JP2007177354A - Method for producing antimicrobial textile product - Google Patents
Method for producing antimicrobial textile product Download PDFInfo
- Publication number
- JP2007177354A JP2007177354A JP2005374764A JP2005374764A JP2007177354A JP 2007177354 A JP2007177354 A JP 2007177354A JP 2005374764 A JP2005374764 A JP 2005374764A JP 2005374764 A JP2005374764 A JP 2005374764A JP 2007177354 A JP2007177354 A JP 2007177354A
- Authority
- JP
- Japan
- Prior art keywords
- antibacterial
- fiber
- dyeing
- polyester
- mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
本発明は抗菌性に優れたポリエステル繊維とセルロース繊維との混用品に関するものである。更に詳しくは、優れた抗菌性を発揮するとともに吸湿性、吸水速乾性、染色性、風合に優れたポリエステル繊維とセルロース繊維との混用布帛製品に関するものである。 The present invention relates to a mixed article of polyester fiber and cellulose fiber having excellent antibacterial properties. More specifically, the present invention relates to a mixed fabric product of polyester fiber and cellulose fiber that exhibits excellent antibacterial properties and is excellent in moisture absorption, water absorption quick drying, dyeability, and texture.
ポリエステル繊維は、優れた力学特性、化学特性、加工性、イージーケアー性を有することから、衣料用、寝装具用、インテリア用、産業用資材用等に広く使用されている。
近年、これらの繊維用途において、快適性機能の一つとして抗菌性を付与した繊維に対する要望が高まってきている。
一般に、繊維に抗菌性を付与する方法として、芳香族ハロゲン化合物、有機シリコーン系第4アンモニウム塩、有機窒素化合物等を繊維に付着させる方法が採用されているが、これらの化合物は、洗濯などにより脱落しやすいため、洗濯耐久性に問題があった。
そこで繊維に含有させて抗菌性を発揮させ、耐久性に優れたものとして、中でも無機系抗菌剤は特に注目されている。大半の無機系抗菌剤は、抗菌性を発揮させるために銀、銅、亜鉛等の金属イオンを種々の方法で無機化合物に担持させたものであり、銀、銅、亜鉛イオンを担持させたゼオライト粒子を抗菌剤として含有する繊維等のポリマー組成物が特許文献1に開示されている。
Polyester fibers have excellent mechanical properties, chemical properties, processability, and easy care properties, and are therefore widely used for clothing, bedding, interiors, industrial materials, and the like.
In recent years, in these fiber applications, there is an increasing demand for fibers imparted with antibacterial properties as one of comfort functions.
In general, as a method for imparting antibacterial properties to fibers, a method in which an aromatic halogen compound, an organic silicone quaternary ammonium salt, an organic nitrogen compound, or the like is attached to the fibers is employed. There was a problem with washing durability because it easily dropped off.
In view of this, inorganic antibacterial agents are particularly attracting attention as having excellent antibacterial properties when contained in fibers. Most inorganic antibacterial agents are those in which metal ions such as silver, copper, and zinc are supported on inorganic compounds by various methods in order to exert antibacterial properties, and zeolites that support silver, copper, and zinc ions. A polymer composition such as a fiber containing particles as an antibacterial agent is disclosed in Patent Document 1.
ポリエステル繊維においても銀イオンを中心に各種金属イオンを種々の方法で無機化合物に担持させた無機抗菌剤を含有した抗菌性繊維を得る試みが最近精力的に行われている。抗菌剤を胆持無機抗菌剤を含有したポリエステル繊維は、風合、吸湿性、吸水性などの物性を改善するため、特に肌着や寝装用品分野では、綿繊維と混紡したり、交編したりして商品化されている。しかしながら、抗菌性ポリエステル繊維と綿繊維との混用品の染色加工品は抗菌性能が低下するという問題がある。この問題は、綿繊維に含まれるタンパク質、色素等の不純物が原因と思われるが、混用品の染色加工にて抗菌性能が低下する詳細な機構は不明である。
抗菌性ゼオライトを含有する繊維形成性ポリマーよりなる繊維の少なくとも一部の表面が正帯電性の基を有する樹脂により被覆された抗菌性繊維が特許文献2に開示されている。しかしながら、この方法で得られた抗菌性ポリエステル繊維を綿繊維と混用、漂白、染色加工を施された製品の抗菌性能は悪く、性能の改善にはいたっていない。
従って、現状では抗菌性ポリエステル繊維とセルロース繊維の混用布帛染色製品において、染色加工により抗菌性能の低下がなく優れた抗菌性能を発揮し、なおかつ、吸湿性、吸水性の優れた染色製品が得られていないのが実状である。
In polyester fibers, attempts to obtain antibacterial fibers containing an inorganic antibacterial agent in which various metal ions, mainly silver ions, are supported on an inorganic compound by various methods have been energetically performed recently. Polyester fibers containing antibacterial and antibacterial inorganic antibacterial agents improve the physical properties such as texture, hygroscopicity, and water absorption. Has been commercialized. However, a dyed processed product of a mixture of antibacterial polyester fibers and cotton fibers has a problem that the antibacterial performance is lowered. This problem seems to be caused by impurities such as proteins and pigments contained in the cotton fiber, but the detailed mechanism by which the antibacterial performance is lowered by dyeing of mixed products is unknown.
Patent Document 2 discloses an antibacterial fiber in which at least a surface of a fiber made of a fiber-forming polymer containing an antibacterial zeolite is coated with a resin having a positively charged group. However, the antibacterial polyester fiber obtained by this method is mixed with cotton fiber, bleached, and dyed and processed, the antibacterial performance is poor and the performance has not been improved.
Therefore, at present, antibacterial polyester fiber and cellulose fiber mixed fabric dyed products exhibit excellent antibacterial performance without deterioration of antibacterial performance due to dyeing, and also provide dyed products with excellent hygroscopicity and water absorption. The actual situation is not.
本発明は、抗菌性ポリエステル繊維とセルロース繊維との混用製品において、染色加工後において抗菌性能の低下を起こさず、優れた抗菌性能を有するとともにセルロース繊維本来の風合、吸湿性、吸水性に優れた混用染色製品を得ることができる抗菌性繊維製品の製造方法を提供することを目的とする。 The present invention is a mixed product of antibacterial polyester fiber and cellulose fiber, which does not cause deterioration in antibacterial performance after dyeing and has excellent antibacterial performance and is excellent in the original texture, hygroscopicity and water absorption of cellulose fiber. It is an object of the present invention to provide a method for producing an antibacterial fiber product capable of obtaining a mixed dyed product.
本発明者は、抗菌性ポリエステル繊維とセルロース繊維との混用布帛の染色加工について鋭意研究を行った結果、抗菌性ポリエステル繊維とセルロース繊維との混用布帛に不揮発性酸を含有させることにより上記課題を解決することを見出し、更に検討した結果、本発明をなすに至った。
すなわち本発明は、以下のとおりである。
(1)銀、亜鉛、銅、錫、金、白金より選ばれる1種以上の抗菌性金属成分が無機化合物に担持された無機系抗菌剤を含有するポリエステル繊維と、セルロース繊維とからなる混用製品を濃度0.01〜3重量%の不揮発性酸で処理することを特徴とする抗菌性繊維製品の製造方法。
As a result of diligent research on the dyeing process of a mixed fabric of antibacterial polyester fiber and cellulose fiber, the present inventor has solved the above problem by incorporating a non-volatile acid into the mixed fabric of antibacterial polyester fiber and cellulose fiber. As a result of finding out and solving the problem, the present invention has been made.
That is, the present invention is as follows.
(1) A mixed product comprising a polyester fiber containing an inorganic antibacterial agent in which one or more antibacterial metal components selected from silver, zinc, copper, tin, gold, and platinum are supported on an inorganic compound, and a cellulose fiber. Is processed with a non-volatile acid having a concentration of 0.01 to 3% by weight.
抗菌性ポリエステル繊維とセルロース繊維との混用品に不揮発性酸を含有させることにより、優れた抗菌性能を有するとともに綿本来の風合、吸湿性、吸水性に優れた混用染色製品が得られるという効果を奏する。 By including a non-volatile acid in a mixed product of antibacterial polyester fiber and cellulose fiber, it is possible to obtain a mixed dyeing product that has excellent antibacterial performance and excellent cotton original texture, hygroscopicity, and water absorption Play.
本発明について、以下に詳細に説明する。
本発明は、抗菌性金属成分が担持された無機系抗菌剤含有ポリエステル繊維とセルロース繊維との混用染色品において、不揮発性酸を含有していることを特徴とする。
本発明における無機系抗菌剤は、銀、亜鉛、銅、錫、金、白金より選ばれる少なくとも1種以上を担持させた無機化合物であれば特に制限はなく、これらの金属イオンを担持させる無機化合物としては、例えば、活性炭、活性アルミナ、シリカゲル等の無機系吸着剤、ゼオライト、ヒドロキシアパタイト、リン酸ジルコニウム、リン酸チタン、チタン酸カリウム、含水酸化アンチモン、含水酸化ビスマス、含水酸化ジルコニウム、含水酸化チタン及びハイドロタルサイト等の無機イオン交換体等が挙げられる。
特にゼオライトに金属成分を担持させた抗菌剤は、金属成分の担持性に優れており、抗菌性能の安定性及び耐久性に優れ、ポリエステルに練り込んだ際の変色が少ないという利点を有しているので好ましい。
これらの無機化合物に本発明でいう金属イオンを担持させる方法には特に制限はなく、例えば、物理吸着又は化学吸着により担持させる方法、イオン交換反応により担持させる方法、結合剤により担持させる方法、金属化合物を無機化合物に打ち込むことにより担持させる方法、蒸着、溶解析出反応、スパッタ等の薄膜形成法により無機化合物の表面に金属化合物の薄層を形成させることにより担持させる方法等が挙げられる。
The present invention will be described in detail below.
The present invention is characterized in that a non-volatile acid is contained in a mixed dyed product of an inorganic antibacterial agent-containing polyester fiber and cellulose fiber carrying an antibacterial metal component.
The inorganic antibacterial agent in the present invention is not particularly limited as long as it is an inorganic compound supporting at least one selected from silver, zinc, copper, tin, gold, and platinum, and is an inorganic compound supporting these metal ions. For example, inorganic adsorbents such as activated carbon, activated alumina, silica gel, zeolite, hydroxyapatite, zirconium phosphate, titanium phosphate, potassium titanate, hydrous antimony, hydrous bismuth, hydrous zirconium oxide, hydrous titanium oxide And inorganic ion exchangers such as hydrotalcite.
In particular, an antibacterial agent in which a metal component is supported on zeolite has excellent metal component support properties, excellent antibacterial performance stability and durability, and has the advantage of less discoloration when kneaded into polyester. This is preferable.
There are no particular limitations on the method of supporting the metal ions in the present invention on these inorganic compounds, for example, a method of supporting by physical adsorption or chemical adsorption, a method of supporting by ion exchange reaction, a method of supporting by a binder, a metal Examples thereof include a method of supporting a compound by implanting it into an inorganic compound, a method of supporting a compound by forming a thin layer of a metal compound on the surface of the inorganic compound by a thin film forming method such as vapor deposition, dissolution precipitation reaction, and sputtering.
無機系抗菌剤の平均粒子径は紡糸時の操業性の点で5μm以下が好ましく、更に好ましくは2μm以下である。粒子径が5μmを超えると紡糸フィルター圧力上昇、紡糸時の糸切れ、延伸時の毛羽欠点が増加し好ましくない。
無機系粒子中の金属成分含有量は、0.1〜20重量%が適当である。特に銀は抗菌性能に優れており0.1〜5重量%で十分な効果が得られる。銀の担持量が0.1重量%未満では、得られた繊維の抗菌性が十分でなく、5重量%を超えると得られた繊維の白度が低下する。亜鉛、銅、錫、金、白金等の金属成分の担持量は20重量%以下、好ましくは0.1〜15重量%以下である。銀、亜鉛、銅及び他の金属を併用することはそれぞれの金属成分を担持することによる抗菌性能、分散性、着色、コスト等の長所短所を補完する意味で好ましい方法といえる。
該抗菌性無機粒子のポリエステルへの混合量は0.3〜2.0重量%である。無機系粒子中の金属成分含有量、組成によって添加量の最適範囲は異なるが、添加量が2.0重量%を超えるとパック圧力上昇が急激となり紡糸安定性が低下し好ましくない。
The average particle diameter of the inorganic antibacterial agent is preferably 5 μm or less, and more preferably 2 μm or less, from the viewpoint of operability during spinning. If the particle diameter exceeds 5 μm, the spinning filter pressure increases, yarn breakage during spinning, and fluff defects during stretching increase, which is not preferable.
The metal component content in the inorganic particles is suitably from 0.1 to 20% by weight. In particular, silver is excellent in antibacterial performance, and a sufficient effect is obtained at 0.1 to 5% by weight. When the supported amount of silver is less than 0.1% by weight, the antibacterial property of the obtained fiber is not sufficient, and when it exceeds 5% by weight, the whiteness of the obtained fiber is lowered. The supported amount of metal components such as zinc, copper, tin, gold and platinum is 20% by weight or less, preferably 0.1 to 15% by weight. The combined use of silver, zinc, copper and other metals can be said to be a preferred method in the sense of complementing the advantages and disadvantages such as antibacterial performance, dispersibility, coloration, and cost due to carrying each metal component.
The mixing amount of the antibacterial inorganic particles in the polyester is 0.3 to 2.0% by weight. The optimum range of the addition amount varies depending on the content and composition of the metal component in the inorganic particles. However, if the addition amount exceeds 2.0% by weight, the pack pressure rises rapidly, and the spinning stability is unfavorable.
本発明のポリエステル繊維に吸水性を付与し、抗菌性能を安定化させるためには、単糸の扁平度が2.0〜4.0が好ましい。扁平度が4.0を超えると単なる扁平糸に近くなり、毛細管現象による吸水特性が不十分となりかつ抗菌性能が不安定となる。一方、扁平度が2.0未満でも吸水特性が不十分となり、比表面積が丸断面糸と近似するため抗菌性能が不安定となる。
また低濃度の抗菌剤によって抗菌性能を安定化させるためには、本発明のポリエステル繊維の単糸の断面形状はW字状であって、各凹部の開口角度が100〜150度であることが好ましい。
ポリエステルを高度に異型化し吸水性を付与する方法として、単糸断面の形状を、Y型断面、十字型断面、H型断面、星型断面等するものが挙げられるが、高度に異型化することで吸水性が改善され、抗菌性も安定化されるが、布帛の風合が硬いという欠点が顕在化する。このことより単糸断面形状をW字状断面とすることにより吸水性の付与により少量の抗菌剤の含有で優れた抗菌性能を有するとともにソフトな風合を有したポリエステル繊維が得られる。
In order to impart water absorption to the polyester fiber of the present invention and stabilize the antibacterial performance, the flatness of the single yarn is preferably 2.0 to 4.0. When the flatness exceeds 4.0, it becomes close to a mere flat yarn, water absorption characteristics due to capillary action become insufficient, and antibacterial performance becomes unstable. On the other hand, even if the flatness is less than 2.0, the water absorption characteristics are insufficient, and the antibacterial performance becomes unstable because the specific surface area approximates that of a round cross-section yarn.
In order to stabilize the antibacterial performance with a low concentration of the antibacterial agent, the cross-sectional shape of the single yarn of the polyester fiber of the present invention is W-shaped, and the opening angle of each recess is 100 to 150 degrees. preferable.
Examples of a method for highly atypifying polyester to impart water absorption include those in which the shape of the single yarn cross-section is a Y-shaped cross-section, a cross-shaped cross-section, an H-shaped cross-section, a star-shaped cross section, etc. However, the water absorption is improved and the antibacterial property is stabilized, but the disadvantage that the fabric has a hard texture becomes obvious. From this, by making the cross-sectional shape of the single yarn into a W-shaped cross section, polyester fibers having excellent antibacterial performance with a small amount of antibacterial agent contained due to the provision of water absorption and a soft texture can be obtained.
次に本発明におけるポリエステル繊維の製造法について述べる。
本発明でいうポリエステル繊維とは、構成単位の少なくとも90%以上がエチレンテレフタレートであり、前記のポリエチレングリコール成分以外にも5モル%以下の他の成分を共重合していてもよい。例えば、ペンタエリスリトール、トリメチロールプロパン、トリメリット酸、ホウ酸等の鎖分岐剤を小割合重合したものであってもよい。
また、前記共重合成分の他に通常のエステル交換触媒、重合触媒、リン化合物、二酸化チタン等の艶消し剤、着色防止剤、酸化分解防止剤、消泡剤、ケイ光増白剤、顔料などを必要に応じて含有させてもよい。
Next, the manufacturing method of the polyester fiber in this invention is described.
In the polyester fiber as used in the present invention, at least 90% of the structural unit is ethylene terephthalate, and in addition to the polyethylene glycol component, other components of 5 mol% or less may be copolymerized. For example, a polymer obtained by polymerizing a small amount of a chain branching agent such as pentaerythritol, trimethylolpropane, trimellitic acid, boric acid or the like may be used.
In addition to the copolymer components, ordinary transesterification catalysts, polymerization catalysts, phosphorus compounds, matting agents such as titanium dioxide, coloring inhibitors, oxidative decomposition inhibitors, antifoaming agents, fluorescent whitening agents, pigments, etc. May be included as necessary.
抗菌性無機系粒子のポリエステルへの練り込み方法としては、ポリエステル重合時に抗菌性無機系粒子をエチレングリコール等に分散して添加し、重合完了後チップ化し、溶融紡糸する方法がある。また、ポリエステルチップに抗菌性無機系粒子を直接練り込んで溶融紡糸する方法、マスターチップ化しポリエステルとポリエステルチップと混合した後、紡糸する方法等がある。重合時に銀成分を含む抗菌性無機系粒子を添加した場合、高温度に長時間保持され、ポリエステル重合に際して使用される触媒や添加剤により銀成分が変色し、ポリマー色調を悪化させることとなる。また、ポリエステルチップに抗菌性無機系粒子を直接練り込んで溶融紡糸する方法では無機系粒子のポリエステルへの分散が不十分であり、紡糸フィルター圧力の上昇や糸切れ等の欠点が顕在化することとなる。
一方、マスターチップによる抗菌性無機系粒子の練り込み方法はマスターチップ化される段階でのポリエステルへの練り込みに加え、紡糸工程で更にポリエステルとの混練が成され、2段階でポリエステルへの無機系粒子の練り込みが行われるため、無機系粒子の微分散が他の方法に比べ優れている。また、練り込み時間が短時間であることからポリエステルの色調変化が少なく、色調が良好で均染な繊維が得られる。従って、ポリエステル繊維の物性、色調、生産性等の安定性面でマスターチップによる練り込み方法が最も好ましい方法といえる。
As a method of kneading the antibacterial inorganic particles into the polyester, there is a method in which the antibacterial inorganic particles are dispersed and added to ethylene glycol or the like at the time of polyester polymerization, chipped after polymerization is completed, and melt-spun. In addition, there are a method in which antibacterial inorganic particles are directly kneaded into a polyester chip and melt spinning, a method in which a master chip is formed and the polyester and the polyester chip are mixed and then spun. When antibacterial inorganic particles containing a silver component are added at the time of polymerization, the silver component is discolored by a catalyst or an additive used for polyester polymerization, and the polymer color tone is deteriorated. In addition, the antibacterial inorganic particles are directly kneaded into the polyester chip and melt-spun, so that the inorganic particles are not sufficiently dispersed in the polyester, and defects such as an increase in the spinning filter pressure and yarn breakage become apparent. It becomes.
On the other hand, the method of kneading the antibacterial inorganic particles with the master chip is not only kneading into the polyester at the stage of becoming a master chip, but further kneading with the polyester in the spinning process, and the inorganic to the polyester in two stages Since the system particles are kneaded, fine dispersion of the inorganic particles is superior to other methods. Further, since the kneading time is short, there is little change in the color tone of the polyester, and a fiber with good color tone and level dyeing can be obtained. Therefore, the kneading method using a master chip is the most preferable method in terms of stability such as physical properties, color tone, and productivity of the polyester fiber.
本発明で使用されるマスターチップ中の抗菌性無機系粒子の濃度は5〜30重量%であり、好ましくは10〜20重量%である。30重量%を越えると無機系粒子の分散性が不十分であり、5重量%未満では効率が低下するため好ましくない。
本発明の抗菌性ポリエステル繊維は、特に限定はしないが、総繊度が30〜250デシテックスでの繊維が好ましく適用される。また繊維の形態は、長繊維でも短繊維でもよく、長さ方向に均一なものや太細のあるものでもよい。そして、繊維が加工される糸条の形態としては、リング紡績糸、オープンエンド紡績糸、エアジェット精紡糸等の紡績糸、甘撚糸〜強撚糸、仮撚加工糸(POYの延伸仮撚糸を含む)、空気噴射加工糸、押し込み加工糸、ニットデニット加工糸等がある。
本発明において、混用されるセルロース繊維とは、綿、麻、ビスコースレーヨン、キュプラ繊維等をいう。
本発明の混用品におけるポリエステル繊維とセルロース繊維の混用の割合は、ポリエステル繊維が概ね75重量%以下であることが好ましい。混用の割合は混用品の形態あるいは用途に応じて選択される。その他にスパンデックス、ポリアミド、アクリル、タンパク繊維等が混用されることもあり得る。
The concentration of the antibacterial inorganic particles in the master chip used in the present invention is 5 to 30% by weight, preferably 10 to 20% by weight. If it exceeds 30% by weight, the dispersibility of the inorganic particles is insufficient, and if it is less than 5% by weight, the efficiency decreases, which is not preferable.
The antibacterial polyester fiber of the present invention is not particularly limited, but a fiber having a total fineness of 30 to 250 dtex is preferably applied. The form of the fibers may be long fibers or short fibers, and may be uniform or thick in the length direction. And as the form of the yarn in which the fiber is processed, a spun yarn such as a ring spun yarn, an open-end spun yarn, an air jet fine spun yarn, a sweet twisted yarn to a strongly twisted yarn, a false twisted yarn (including POY drawn false twisted yarn) ), Air injection processed yarn, indented processed yarn, knitted knitted yarn, and the like.
In the present invention, the mixed cellulose fiber refers to cotton, hemp, viscose rayon, cupra fiber and the like.
The mixing ratio of the polyester fiber and the cellulose fiber in the mixed article of the present invention is preferably about 75% by weight or less for the polyester fiber. The ratio of mixed use is selected according to the form or use of the mixed product. In addition, spandex, polyamide, acrylic, protein fiber, and the like may be mixed.
本発明のポリエステル繊維とセルロース繊維との混用品の形態は、糸条の形態であることも、布帛の形態であることも可能である。糸条の形態の例としては、混紡(混綿、フリース混紡、スライバー混紡、コアヤーン、サイロスパン、サイロフィル、ホロースピンドル等)、交絡混繊、交撚、意匠撚糸、カバリング(シングル、ダブル)、複合仮撚(同時仮撚、先撚仮撚)、伸度差仮撚、位相差、仮撚加工後に後混繊、2フィード(同時フィードやフィード差)空気噴射加工等による混用形態が挙げられる。一方、布帛の形態の例としては、一般的な交編があり、例えば交編では、両者を引き揃えて給糸したり、二重編地(例えばダブル丸編機、ダブル横編機、ダブルラッセル経編機)において表面及び又は裏面に各々給糸又は引き揃えて給糸する方法が挙げられる。交編では、一方が経糸に他方を緯糸に用いる、経糸及び又は緯糸において両者を1〜3本交互に整経や緯入れにより配置する、さらには起毛織物やパイル織物において一方が地組織を構成し、他方が起毛部、パイル部を構成したり混用して地組織、起毛部等を構成する、二重織物において表面及び又は裏面を各々構成、又は混用して構成する等が挙げられる。また、これら各種の糸段階での複合と機上での複合を組み合わせてもよい。特に、芯部にポリエステル繊維を、鞘部にセルロース繊維を配置するように複合した鞘芯複合糸や交撚糸は、セルロース繊維の風合を保持しつつ、寸法安定性、ストレッチ性、防シワ性などの機能性をも付与することができ好ましい。 The form of the mixed article of the polyester fiber and the cellulose fiber of the present invention can be a thread form or a cloth form. Examples of yarn forms include blended yarn (blended cotton, fleece blended, sliver blended, core yarn, silo span, silofill, hollow spindle, etc.), entangled blended yarn, twisted yarn, design twisted yarn, covering (single, double), composite temporary Examples of the mixed use include twisting (simultaneous false twisting, first twist false twisting), elongation difference false twisting, phase difference, post-mixing after false twisting, and two-feed (simultaneous feed or feed difference) air jet machining. On the other hand, as an example of the form of the fabric, there is a general knitting. For example, in the knitting, the yarns are aligned and fed, or a double knitted fabric (for example, a double circular knitting machine, a double flat knitting machine, a double knitting machine) In the case of a raschel warp knitting machine), there may be mentioned a method of feeding yarns on the front surface and / or the back surface, respectively. In cross knitting, one is used for warp and the other is used for weft. In warp and / or weft, one to three are alternately arranged by warping or weft insertion. And the other comprises a raising part and a pile part, and mixes and comprises a ground structure, a raising part, etc., and the surface and / or back side are each comprised in a double woven fabric, or it comprises and mixes, etc. are mentioned. Further, a combination of these various yarn stages and a combination on the machine may be combined. In particular, sheath-core composite yarns and twisted yarns, which are composed of polyester fibers in the core and cellulose fibers in the sheath, maintain dimensional stability, stretchability and anti-wrinkle properties while maintaining the texture of the cellulose fibers. It is also preferable to provide functionality such as.
本発明で用いられる不揮発性酸とは、常温(25℃)において実質的に揮発しない酸のことを言い、一般的には、有機酸、無機酸またはリン酸系有機酸よりなるもののうち、好ましくは120℃以上の沸点を有するもので、プロピオン酸、酪酸、吉草酸、蓚酸、マロン酸、コハク酸、グルタル酸、リンゴ酸、酒石酸、クエン酸、グルコン酸、アスコルピン酸などの有機酸、リン酸、ピロリン酸、メタリン酸、ホウ酸、メタホウ酸などの無機酸などが挙げられる。
ポリエステル繊維やセルロース繊維表面は一般に負に帯電しており、染色加工後の抗菌性ポリエステル繊維表面は、特に大きく負に帯電している。一方、菌体表面も負に帯電していることから抗菌性評価時に菌体が繊維のごく表層に近づきにくいことにより安定した抗菌性が得にくいと推察される。
The non-volatile acid used in the present invention refers to an acid that does not substantially volatilize at room temperature (25 ° C.), and is generally preferably selected from organic acids, inorganic acids, and phosphoric acid-based organic acids. Has a boiling point of 120 ° C. or higher, propionic acid, butyric acid, valeric acid, succinic acid, malonic acid, succinic acid, glutaric acid, malic acid, tartaric acid, citric acid, gluconic acid, ascorbic acid and other organic acids, phosphoric acid Inorganic acids such as pyrophosphoric acid, metaphosphoric acid, boric acid, and metaboric acid.
The surface of the polyester fiber or cellulose fiber is generally negatively charged, and the surface of the antibacterial polyester fiber after dyeing is particularly negatively charged. On the other hand, since the surface of the microbial cell is negatively charged, it is presumed that it is difficult to obtain a stable antibacterial property because the microbial cell hardly approaches the surface layer of the fiber at the time of antibacterial evaluation.
本発明の不揮発酸で処理することにより、ポリエステル繊維、セルロース繊維の両方とも繊維表面のジーター電位を低下させ、混用布帛の繊維表面のジーター電位が下がることにより、菌体が繊維表面に引き寄せて捕捉し易くなるため、抗菌剤中の金属イオンの励起作用により安定して良好な抗菌性能が得られる。
本発明の不揮発酸の抗菌性ポリエステル繊維とセルロース繊維との混用布帛への付与は染色加工段階で付与するのが好ましく、特に、綿の染色が終了した段階で処理するのが好まし。処理法は特に制限はなく適宜使用でき、例えば、浸漬処理、パディング処理、スプレー処理などの方法で付与し、その後、100℃前後で乾燥後、160℃以下で熱処理を行えば良い。
また付与の際には、吸水加工剤や柔軟剤や帯電防止剤など他の薬剤を併用してもさしつかえない。
By treating with the non-volatile acid of the present invention, both the polyester fiber and the cellulose fiber decrease the jetter potential of the fiber surface, and the jetter potential of the fiber surface of the mixed fabric decreases, so that the bacterial cells are attracted to the fiber surface and captured. Therefore, good antibacterial performance can be obtained stably by the excitation action of metal ions in the antibacterial agent.
The non-volatile acid of the present invention is preferably applied to the mixed fabric of the antibacterial polyester fiber and the cellulose fiber at the dyeing process stage, and particularly preferably treated at the stage when the dyeing of cotton is completed. The treatment method is not particularly limited and can be used as appropriate. For example, the treatment method may be applied by a method such as immersion treatment, padding treatment, spray treatment, and the like, then dried at around 100 ° C. and then heat treated at 160 ° C. or less.
In addition, other chemicals such as a water-absorbing agent, a softening agent and an antistatic agent may be used in combination.
本発明の抗菌性ポリエステル繊維とセルロース繊維との混用品の染色にあたって、抗菌性ポリエステル繊維を分散染料で染色する場合、通常ポリエステル繊維が分散染料にて染色されている染色条件であればいずれでも適用でき、染色助剤の種類とその使用濃度、染色pH、染色浴比、染色時間等は被染色品の種類、用いられる処理装置、染色法を勘案して適宜設定すればよい。分散染料としては、ベンゼンアゾ系(モノアゾ、ジスアゾ、ナフタレンアゾ系)や複素環アゾ系(チアゾールアゾ、ベンゾチアゾールアゾ、キノリンアゾ、ピリドンアゾ、イミダゾールアゾ、チオフェンアゾ等)に代表されるアゾ系分散染料の使用が抗菌性ポリエステル繊維の発色性を高め、セルロース繊維との同色性、染色堅牢度を高める上で好ましい。また、特に染色濃度が低い場合には、拡散指数3.0以上の分散染料を用いると染色バッチごとの色のバラツキが少なくなるので好ましい。また、染色の際には芳香族ポリエーテルブロック共重合体を併用処理するのが混用品での吸水性能を高めるうえで好ましい。 When dyeing mixed antibacterial polyester fibers and cellulose fibers according to the present invention, when antibacterial polyester fibers are dyed with disperse dyes, any dyeing conditions are usually applied as long as the polyester fibers are dyed with disperse dyes. The type of dyeing assistant and its concentration, dyeing pH, dyeing bath ratio, dyeing time, etc. may be appropriately set in consideration of the kind of article to be dyed, the processing apparatus used, and the dyeing method. As disperse dyes, use of azo disperse dyes represented by benzeneazo (monoazo, disazo, naphthaleneazo) and heterocyclic azo (thiazoleazo, benzothiazoleazo, quinolineazo, pyridoneazo, imidazoleazo, thiophenazo, etc.) Is preferred for enhancing the color developability of the antibacterial polyester fiber, and improving the same colorability with the cellulose fiber and the fastness to dyeing. In particular, when the dyeing density is low, it is preferable to use a disperse dye having a diffusion index of 3.0 or more because color variation between dyeing batches is reduced. In addition, it is preferable to use an aromatic polyether block copolymer in combination at the time of dyeing in order to improve water absorption performance in a mixed product.
またセルロース繊維の染色は、直接、反応性染料等にて通常セルロース繊維が染色されている条件であればいずれでも適用でき、染色法は分散染料との二浴染色法、一浴二段染色法、一浴染色法等適宜実施すればよい。
またセルロース繊維として綿、レーヨンを使用した場合、染色に先立ち漂白処理を行う場合には、通常実施されている過酸化水素とアルカリ剤とを用いる方法にて処理を行えばよい。
染色する際の染色温度は135℃以下が好ましく、染色操作は、ウインス、ジッガー、ビーム染色機、液流染色機等の装置を用い、バッチ方式、連続方式のいずれによっても実施することができる。なお、浸染以外にパディング染色法、プリント法であっても実施することができる。
本発明の抗菌性ポリエステル繊維とセルロース繊維からなる混用布帛の染色品において、仕上セット時のセット温度は、160℃以下が染色堅牢度の点から好ましい。
このようにして得られた抗菌性ポリエステル繊維とセルロース繊維との混用品は、ソフトでしなやかな風合を有し、優れた抗菌性能を発揮するとともに、吸水性能に優れた商品価値の高い混用品を得ることができる。
Cellulose fibers can be dyed directly under any conditions where cellulose fibers are usually dyed with a reactive dye or the like. The dyeing method can be a two-bath dyeing method with a disperse dye or a one-bath two-step dyeing method. A one-bath dyeing method may be appropriately performed.
Further, when cotton or rayon is used as the cellulose fiber, when the bleaching treatment is performed prior to dyeing, the treatment may be carried out by a method using hydrogen peroxide and an alkali agent that are usually used.
The dyeing temperature at the time of dyeing is preferably 135 ° C. or less, and the dyeing operation can be carried out by either a batch method or a continuous method using an apparatus such as a wins, a jigger, a beam dyeing machine or a liquid dyeing machine. In addition to the dip dyeing, a padding dyeing method and a printing method can be used.
In the dyed article of the mixed fabric comprising the antibacterial polyester fiber and the cellulose fiber of the present invention, the set temperature at the finish setting is preferably 160 ° C. or less from the viewpoint of dyeing fastness.
The mixed product of antibacterial polyester fiber and cellulose fiber thus obtained has a soft and supple texture, exhibits excellent antibacterial performance, and has excellent water absorption performance and high commercial value. Can be obtained.
以下に本発明を実施例などにより更に具体的に説明するが、本発明はこれら実施例などにより何ら限定されるものではない。尚、本発明で用いられる特性値の測定法を以下に示す。
(1)扁平度
扁平度は、次式によって繊維の単糸横断面の外接長方形の長辺Aと短辺Bの比にて求めた。
扁平度=長辺A/短辺B
(2)抗菌性評価
繊維製品衛生加工評議会(SEK)の統一試験法に準じて行った。減菌後クリーンベンチ内で乾燥した検体(約18mmの正方形の試験片0.4g)に、予め高圧蒸気減菌し氷冷した1/20濃度のニュートリエントブロスで、生菌数を1±0.3×105個/mlに調整した試験菌懸濁液0.2mlを検体全体に均一に浸みるように接種し、減菌したキャップを締め付ける。これを37±1℃で18時間培養し、培養後の生菌数を測定した。検体は、標準布(抗菌防臭加工製品の加工効果評価試験マニュアルに規定された布)と加工布の2種類であり、試験菌としては、黄色ブドウ状球菌(Staphylococcus aureus ATCC 6538P)を用い、下記の方法で抗菌性の指標である静菌活性値を算出した。
静菌活性値:LogB−LogC
但し、試験成立条件(LogB−LogA)>1.5を満たすものとする。
A:標準布の接種直後に回収した菌数平均値
B:標準布の18時間培養後の菌数平均値
C:試験布の18時間培養後の菌数平均値
静菌活性値が2.2以上のものを抗菌性ありと判断した。
Examples The present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the measuring method of the characteristic value used by this invention is shown below.
(1) Flatness Flatness was calculated | required by ratio of the long side A and the short side B of the circumscribed rectangle of the single yarn cross section of a fiber by following Formula.
Flatness = long side A / short side B
(2) Evaluation of antibacterial properties The antibacterial properties were evaluated in accordance with the unified test method of the Textile Products Hygiene Processing Council (SEK). Samples dried in a clean bench after sterilization (about 18 mm square test piece 0.4 g) were sterilized by high-pressure steam sterilization and ice-cooled in a 1/20 concentration nutrient broth. Inoculate 0.2 ml of the test bacteria suspension adjusted to 3 × 10 5 cells / ml so that the entire specimen is immersed uniformly, and tighten the sterilized cap. This was cultured at 37 ± 1 ° C. for 18 hours, and the number of viable bacteria after the culture was measured. There are two types of specimens, a standard cloth (a cloth specified in the processing effect evaluation test manual for antibacterial and deodorant processed products) and a processed cloth. As test bacteria, Staphylococcus aureus ATCC 6538P is used, and The bacteriostatic activity value, which is an antibacterial index, was calculated by this method.
Bacteriostatic activity value: LogB-LogC
However, the test establishment condition (LogB-LogA)> 1.5 shall be satisfied.
A: Average number of bacteria collected immediately after inoculation with standard cloth B: Average number of bacteria after 18 hours of culture of standard cloth C: Average number of bacteria after 18 hours of culture of test cloth Bacteriostatic activity value is 2.2 The above were judged to have antibacterial properties.
[実施例1]
酸化チタン0.4重量%含有し、オルソクロロフェノール中、35℃、1重量%で測定した固有粘度[η]が0.60のポリエチレンテレフタレートのチップと抗菌性ゼオライト粒子(富士ケミカル製:FK43;平均粒子径2.0μm、銀含有量0.5%、亜鉛含有量19%)を10重量%含有するマスターペレットとをそれぞれ個別に連続乾燥を行い、チップ水分率を50%以下としたのち、粉体計量混合機(松井製作所製:ジェットカラー)にて抗菌性ゼオライト粒子が0.5%となるように混合し、バリアタイプスクリュー(Maddock型)を備えた押出機に供給した。一定比率で混合されたチップは押出機で溶融されたのちケニックス社製スタティックミキサーが10エレメント設置されたポリマー配管を通過し、濾過層を有した紡糸パックに導入する。
抗菌性ゼオライトを含有したポリマーは、W型に穿孔された、紡糸孔30個を有するノズルより、紡糸温度(スピンヘッド温度)290℃、紡糸速度2000m/分で押し出し、100℃の第1延伸ロールでフィラメントを加熱し、130℃の第2延伸ロールにて熱セットを行い、伸度が30〜35%となるように延伸を行い、単糸断面形状がW字状断面を有した56デシテックス/30フィラメントの延伸糸を得た(凹部内側の開口角度135度、扁平率3.3)。
[Example 1]
Polyethylene terephthalate chip containing 0.4% by weight of titanium oxide and having an intrinsic viscosity [η] of 0.60 measured in orthochlorophenol at 35 ° C. and 1% by weight and antibacterial zeolite particles (FK43; manufactured by Fuji Chemical) Master pellets containing 10% by weight of an average particle size of 2.0 μm, a silver content of 0.5%, and a zinc content of 19%) are individually and continuously dried, and the moisture content of the chip is reduced to 50% or less. The mixture was mixed with a powder metering mixer (Matsui Seisakusho: Jet Color) so that the antibacterial zeolite particles would be 0.5%, and supplied to an extruder equipped with a barrier type screw (Maddock type). Chips mixed at a constant ratio are melted by an extruder, then passed through a polymer pipe in which 10 elements of a Kenix static mixer are installed, and introduced into a spinning pack having a filtration layer.
The polymer containing antibacterial zeolite was extruded from a nozzle having 30 spinning holes perforated in a W shape at a spinning temperature (spinhead temperature) of 290 ° C. and a spinning speed of 2000 m / min. The filament is heated by heating, set with a second drawing roll at 130 ° C., drawn so that the elongation becomes 30 to 35%, and the single yarn cross-sectional shape is 56 dtex / w with a W-shaped cross-section. A drawn filament of 30 filaments was obtained (opening angle 135 ° inside recess, flatness 3.3).
次に得られた原糸と綿60/1とを交撚し、この交撚糸と84デシテックス/31フィラメントのレーヨン糸を用い、18ゲージの丸編機にて、通常の編成条件にてフライス編地(ハニカム構造)を調製した。この編地は抗菌性ポリエステル繊維の混用率は約40%、目付は128g/m2であった。
この混用編地を苛性ソーダーでpH11に調整した1%の過酸化水素水を含有する水溶液にて90℃で30分間漂白処理した後、脱塩素処理を行い、下記の染色条件にて染色を行った。
染色条件
染料:ダイアニックス イエロー AC−E 0.16%omf
ダイアニックス レッド AC−E 0.13%omf
ダイアニックス ブルー AC−E 0.04%omf
(以上、ダイスター社製)
カヤセロン リアクト イエロー CN−603 0.18%omf
カヤセロン リアクト レッド CN−603 0.05%omf
カヤセロン リアクト ブルー CN−MG 0.03%omf
(以上、(株)日本化薬カラーズ製)
カヤクバッファー P−7 1g/リットル
芒硝 : 30g/リットル
SR−1801Mコンク(高松油脂社製) 4%omf
浴 比 : 1:15
染色温度、時間: 130℃、30分
染色完了後、非イオン洗浄剤0.5g/リットルの浴で60℃、15分間のソーピング、水洗を行い、下記の条件にて不揮発性酸処理を行った。
処理剤 : リンゴ酸 0.5%
浴 比 : 1:20
処理温度、時間: 40℃、10分
処理後は、脱水し、130℃にて2分間の乾熱セットで仕上げた。
仕上げた混用染色品の抗菌性の評価結果を表1に示す。
尚、繊維表面のζ電位は−9.3mv(大塚電子製測定機にて測定)であった。
Next, the obtained raw yarn and cotton 60/1 were twisted, and this twisted yarn and 84 dtex / 31 filament rayon yarn were used to mill milling under normal knitting conditions using an 18 gauge circular knitting machine. A ground (honeycomb structure) was prepared. This knitted fabric had an antibacterial polyester fiber mixed rate of about 40% and a basis weight of 128 g / m 2 .
This mixed knitted fabric is bleached at 90 ° C. for 30 minutes with an aqueous solution containing 1% aqueous hydrogen peroxide adjusted to pH 11 with caustic soda, dechlorinated, and dyed under the following dyeing conditions. It was.
Dyeing conditions Dye: Dianics Yellow AC-E 0.16% omf
Dianics Red AC-E 0.13% omf
Dianics Blue AC-E 0.04% omf
(The above is made by Dystar)
Kayatheron React Yellow CN-603 0.18% omf
Kayatheron React Red CN-603 0.05% omf
Kayatheron React Blue CN-MG 0.03% omf
(The above is made by Nippon Kayaku Colors Co., Ltd.)
Kayak buffer P-7 1 g / liter Salt glass: 30 g / liter SR-1801M Conch (manufactured by Takamatsu Yushi Co., Ltd.) 4% omf
Bath ratio: 1:15
Dyeing temperature and time: 130 ° C., 30 minutes After dyeing was completed, soaping and water washing were performed at 60 ° C. for 15 minutes in a nonionic detergent 0.5 g / liter bath, and non-volatile acid treatment was performed under the following conditions. .
Treatment agent: Malic acid 0.5%
Bath ratio: 1:20
Treatment temperature and time: 40 ° C., 10 minutes After the treatment, the product was dehydrated and finished with a dry heat set at 130 ° C. for 2 minutes.
Table 1 shows the antibacterial evaluation results of the finished mixed dyed product.
The ζ potential on the fiber surface was −9.3 mv (measured with a measuring machine manufactured by Otsuka Electronics).
[比較例1]
比較として実施例1の同様の条件で染色、ソーピング後、脱水し、130にて2分間の乾熱セットで仕上げた。仕上げた混用染色品の抗菌性評価結果を表1に示す。繊維表面のζ電位は−56.3mvであった。
表1の結果より、本発明の実施例1で得られた混用品は、比較例1に比べ、良好な抗菌性能を示し、商品価値の高い混用品が得られることがわかる。
[Comparative Example 1]
For comparison, dyeing and soaping were performed under the same conditions as in Example 1, followed by dehydration and finishing at 130 for 2 minutes with a dry heat set. The antibacterial evaluation results of the finished mixed dyed product are shown in Table 1. The ζ potential on the fiber surface was −56.3 mv.
From the results shown in Table 1, it can be seen that the mixed product obtained in Example 1 of the present invention exhibits better antibacterial performance than Comparative Example 1, and a mixed product having a high commercial value can be obtained.
[実施例2]
実施例1の製造法にて84デシテックス/30フィラメントの抗菌性ポリエステル原糸(凹部内側の開口角度130度、扁平率3.0)を得た。得られた原糸を緯糸に用い、経糸にはキュプラ繊維84デシテックス/75フィラメント(旭化成せんい[株]製、商品名ベンベルグ)を用い平織物(経糸密度106本/インチ、緯糸密度96本/インチ)を調製した。(抗菌性ポリエステル繊維の混用率は50%)
得られた織物を拡布状で80℃にて精練リラックスを行い、180℃でプレセットを行い、下記の染色条件で各々染色した。尚、染料濃度はポリエステル繊維重量に対する濃度とした。
染色条件
染料:ダイアニックス ネービー S−G (200) 1.5%omf
(ダイスター社製)
分散均染剤:ニッカサンソルト RM−340 (日華化学(株)製)
0.5g/リットル
酢酸: 0.5cc/リットル
酢酸ナトリウム: 1g/リットル
SR−1801Mコンク(高松油脂(株)製): 6%omf
浴比: 1:15
染色温度、時間: 130℃、30分
[Example 2]
An antibacterial polyester yarn of 84 dtex / 30 filament (opening angle 130 ° inside recess, flatness 3.0) was obtained by the production method of Example 1. The obtained raw yarn is used as the weft, and the cup yarn is 84 decitex / 75 filament (made by Asahi Kasei Fibers Co., Ltd., trade name Bemberg) as the warp, and the plain fabric (the warp density is 106 yarns / inch, the weft density is 96 yarns / inch). ) Was prepared. (The mixing ratio of antibacterial polyester fiber is 50%)
The obtained woven fabric was scoured and relaxed at 80 ° C. in an expanded form, pre-set at 180 ° C., and dyed under the following dyeing conditions. In addition, the dye density | concentration was made into the density | concentration with respect to the polyester fiber weight.
Dyeing conditions Dye: Dianics Navy SG (200) 1.5% omf
(Dystar)
Dispersing leveling agent: Nikka Sun Salt RM-340 (manufactured by Nikka Chemical Co., Ltd.)
0.5 g / liter Acetic acid: 0.5 cc / liter Sodium acetate: 1 g / liter SR-1801M Conch (manufactured by Takamatsu Yushi Co., Ltd.): 6% omf
Bath ratio: 1:15
Dyeing temperature and time: 130 ° C, 30 minutes
染色完了後、染色機から染色残液を排出し、染色機に水を入れ、温度を80℃まで昇温し、これに下記薬剤を添加して下記の濃度の還元洗浄浴を調整し、80℃で10分間の還元洗浄を実施した。
二酸化チオ尿素 1g/リットル
苛性ソーダ− 1g/リットル
ビスノールUP−10(一方社油脂工業(株)製) 0.5g/リットル
浴比: 1:15
この還元洗浄後、残液を排出し、温湯及び水により染色物をすすぎ洗いした後、下記の条件にてキュプラ側の染色を実施した。尚、染料濃度はキュプラ繊維重量に対する濃度とした。
染色条件
染料:レマゾール ブラック B 1.5%omf
芒硝 : 150g/リットル
炭酸ナトリウム: 20g/リットル
浴比 : 1:10
染色温度、時間: 60℃、80分
これら染色物を、次いで、常法により湯洗、ソーピング処理をした後、次の条件にて不揮発酸処理を行った。
処理剤 : クエン酸 0.6%
浴 比 : 1:20
処理温度、時間: 40℃、10分
処理後、脱水、乾燥、150℃で30秒間の乾熱セットを行い、ペーパーカレンダー処理を行い仕上げた。
仕上げた染色物の抗菌性能評価結果を表2に示す。
After the dyeing is completed, the dyeing residual liquid is discharged from the dyeing machine, water is added to the dyeing machine, the temperature is raised to 80 ° C., the following chemicals are added thereto to adjust a reducing washing bath having the following concentration, and 80 Reductive washing was carried out at 10 ° C. for 10 minutes.
Thiourea dioxide 1 g / liter Caustic soda 1 g / liter Bisnole UP-10 (manufactured by Yushi Kogyo Co., Ltd.) 0.5 g / liter Bath ratio: 1:15
After this reductive washing, the residual liquid was discharged, the dyed product was rinsed with warm water and water, and then the cupra side was dyed under the following conditions. In addition, the dye density | concentration was made into the density | concentration with respect to the cupra fiber weight.
Dyeing conditions Dye: Remazole Black B 1.5% omf
Salt glass: 150 g / liter Sodium carbonate: 20 g / liter Bath ratio: 1:10
Dyeing temperature and time: 60 ° C., 80 minutes These dyed products were then washed with hot water and soaped by conventional methods, and then treated with a non-volatile acid under the following conditions.
Treatment agent: Citric acid 0.6%
Bath ratio: 1:20
Treatment temperature and time: 40 ° C., 10 minutes After the treatment, dehydration, drying, and dry heat setting at 150 ° C. for 30 seconds were performed, and paper calendar treatment was performed to finish.
Table 2 shows the antibacterial performance evaluation results of the finished dyeings.
[比較例2]
比較として、実施例2において、不揮発酸処理を行わない以外は同様に仕上げた。仕上げた染色物の抗菌性能評価結果を表2に示す。
表2の結果より、本発明の実施例2による混用品は、比較例2比べ、良好な抗菌性能を示し良好であることがわかる。
As a comparison, Example 2 was similarly finished except that the non-volatile acid treatment was not performed. Table 2 shows the antibacterial performance evaluation results of the finished dyeings.
From the results shown in Table 2, it can be seen that the mixed article according to Example 2 of the present invention shows better antibacterial performance and is better than Comparative Example 2.
本発明の混用品は特にインナー分野、裏地分野、寝装品分野で好適に利用できる。 The mixed article of the present invention can be suitably used particularly in the inner field, the lining field, and the bedding field.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005374764A JP2007177354A (en) | 2005-12-27 | 2005-12-27 | Method for producing antimicrobial textile product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005374764A JP2007177354A (en) | 2005-12-27 | 2005-12-27 | Method for producing antimicrobial textile product |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007177354A true JP2007177354A (en) | 2007-07-12 |
Family
ID=38302815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005374764A Pending JP2007177354A (en) | 2005-12-27 | 2005-12-27 | Method for producing antimicrobial textile product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007177354A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016069771A (en) * | 2014-09-30 | 2016-05-09 | Kbセーレン株式会社 | Synthetic fiber |
CN115573076A (en) * | 2022-09-23 | 2023-01-06 | 江阴天而然纺织科技有限公司 | Multifunctional fabric |
-
2005
- 2005-12-27 JP JP2005374764A patent/JP2007177354A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016069771A (en) * | 2014-09-30 | 2016-05-09 | Kbセーレン株式会社 | Synthetic fiber |
CN115573076A (en) * | 2022-09-23 | 2023-01-06 | 江阴天而然纺织科技有限公司 | Multifunctional fabric |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007177350A (en) | Antimicrobial fiber blend | |
JP5074590B2 (en) | Water-absorbing quick-drying woven / knitted fabric | |
JP4485871B2 (en) | Polyurethane elastic body and elastic fiber | |
JP2008111221A (en) | Antibacterial dyed fabric | |
JP2008013880A (en) | Anti-microbial polyester fiber | |
JP6785747B2 (en) | Core sheath type composite fiber | |
JP2007177354A (en) | Method for producing antimicrobial textile product | |
JP2020117827A (en) | Uv-shielding polyester fiber | |
JP2009108436A (en) | Antimicrobial polyester conjugated fiber and method for producing the same | |
JP2008150728A (en) | Water-absorbing/quick-drying woven and knitted fabrics | |
JP4298383B2 (en) | Antibacterial polyester fiber and method for producing the same | |
JP2022135009A (en) | Combined filament yarn and fiber structure | |
JP2010255130A (en) | Method for producing dyed water-absorbing and quick-drying woven and knitted fabrics | |
JP2006316368A (en) | Mixed article of polyester fiber and polyurethane fiber | |
JP4833610B2 (en) | Flame retardant polyester fiber structure and method for producing the same | |
JP2007002357A (en) | Mixture of polyester fiber and acrylic fiber | |
JP2010255139A (en) | Water-absorbing and diffusing polyester knit | |
JP2009108435A (en) | Antimicrobial polyester fiber and method for producing the same | |
JP2009144263A (en) | Water-absorbing quick-drying polyester undrawn fiber and method for producing the same | |
JP4839174B2 (en) | FIBER STRUCTURE, PROCESS FOR PRODUCING THE SAME AND APPAREL | |
JP2006336136A (en) | Blended product of polyester fiber and protein fiber | |
JP2004169206A (en) | Antibacterial polyester fiber | |
JP2002339163A (en) | Antimicrobial polyamide fiber with high laundering resistance and method for producing the same | |
JP2008150729A (en) | Water-absorbing/quick-drying polyester conjugated fiber and method for producing the same | |
JP2007056413A (en) | Blended article of polyester fiber and polyamide fiber |