with the polyester in the spinning process, and the inorganic system into the polyester in two stages. Since the kneading of the particles is performed, the fine dispersion of the inorganic particles is superior to other methods. In addition, since the kneading time is short, there is little change in the color tone of the polyester, and a fiber with good color tone and level dyeing can be obtained. Therefore, it can be said that the kneading method using a master chip is the most preferable method from the viewpoint of stability such as physical properties, color tone, and productivity of the polyester composite fiber.

本発明で使用されるマスターチップ中の無機系抗菌剤濃度は5〜30重量%であり、好ましくは10〜20重量%である。30重量%を越えると無機系粒子の分散性が不十分であり、5重量%未満では効率が低下するため好ましくない。
本発明では、少なくとも一部が銀成分である抗菌性金属成分が担持された無機系抗菌剤をポリエステルに配合するにあたり、該無機系抗菌剤中の亜鉛成分の含有率が10ppm以下であることが必要である。無機系抗菌剤に実質的に亜鉛成分を含有しないことにより、抗菌性ポリエステル繊維加工時における環境への亜鉛成分の排出を回避できる。
本発明の製造に用いる無機系抗菌剤は、平均粒子径が0.1〜1.0μmで、かつ、粒子径が1.2μm以上の粒子の比率が20重量%以下であることが必要である。
無機系抗菌剤の平均粒子径は紡糸時の安定性や巻取安定性、更には、編織物の耐摩耗性を良くする目的から、平均粒子径が0.1〜1.0μmで、かつ、粒子径が1μm以上の比率が20重量%以下であることが必要である。
The concentration of the inorganic antibacterial agent in the master chip used in the present invention is 5 to 30% by weight, preferably 10 to 20% by weight. If it exceeds 30% by weight, the dispersibility of the inorganic particles is insufficient, and if it is less than 5% by weight, the efficiency decreases, which is not preferable.
In the present invention, when an inorganic antibacterial agent carrying an antibacterial metal component, at least a part of which is a silver component, is blended with polyester, the content of the zinc component in the inorganic antibacterial agent is 10 ppm or less. is necessary. By not containing a zinc component substantially in an inorganic type antibacterial agent, discharge | emission of the zinc component to the environment at the time of antibacterial polyester fiber processing can be avoided.
The inorganic antibacterial agent used in the production of the present invention is required to have an average particle size of 0.1 to 1.0 μm and a ratio of particles having a particle size of 1.2 μm or more to 20% by weight or less. .
The average particle diameter of the inorganic antibacterial agent is 0.1 to 1.0 μm in average particle diameter for the purpose of improving stability during spinning and winding stability, and further improving the abrasion resistance of the knitted fabric, and The ratio of the particle size of 1 μm or more needs to be 20% by weight or less.

無機系抗菌剤の平均粒子径が1.0μmを超えると、紡糸時の糸切れが増加して安定した製造が困難となる。また、ポリエステル複合繊維のF/F動摩擦係数が0.20未満となり、繊維が非常に滑りやすくなるために、パッケージやパーンの巻き崩れが発生し、安定した巻取が困難となる。更には、ポリエステル複合繊維を編織した製品の耐摩耗性が低
下し、商品性が低下する。無機系抗菌剤の平均粒子径は小さい程好ましいが、現状の技術水準では0.1μm未満とするのに多大なコストを要するので、工業的には0.1μmが限界である。
無機系抗菌剤の平均粒子径の好ましい範囲は、0.3〜0.8μmである。
無機系抗菌剤は、平均粒子径が0.1〜1.0μmであると同時に、粒子径が1.2μm以上の粒子の比率が20重量%以下であることが必要である。
粒子径が1.2μmを超える粒子の比率が20重量%を超えると、上記糸切れや巻取安定性、更には耐摩耗性が低下する。1.2μmを超える粒子の比率は、10重量%以下であることが好ましい。
If the average particle size of the inorganic antibacterial agent exceeds 1.0 μm, yarn breakage during spinning increases and stable production becomes difficult. In addition, the F / F dynamic friction coefficient of the polyester composite fiber is less than 0.20, and the fiber becomes very slippery. Therefore, the package and the pann are crushed, and stable winding becomes difficult. Furthermore, the wear resistance of the product knitted from the polyester composite fiber is lowered, and the merchantability is lowered. The average particle size of the inorganic antibacterial agent is preferably as small as possible. However, in the current technical level, it takes a great deal of cost to make it less than 0.1 μm, and therefore, 0.1 μm is the limit in the industry.
A preferable range of the average particle diameter of the inorganic antibacterial agent is 0.3 to 0.8 μm.
The inorganic antibacterial agent needs to have an average particle size of 0.1 to 1.0 μm and a ratio of particles having a particle size of 1.2 μm or more to 20% by weight or less.
When the ratio of particles having a particle diameter exceeding 1.2 μm exceeds 20% by weight, the yarn breakage, winding stability, and wear resistance are deteriorated. The ratio of particles exceeding 1.2 μm is preferably 10% by weight or less.

無機系抗菌剤の鞘成分への配合量は、ポリエステル成分に対し0.5〜2重量%であることが必要である。
配合量が0.5重量%以下では、ポリエステル複合繊維の鞘成分中の銀成分含有率を40ppmとするのに、無機系抗菌剤に担持させる銀成分を多量とすることが必要となり、無機系抗菌剤自体の熱安定性や変色安定性が不良となる。
配合量が2重量%を超えると、無機系抗菌剤の平均粒子径を小さくしても、繊維―繊維間動摩擦係数が0.2未満となり、繊維製造の安定性や磨耗性が不良となる。
好ましい配合量は、0.6〜2重量%、より好ましくは、0.7〜1.5重量%である。
本発明の抗菌性ポリエステル複合繊維の繊維化は、抗菌剤を含有したポリエステルを鞘成分とし、鞘成分と芯成分を所定の比率として紡糸パック内で鞘芯型とした後、紡糸ノズルから紡糸し固化させた後、一旦巻き取って延伸熱処理する二段階法か、一旦巻き取ることなく連続して延伸熱処理する一段階法、または高速で巻き取って繊維化する高速紡糸などが可能である。
The compounding amount of the inorganic antibacterial agent in the sheath component needs to be 0.5 to 2% by weight with respect to the polyester component.
When the blending amount is 0.5% by weight or less, the silver component content in the sheath component of the polyester composite fiber needs to be 40 ppm. The thermal stability and discoloration stability of the antibacterial agent itself are poor.
When the blending amount exceeds 2% by weight, even if the average particle size of the inorganic antibacterial agent is decreased, the fiber-fiber dynamic friction coefficient becomes less than 0.2, and the fiber production stability and wear resistance become poor.
A preferable blending amount is 0.6 to 2% by weight, and more preferably 0.7 to 1.5% by weight.
The fiber formation of the antibacterial polyester composite fiber of the present invention is carried out by using a polyester containing an antibacterial agent as a sheath component, forming a sheath core type in a spinning pack with a sheath component and a core component in a predetermined ratio, and spinning from a spinning nozzle. After solidification, a two-stage method in which the film is once wound and stretched and heat treated, a one-stage method in which the film is continuously stretched and heat-treated without being wound once, or a high-speed spinning that is wound at a high speed to form a fiber is possible.

以下に本発明を実施例により説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、本発明で用いられる特性値の測定法を以下に示す。
(1)扁平度
扁平度は、次式にて、繊維の単糸横断面における、外接長方形の長辺Aと短辺Bの比にて求めた。
扁平度=長辺A/短辺B
(2)繊維―繊維間動摩擦係数
690mの繊維を円筒の周りに、綾角15度で約15gの張力を掛けて巻き付け、上述と同じ繊維30.5cmの繊維を巻き付けた円筒に掛けた。この時、この繊維は円筒の軸と垂直方向となるように掛けた。そして、円筒上に掛けた繊維の総デニールの0.04倍になる加重(g)を有する重りを円筒に掛けた繊維の片方の端に結び、他方の端にはストレインゲージを連結させた。次にこの円筒を18m/分の周速度で回転させ、張力をストレインゲージで測定する。こうして測定した張力から繊維−繊維間動摩擦係数fを次式より求めた。
f=1/π×ln(T2/T1)
ここで、T1は繊維に掛けた重りの重さ(g)、T2は少なくとも25回測定したときの平均張力(g)、lnは自然対数、πは円周率を示す。なお、測定は25℃で行った。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In addition, the measuring method of the characteristic value used by this invention is shown below.
(1) Flatness Flatness was calculated | required by ratio of the long side A and the short side B of a circumscribed rectangle in the single yarn cross section of a fiber by following Formula.
Flatness = long side A / short side B
(2) Fiber-to-fiber dynamic friction coefficient A fiber of 690 m was wound around a cylinder with a tension of about 15 g at a twill angle of 15 degrees and hung on a cylinder wound with the same fiber of 30.5 cm as described above. At this time, the fiber was hung so as to be perpendicular to the axis of the cylinder. A weight having a weight (g) which is 0.04 times the total denier of the fiber hung on the cylinder was tied to one end of the fiber hung on the cylinder, and a strain gauge was connected to the other end. Next, this cylinder is rotated at a peripheral speed of 18 m / min, and the tension is measured with a strain gauge. The fiber-fiber dynamic friction coefficient f was determined from the following equation from the tension thus measured.
f = 1 / π × ln (T2 / T1)
Here, T1 is the weight (g) of the weight applied to the fiber, T2 is the average tension (g) when measured at least 25 times, ln is the natural logarithm, and π is the circumference. The measurement was performed at 25 ° C.

(3)抗菌性評価
繊維製品衛生加工評議会(SEK)の統一試験法に準じて行った。滅菌後クリーンベンチ内で乾燥した検体(約18mmの正方形の試験片0.4g)に、予め高圧蒸気滅菌し氷冷した1/20濃度のニュートリエントブロスで、生菌数を1±0.3×10個/mlに調整した試験菌懸濁液0.2mlを検体全体に均一に浸みるように接種し、滅菌したキャップを締め付ける。これを37±1℃で18時間培養し、培養後の生菌数を測定した。
検体は、標準布(抗菌防臭加工製品の加工効果評価試験マニュアルに規定された布)と加工布の2種類であり、試験菌としては、黄色ブドウ状球菌(Staphylococcus aureus ATCC 6538P)を用い、下記の方法で抗菌性の指標である静菌活性値を算出した。
静菌活性値:LogB−LogC
但し、試験成立条件(LogB−LogA)>1.5を満たすものとする
A:標準布の接種直後に回収した菌数平均値
B:標準布の18時間培養後の菌数平均値
C:試験布の18時間培養後の菌数平均値
静菌活性値が2.2以上のものを抗菌性ありと判断した。
(3) Antibacterial property evaluation It performed according to the unified test method of the textile product hygiene processing council (SEK). After sterilization, dry specimens (about 18 mm square test piece 0.4 g) were sterilized with high-pressure steam and ice-cooled in a 1/20 concentration nutrient broth. Inoculate 0.2 ml of the test bacteria suspension adjusted to 10 5 cells / ml so that the entire specimen is uniformly immersed, and tighten a sterilized cap. This was cultured at 37 ± 1 ° C. for 18 hours, and the number of viable bacteria after the culture was measured.
There are two types of specimens: a standard cloth (a cloth specified in the processing effect evaluation test manual for antibacterial and deodorant processed products) and a processed cloth. As test bacteria, Staphylococcus aureus ATCC 6538P is used, and The bacteriostatic activity value, which is an antibacterial index, was calculated by this method.
Bacteriostatic activity value: LogB-LogC
However, the test establishment condition (LogB-LogA)> 1.5 shall be satisfied. A: Average number of bacteria recovered immediately after inoculation with standard cloth B: Average number of bacteria after 18 hours of culture of standard cloth C: Test Bacterial average value after 18 hours of culturing the cloth Bacteriostatic activity value of 2.2 or more was judged to be antibacterial.

(4)耐摩耗性
JIS−L−1096マーチンデ−ル摩耗法において、衣料用押し圧荷重で、摩耗布はそ毛布を用い10000回摩耗したときの減耗の程度を5段階で評価した。5級では減耗が少なく耐摩耗性に優れており、1級では耐摩耗性に劣ることを示す。通常は3級以上であれば、実用上使用可能である。
(5)白度及び白度保持率
布帛を下記条件にて精練、乾燥後、温度が24〜28℃、湿度が40〜50%RHの環境室内で、直射日光が当たらない南側の窓際に置き、50日間置いたときの白色度を分光測色計(Gretagmacbeth社製、形式Color−Eye7000A)を使用し、Lab表色系より白色度を測定した。白色度は数値が高いほど白度が高い。
50日間置いた後の白色度を精練・乾燥直後の白度で除した値に100を掛けた値を白度保持率とした。
精練条件
界面活性剤:スコアロールFC−250(北広ケミカル社製)2g/リットル
炭酸ナトリウム: 1g/リットル
浴 比: 1:50
処理温度、時間: 80℃、20分
処理完了後、湯洗、水洗を行い、脱水、乾燥した。
本試験で、白色度が高いほど経時変色が少ないことを意味する。白色度が70以上であれば合格である。
(4) Abrasion resistance In the JIS-L-1096 Martindale abrasion method, the wear load was evaluated in five stages by applying a pressing load for clothing, and the abrasion cloth was worn 10,000 times using a blanket. The 5th grade shows little wear and excellent wear resistance, and the 1st grade shows poor wear resistance. Usually, if it is more than the third grade, it can be used practically.
(5) Whiteness and whiteness retention rate After scouring and drying the fabric under the following conditions, place the fabric in an environmental room with a temperature of 24 to 28 ° C and a humidity of 40 to 50% RH, on the south window where it is not exposed to direct sunlight. Using a spectrocolorimeter (manufactured by Gretagmacbeth, model Color-Eye7000A), the whiteness was measured from the Lab color system. The whiteness is higher as the numerical value is higher.
The value obtained by dividing the whiteness after 50 days by the whiteness immediately after scouring and drying was multiplied by 100 to obtain the whiteness retention.
Scouring conditions
Surfactant: Score roll FC-250 (Kitahiro Chemical Co., Ltd.) 2 g / liter
Sodium carbonate: 1 g / liter Bath ratio: 1:50
Treatment temperature, time: 80 ° C, 20 minutes
After completion of the treatment, washing with hot water and washing with water were performed, followed by dehydration and drying.
In this test, the higher the whiteness, the less the color change with time. If the whiteness is 70 or more, it is acceptable.

(6)タフネス変動(単位;cN/dtex・%0.5
JIS−L−1013に基づいて、糸長方向に約0.5mごとに強度と伸度を50回測定し、下記の式によりタフネスを算出し、その最大値と最小値の差をタフネス変動とした。
タフネス=[強度]×[伸度]0.5
(7)粒径分布
使用する無機系抗菌剤の粒径分布を、堀場製作所(株)製レーザ回折/散乱式粒度分布測定装置LA−920により測定した。
測定結果は、測定装置に内臓されたコンピューターにより粒子径分布が算出され、粒子径と存在比率(容積)分布頻度のヒストグラム及び平均粒子径が表示される。この表示から平均粒子径を読み取る。また、ヒストグラムから粒子径が1.2μmを超える粒子の比率(容積)を読み取った。
(6) Toughness fluctuation (unit: cN / dtex ·% 0.5 )
Based on JIS-L-1013, the strength and elongation are measured 50 times every 0.5 m in the yarn length direction, the toughness is calculated by the following formula, and the difference between the maximum value and the minimum value is the toughness fluctuation. did.
Toughness = [strength] x [elongation] 0.5
(7) Particle size distribution The particle size distribution of the inorganic antibacterial agent used was measured with a laser diffraction / scattering particle size distribution measuring device LA-920 manufactured by Horiba, Ltd.
As the measurement result, the particle size distribution is calculated by a computer incorporated in the measuring apparatus, and a histogram of the particle size and the existing ratio (volume) distribution frequency and the average particle size are displayed. The average particle size is read from this display. Further, the ratio (volume) of particles having a particle diameter exceeding 1.2 μm was read from the histogram.

(8)巻取安定性
1錘8エンドの巻取で、巻き重量6kgの巻取パッケージを各条件について40個採取し、この巻取パッケージの巻き崩れの有無とパッケージ側面の糸落ち欠点の有無を3段階で評価した。
◎;巻き崩れも側面の糸落ち欠点もなく良好
○;巻き崩れはないが、微少な糸落ちあり。
×;巻き崩れ、もしくは、著しい糸落ち欠点あり。
(9)総合評価
◎ ; 製糸性、抗菌性、耐摩耗性、経時変色、亜鉛成分溶出量の全てが良好。
○ ; 製糸性、抗菌性、耐摩耗性、経時変色、亜鉛成分溶出量の全てがほぼ良好
× ; 製糸性、抗菌性、耐摩耗性、経時変色、亜鉛成分溶出量のいずれかが不
良。
(8) Winding stability 40 winding packages with a winding weight of 6 kg were collected for each condition by winding one spindle with 8 ends, and whether or not the winding package collapsed and whether there was a yarn drop defect on the side of the package. Was evaluated in three stages.
◎: Good without breakage and side thread drop defect ○: No roll breakage, but slight thread drop
X: There is a winding breakage or a remarkable thread dropping defect.
(9) Comprehensive evaluation ◎; All of yarn-making property, antibacterial property, abrasion resistance, discoloration with time, and zinc component elution amount are good.
○: All of the yarn-making property, antibacterial property, abrasion resistance, discoloration with time, and zinc component elution amount are almost good. ×: Any of the yarn-forming property, antibacterial property, abrasion resistance, discoloration with time, and zinc component elution amount is not good.
Good.

[実施例1〜5、比較例1〜2]
公知の鞘芯型複合紡糸機を用い、鞘成分と芯成分の比率を50/50とした。
鞘成分には、酸化チタン0.4重量%含有し、固有粘度 [η] が0.60(オルソクロロフェノール中、1重量%で測定)のポリエチレンテレフタレートと、無機系抗菌剤Aとしてゼオライトに銀成分を0.90重量%担持させ、平均粒子0.5μm、粒子径が1.2μm以上の粒子の比率が2重量%、亜鉛含有率が1ppm以下で、変色防止安定剤としてMgO、P2O3、TiO2を含有した抗菌性ゼオライト(富士ケミカル製;商品名FK−68)を20重量%含有したマスターペレットを、それぞれ個別に連続乾燥を行い、チップ水分率を50%以下とした後粉体計量混合機(松井製作所製:ジェットカラー)にて無機系抗菌剤が表1の含有率(重量%)となるように混合し、バリアタイプスクリュー(Maddock型)が挿入された押し出し機に供給した。一定比率で混合されたチップは押し出し機で溶融されたのちケニックス社製スタティックミキサーが10エレメント設置されたポリマー配管を通過した。芯成分には、酸化チタン0.4重量%含有し、固有粘度[η]が0.06のポリエチレンテレフタレートを供給した。鞘成分、芯成分各々を濾過層を有した紡糸パックに導入する。
[Examples 1-5, Comparative Examples 1-2]
A known sheath-core type composite spinning machine was used, and the ratio of the sheath component to the core component was 50/50.
The sheath component contains 0.4% by weight of titanium oxide, polyethylene terephthalate having an intrinsic viscosity [η] of 0.60 (measured in orthochlorophenol at 1% by weight), and silver as an inorganic antibacterial agent A. The component is supported at 0.90% by weight, the average particle size is 0.5 μm, the ratio of particles having a particle size of 1.2 μm or more is 2% by weight, the zinc content is 1 ppm or less, and MgO, P2O3, TiO2 as anti-discoloration stabilizers. Master pellets containing 20% by weight of antibacterial zeolite (made by Fuji Chemical; trade name FK-68) containing sucrose and individually dried to make the chip moisture content 50% or less. (Matsui Seisakusho: Jet Color) was mixed so that the inorganic antibacterial agent had the content (% by weight) shown in Table 1, and a barrier type screw (Maddock type) was inserted. Feeded to the extruder. The chips mixed at a constant ratio were melted by an extruder, and then passed through a polymer pipe in which 10 elements of a Kenix static mixer were installed. Polyethylene terephthalate containing 0.4% by weight of titanium oxide and having an intrinsic viscosity [η] of 0.06 was supplied as the core component. Each of the sheath component and the core component is introduced into a spin pack having a filtration layer.

W型に穿孔された、紡糸孔30個を有するノズルより紡糸温度(スピンヘッド温度)290℃で押出し、冷却風により冷却固化した後、引取り速度2000m/分で回転する第1延伸ロールに巻き取った後、該延伸ロールで100℃にフィラメントを加熱し、130℃の第2延伸ロール間で延伸熱セットを行い、伸度が30〜40%となるように延伸を行い、単糸断面形状がW字状断面で、鞘成分に無機系抗菌剤を含有した84デシテックス/30フィラメントの延伸糸を得た。巻取は、帝人製機(株)製AW−909を用いて巻き取った。
得られたポリエステル複合繊維の単糸断面は、凹部内側の開口角度130度、扁平率3.3であった。
次に得られた無機系抗菌剤含有各原糸と無機系抗菌剤非含有原糸を22ゲージ、20インチの編機にて、通常の編成条件にてスムース編地を調製した。この編地の目付は98g/mであった。
Extruded at a spinning temperature (spin head temperature) of 290 ° C from a nozzle with 30 spinning holes perforated in a W shape, cooled and solidified with cooling air, and then wound around a first stretching roll rotating at a take-up speed of 2000 m / min. After taking, the filament is heated to 100 ° C. with the drawing roll, the drawing heat setting is performed between the second drawing rolls at 130 ° C., the drawing is drawn so that the elongation becomes 30 to 40%, and the single yarn cross-sectional shape Was a W-shaped cross section, and 84 dtex / 30 filament drawn yarn containing an inorganic antibacterial agent in the sheath component was obtained. The winding was performed using AW-909 manufactured by Teijin Seiki Co., Ltd.
The single yarn cross section of the obtained polyester conjugate fiber had an opening angle of 130 degrees inside the recess and a flatness ratio of 3.3.
Next, each knitted yarn containing inorganic antibacterial agent and the raw yarn not containing inorganic antibacterial agent were smooth knitted under normal knitting conditions using a 22 gauge, 20 inch knitting machine. The basis weight of this knitted fabric was 98 g / m 2 .

この編地を80℃にて精練を行い、190℃でプレセットを行い、下記の染色条件で染色した。尚、染料濃度、ポリエステル樹脂濃度はポリエステル複合繊維重量に対する濃度とした。
染色条件
染料:ニッカブライト 8720−V01S 1.0%omf
(日化社製)
助剤:ニッカサンソルト RM−340(日華化学(株)製)
0.5g/リットル
酢酸: 0.5cc/リットル
酢酸ナトリウム: 1g/リットル
水溶性ポリエステル樹脂:SR−1000(高松油脂社製) 3%omf
(固型分0.3%)
(180℃の減量率:0.4%、カルボキシル基量:15モル/t)
浴 比 : 1:25
染色温度、時間: 130℃、30分
染色完了後、湯洗、水洗を行い、脱水、乾燥後、160℃にて1分間の乾熱セットで仕上げた。
仕上げた染色品の抗菌性、耐摩耗性、経時による白度変化の評価結果を表1に示す。
比較例1は、無機系抗菌剤の含有率が少なく、抗菌性が乏しかった。比較例2は無機系抗菌剤の含有率が過多のため、F/F動摩擦係数が本発明外となり、製糸性が不良で白度保持率も不良であった。
This knitted fabric was scoured at 80 ° C., pre-set at 190 ° C., and dyed under the following dyeing conditions. In addition, the dye density | concentration and the polyester resin density | concentration were made into the density | concentration with respect to the polyester composite fiber weight.
Dyeing conditions Dye: Nikka Bright 8720-V01S 1.0% omf
(Manufactured by Nikka)
Auxiliary agent: Nikka Sun Salt RM-340 (manufactured by Nikka Chemical Co., Ltd.)
0.5g / liter
Acetic acid: 0.5 cc / liter Sodium acetate: 1 g / liter Water-soluble polyester resin: SR-1000 (manufactured by Takamatsu Yushi Co., Ltd.) 3% omf
(Solid content 0.3%)
(Weight loss rate at 180 ° C .: 0.4%, carboxyl group content: 15 mol / t)
Bath ratio: 1:25
Dyeing temperature and time: 130 ° C., 30 minutes After dyeing was completed, washing with hot water and washing were performed, followed by dehydration and drying, and then finished with a dry heat set at 160 ° C. for 1 minute.
Table 1 shows the evaluation results of the antibacterial property, abrasion resistance, and whiteness change over time of the finished dyed product.
In Comparative Example 1, the content of the inorganic antibacterial agent was small and the antibacterial property was poor. In Comparative Example 2, since the content of the inorganic antibacterial agent was excessive, the F / F dynamic friction coefficient was outside the scope of the present invention, the yarn-making property was poor, and the whiteness retention rate was also poor.

[実施例6〜8、比較例3]
実施例1〜5と同様にして、平均粒子径の異なる無機系抗菌剤を、鞘成分中の含有率が1.0重量%(銀成分の平均含有率45ppm)となるように添加した。
仕上げた染色品の抗菌性、耐摩耗性、経時による白度変化の評価結果を表2に示す。
比較例3は、平均粒子径が他の実施例よりも大きく、その結果、F/F動摩擦係数が本発明外であり、製糸性が不良で抗菌性、耐摩耗性、白度保持率とも不良であった。
[Examples 6 to 8, Comparative Example 3]
In the same manner as in Examples 1 to 5, inorganic antibacterial agents having different average particle diameters were added so that the content in the sheath component was 1.0% by weight (the average content of the silver component was 45 ppm).
Table 2 shows the evaluation results of antibacterial properties, abrasion resistance, and whiteness change over time of the finished dyed product.
Comparative Example 3 has an average particle size larger than that of the other examples. As a result, the F / F dynamic friction coefficient is outside the present invention, and the yarn-making property is poor, and the antibacterial property, wear resistance, and whiteness retention rate are also poor. Met.

[比較例4〜7]
実施例1〜5と同様にして、比較例4、5には無機系抗菌剤Bとして、ゼオライトに銀成分を0.6重量%、変色防止剤として亜鉛成分を3.0重量%担持させ、平均粒子0.5μm、粒子径が1.2μm以上の粒子の比率が7重量%である抗菌性ゼオライト(富士ケミカル製;商品名FC−66)を20重量%含有したマスターペレット用い、繊維中の銀イオン濃度が表3に示すように繊維に含有させた。一方、比較例6、7は無機系抗菌剤Cとして、ゼオライトに銀成分を0.45重量%、亜鉛成分を19重量%担持させ、平均粒子2.0μm、粒子径が1.2μm以上の粒子の比率が72重量%を含有した抗菌性ゼオライト(富士ケミカル製;商品名FK−43)を10重量%含有したマスターペレットを用い、繊維中の銀イオン濃度が表3に示すように繊維に含有させた。
製糸性と、仕上げた混用染色品の抗菌性、耐摩耗性、経時による白度変化の評価結果を表3に示す。
無機系抗菌剤Bを使用した比較例4、5は、製糸性、抗菌性、耐摩耗性、経時による白度変化は良好であったが、精練・染色時に亜鉛成分が染色液中に溶出した。
無機系抗菌剤Cを使用した比較例6は、製糸性や、抗菌性能と耐摩耗性が不良であった。比較例7は、抗菌性能は良好であったが、製糸性、耐摩耗性が不良であった。
[Comparative Examples 4 to 7]
In the same manner as in Examples 1 to 5, Comparative Examples 4 and 5 were supported with inorganic antibacterial agent B, zeolite with 0.6% by weight of silver component and 3.0% by weight of zinc component as discoloration inhibitor, Using master pellets containing 20% by weight of antibacterial zeolite (manufactured by Fuji Chemical; trade name FC-66) whose average particle size is 0.5 μm and the ratio of particles having a particle diameter of 1.2 μm or more is 7% by weight, The silver ion concentration was contained in the fiber as shown in Table 3. On the other hand, Comparative Examples 6 and 7 are inorganic antibacterial agent C, particles having 0.45% by weight of silver component and 19% by weight of zinc component supported on zeolite, and having average particle size of 2.0 μm and particle size of 1.2 μm or more. Using a master pellet containing 10% by weight of an antibacterial zeolite (Fuji Chemical; trade name FK-43) containing 72% by weight of silver, the silver ion concentration in the fiber is contained in the fiber as shown in Table 3 I let you.
Table 3 shows the evaluation results of the yarn-making property, antibacterial properties, abrasion resistance, and whiteness change with time of the finished mixed dyed product.
In Comparative Examples 4 and 5 using the inorganic antibacterial agent B, the yarn-forming property, antibacterial property, abrasion resistance, and whiteness change over time were good, but the zinc component was eluted in the dyeing solution during scouring and dyeing. .
In Comparative Example 6 using the inorganic antibacterial agent C, the yarn-making property, antibacterial performance and wear resistance were poor. In Comparative Example 7, the antibacterial performance was good, but the yarn-making property and wear resistance were poor.

Figure 2009108436
Figure 2009108436

Figure 2009108436
Figure 2009108436

Figure 2009108436
Figure 2009108436

本発明は、環境問題がなく優れた抗菌性を有するとともに、経時的な変色がない優れた抗菌性ポリエステル複合繊維、及び、紡糸安定性に優れた抗菌性ポリエステル複合繊維の製造方法に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used in a method for producing an excellent antibacterial polyester composite fiber having no environmental problems and excellent antibacterial properties and having no discoloration over time, and an antibacterial polyester composite fiber excellent in spinning stability.

本発明における、銀成分と抗菌性の関係を示す。The relationship between the silver component and antibacterial properties in the present invention is shown.

Claims (9)

鞘成分と芯成分の比率が10/90〜80/20からなるポリエステル鞘芯型複合繊維であって、鞘成分に少なくとも一部が銀成分である抗菌性金属成分が担持された無機系抗菌剤を含有し、該ポリエステル複合繊維中の銀成分平均含有率が20〜150ppmで、亜鉛含有率が10ppm以下であり、かつ、繊維―繊維間動摩擦係数が0.20〜0.35であることを特徴とする抗菌性ポリエステル複合繊維。   An inorganic antibacterial agent comprising a polyester sheath-core composite fiber having a ratio of a sheath component to a core component of 10/90 to 80/20, wherein the sheath component is loaded with an antibacterial metal component, at least a part of which is a silver component The average silver component content in the polyester composite fiber is 20 to 150 ppm, the zinc content is 10 ppm or less, and the dynamic friction coefficient between fibers and fibers is 0.20 to 0.35. Features antibacterial polyester composite fiber. 前記ポリエステル鞘芯型複合繊維において、鞘成分中の銀成分含有率が40〜300ppmであることを特徴とする請求項1に記載の抗菌性ポリエステル複合繊維。   The antibacterial polyester composite fiber according to claim 1, wherein the polyester sheath-core composite fiber has a silver component content of 40 to 300 ppm in the sheath component. 50日保持後の白度保持率が70%以上であり、SEK法による抗菌性が2.2以上であることを特徴とする請求項1又は2に記載の抗菌性ポリエステル複合繊維。   The antibacterial polyester composite fiber according to claim 1 or 2, wherein the whiteness retention after holding for 50 days is 70% or more, and the antibacterial property by SEK method is 2.2 or more. 糸長方向のタフネス変動が、12(cN/dtex・%0.5)以下であることを特徴とする請求項1〜3のいずれかに記載の抗菌性ポリエステル繊維。
(但し、タフネス=[強度]×[伸度]0.5であり、その最大値と最小値の差をタフネス変動とする。)
The antibacterial polyester fiber according to any one of claims 1 to 3, wherein a toughness variation in a yarn length direction is 12 (cN / dtex ·% 0.5 ) or less.
(However, toughness = [strength] × [elongation] is 0.5 , and the difference between the maximum value and the minimum value is defined as toughness fluctuation.)
単糸断面がW字状で、扁平度が2〜5であることを特徴とする請求項1〜4のいずれかに記載の抗菌性ポリエステル複合繊維。   The antibacterial polyester composite fiber according to any one of claims 1 to 4, wherein the single yarn has a W-shaped cross section and a flatness of 2 to 5. ポリエステル成分が、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートの少なくとも1種から選ばれたポリエステルであることを特徴とする請求項1〜5のいずれかに記載の抗菌性ポリエステル複合繊維。   The antibacterial polyester composite fiber according to any one of claims 1 to 5, wherein the polyester component is a polyester selected from at least one of polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. 請求項1〜6に記載の抗菌性ポリエステル複合繊維を用いたことを特徴とする織編物。   A woven or knitted fabric using the antibacterial polyester composite fiber according to claim 1. 少なくとも一部が銀成分である抗菌性金属成分が担持された無機系抗菌剤をポリエステルに配合するにあたり、亜鉛成分含有率が10ppm以下であり、平均粒子径が0.1〜1.0μmで、かつ、粒子径が1.2μm以上の粒子の比率が20重量%以下である無機系抗菌剤を、ポリエステル成分に対し0.5〜2重量%混合したポリエステルを鞘成分とし、無機系抗菌剤を含有しないポリエステル成分を芯成分として、鞘成分と芯成分の比率を10/90〜80/20の鞘芯型複合繊維として繊維化することを特徴とする請求項1に記載の抗菌性ポリエステル複合繊維の製造方法。   In blending the polyester with an inorganic antibacterial agent carrying an antibacterial metal component, at least a part of which is a silver component, the zinc component content is 10 ppm or less, the average particle size is 0.1 to 1.0 μm, In addition, an inorganic antibacterial agent having an inorganic antibacterial agent in which the ratio of particles having a particle diameter of 1.2 μm or more is 20% by weight or less mixed with 0.5 to 2% by weight of the polyester component is used as a sheath component. 2. The antibacterial polyester composite fiber according to claim 1, wherein the polyester component is contained as a core component, and the ratio of the sheath component to the core component is fiberized as a sheath core type composite fiber having a ratio of 10/90 to 80/20. Manufacturing method. 無機系抗菌剤の含有率が5〜30重量%のマスターペレットとポリエステルペレットを溶融混合することを特徴とする請求項8に記載の抗菌性ポリエステル複合繊維の製造方法。   The method for producing an antibacterial polyester composite fiber according to claim 8, wherein a master pellet having a content of inorganic antibacterial agent of 5 to 30% by weight and a polyester pellet are melt-mixed.
JP2007281155A 2007-10-30 2007-10-30 Antimicrobial polyester conjugated fiber and method for producing the same Withdrawn JP2009108436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007281155A JP2009108436A (en) 2007-10-30 2007-10-30 Antimicrobial polyester conjugated fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007281155A JP2009108436A (en) 2007-10-30 2007-10-30 Antimicrobial polyester conjugated fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009108436A true JP2009108436A (en) 2009-05-21

Family

ID=40777220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281155A Withdrawn JP2009108436A (en) 2007-10-30 2007-10-30 Antimicrobial polyester conjugated fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009108436A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112448B1 (en) * 2009-08-31 2012-03-13 재단법인대구경북과학기술원 Complex fiber and method of manufacturing the same
CN105239251A (en) * 2015-10-07 2016-01-13 俞松炜 Antisepsis fabric
JP2016069772A (en) * 2014-09-30 2016-05-09 Kbセーレン株式会社 Synthetic fiber multifilament
KR102080430B1 (en) * 2019-01-15 2020-02-21 한국섬유개발연구원 Sheath-core type composite yarn containing Inorganic antibiotics and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112448B1 (en) * 2009-08-31 2012-03-13 재단법인대구경북과학기술원 Complex fiber and method of manufacturing the same
JP2016069772A (en) * 2014-09-30 2016-05-09 Kbセーレン株式会社 Synthetic fiber multifilament
CN105239251A (en) * 2015-10-07 2016-01-13 俞松炜 Antisepsis fabric
KR102080430B1 (en) * 2019-01-15 2020-02-21 한국섬유개발연구원 Sheath-core type composite yarn containing Inorganic antibiotics and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI708750B (en) Antibacterial fiber and method for producing antibacterial fiber
WO2005010258A1 (en) Woven or knitted cloth containing two different yarns and exhibiting reduction of interstitial rate in becoming wet
EP2042626A1 (en) Antistatic polyester false twist yarn, process for producing the same, and antistatic special composite false twist yarn including the antistatic polyester false twist yarn
JP2009108436A (en) Antimicrobial polyester conjugated fiber and method for producing the same
JP2007177350A (en) Antimicrobial fiber blend
JP2008013880A (en) Anti-microbial polyester fiber
JP2008111221A (en) Antibacterial dyed fabric
JP6785747B2 (en) Core sheath type composite fiber
JP2009108435A (en) Antimicrobial polyester fiber and method for producing the same
EP3650588A1 (en) Antimicrobial fiber and method of manufacturing antimicrobial fiber
JP2020117827A (en) Uv-shielding polyester fiber
JP4298383B2 (en) Antibacterial polyester fiber and method for producing the same
JPH1053922A (en) Inorganic functional agent-containing polyester fiber and its production
JP2007239146A (en) Composite false-twisted yarn excellent in transparency preventing property and method for producing the same
JP2022135009A (en) Combined filament yarn and fiber structure
JP2007146334A (en) Polyester fiber
JP2004083651A (en) Hygroscopic polyester composition and polyester fiber
JP4683986B2 (en) Moist heat resistant polyester fiber
JP3053248B2 (en) Polyester composition having ultraviolet shielding performance, method for producing the polyester composition, and fiber
JP4818007B2 (en) Special composite false twisted yarn having antistatic properties and method for producing the same
JP2019026991A (en) Black spun-dyed polyester fiber
JP2004043553A (en) Moisture absorbing polyester composition and polyester fiber
JP2007177354A (en) Method for producing antimicrobial textile product
JP2013213293A (en) Easy cationic dyeable polyester fiber, method for manufacturing the same, and fiber product using the fiber
JP6637326B2 (en) Method for producing fabric for interior interior materials

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104