JP2009107858A - Method for producing composite oxide film and electrically conductive composite compound film - Google Patents

Method for producing composite oxide film and electrically conductive composite compound film Download PDF

Info

Publication number
JP2009107858A
JP2009107858A JP2007279093A JP2007279093A JP2009107858A JP 2009107858 A JP2009107858 A JP 2009107858A JP 2007279093 A JP2007279093 A JP 2007279093A JP 2007279093 A JP2007279093 A JP 2007279093A JP 2009107858 A JP2009107858 A JP 2009107858A
Authority
JP
Japan
Prior art keywords
oxide film
composite oxide
film
electrically conductive
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007279093A
Other languages
Japanese (ja)
Other versions
JP5224778B2 (en
Inventor
Tetsutoshi Mitamura
哲理 三田村
Hiroyoshi Matsuyama
博圭 松山
Hideo Hosono
秀雄 細野
Masahiro Hirano
正浩 平野
Masashi Miyakawa
仁 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Tokyo Institute of Technology NUC
Original Assignee
Asahi Kasei Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Tokyo Institute of Technology NUC filed Critical Asahi Kasei Corp
Priority to JP2007279093A priority Critical patent/JP5224778B2/en
Publication of JP2009107858A publication Critical patent/JP2009107858A/en
Application granted granted Critical
Publication of JP5224778B2 publication Critical patent/JP5224778B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite oxide film which can have a large area without using an expensive laser and a vacuum chamber and which is represented as 12Ca<SB>1-X</SB>Sr<SB>X</SB>O 7Al<SB>2</SB>O<SB>3</SB>(x=0-1) and to provide an electrically conductive composite oxide film made of it. <P>SOLUTION: A method for producing the composite oxide film which can be prepared by baking a nonaqueous solution consisting of a composition containing Ca and/or Sr and Al and which is shown as 12Ca<SB>1-X</SB>Sr<SB>X</SB>O 7Al<SB>2</SB>O<SB>3</SB>(x=0-1) and a method for producing the electrically conductive composite oxide film where the clathration of an electron is performed by the reduction treatment of the composite oxide are provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

12CaO・7Al23で表されるアルミナ・カルシア化合物(以下、適宜「C12A7」と略す。)の薄膜は、真空製膜法の1つであるPulsed Laser Deposition法(以下、適宜「PLD法」と略す。)で得ることができ、同じ結晶系に属する12SrO・7Al23(以下、適宜「S12A7」と略す。)を含め、様々な元素や電子、例えばO-、H-、e-、を包接できることが、例えば、特許文献1、2、非特許文献1に開示され知られている。この様な元素や電子を包接したC12A7、S12A7はコールド電子エミッター、導電体、電子注入体、還元剤、酸化剤、触媒などへの応用が期待されている。
これまでにC12A7の製膜は、塗布製膜法と真空製膜法(PLD法)が報告されている。前者は、アルミニウムアルコキシドと硝酸カルシウムを水−エタノール溶媒に溶解し、ガラス基板上に塗布してC12A7の製膜が試みられているが、C12A7膜は得られていない(非特許文献2参照)。一方後者は、前述のようにC12A7膜は得られてはいるものの、高価なレーザーを使用し、真空チャンバーが必須な上に、大面積化が困難である。
A thin film of an alumina-calcia compound represented by 12CaO.7Al 2 O 3 (hereinafter abbreviated as “C12A7” as appropriate) is a pulsed laser deposition method (hereinafter referred to as “PLD method” as appropriate), which is one of vacuum film-forming methods. Various elements and electrons, such as O , H , e , and the like, including 12SrO · 7Al 2 O 3 (hereinafter abbreviated as “S12A7” where appropriate) belonging to the same crystal system. Are disclosed and known in, for example, Patent Documents 1 and 2 and Non-Patent Document 1. C12A7 and S12A7 containing such elements and electrons are expected to be applied to cold electron emitters, conductors, electron injectors, reducing agents, oxidizing agents, catalysts, and the like.
So far, film formation of C12A7 has been reported to be a coating film forming method and a vacuum film forming method (PLD method). In the former, aluminum alkoxide and calcium nitrate are dissolved in a water-ethanol solvent and applied on a glass substrate to form a C12A7 film, but a C12A7 film has not been obtained (see Non-Patent Document 2). On the other hand, as described above, although the C12A7 film is obtained as described above, an expensive laser is used, a vacuum chamber is essential, and it is difficult to increase the area.

国際公開03/089373号公報International Publication No. 03/089373 国際公開05/000741号公報International Publication No. 05/000741 M.Miyakawa, Appl.Phys.Lett.,90, 182105(2007)M.M. Miyakawa, Appl. Phys. Lett. , 90, 182105 (2007) A.A.Goktas, J.Am.Ceram.Soc.,74,5,1066(1991)A. A. Goktas, J. et al. Am. Ceram. Soc. , 74, 5, 1066 (1991)

本発明は、高価なレーザーや真空チャンバーを用いずに、大面積化が可能な12Ca1-XSrXO・7Al23(x=0〜1)で示される複合酸化物膜の作製、および該複合酸化物膜を還元処理してなる電気伝導性複合酸化物膜の作製を目的とする。 The present invention provides a composite oxide film represented by 12Ca 1-X Sr X O.7Al 2 O 3 (x = 0 to 1) that can be enlarged without using an expensive laser or vacuum chamber. Another object is to produce an electrically conductive complex oxide film obtained by reducing the complex oxide film.

本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、塗布製膜法に着目し、Ca及び/又はSrとAlとを含む組成からなる非水溶液を焼成することで、12Ca1-XSrXO・7Al23(x=0〜1)で示される複合酸化物膜が得られることを見出し、さらに該膜を還元処理することで、電子を包接させた電気伝導性複合酸化物膜を得ることが出来ることを見出し、本発明に至った。
すなわち、本発明は以下のとおりである。
(1)Ca及び/又はSrとAlとを含む組成からなる非水溶液を焼成して得られることを特徴とする12Ca1-XSrXO・7Al23(x=0〜1)で示される複合酸化物膜の製造方法。
(2)Ca及び/又はSrとAlとを含む組成からなる非水溶液を焼成して得られる12Ca1-XSrXO・7Al23(x=0〜1)で示される複合酸化物を還元処理して電子を包接させたことを特徴とする電気伝導性複合酸化物膜の製造方法。
As a result of intensive studies to solve the above problems, the inventors of the present invention focused on the coating film forming method and baked a non-aqueous solution composed of a composition containing Ca and / or Sr and Al to obtain 12Ca 1. -X Sr X O · 7Al 2 O 3 (x = 0 to 1) It was found that a composite oxide film was obtained, and the film was subjected to a reduction treatment, so that the electron conductivity was included. The present inventors have found that a complex oxide film can be obtained and have reached the present invention.
That is, the present invention is as follows.
(1) 12Ca 1-X Sr X O · 7Al 2 O 3 (x = 0 to 1) obtained by firing a non-aqueous solution having a composition containing Ca and / or Sr and Al A method for producing a composite oxide film.
(2) A composite oxide represented by 12Ca 1-X Sr X O.7Al 2 O 3 (x = 0 to 1) obtained by firing a non-aqueous solution having a composition containing Ca and / or Sr and Al. A method for producing an electrically conductive complex oxide film, characterized in that electrons are included by reduction treatment.

本発明の複合酸化物膜および電気伝導性複合酸化物膜の製造方法は、大面積化が容易である。したがって、コストダウンが可能であり、コールド電子エミッター、導電体、電子注入体、還元剤、酸化剤、触媒等の用途に応用できる。   The manufacturing method of the composite oxide film and the electrically conductive composite oxide film of the present invention can easily increase the area. Therefore, the cost can be reduced, and it can be applied to uses such as a cold electron emitter, a conductor, an electron injector, a reducing agent, an oxidizing agent, and a catalyst.

以下に、本発明について詳細に説明する。
本発明の出発物質である非水溶液は、複合酸化物膜を構成する主元素であるカルシウム(Ca)源および/又はストロンチウム(Sr)源とアルミニウム(Al)源と、該主元素を溶解する溶媒と、必要に応じて加えられる安定化剤、反応促進剤等の添加剤とからなるものである。
本発明における該主元素源に用いることのできる原料は、カルシウム(Ca)量と、ストロンチウム(Sr)量の合計とアルミニウム(Al)量との原子当量比で12:14になるように調整した溶液を作製できるものであれば特に制限はないが、例えば、硝酸、硫酸、塩化物、フッ化物、水酸化物、過塩素酸等の無機塩、蟻酸、酢酸、クエン酸、エチルヘキサン酸、アセチルアセトナトなどのβジケトン、エトキシド、イソプロポキシド、ブトキシドに代表されるようなアルコキシドなどの有機化合物等が挙げられる。
The present invention is described in detail below.
The non-aqueous solution that is the starting material of the present invention includes a calcium (Ca) source and / or a strontium (Sr) source and an aluminum (Al) source that are main elements constituting the composite oxide film, and a solvent that dissolves the main elements. And additives such as stabilizers and reaction accelerators added as necessary.
The raw material that can be used for the main element source in the present invention was adjusted so that the atomic equivalent ratio of the total amount of calcium (Ca), the amount of strontium (Sr), and the amount of aluminum (Al) was 12:14. There is no particular limitation as long as the solution can be prepared, but for example, inorganic salts such as nitric acid, sulfuric acid, chloride, fluoride, hydroxide, perchloric acid, formic acid, acetic acid, citric acid, ethylhexanoic acid, acetyl Examples thereof include organic compounds such as β diketones such as acetonato, alkoxides such as ethoxide, isopropoxide and butoxide.

本発明において該主元素を溶解する非水溶媒とは、水以外の溶媒もしくは水が溶媒全体体積の50vol%以下の溶媒のことをいい、特に制限はないが、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、メトキシエタノール、エトキシエタノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、メチルエチルケトン、酢酸ブチル、モルホリン、アセチルアセトン、乳酸エチル、N−メチルピロリドン、ポリエチレングリコール、アセトニトリル及びそれらの混合物などが挙げられ、用いられる主元素源に応じて適宜選択することができる。   In the present invention, the non-aqueous solvent that dissolves the main element means a solvent other than water or a solvent in which water is 50 vol% or less of the total volume of the solvent, although there is no particular limitation, but methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, methoxyethanol, ethoxyethanol, ethylene glycol, propylene glycol, 1,4-butanediol, methyl ethyl ketone, butyl acetate, morpholine, acetylacetone, ethyl lactate, N-methylpyrrolidone, polyethylene glycol , Acetonitrile and a mixture thereof, and the like, and can be appropriately selected depending on the main element source used.

本発明に用いることのできる添加剤は、安定化剤として、酒石酸、乳酸、クエン酸、酪酸、マルデン酸、シュウ酸、ジエタノールアミン、トリエタノールアミンに代表されるアルコノールアミン、エチレングリコール、置換グリコール、ペンタエチレングリコールなどの高級グリコール、およびそれらのアルキルエーテル、ポリエチレングリコール、メトキシエタノール、エトキシエタノール、アセチルアセトンなどのβ−ジケトン類、アセト酢酸エチルなどのβ−ケト酸エステルおよびそれらの混合物などが挙げられる。
本発明に用いることのできる添加剤は、反応促進剤として、出発原料にアルコキシドを用いた場合には、加水分解重縮合の制御を目的として、水、酸(酢酸、塩酸等)や塩基(アンモニア等)を用いることができる。該添加剤は、アルコキシドの加水分解重縮合を制御する目的で添加するため多量に添加することはなく、溶媒全体体積の50vol%を越えることはない。出発原料にアルコキシドを選択することで、プロセス上などで低温化が要求される場合において、焼成温度を低温化することが可能となる。
Additives that can be used in the present invention include as stabilizers tartaric acid, lactic acid, citric acid, butyric acid, maldenic acid, oxalic acid, diethanolamine, alkanolamines represented by triethanolamine, ethylene glycol, substituted glycols, And higher glycols such as pentaethylene glycol, and alkyl ethers thereof, polyethylene glycol, β-diketones such as methoxyethanol, ethoxyethanol, and acetylacetone, β-keto acid esters such as ethyl acetoacetate, and mixtures thereof.
Additives that can be used in the present invention are water, acids (acetic acid, hydrochloric acid, etc.) and bases (ammonia) for the purpose of controlling hydrolysis polycondensation when alkoxide is used as a reaction accelerator as a starting material. Etc.) can be used. The additive is added for the purpose of controlling hydrolysis polycondensation of the alkoxide, so that it is not added in a large amount and does not exceed 50 vol% of the total volume of the solvent. By selecting an alkoxide as the starting material, it is possible to lower the firing temperature when a lower temperature is required in the process or the like.

本発明に用いる溶液の作成は、該主元素を該溶媒中に加え必要に応じて該添加剤を加えて、例えば特に制限はないが、マグネティックスターラー等を用いた撹拌や、振蘯器等を用いた振蘯で溶解して得ることができる。また溶解に際しては必要に応じて加熱や還流、加圧加熱等の操作を加えることができる。
本発明における溶液の濃度は、Ca及び/又はSrとAlの合計モル(mol)数が0.001mol/l以上3mol/l以下で示され、好ましくは0.005mol/l以上1mol/l以下、さらに好ましくは0.01mol/l以上0.5mol/l以下の範囲である。溶液の濃度が0.001mol/l以下および3mol/l以上では均一な膜が得られにくい。
The solution used in the present invention is prepared by adding the main element to the solvent and adding the additive as necessary. For example, although there is no particular limitation, stirring using a magnetic stirrer or the like, a shaker, etc. It can be obtained by dissolving with the shaking used. Further, when dissolving, operations such as heating, refluxing, and pressure heating can be added as necessary.
The concentration of the solution in the present invention is indicated by the total number of moles of Ca and / or Sr and Al being 0.001 mol / l or more and 3 mol / l or less, preferably 0.005 mol / l or more and 1 mol / l or less, More preferably, it is the range of 0.01 mol / l or more and 0.5 mol / l or less. When the concentration of the solution is 0.001 mol / l or less and 3 mol / l or more, it is difficult to obtain a uniform film.

本発明において、非水溶液を焼成して膜を形成するとは、該組成物を含む溶液を一般的な方法で基板上にコーティングしてこれを熱処理することで薄膜を得る。コーティングの方法としてはスピンコーティング、ディプコーティング、バーコーティング、またはそれらの併用やインクジェットを用いた製膜などが挙げられる。
本発明における基板としては、特に制限はないが、MgO基板、石英基板、Al23基板、YAG基板、GGG基板等を用いることができ、12Ca1-XSrXO・7Al23(x=0〜1)で示される複合酸化物膜との反応を抑制するという観点から、MgO基板、YAG基板、GGG基板などが好ましい。
In the present invention, to form a film by baking a non-aqueous solution, a thin film is obtained by coating a solution containing the composition on a substrate by a general method and heat-treating it. Examples of the coating method include spin coating, dip coating, bar coating, a combination thereof, and film formation using an ink jet.
The substrate in the present invention is not particularly limited, MgO substrate, a quartz substrate, Al 2 O 3 substrate, YAG substrate, can be used GGG substrate like, 12Ca 1-X Sr X O · 7Al 2 O 3 ( From the viewpoint of suppressing the reaction with the composite oxide film represented by x = 0 to 1), an MgO substrate, a YAG substrate, a GGG substrate, or the like is preferable.

本発明における焼成温度は、12Ca1-XSrXO・7Al23(x=0〜1)で示される複合酸化物膜が得られる焼成温度であれば特に制限はない。例えば、基板に溶液をコーティングした後に、溶媒を蒸発させる温度で加熱した後、又は300℃から500℃程度の温度に直接投入することで炭化(Char化)した後に、500℃以上、1500℃以下で加熱することができ、好ましくは、600℃以上、1400℃以下、さらに好ましくは、700℃以上、1300℃以下で加熱することができる。500℃以下では、反応が進行しないか、又は反応時間が非常に長くかかるため好ましくなく、1500℃以上では、加熱炉に使用される発熱体の制限が大きく加わることやエネルギー的に非効率であるため好ましくない。さらに本発明における加熱時間は、10分以上、24時間以下が好ましく、より好ましくは30分以上、12時間以下、さらに好ましくは30分以上、6時間以下であり、最も好ましくは30分以上、4時間以下である。加熱時間が短すぎると均一な複合酸化物膜が得られにくく、加熱時間が長すぎるとプロセス上好ましくない。 The firing temperature in the present invention is not particularly limited as long as it is a firing temperature at which a composite oxide film represented by 12Ca 1-X Sr x O.7Al 2 O 3 (x = 0 to 1) is obtained. For example, after coating a solution on a substrate, heating at a temperature to evaporate the solvent, or carbonizing (Char) by directly putting it at a temperature of about 300 ° C. to 500 ° C., then 500 ° C. or more and 1500 ° C. or less It can be heated at 600.degree. C. or higher and 1400.degree. C. or lower, more preferably 700.degree. C. or higher and 1300.degree. C. or lower. Below 500 ° C., the reaction does not proceed or the reaction time is very long, which is not preferable. At 1500 ° C. or more, the restriction of the heating element used in the heating furnace is greatly added and it is inefficient in energy. Therefore, it is not preferable. Furthermore, the heating time in the present invention is preferably 10 minutes or more and 24 hours or less, more preferably 30 minutes or more and 12 hours or less, still more preferably 30 minutes or more and 6 hours or less, and most preferably 30 minutes or more, 4 hours or less. Below time. If the heating time is too short, it is difficult to obtain a uniform composite oxide film, and if the heating time is too long, it is not preferable for the process.

本発明の複合酸化物膜は、該コーティング、該焼成を繰り返して行って得てもよい。繰り返し操作を行うことで、膜厚や膜質を制御することができる。
以上の操作を行い得られた複合酸化物膜は、12Ca1-XSrXO・7Al23(x=0〜1)で示され、x=0のC12A7、x=1のS12A7、及びCaとSrの混合比を自由に変化させたC12A7とS12A7の混晶体である。
さらに本発明は、得られた複合酸化物膜を還元処理して電子を包接させて電気伝導性複合酸化物膜を得ることができる。
本発明における還元処理とは、炭素を主成分とする材料を膜に接触させ窒素を主成分とする雰囲気中で加熱することや、共同研究者の細野らが特許文献1、2や非特許文献1で報告している従来技術を用いて行うことができる。本発明の複合酸化物膜は大面積化が可能であるため、従来技術を用いた処理方法でもプロセス上コストダウンが可能である。
The composite oxide film of the present invention may be obtained by repeating the coating and firing. By repeating the operation, the film thickness and film quality can be controlled.
The composite oxide film obtained by performing the above operation is represented by 12Ca 1-X Sr X O.7Al 2 O 3 (x = 0 to 1), and C = 0A12 with x = 0, S12A7 with x = 1, and This is a mixed crystal of C12A7 and S12A7 in which the mixing ratio of Ca and Sr is freely changed.
Furthermore, according to the present invention, an electroconductive composite oxide film can be obtained by reducing the resulting composite oxide film to include electrons.
The reduction treatment in the present invention refers to heating in an atmosphere containing nitrogen as a main component by bringing a material containing carbon as a main component into contact with the film, or by collaborator Hosono et al. This can be done using the prior art reported in 1. Since the complex oxide film of the present invention can have a large area, the cost can be reduced in the process even by the processing method using the conventional technique.

本発明における炭素を主成分とは、該膜と接触可能で炭素を含有していれば特に材料、純度、形状、形態は問わない。例えば、試薬で販売されているカーボン、グラファイト、ダイアモンド、活性炭、炭等の炭素とそれ以外の不純物を含むもの、石炭、さらには有機物質等、またそれらの混合物等を用いることができる。該有機物質とは、本発明の要件である窒素を主成分とする雰囲気中での加熱により、炭化するため使用が可能であり、特に、沸点の高い溶媒、ポリマー等が好適である。
本発明において、窒素を主成分とするとは、窒素の体積比で、70vol%以上、100vol%以下のことをいい、好ましくは、80vol%以上、100vol%以下、さらに好ましくは95vol%以上、100vol%以下の範囲である。窒素の体積比で70vol%以下になると、反応が進まないか、または反応速度が非常に遅くなるため好ましくない。
The main component of carbon in the present invention is not particularly limited in material, purity, shape, and form as long as it can contact the film and contains carbon. For example, carbon, graphite, diamond, activated carbon, charcoal-containing carbon and other impurities, coal, organic substances, mixtures thereof, and the like sold as reagents can be used. The organic substance can be used because it is carbonized by heating in an atmosphere containing nitrogen as a main component, which is a requirement of the present invention, and a solvent, polymer, or the like having a high boiling point is particularly suitable.
In the present invention, nitrogen as a main component means a volume ratio of nitrogen of 70 vol% or more and 100 vol% or less, preferably 80 vol% or more and 100 vol% or less, more preferably 95 vol% or more and 100 vol%. The range is as follows. When the volume ratio of nitrogen is 70 vol% or less, the reaction does not proceed or the reaction rate becomes very slow.

以上の条件の下、加熱処理を行うが、本発明での加熱処理は、700℃以上、1500℃以下が好ましく、より好ましくは、600℃以上、1400℃以下、さらに好ましくは、700℃以上、1400℃以下の範囲である。加熱処理が700℃以下では、反応が進行せず、電子が包接されない。一方、1500℃以上では加熱炉に使用される発熱体の制限が大きく加わることやエネルギー的に非効率であるため好ましくない。
また、本発明における加熱時間は、10分以上、24時間以下が好ましく、より好ましくは30分以上、18時間以下、さらに好ましくは30分以上、12時間以下であり、最も好ましくは1時間以上、8時間以下の範囲である。加熱時間が短すぎると均一な電気伝導体複合化合物が得られにくく、加熱時間が長すぎるとプロセス上好ましくない。
Heat treatment is performed under the above conditions, but the heat treatment in the present invention is preferably 700 ° C. or higher and 1500 ° C. or lower, more preferably 600 ° C. or higher and 1400 ° C. or lower, and still more preferably 700 ° C. or higher. It is a range of 1400 ° C. or lower. When the heat treatment is 700 ° C. or lower, the reaction does not proceed and electrons are not included. On the other hand, when the temperature is 1500 ° C. or higher, the heating element used in the heating furnace is largely restricted and is not energy efficient.
The heating time in the present invention is preferably 10 minutes or longer and 24 hours or shorter, more preferably 30 minutes or longer and 18 hours or shorter, still more preferably 30 minutes or longer and 12 hours or shorter, most preferably 1 hour or longer, The range is 8 hours or less. If the heating time is too short, it is difficult to obtain a uniform electric conductor composite compound, and if the heating time is too long, it is not preferable for the process.

また、共同研究者の細野らが特許文献1、2や非特許文献1で報告している従来技術とは、COガス中で600℃以上〜1100℃以下で0.5時間以上、100時間以下で加熱保持して還元処理を行う方法や、H2を含むガス中で600℃以上〜1100℃以下で0.5時間以上、100時間以下で加熱保持し、その後紫外線、X線等を照射して還元処理を行う方法や、スパッタやPLD装置内で700℃以上、900℃以下で加熱した複合酸化膜上にさらにC12A7を堆積し、急冷して還元処理を行う方法である。
以上、本発明の12Ca1-XSrXO・7Al23(x=0〜1)で示される複合酸化物膜、およびその電気伝導性複合酸化物膜を製造するための製造条件を説明した。
In addition, the conventional technology reported by the collaborators Hosono et al. In Patent Documents 1 and 2 and Non-Patent Document 1 is from 600 ° C. to 1100 ° C. in CO gas for 0.5 hours or more and 100 hours or less. In the gas containing H 2 , the heat treatment is carried out and the gas is reduced to 600 ° C. to 1100 ° C. for 0.5 to 100 hours and then irradiated with ultraviolet rays, X-rays, etc. A reduction treatment, or a method in which C12A7 is further deposited on a composite oxide film heated at 700 ° C. or more and 900 ° C. or less in a sputtering or PLD apparatus, and the reduction treatment is performed by rapid cooling.
The manufacturing conditions for manufacturing the composite oxide film represented by 12Ca 1-X Sr X O.7Al 2 O 3 (x = 0 to 1) and the electrically conductive composite oxide film of the present invention have been described above. did.

以下、本発明を実施例などにより更に具体的に説明するが、本発明はこれら実施例などにより何ら制限されるものではない。
本発明に用いられる評価法および測定法は以下のとおりである。
(X線回折)
理学電気(株)製、RINT2000において、CuのKα線を用いて測定する。測定条件は、加速電圧50KV、加速電流は200mA、受光スリット幅0.15mm、走査速度4°/分、サンプリング0.02°である。なお、回折線はグラファイトのモノクロメーターにより単色化されてカウントされる。構造は、Materials Data社製のJADEを用いて同定を行う。
(電気特性)
電子濃度は、吸収スペクトルから算出した。電気抵抗は、移動度および電子濃度より求めた。電子濃度測定及び電気抵抗測定の詳細は、先記した特許文献2に開示された方法を用いて行った。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Evaluation methods and measurement methods used in the present invention are as follows.
(X-ray diffraction)
In RINT2000, manufactured by Rigaku Denki Co., Ltd., measurement is performed using Cu Kα rays. The measurement conditions are an acceleration voltage of 50 KV, an acceleration current of 200 mA, a light receiving slit width of 0.15 mm, a scanning speed of 4 ° / min, and a sampling of 0.02 °. The diffraction lines are monochromatic by a graphite monochromator and counted. The structure is identified using JADE made by Materials Data.
(Electrical characteristics)
The electron concentration was calculated from the absorption spectrum. The electrical resistance was determined from mobility and electron concentration. Details of the electron concentration measurement and the electrical resistance measurement were performed using the method disclosed in Patent Document 2 described above.

[実施例1]
1,4−ブタンジール(和光純薬社製)中に、CaとAlのモル比が12:14になるように硝酸カルシウム(高純度化学社製)と硝酸アルミニウム(高純度化学社製)を加え、全金属濃度が0.25mol/lに調整する。得られた溶液に安定化剤としてクエン酸(和光純薬社製)を全金属モル濃度に対して2.5倍のモル量加え溶解させて均一溶液を得る。得られた溶液を3cm×3cmのMgO基板上に1500r.p.m.でスピンコートして、400℃オーブン中で10分加熱してChar化を行い、その後1100℃で1時間加熱した。その後再度該溶液を用いて同条件でスピンコート、加熱を行って目的の複合酸化物膜を得た。
得られた複合酸化物膜は、X線回折分析を行った結果、C12A7に帰属されるピークが確認され、膜厚測定を行ったところ200nmであった。以上のことからC12A7複合酸化物膜が形成されていることを確認した。
[Example 1]
In 1,4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.), calcium nitrate (manufactured by high purity chemical company) and aluminum nitrate (manufactured by high purity chemical company) are added so that the molar ratio of Ca to Al is 12:14. The total metal concentration is adjusted to 0.25 mol / l. To the obtained solution, citric acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a stabilizer is added in a molar amount 2.5 times the total metal molar concentration and dissolved to obtain a uniform solution. The obtained solution was placed on a 3 cm × 3 cm MgO substrate at 1500 r. p. m. Spin-coating and heating in a 400 ° C. oven for 10 minutes to char, followed by heating at 1100 ° C. for 1 hour. Thereafter, the solution was again spin-coated and heated under the same conditions to obtain a target composite oxide film.
The obtained composite oxide film was subjected to X-ray diffraction analysis. As a result, a peak attributed to C12A7 was confirmed, and the film thickness was measured to be 200 nm. From the above, it was confirmed that a C12A7 composite oxide film was formed.

[実施例2]
イソプロパノール(和光純薬社製)とメトキシエタノール(和光純薬社製)が体積比で同量混合した溶液中に、CaとAlのモル比が12:14になるようにカルシウムイソプロポキシド(高純度化学社製)とアルミニウムイソプロポキシド(高純度化学社製)を加え、全金属濃度が0.06mol/lに調整する。得られた溶液に純水を全金属モル濃度に対して1.25倍のモル量加え溶解させて均一溶液を得る。得られた溶液を3cm×3cmのMgO基板上に1500r.p.m.でスピンコートして、150℃オーブン中で10分加熱して、その後900℃で2時間加熱した。その後3回、該溶液を用いて同条件でスピンコート、加熱を行って目的の複合酸化物膜を得た。
得られた複合酸化物膜は、X線回折分析を行った結果、C12A7に帰属されるピークが確認され、膜厚測定を行ったところ180nmであった。以上のことからC12A7複合酸化物膜が形成されていることを確認した。
[Example 2]
In a solution in which isopropanol (manufactured by Wako Pure Chemical Industries, Ltd.) and methoxyethanol (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed in the same volume by volume, calcium isopropoxide (high Purity Chemical) and aluminum isopropoxide (High Purity Chemical) are added to adjust the total metal concentration to 0.06 mol / l. Pure water is added to the obtained solution in a molar amount of 1.25 times the total metal molar concentration and dissolved to obtain a uniform solution. The obtained solution was placed on a 3 cm × 3 cm MgO substrate at 1500 r. p. m. And then heated in an oven at 150 ° C. for 10 minutes and then heated at 900 ° C. for 2 hours. Thereafter, using the solution three times, spin coating and heating were performed under the same conditions to obtain the target composite oxide film.
The obtained complex oxide film was subjected to X-ray diffraction analysis. As a result, a peak attributed to C12A7 was confirmed, and when the film thickness was measured, it was 180 nm. From the above, it was confirmed that a C12A7 composite oxide film was formed.

[実施例3]
アセトニトリル(和光純薬社製)中に、CaとAlのモル比が12:14になるように塩化カルシウム(高純度化学社製)と塩化アルミニウム(高純度化学社製)を加え、全金属濃度が0.10mol/lに調整する。得られた溶液に安定化剤としてジエタノールアミン(和光純薬社製)を全金属モル濃度に対して1.0倍のモル量加え溶解させて均一溶液を得る。得られた溶液を3cm×3cmのYAG基板上に1500r.p.m.でスピンコートして、300℃オーブン中で10分加熱してChar化を行い、その後1100℃で1時間加熱した。その後3回、該溶液を用いて同条件でスピンコート、加熱を行って目的の複合酸化物膜を得た。
得られた複合酸化物膜は、X線回折分析を行った結果、C12A7に帰属されるピークが確認され、膜厚測定を行ったところ150nmであった。以上のことからC12A7複合酸化物膜が形成されていることを確認した。
[Example 3]
In acetonitrile (Wako Pure Chemical Industries, Ltd.), calcium chloride (manufactured by High Purity Chemical) and aluminum chloride (manufactured by High Purity Chemical) are added so that the molar ratio of Ca and Al is 12:14, and the total metal concentration Is adjusted to 0.10 mol / l. Diethanolamine (manufactured by Wako Pure Chemical Industries, Ltd.) as a stabilizer is added to the obtained solution and dissolved in a molar amount of 1.0 times the total metal molar concentration to obtain a uniform solution. The obtained solution was placed on a 3 cm × 3 cm YAG substrate at 1500 r. p. m. Spin-coating and heating in a 300 ° C. oven for 10 minutes to char, followed by heating at 1100 ° C. for 1 hour. Thereafter, using the solution three times, spin coating and heating were performed under the same conditions to obtain the target composite oxide film.
The obtained composite oxide film was subjected to X-ray diffraction analysis. As a result, a peak attributed to C12A7 was confirmed, and the film thickness was measured to be 150 nm. From the above, it was confirmed that a C12A7 composite oxide film was formed.

[実施例4]
実施例1で用いた硝酸カルシウムの変わりに硝酸ストロンチウム(高純度化学社製)を用い、最終加熱温度を700℃にした以外は実施例1とすべて同じ条件で製膜を行った。
得られた複合酸化物膜は、X線回折分析を行った結果、S12A7に帰属されるピークが確認され、膜厚測定を行ったところ180nmであった。以上のことからS12A7複合酸化物膜が形成されていることを確認した。
[実施例5]
実施例2で用いたカルシウムイソプロポキシドの変わりにストロンチウムイソプロポキシド(高純度化学社製)を用い、最終加熱温度を700℃にした以外は実施例2とすべて同じ条件で製膜を行った。
得られた複合酸化物膜は、X線回折分析を行った結果、S12A7に帰属されるピークが確認され、膜厚測定を行ったところ200nmであった。以上のことからS12A7複合酸化物膜が形成されていることを確認した。
[Example 4]
A film was formed under the same conditions as in Example 1 except that strontium nitrate (manufactured by Koyo Chemical Co., Ltd.) was used instead of calcium nitrate used in Example 1 and the final heating temperature was 700 ° C.
The obtained composite oxide film was subjected to X-ray diffraction analysis. As a result, a peak attributed to S12A7 was confirmed, and when the film thickness was measured, it was 180 nm. From the above, it was confirmed that the S12A7 composite oxide film was formed.
[Example 5]
A film was formed under the same conditions as in Example 2 except that strontium isopropoxide (manufactured by Koyo Chemical Co., Ltd.) was used instead of calcium isopropoxide used in Example 2 and the final heating temperature was changed to 700 ° C. .
The obtained complex oxide film was subjected to X-ray diffraction analysis. As a result, a peak attributed to S12A7 was confirmed, and the film thickness was measured to be 200 nm. From the above, it was confirmed that the S12A7 composite oxide film was formed.

[実施例6]
1,4ブタンジール(和光純薬社製)中に、CaとSr対、Alのモル比が12:14になるように硝酸カルシウム(高純度化学社製)と硝酸ストロンチウム(高純度化学社製)と硝酸アルミニウム(高純度化学社製)を加え、全金属濃度を0.25mol/lに調整する。得られた溶液に安定化剤としてクエン酸(和光純薬社製)を全金属モル濃度に対して2.5倍のモル量加え溶解させて均一溶液を得る。得られた溶液を3cm×3cmのMgO基板上に1500r.p.m.でスピンコートして、400℃オーブン中で10分加熱してChar化を行い、その後1100℃で1時間加熱した。その後再度該溶液を用いて同条件でスピンコート、加熱を行って目的の複合酸化物膜を得た。
得られた複合酸化物膜は、X線回折分析を行った結果、C12A7とSr12A7の混晶に帰属され、膜厚測定を行ったところ200nmであった。以上のことから複合酸化物膜が形成されていることを確認した。
[Example 6]
In 1,4 butanediol (Wako Pure Chemical Industries, Ltd.), calcium nitrate (manufactured by High Purity Chemical Co., Ltd.) and strontium nitrate (manufactured by High Purity Chemical Co., Ltd.) so that the molar ratio of Ca to Sr to Al is 12:14. And aluminum nitrate (manufactured by Koyo Chemical Co., Ltd.) are added to adjust the total metal concentration to 0.25 mol / l. To the obtained solution, citric acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a stabilizer is added in a molar amount 2.5 times the total metal molar concentration and dissolved to obtain a uniform solution. The obtained solution was placed on a 3 cm × 3 cm MgO substrate at 1500 r. p. m. Spin-coating and heating in a 400 ° C. oven for 10 minutes to char, followed by heating at 1100 ° C. for 1 hour. Thereafter, the solution was again spin-coated and heated under the same conditions to obtain a target composite oxide film.
As a result of X-ray diffraction analysis, the obtained complex oxide film was assigned to a mixed crystal of C12A7 and Sr12A7, and its thickness was measured to be 200 nm. From the above, it was confirmed that a complex oxide film was formed.

[実施例7]
実施例1で得られたC12A7複合酸化物膜上をカーボン粉末(高純度化学)で覆い、200cc/minの窒素をフローした電気炉で1350℃、1時間加熱して電気伝導性複合酸化物膜を得た。
得られた電気伝導性複合酸化物膜は、電子濃度1019/cm3で、0.5S/cmと高い伝導性を示した。
[実施例8]
実施例2で得られたC12A7複合酸化物膜を200cc/minのCOをフローした電気炉で1100℃、1時間加熱して電気伝導性複合酸化物膜を得た。
得られた電気伝導性複合酸化物膜は、電子濃度1019/cm3で、0.2S/cmと高い伝導性を示した。
[Example 7]
The C12A7 composite oxide film obtained in Example 1 was covered with carbon powder (high-purity chemistry) and heated at 1350 ° C. for 1 hour in an electric furnace in which 200 cc / min of nitrogen was flowed. Got.
The obtained electrically conductive composite oxide film exhibited a high conductivity of 0.5 S / cm at an electron concentration of 10 19 / cm 3 .
[Example 8]
The C12A7 composite oxide film obtained in Example 2 was heated at 1100 ° C. for 1 hour in an electric furnace in which 200 cc / min of CO was flowed to obtain an electrically conductive composite oxide film.
The obtained electrically conductive complex oxide film exhibited a high conductivity of 0.2 S / cm at an electron concentration of 10 19 / cm 3 .

[実施例9]
実施例3で得られたC12A7複合酸化物膜を水素20vol%と窒素80vol%中1000℃で1持間加熱した後に、急冷し、H−包接C12A7複合酸化物膜を得た。その後該H−包接C12A7複合酸化物膜に紫外線を1時間照射して、電気伝導性複合酸化物膜を得た。
得られた電気伝導性複合酸化物膜は、電子濃度1019/cm3で、0.1S/cmと高い伝導性を示した。
[実施例10]
実施例4で得られたS12A7複合酸化物膜をPLDチャンバー内に導入し、700℃でC12A7ターゲットを堆積し、急冷した。得られた膜の表面に堆積したC12A7アモルファス層を研磨して削除して、電気伝導性複合酸化物膜を得た。
得られた電気伝導性複合酸化物膜は、電子濃度1021/cm3で、5S/cmと高い伝導性を示した。
[Example 9]
The C12A7 composite oxide film obtained in Example 3 was heated for 1 hour at 1000 ° C. in 20 vol% hydrogen and 80 vol% nitrogen, and then rapidly cooled to obtain an H-clathion C12A7 composite oxide film. Thereafter, the H-inclusion C12A7 composite oxide film was irradiated with ultraviolet rays for 1 hour to obtain an electrically conductive composite oxide film.
The obtained electrically conductive composite oxide film exhibited a high conductivity of 0.1 S / cm at an electron concentration of 10 19 / cm 3 .
[Example 10]
The S12A7 composite oxide film obtained in Example 4 was introduced into a PLD chamber, and a C12A7 target was deposited at 700 ° C. and rapidly cooled. The C12A7 amorphous layer deposited on the surface of the obtained film was polished and removed to obtain an electrically conductive complex oxide film.
The obtained electrically conductive complex oxide film exhibited a high conductivity of 5 S / cm at an electron concentration of 10 21 / cm 3 .

[比較例1]
実施例1で用いた1,4−ブタンジールの替わりに水を用いた以外は、実施例1とすべて同じ条件で製膜を行った。
得られた複合酸化物膜は、X線回折分析を行った結果、基板と反応としたと考えられるMgAl24に帰属されるピークが確認され、C12A7膜を得ることができなかった。
[Comparative Example 1]
A film was formed under the same conditions as in Example 1 except that water was used instead of 1,4-butanediol used in Example 1.
As a result of X-ray diffraction analysis of the obtained composite oxide film, a peak attributed to MgAl 2 O 4 considered to have reacted with the substrate was confirmed, and a C12A7 film could not be obtained.

本発明の複合酸化物膜、及び元素や電子を包接した複合酸化物膜は、コールド電子エミッター、導電体、電子注入体、還元剤、酸化剤、触媒などへの応用が期待される。   The composite oxide film of the present invention and the composite oxide film containing elements and electrons are expected to be applied to cold electron emitters, conductors, electron injectors, reducing agents, oxidizing agents, catalysts, and the like.

Claims (2)

Ca及び/又はSrとAlとを含む組成からなる非水溶液を焼成して得られることを特徴とする12Ca1-XSrXO・7Al23(x=0〜1)で示される複合酸化物膜の製造方法。 Composite oxidation represented by 12Ca 1-X Sr X O.7Al 2 O 3 (x = 0 to 1) obtained by firing a non-aqueous solution having a composition containing Ca and / or Sr and Al Manufacturing method of physical film. Ca及び/又はSrとAlとを含む組成からなる非水溶液を焼成して得られる12Ca1-XSrXO・7Al23(x=0〜1)で示される複合酸化物を還元処理して電子を包接させたことを特徴とする電気伝導性複合酸化物膜の製造方法。 A composite oxide represented by 12Ca 1-X Sr X O.7Al 2 O 3 (x = 0 to 1) obtained by firing a non-aqueous solution having a composition containing Ca and / or Sr and Al is reduced. And a method for producing an electrically conductive complex oxide film characterized in that electrons are included.
JP2007279093A 2007-10-26 2007-10-26 Composite oxide film and method for producing electrically conductive composite compound film Expired - Fee Related JP5224778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007279093A JP5224778B2 (en) 2007-10-26 2007-10-26 Composite oxide film and method for producing electrically conductive composite compound film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007279093A JP5224778B2 (en) 2007-10-26 2007-10-26 Composite oxide film and method for producing electrically conductive composite compound film

Publications (2)

Publication Number Publication Date
JP2009107858A true JP2009107858A (en) 2009-05-21
JP5224778B2 JP5224778B2 (en) 2013-07-03

Family

ID=40776797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007279093A Expired - Fee Related JP5224778B2 (en) 2007-10-26 2007-10-26 Composite oxide film and method for producing electrically conductive composite compound film

Country Status (1)

Country Link
JP (1) JP5224778B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035274A (en) * 2009-08-04 2011-02-17 Toyota Central R&D Labs Inc Method of manufacturing electromagnetic element
WO2014034473A1 (en) 2012-08-30 2014-03-06 国立大学法人東京工業大学 Method for producing conductive mayenite compound powder
JP2016160150A (en) * 2015-03-03 2016-09-05 旭硝子株式会社 Manufacturing method of s12a7 electride compound and manufacturing method of thin film of s12a7 electride compound

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316867A (en) * 2001-04-16 2002-10-31 Japan Science & Technology Corp 12CaO.7Al2O3 COMPOUND INCLUDING HYDROXY GROUP ION
JP2003238149A (en) * 2002-02-21 2003-08-27 Japan Science & Technology Corp 12SrO/7AL2O3 COMPOUND AND ITS SYNTHESIZING METHOD
WO2003089373A1 (en) * 2002-04-19 2003-10-30 Japan Science And Technology Agency Hydrogen-containing electrically conductive organic compound
JP2004026608A (en) * 2002-06-27 2004-01-29 Japan Science & Technology Corp Electrically conductive inorganic compound including alkali metal
JP2004168591A (en) * 2002-11-20 2004-06-17 Denki Kagaku Kogyo Kk Process for manufacturing oxygen radical-containing calcium aluminate sintered compact
WO2005000741A1 (en) * 2003-06-26 2005-01-06 Japan Science And Technology Agency ELECTROCONDUCTIVE 12CaO·7Al2O3 AND COMPOUND OF SAME TYPE, AND METHOD FOR PREPARATION THEREOF
WO2006129674A1 (en) * 2005-05-30 2006-12-07 Asahi Glass Company, Limited Process for producing conductive mayenite compound
WO2006129675A1 (en) * 2005-05-30 2006-12-07 Asahi Glass Company, Limited Process for producing conductive mayenite compound
JP2008266105A (en) * 2007-04-25 2008-11-06 Asahi Kasei Corp Method of manufacturing electrically conductive composite compound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316867A (en) * 2001-04-16 2002-10-31 Japan Science & Technology Corp 12CaO.7Al2O3 COMPOUND INCLUDING HYDROXY GROUP ION
JP2003238149A (en) * 2002-02-21 2003-08-27 Japan Science & Technology Corp 12SrO/7AL2O3 COMPOUND AND ITS SYNTHESIZING METHOD
WO2003089373A1 (en) * 2002-04-19 2003-10-30 Japan Science And Technology Agency Hydrogen-containing electrically conductive organic compound
JP2004026608A (en) * 2002-06-27 2004-01-29 Japan Science & Technology Corp Electrically conductive inorganic compound including alkali metal
JP2004168591A (en) * 2002-11-20 2004-06-17 Denki Kagaku Kogyo Kk Process for manufacturing oxygen radical-containing calcium aluminate sintered compact
WO2005000741A1 (en) * 2003-06-26 2005-01-06 Japan Science And Technology Agency ELECTROCONDUCTIVE 12CaO·7Al2O3 AND COMPOUND OF SAME TYPE, AND METHOD FOR PREPARATION THEREOF
WO2006129674A1 (en) * 2005-05-30 2006-12-07 Asahi Glass Company, Limited Process for producing conductive mayenite compound
WO2006129675A1 (en) * 2005-05-30 2006-12-07 Asahi Glass Company, Limited Process for producing conductive mayenite compound
JP2008266105A (en) * 2007-04-25 2008-11-06 Asahi Kasei Corp Method of manufacturing electrically conductive composite compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035274A (en) * 2009-08-04 2011-02-17 Toyota Central R&D Labs Inc Method of manufacturing electromagnetic element
WO2014034473A1 (en) 2012-08-30 2014-03-06 国立大学法人東京工業大学 Method for producing conductive mayenite compound powder
KR20150051215A (en) 2012-08-30 2015-05-11 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Method for producing conductive mayenite compound powder
US9573822B2 (en) 2012-08-30 2017-02-21 Tokyo Institute Of Technology Method for producing conductive mayenite compound powder
US10124319B2 (en) 2012-08-30 2018-11-13 Tokyo Institute Of Technology Method for producing conductive mayenite compound powder having large specific surface area
JP2016160150A (en) * 2015-03-03 2016-09-05 旭硝子株式会社 Manufacturing method of s12a7 electride compound and manufacturing method of thin film of s12a7 electride compound

Also Published As

Publication number Publication date
JP5224778B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
Yi et al. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors
Cheng et al. Growth and characteristics of La2O3 gate dielectric prepared by low pressure metalorganic chemical vapor deposition
JP2009224737A (en) Insulating film formed of metal oxide mainly containing gallium oxide, and manufacturing method thereof
KR101289950B1 (en) Niobium 2-ethylhexanoate derivative, process for producing the derivative, organic acid metal salt composition containing the derivative, and process for producing thin film from the composition
JP3548801B2 (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
Zatsepin et al. XPS and DFT study of Sn incorporation into ZnO and TiO2 host matrices by pulsed ion implantation
JP5224778B2 (en) Composite oxide film and method for producing electrically conductive composite compound film
EP2684917A1 (en) Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
JP4248312B2 (en) Method for producing metal oxide
JP2008156188A (en) METHOD FOR PRODUCING A-SITE LAYERED ORDERED PEROVSKITE Mn OXIDE THIN FILM
WO2013129701A1 (en) Method for forming electroconductive film
Khan et al. Post-annealing effect on the structural and mechanical properties of multiphase zirconia films deposited by a plasma focus device
CN107635922B (en) Method for producing conductive mayenite type compound
JP6647586B2 (en) Method of manufacturing precursor solution for forming insulating film and method of manufacturing gate insulating film
Park et al. Rapid fabrication of chemical-solution-deposited La0. 6Sr0. 4CoO3− δ thin films via flashlight sintering
CN103771528B (en) A kind of Bi of high-k 1-Xho xfeO 3ferroelectric membranc and preparation method thereof
JP2004231495A (en) Method of manufacturing metal oxide film
KR100820747B1 (en) A mafacturing method of precursor solution with improved viscosity
Jing et al. Growth and electrical properties of Ce-doped Bi2Ti2O7 thin films by chemical solution deposition
Yu et al. A Polyethylene Glycol‐Modified Solid‐State Reaction Route to Synthesize Relaxor Ferroelectric Pb (Mg1/3Nb2/3) O3–PbTiO3 (PMN–PT)
JP5273561B2 (en) Manufacturing method of superconducting film
Ji et al. Investigations of dielectric enhancement in (Ta 2 O 5) 1-x (TiO 2) x ceramics prepared by laser-sintering technique
KR101876368B1 (en) Method for manufacturing liquid-type metal-oxide thin film, thin film, and electric device thereof
Shlyakhtina et al. Oxygen interstitial and vacancy conduction in symmetric Ln 2±x Zr 2±x O 7±x/2 (Ln= Nd, Sm) solid solutions
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees