JP2009107082A - 工作機械 - Google Patents

工作機械 Download PDF

Info

Publication number
JP2009107082A
JP2009107082A JP2007283015A JP2007283015A JP2009107082A JP 2009107082 A JP2009107082 A JP 2009107082A JP 2007283015 A JP2007283015 A JP 2007283015A JP 2007283015 A JP2007283015 A JP 2007283015A JP 2009107082 A JP2009107082 A JP 2009107082A
Authority
JP
Japan
Prior art keywords
value
current
current value
motor
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007283015A
Other languages
English (en)
Inventor
Nariyuki Kurihara
成之 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Star Micronics Co Ltd
Original Assignee
Star Micronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Star Micronics Co Ltd filed Critical Star Micronics Co Ltd
Priority to JP2007283015A priority Critical patent/JP2009107082A/ja
Publication of JP2009107082A publication Critical patent/JP2009107082A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

【課題】モータへの電流供給に用いられるケーブルとして、必要以上に許容電流値が高く径の太いケーブルが使用されていた。
【解決手段】ワークに対する1サイクルの加工動作を所定の加工プログラムに従って繰り返し実行可能な工作機械であって、許容電流値を取得する取得手段と、上記加工動作の動力を生み出すモータに対して供給される電流の上記1サイクルの自然数倍の期間の平均値と略等価である平均電流等価値を算出する算出手段と、上記許容電流値と平均電流等価値とを比較する比較手段と、上記比較手段が、上記平均電流等価値は許容電流値より高いと判断した場合に、警告処理及び又は停止処理を実行する異常時対応手段とを備える構成とした。
【選択図】図2

Description

本発明は、工作機械に関する。
NC(Numerical Control)旋盤などの工作機械を用いて、加工対象となる素材(ワーク)に対し所定の加工を施すことにより、所望の精密部品が製造される。工作機械は、ワークを把持して回転する主軸や、ワークの加工に使用される工具を装着する刃物台などを有する。さらに工作機械は、当該主軸や刃物台を夫々に動作させるための各モータと、ケーブルを介してモータに電力を供給する各アンプを有する。アンプからケーブルを介してモータに電力を供給する際、供給される電流量に応じてジュール熱が発生する。そこで従来の工作機械においては、かかる発熱による焼損(ケーブルの被覆の溶解や発火、モータ内のコイルの焼け等。)を防ぐため、アンプの定格出力電流値よりも高い連続許容電流値を持つケーブルを選定し、アンプとモータとの接続に用いていた。
また従来技術として、定格出力を期間で定める電気装置の焼損防止装置において、電流値の2乗の総和が、設定器で設定された期間の発熱量の許容量Qに等しくなった時点で、電源装置をオフさせる構成が知られている(特許文献1参照。)。
特許第3926463号公報
上述したように、アンプの定格出力電流値よりもケーブルの連続許容電流値を高いものとするには、導体の断面積が十分に大きい規格のケーブルを選定する必要があった。しかしながら、使用するケーブル径が太ければ太いほど工作機械内でのケーブルの引回しに労力を要し、かつ工作機械全体の小型化を妨げてしまうという課題があった。
特に、モータが移動体に搭載される場合においては、アンプとモータとを接続するケーブルが屈曲するためのスペースを確保する必要がある。しかし、ケーブル径が太いほどケーブルの屈曲半径も大きくなるため、上記スペースを広く確保しなければならず、その結果、工作機械の小型化が著しく妨げられていた。加えて、使用するケーブル径が太いほどケーブルの価格も上昇し、その結果、工作機械の価格を上昇させてしまう。
また工作機械においては、所定の1サイクルの加工動作によってワークから精密部品を削り出し、この1サイクルの加工動作を繰り返すことにより同一の精密部品を量産する。工作機械の使用者は、必要とされる表面荒さや形状などを勘案して加工部位に応じた主軸の回転数や移動体の送り速度を設定する。従って、1サイクルの加工動作の間に移動体(刃物台や主軸)の送り軸用および主軸回転用のモータは加減速、定速回転および停止を複数回繰り返すことになる。モータの加減速時には加減速時間を短縮するために大きな電流がアンプから供給される。これに対し、定速回転時には比較的小さな電流が供給される。また、移動体の送り軸を駆動するモータでは、モータが停止している期間は極僅かな保持電流が供給される。つまり、1サイクル期間内においては、アンプからモータに供給される電流は一定ではなく、アンプの定格出力に近い大きな電流が供給される時期はごく限られている。そのため、1サイクル期間内の一時期に、仮にケーブルの連続許容電流値を超える電流が流れたとしても、焼損発生・不発生の観点からは殆ど問題無い。この意味で、従来は必要以上に径が太い(連続許容電流値が高い)規格のケーブルが、アンプとモータとの接続に使用されていたと言える。
また、上記文献1のように、電流値の2乗の総和がある上限値(許容量Q)となった時点で直ぐに動作を停止させるというような構成は、上記1サイクルを繰り返し実行して精密部品を量産する工作機械にとっては不向きであった。
本発明は上記課題に鑑みてなされたもので、サイクル単位の加工動作を繰り返し実行する過程で発生し得る焼損を確実に防止し、従来のように径が過剰に太いケーブルを使用する必要性を無くし、ケーブル敷設の容易化、機械の小型化および機械の低コスト化を実現することが可能な工作機械を提供することを目的とする。
上記目的を達成するために、本発明の工作機械は、ワークに対する1サイクルの加工動作を所定の加工プログラムに従って繰り返し実行可能である。工作機械は、取得手段によって許容電流値を取得する。ここで言う許容電流値の取得とは、外部からのユーザの入力操作に応じて許容電流値を取得する場合や、許容電流値を予め保存した所定の記憶媒体から読み出す場合などを含む。次に、算出手段が、上記加工動作の動力を生み出すモータに対して供給される電流の上記1サイクルの自然数倍(1倍を含む。)の期間の平均値と略等価である平均電流等価値、を算出する。そして比較手段が、上記取得された許容電流値と上記算出された平均電流等価値とを比較し、異常時対応手段が、上記比較手段が平均電流等価値は許容電流値より高いと判断した場合に、警告処理及び又は停止処理を実行する。
このように本発明によれば、上記1サイクルの自然数倍の期間における平均電流等価値と許容電流値とを比較し、平均電流等価値が許容電流値より高い場合に警告処理や停止処理を実行する。そのため、モータへの電流供給に使用されるケーブル等に発熱による焼損が発生することを的確に未然防止できる。また、従来のように許容電流値が過剰に高くそのため径が太いケーブルを使用する必要性を無くし、ケーブル敷設の容易化、機械の小型化および機械の低コスト化を実現できる。
本発明の他の例として、工作機械は、上記モータまたは上記モータへの電流の供給経路の周囲温度を計測する温度計測手段をさらに有するとしてもよい。そして上記比較手段は、温度計測手段によって計測された周囲温度に応じて、上記許容電流値または平均電流等価値の少なくとも一方を補正した上で比較を行うとしてもよい。つまり、モータに供給される電流による発熱の程度はモータ等の周囲温度の影響も受ける。そのため、実際の周囲温度に応じて許容電流値または平均電流等価値を補正した上で上記比較を行うことにより、警告処理等を行うべきか否かのより正確な判断を行うことができる。
本発明の具体例として、上記算出手段は、上記1サイクルの自然数倍の期間中に上記モータに供給される電流値の二乗の平均値を求めるとともに当該平均値の平方根を平均電流等価値として算出するとしてもよい。このように平均電流等価値を定義して上記比較を行うことにより、ジュール熱によって生じ得るケーブル等の焼損を的確に未然防止することができる。
これまでは、本発明にかかる技術的思想を工作機械として説明したが、上述した工作機械が備える各手段に対応した工程を備えた方法の発明、さらには、上述した工作機械が備える各手段に対応した機能をコンピュータに実行させるプログラムの発明をも把握可能であることは、言うまでも無い。
以下では、図面を参照しながら本発明の実施形態を説明する。
図1は、本実施形態にかかるNC旋盤120の概略的構成をブロック図により示している。NC旋盤120は工作機械の一種である。NC旋盤120は、概略、NC装置10と、操作受付部20と、表示部30と、スピンドル(主軸)アンプ40と、スピンドルモータ50と、主軸60と、サーボアンプ70と、サーボモータ80と、刃物台90と、アクチュエータ100と、等を有する。
NC装置10はコンピュータであり、少なくともCPU10aや、RAM10bや、ROM10cや、タイマ10dを有している。操作受付部20は、NC装置10のユーザインターフェースであり、例えば、ユーザが操作可能なボタン類や上記表示部30の画面上に設けられたタッチパネル等からなる。表示部30は、ユーザが操作受付部20を介して入力した各種数値や設定の内容や、NC旋盤120に関する各種情報を表示するディスプレイである。表示部30の表示内容は、NC装置10によって制御される。NC装置10と、操作受付部20と、表示部30と、スピンドルアンプ40と、サーボアンプ70と、アクチュエータ100とは、互いにバス10eによって通信可能に接続されている。
スピンドルアンプ40とスピンドルモータ50との間は、ケーブル110aによって接続されている。スピンドルアンプ40は、ケーブル110aを介して電流をスピンドルモータ50に供給する。スピンドルアンプ40からの電流供給量は、NC装置10によって制御される。従来、スピンドルアンプとスピンドルモータとの接続には、スピンドルアンプの定格出力電流値よりも高い連続許容電流値を持つ太さのケーブルが使用されていた。しかし本実施形態では、少なくとも従来スピンドルアンプとスピンドルモータとの接続に用いられていたケーブルよりも連続許容電流値が低くかつ径が細いケーブル110aを、スピンドルアンプ40とスピンドルモータ50との接続に使用する。
スピンドルモータ50は、供給された電力を主軸60を回転させるための動力に変換して主軸60を回転させる。主軸60は、加工対象となるワークWをチャック(把持具)61で把持した状態で回転することが可能である。また、スピンドルモータ50は主軸60とともに、例えば、Z軸方向に移動可能である。そのため、ケーブル110aはスピンドルモータ50の移動範囲に応じた長さを有する。よって、主軸60の位置によりケーブル110aは屈曲することになる。
サーボアンプ70とサーボモータ80との間は、ケーブル110bによって接続されている。サーボアンプ70は、ケーブル110bを介して電流をサーボモータ80に供給する。サーボアンプ70からの電流供給量は、NC装置10によって制御される。従来、サーボアンプとサーボモータとの接続には、サーボアンプの定格出力電流値よりも高い連続許容電流値を持つ太さのケーブルが使用されていた。しかし本実施形態では、少なくとも従来サーボアンプとサーボモータとの接続に用いられていたケーブルよりも連続許容電流値が低くかつ径が細いケーブル110bを、サーボスアンプ70とサーボモータ80との接続に使用する。
サーボモータ80には、ワークWの加工に用いられる工具91を装着した刃物台90が接続されている。サーボモータ80は、供給された電力を刃物台90を移動させるための動力に変換して刃物台90を所定方向(例えば、X,Y,Zの3軸方向)へ移動させることが可能である。このとき、サーボモータ80は刃物台90とともに移動する。そのため、ケーブル110bはサーボモータ80の移動範囲に応じた長さを有する。よって、刃物台90の位置によりケーブル110bは屈曲することになる。
アクチュエータ100は、例えば、上記チャック61の開閉動作や、ワークWの加工時に必要な切削油を必要箇所に供給する動作等を担うモータ等を含む動力機構である。アクチュエータ100の動作もNC装置10によって制御される。
NC装置10では、CPU10aが、所定の加工プログラムPをRAM10bをワークエリアとして利用して実行することにより、スピンドルアンプ40や、サーボアンプ70や、アクチュエータ100等を数値制御する。当該数値制御は、例えばRAM10bに記憶された各種数値データDを参照して行われる。NC装置10は、加工プログラムPに従って所定の加工動作のサイクルを繰り返し実行する。1サイクルの加工動作毎に、主軸60が把持するワークWに対する刃物91による加工が行われ1つの精密部品が削り出されるため、上記サイクルを繰り返すことにより同一の精密部品が複数個生産される。
むろん、図1に示したNC旋盤120の構成は一例である。NC旋盤120が備える刃物台や工具の数や動きは限られないし、主軸60に加え、背面主軸を別途備えるものであったり、ワークWを主軸60等に供給するためのワーク供給装置を備えるものであってもよい。
本実施形態では、NC装置10が以下に説明する電流値監視処理を実行する。電流監視処理とは、概略的には、NC旋盤120が備えるモータ(例えば、スピンドルモータ50)に供給される電流がある基準を超えないか否か監視し、超えた場合には焼損の恐れがあるものとして所定の警告等を行う処理である。
上述したようにNC旋盤120においては、加工プログラムPに従った加工サイクルが繰り返し実行される。そのため、モータに対して供給される電流は、1サイクル単位で繰り返し同様の供給量となる。従って、1サイクル中においてモータへ供給される電流の平均的な値が判れば、この平均的な値を、加工サイクルを繰り返すNC旋盤120の稼働期間中におけるモータへの供給電流値の平均値と見なすことができる。そして、この平均的な値がモータへの電流供給に用いられるケーブルの連続許容電流値を超えなければ、電流供給による焼損の危険性も無く安全と言える。
そこで本実施形態では、上記平均的な値とモータへの電流供給に用いられるケーブルの連続許容電流値とを比較することにより、上記電流監視処理を行う。
本実施形態では、上記平均的な値として、1サイクル中の電流値の二乗化平均平方根値(以下、RMS値と呼ぶ。)を算出する。RMS値は、特許請求の範囲に言う平均電流等価値の一例であり、以下の式(1)によって算出する。
Figure 2009107082
式(1)において、iは電流値、tは時間、Tは1サイクルの期間である。
RMS値の算出は、NC装置10のCPU10aが、アンプがモータに供給する電流量の情報(電流値i)を入手して行うことになるが、かかる電流値iを時間tで完全に積分することは実際には困難である。そこで本実施形態では、CPU10aは、RMS値の近似値(以下、ARMS値と呼ぶ。)を以下の式(2)によって算出する。ARMS値も、特許請求の範囲に言う平均電流等価値の一例である。
Figure 2009107082
式(2)において、kは1〜nの整数、ikはk番目の読み取り電流値、taは電流値ikを読み取る周期、Tは1サイクルの期間、nは1サイクル中における電流値ikの読み取り回数(≒T/ta)である。読み取り周期taは、ARMS値に要求される近似精度やCPU10aの演算負担量を考慮して適宜設定可能であるが、例えば、0.1秒とすることができる。
次に、上記ARMS値の算出を含む電流値監視処理の内容を、フローチャートを用いて具体的に説明する。
図2は、CPU10aが、ROM10cに記憶されたアプリケーションプログラムAPLに従って実行する電流値監視処理の一例を示している。当該処理は、NC旋盤120の電源が投入されたことを契機として開始される。むろんCPU10aは、アプリケーションプログラムAPLに従った処理と並行し、上記加工プログラムPに従った処理も行うことが可能である。
ステップS(以下、ステップの表記を省略。)1では、CPU10aは、NC旋盤120が運転中であるか否か、すなわち上記加工プログラムPを実行中であるか否か判断する。そして、運転中で無い(No)と判断した場合にはS2に進み、運転中である(Yes)と判断した場合にはS3に進む。なお、NC旋盤120の電源が投入された直後においては、加工プログラムPは起動されず、まずS2に進むものとする。
S2では、CPU10aは、NC旋盤120が備える所定のケーブルについての連続許容電流値を取得する。本実施形態では一例として、スピンドルアンプ40とスピンドルモータ50とを接続するケーブル110aの連続許容電流値を取得する。連続許容電流値の取得方法は様々である。例えば、ROM10cに予めケーブル110aの連続許容電流値が情報として記録されている場合には、CPU10aは当該ROM10cからこの連続許容電流値を読み出す。連続許容電流値は、ケーブル110aの製品規格上決められた値であるため、NC旋盤120の製造者によって予めROM10cに記録されている場合があるからである。あるいは、CPU10aは、ユーザの入力によって連続許容電流値を取得してもよい。つまり、CPU10aは、表示部30にケーブル110aの連続許容電流値の入力をユーザに促す所定表示を行わせるとともに、当該表示に応じてユーザによって操作受付部20から入力された連続許容電流値を取得する。
CPU10aは上記S2の処理と併せ、図3に示すような表示部30上の連続許容電流値表示領域31に、上記取得した連続許容電流値を表示させる処理を行なうとしてもよい。なお、上記S2の処理を実行可能な点で、NC装置10(あるいはNC旋盤120)は、その機能の一部として特許請求の範囲に言う取得手段を実現していると言える。
S3では、CPU10aは、スピンドルアンプ40がスピンドルモータ50に供給する電流の値を周期ta毎に電流値ikとして取得し、当該取得した電流値ikの二乗値“ik2”を算出し、算出した二乗値“ik2”を積算する。ここで、スピンドルアンプ40は、ケーブル110aを介してスピンドルモータ50に供給する電流の値を、別途、A/D変換した上でバス10eを介してNC装置10側にも出力している。従って、CPU10aは、バス10eを介してスピンドルアンプ40から出力される電流値のデータを周期ta毎に読み取ることにより、スピンドルモータ50に供給される電流の値を取得することができる。また上記S3では、CPU10aは、二乗値“ik2”の積算と並行し、1回のサイクル期間Tの計測をタイマ10dに実行させる。期間Tの計測は、1番目の電流値i1の読み取りと略同時に開始する。
S4では、CPU10aは、1サイクル終了信号が発生したか否か判断する。そして、1サイクル終了信号が発生していない(No)場合は、上記S1に戻り、上述の処理を繰り返す。この場合、加工プログラムPが実行されている限りにおいて、二乗値“ik2”の積算と期間Tの計測とを続行する。一方、1サイクル終了信号が発生した場合(Yes)には、二乗値“ik2”の積算と期間Tの計測とを終了し、S5の処理に進む。ここで、1サイクル終了信号とは、加工プログラムPに従った処理を実行するCPU10aが1サイクルが終了する度に発する信号である。CPU10aは、加工プログラムPとアプリケーションプログラムAPLとを同時並行で行う状態において、加工プログラムP側の処理の流れで1サイクル終了信号を発した時に、アプリケーションプログラムAPL側の処理におけるS5に進む。
図4は、期間T内における電流値ikの変化の様子をグラフにより例示している。図4では、縦軸を電流値ik、横軸を時間tとしている。図に示すように、一つの期間T内においては、電流値ikが何回も変化する。1サイクルの期間T内において電流値ikがこのような変化を見せるのは、以下の理由による。
NC旋盤120においては、1サイクルの加工動作を繰り返すことにより精密部品の量産を行う。そのため、1つの部品の加工に要する時間つまり上記期間Tはできるだけ短いことが望まれる。期間Tを短縮するためにNC旋盤120では、できるだけ短時間でスピンドルモータ50の回転数を所定の回転数にまで変速することとしている。スピンドルモータ50の回転数がワークWの加工に必要十分な程度まで変速していない間は、ワークWに対する加工を行うことができず、かかる加工不能な時間が長いほど上記期間Tも長くなってしまうからである。このようにスピンドルモータ50の回転数を急激に変速するには、スピンドルアンプ40は一気に電流供給量を限界近くまで高める必要がある。一方、スピンドルモータ50の回転数が所定の回転数で安定した後は、高い電流値を供給し続ける必要が無くなり、スピンドルアンプ40が供給する電流値は低下する。そのため、電流値ikは1サイクル内で図4に示すように変化するのである。
S5では、CPU10aは、上記S3において算出した積算値
Figure 2009107082

と、周期taと、期間Tとを用いて、ARMS値を算出する。つまり、上記積算値に対してta/Tを乗算するとともに、当該乗算結果の平方根をとる。期間Tは、上記S3において期間Tの計測を開始してから上記1サイクル終了信号が発生するまでの時間である。なお上記S3〜S5の処理を実行可能な点で、NC装置10(あるいはNC旋盤120)は、その機能の一部として特許請求の範囲に言う算出手段を実現していると言える。
S6では、CPU10aは、上記算出したARMS値と、上記取得した連続許容電流値とを比較し、ARMS値が連続許容電流値を超えるか否か判断する。そして、超える(Yes)と判断した場合にはS7に進み、超えない(No)と判断した場合にはS8に進む。なお、上記S6の処理を実行可能な点で、NC装置10(あるいはNC旋盤120)は、その機能の一部として特許請求の範囲に言う比較手段を実現していると言える。
S7では、CPU10aは所定の警告処理を行なう。警告処理は、例えば、図示しないスピーカからアラーム音声を出力するものであってもよいし、表示部30に所定のアラーム表示を行うものであってもよい。かかる警告処理を行なうことで、ユーザは、スピンドルアンプ40とスピンドルモータ50とを接続するケーブル110a等に焼損の恐れがあることを認識でき、加工プログラムPの修正などの必要な処置を採ることができる。またS7では、CPU10aは、警告処理の後に、或いは警告処理に替えて、NC旋盤120の運転を強制的に停止させる処理を行なうとしてもよい。なお、上記S7の処理を実行可能な点で、NC装置10(あるいはNC旋盤120)は、その機能の一部として特許請求の範囲に言う異常時対応手段を実現していると言える。
S8では、CPU10aは、直近のS5において算出したARMS値によって、表示部30上のRMS値表示領域32(図3参照)の表示内容を更新する。すなわち、RMS値表示領域32の表示内容は、加工プログラムPの1サイクル毎に最新の数値に更新される。なお、加工プログラムP開始後の最初の1サイクルが終了するまでは、RMS値表示領域32は無表示状態である。図3に示すように、表示部30では、例えば、連続許容電流値表示領域31とRMS値表示領域32とを並ばせた状態で表示しており、かかる構成とすることで、ユーザは、最新のRMS値(ARMS値)が適切な数値であるかを容易に確認することができる。
S9では、CPU10aは、直近の1サイクルにおいて算出、計測した上記積算値および期間Tの情報をリセット(消去)した後、S1に戻り、上述した処理を繰り返す。
このように本実施形態では、1つの部品を加工するための1サイクル期間T内ではモータに供給される電流値は一定ではないものの同じサイクルを繰り返し実行して精密部品を量産するというNC旋盤120の特徴に着目し、1サイクル毎に平均電流等価値(RMS値あるいはARMS値)を算出し、この平均電流等価値と、モータへの電流供給に用いられるケーブルの連続許容電流値とを比較し、平均電流等価値が連続許容電流値を上回った場合に、所定の警告処理や停止処理を行なうとした。特に、NC旋盤120の1サイクル期間T内では、図4に示したように、モータの回転数を急激に上昇させる際などの限られた時期においてのみ、アンプの定格出力近くの高い電流がモータに供給される。そのため、かかる限られた時期の高い電流値を連続許容電流値と比較するのではなく、平均電流等価値と連続許容電流値とを比較することにより、NC旋盤120の使用実態に即して、NC旋盤120の稼働中に起こり得る上記ケーブル等の焼損の発生を的確に防止することができる。
またこの結果、従来のようにアンプの定格出力電流値より高い連続許容電流値を持つケーブルをアンプとモータとの接続に使用せずとも、上記焼損の発生を防止したNC旋盤120の安全な稼働が確保される。そのため、上記従来使用されていたケーブルよりも、導体の断面積が狭く径が細いケーブル(ケーブル110a,110b)を、アンプとモータとの接続に用いることが可能となる。従って、NC旋盤120内におけるケーブル敷設の容易化や、NC旋盤120全体の小型化や、NC旋盤120の低コスト化等が達成される。
なお、本発明の実施形態は上述したものに限られず、様々な変形例が考えられる。
上記実施形態では、平均電流等価値を1サイクル期間Tの1倍の期間毎に算出するとした。しかし、2サイクル期間や3サイクル期間といったように、1サイクルの所定自然数倍(この場合においては、2倍以上。)の期間毎に平均電流等価値(RMS値あるいはARMS値)を求めるとしてもよい。かかる構成とすれば、S6の比較処理を行なう回数が減る分、NC装置10の処理負担量を減らすことができる。
ここで、ジュール熱による焼損の危険性はそのときの環境温度によって変化する。そこでCPU10aは、上記S6の比較を行うに際し、平均電流等価値あるいは連続許容電流値の一方を周囲温度に応じて補正し、補正した上で比較を行うとしてもよい。
かかる構成を実現するため、図1に示すように、NC旋盤120は温度計測器(温度計測手段の一種。)130を備える。温度計測器130は、例えば、ケーブル110aやスピンドルモータ50の周囲温度を計測するものであり、計測結果をデジタルデータとしてバス10eを介してNC装置10に出力する。CPU10aは、上記S6において、比較に先立ち温度計測器130からの出力値(温度)を読み取り、当該読み取った温度に応じて、平均電流等価値あるいは連続許容電流値の一方を補正する。
例えば、平均電流等価値を補正する場合には、読み取った温度に応じて、温度が高いほど平均電流等価値を上昇させるように補正を行う。一方、連続許容電流値を補正する場合には、読み取った温度に応じて、温度が高いほど連続許容電流値を低下させるように補正を行う。むろん、補正した後の平均電流等価値あるいは連続許容電流値は、表示部30のRMS値表示領域32あるいは連続許容電流値表示領域31に表示することが可能である。
また上記では、NC旋盤120が備えるスピンドルアンプ40がスピンドルモータ50に対しケーブル110aを介して供給する電流の平均電流等価値と、当該ケーブル110aの連続許容電流値とを比較する場合について説明を行った。ただし、当該比較と同様に、サーボアンプ70がサーボモータ80に対しケーブル110bを介して供給する電流の平均電流等価値と、ケーブル110bの連続許容電流値とを比較し、比較結果に応じて警告処理等を行なっても良い。さらに言えば、本発明の構成は、NC旋盤120が備える、電流を供給する側と供給される側との全ての各関係における電流値監視に用いることができる。また、本発明は上記の実施形態や変形例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。また、本発明は旋盤に限らず、その他の工作機械にも適用可能である。
NC旋盤の概略構成の一例を示したブロック図。 電流値監視処理の一例を示したフローチャート。 表示部の一部範囲における表示態様の一例を示した説明図。 電流値の変化の様子の一例を示した説明図。
符号の説明
10…NC装置
10a…CPU
10b…RAM
10c…ROM
10d…タイマ
20…操作受付部
30…表示部
31…連続許容電流値表示領域
32…RMS値表示領域
40…スピンドルアンプ
50…スピンドルモータ
60…主軸
70…サーボアンプ
80…サーボモータ
90…刃物台
110a,110b…ケーブル
120…NC旋盤
130…温度計測器

Claims (3)

  1. ワークに対する1サイクルの加工動作を所定の加工プログラムに従って繰り返し実行可能な工作機械であって、
    許容電流値を取得する取得手段と、
    上記加工動作の動力を生み出すモータに対して供給される電流の上記1サイクルの自然数倍の期間の平均値と略等価である平均電流等価値を算出する算出手段と、
    上記許容電流値と平均電流等価値とを比較する比較手段と、
    上記比較手段が、上記平均電流等価値は許容電流値より高いと判断した場合に、警告処理及び又は停止処理を実行する異常時対応手段と、
    を備えることを特徴とする工作機械。
  2. 上記モータまたは上記モータへの電流の供給経路の周囲温度を計測する温度計測手段をさらに有し、
    上記比較手段は、温度計測手段によって計測された周囲温度に応じて、上記許容電流値または平均電流等価値の少なくとも一方を補正した上で比較を行うことを特徴とする請求項1に記載の工作機械。
  3. 上記算出手段は、上記1サイクルの自然数倍の期間中に上記モータに供給される電流の二乗の平均値を求めるとともに当該平均値の平方根を上記平均電流等価値として算出することを特徴とする請求項1または請求項2のいずれかに記載の工作機械。
JP2007283015A 2007-10-31 2007-10-31 工作機械 Pending JP2009107082A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007283015A JP2009107082A (ja) 2007-10-31 2007-10-31 工作機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007283015A JP2009107082A (ja) 2007-10-31 2007-10-31 工作機械

Publications (1)

Publication Number Publication Date
JP2009107082A true JP2009107082A (ja) 2009-05-21

Family

ID=40776159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007283015A Pending JP2009107082A (ja) 2007-10-31 2007-10-31 工作機械

Country Status (1)

Country Link
JP (1) JP2009107082A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017726A (ja) * 2018-07-26 2020-01-30 キヤノン株式会社 インプリント装置、制御方法、インプリント方法及び製造方法
JP2021047617A (ja) * 2019-09-18 2021-03-25 ファナック株式会社 診断装置および診断方法
JP2021056670A (ja) * 2019-09-27 2021-04-08 株式会社日進製作所 設備点検装置、設備点検システムおよび設備点検方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017726A (ja) * 2018-07-26 2020-01-30 キヤノン株式会社 インプリント装置、制御方法、インプリント方法及び製造方法
JP2021047617A (ja) * 2019-09-18 2021-03-25 ファナック株式会社 診断装置および診断方法
JP7436169B2 (ja) 2019-09-18 2024-02-21 ファナック株式会社 診断装置および診断方法
JP2021056670A (ja) * 2019-09-27 2021-04-08 株式会社日進製作所 設備点検装置、設備点検システムおよび設備点検方法
JP7304255B2 (ja) 2019-09-27 2023-07-06 株式会社日進製作所 設備点検装置、設備点検システムおよび設備点検方法

Similar Documents

Publication Publication Date Title
JP5905158B2 (ja) 数値制御装置
JP3405965B2 (ja) 工作機械の熱変位補正方法
JP5819812B2 (ja) 工作機械の負荷表示装置
EP2947528A2 (en) Method of calculating stable spindle rotation number capable of suppressing chatter vibration, method of informing the same, method of controlling spindle rotation number, and method of editing nc program, and apparatus therefor
JP5890467B2 (ja) 暖機運転機能を有する工作機械
JP3699458B2 (ja) 切削抵抗検出方法及び切削抵抗による加工制御方法並びに制御装置
JP4837110B2 (ja) 工具軌跡表示機能を有する数値制御装置
CN105320064B (zh) 具有设备异常履历的解析支援功能的数值控制装置
JP4261470B2 (ja) 制御装置
WO2010109536A1 (ja) 数値制御装置および当該数値制御装置の制御方法
WO1995002485A1 (fr) Systeme de perçage
JP5037372B2 (ja) 地震情報により工作機械を停止する機能を有する数値制御装置
JP2011043874A (ja) 工作機械の工具ベクトル表示装置
JP5249452B1 (ja) 補正データを考慮した軌跡表示装置
JP2006289583A (ja) 数値制御装置
JP5187436B2 (ja) 数値制御装置、数値制御装置の制御方法、及びシステムプログラム
JP2007052505A (ja) 数値制御装置
JP2009107082A (ja) 工作機械
JP2005313280A (ja) 数値制御装置
JP5905521B2 (ja) 工具先端点制御中に生じるバックラッシを抑制することを特徴とする数値制御装置
US20130302180A1 (en) Warm-up control system for machine tool
JP2009104604A6 (ja) 工作機械、生産機械および/またはロボット
JP2009104604A (ja) 工作機械、生産機械および/またはロボット
WO1995004631A1 (fr) Systeme de detection de cassure d'outil
JP6717791B2 (ja) パラメータ決定支援装置