JP2009107050A - Method of cutting workpiece by wire saw - Google Patents

Method of cutting workpiece by wire saw Download PDF

Info

Publication number
JP2009107050A
JP2009107050A JP2007280906A JP2007280906A JP2009107050A JP 2009107050 A JP2009107050 A JP 2009107050A JP 2007280906 A JP2007280906 A JP 2007280906A JP 2007280906 A JP2007280906 A JP 2007280906A JP 2009107050 A JP2009107050 A JP 2009107050A
Authority
JP
Japan
Prior art keywords
micro
nano bubble
wire
wire saw
bubble water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007280906A
Other languages
Japanese (ja)
Other versions
JP5117163B2 (en
Inventor
Koichi Nabeya
幸一 鍋谷
Takeshi Senda
剛士 仙田
Hiromichi Isogai
宏道 磯貝
Kazuaki Kasama
一昭 笠間
Koji Sensai
宏治 泉妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2007280906A priority Critical patent/JP5117163B2/en
Publication of JP2009107050A publication Critical patent/JP2009107050A/en
Application granted granted Critical
Publication of JP5117163B2 publication Critical patent/JP5117163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of cutting a workpiece by a wire saw capable of achieving a high cutting rate by improving a working fluid. <P>SOLUTION: In this method of cutting a workpiece by a wire saw while supplying the working fluid to a wire during the working, abrasive grains and micro nano bubble water are contained in the working fluid used for cutting the workpiece. The micro nano bubble water is generated by a micro nano bubble water generator installed on a wire saw device, and mixed in the working fluid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ワイヤソーによるワーク切断方法に関し、特に高い切断レートを実現するワイヤソーによるワーク切断方法に関する。   The present invention relates to a workpiece cutting method using a wire saw, and more particularly to a workpiece cutting method using a wire saw that achieves a high cutting rate.

シリコンインゴットからシリコンウェーハを切り出す切断加工においては、インゴットの大口径化やコストダウンの観点から、高いレートの切断が要求されている。このため、近年では、これまで主流であった内周刃方式からワイヤソー方式を用いることが主流となっている(例えば、特許文献1)。ワイヤソー方式は、シリコンウェーハ一枚あたりの加工レート(切断レート)は、枚葉切断の内周刃方式よりも高い値を得ることができる。このため、全体の切断時間は内周刃方式に比べ非常に長いが、一回の切断で長さ数百mmのシリコン単結晶インゴットの切断が可能であり、一度に数百枚のシリコンウェーハを切り出すことができる。   In the cutting process of cutting a silicon wafer from a silicon ingot, high-rate cutting is required from the viewpoint of increasing the diameter of the ingot and reducing the cost. For this reason, in recent years, it has become mainstream to use the wire saw method from the inner peripheral blade method, which has been the mainstream until now (for example, Patent Document 1). In the wire saw method, the processing rate (cutting rate) per silicon wafer can be higher than that of the inner peripheral blade method for single wafer cutting. For this reason, the overall cutting time is much longer than that of the inner peripheral blade method, but it is possible to cut a silicon single crystal ingot with a length of several hundred mm with one cutting, and several hundred silicon wafers can be cut at a time. Can be cut out.

ワイヤソーによる切断において、シリコン単結晶インゴットの切断速度(切断レート)をあげる方法としては、番手の大きな砥粒を用いて切断を行う方法、シリコン単結晶インゴットのワイヤへの押し付け圧を上げる方法、走行するワイヤの速度を上げる方法がそれぞれ有効とされている。   In cutting with a wire saw, methods for increasing the cutting speed (cutting rate) of a silicon single crystal ingot include a method of cutting using a large abrasive grain, a method of increasing the pressing pressure of a silicon single crystal ingot on a wire, and running Each method of increasing the speed of the wire to be used is effective.

しかし、番手の大きな砥粒を用いる方法では、切断時のカーフロスが大きくなってしまったり、切断後の面粗さが悪化したりするとの問題がある。また、押し付け圧をあげる方法では、切断中のワイヤのたわみが大きくなり、切断後のうねりや面粗さが悪化する。また、ワイヤ速度を上げる方法では、装置上の限界が存在する。
特開2001−328057号公報
However, the method using a large abrasive grain has a problem that the kerf loss at the time of cutting becomes large and the surface roughness after cutting deteriorates. Further, in the method of increasing the pressing pressure, the deflection of the wire being cut increases, and the waviness and surface roughness after cutting deteriorate. In addition, the method for increasing the wire speed has limitations on the apparatus.
JP 2001-328057 A

本発明は、上記事情を考慮してなされたもので、その目的とするところは、加工液に改良を加えることにより、高い切断レートを実現するワイヤソーによるワーク切断方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a work cutting method using a wire saw that achieves a high cutting rate by improving the machining fluid.

本発明の一態様のワイヤソーによるワーク切断方法は、加工液を供給してワークを切断するワイヤソーによるワーク切断方法であって、前記加工液に砥粒とマイクロナノバブル水が含まれることを特徴とする。   A workpiece cutting method using a wire saw according to one aspect of the present invention is a workpiece cutting method using a wire saw for cutting a workpiece by supplying a machining fluid, wherein the machining fluid includes abrasive grains and micro-nano bubble water. .

ここで、前記マイクロナノバブル水中のマイクロナノバブル密度が、1000個/ml以上であることが望ましい。   Here, it is desirable that the micro / nano bubble density in the micro / nano bubble water is 1000 / ml or more.

ここで、前記マイクロナノバブル水は、マイクロナノバブル生成後10時間以内のマイクロナノバブル水であることが望ましい。   Here, the micro-nano bubble water is preferably micro-nano bubble water within 10 hours after the generation of micro-nano bubbles.

ここで、前記加工液中のマイクロナノバブル水の割合が6.25重量%以上であるであることが望ましい。   Here, it is desirable that the ratio of micro / nano bubble water in the processing liquid is 6.25 wt% or more.

ここで、前記ワークがシリコン単結晶であることが望ましい。   Here, the workpiece is preferably a silicon single crystal.

本発明によれば、加工液に改良を加えることにより、高い切断レートを実現するワイヤソーによるワーク切断方法を提供することが可能になる。   According to the present invention, it is possible to provide a work cutting method using a wire saw that achieves a high cutting rate by improving the machining fluid.

以下、本発明のワイヤソーによるワーク切断方法の実施の形態につき、添付図面に基づき説明する。なお、ここではワイヤソーで切断するワーク(または被切断物)として、シリコン単結晶を対象とする場合を例として記載する。なお、本明細書中マイクロナノバブルとは、直径が1nm以上100μm未満の気泡と定義する。そして、マイクロナノバブル水とは、このマイクロナノバブルを含有する純粋等の水を称するものとする。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a workpiece cutting method using a wire saw according to the present invention will be described with reference to the accompanying drawings. Here, a case where a silicon single crystal is a target as a workpiece (or an object to be cut) to be cut with a wire saw will be described as an example. In the present specification, micro-nano bubbles are defined as bubbles having a diameter of 1 nm or more and less than 100 μm. And micro nano bubble water shall refer to the pure water containing this micro nano bubble.

本実施の形態のワイヤソーによるワーク切断方法は、加工液(またはスラリ)を供給してワークを切断するワイヤソーによるワーク切断方法であって、この加工液に砥粒とマイクロナノバブル水が含まれることを特徴とする。   The workpiece cutting method using the wire saw according to the present embodiment is a workpiece cutting method using a wire saw that supplies a machining liquid (or slurry) to cut the workpiece, and that the machining liquid contains abrasive grains and micro / nano bubble water. Features.

図2は、本実施の形態の方法で用いられるワイヤソー装置の概略図である。このワイヤソー装置10には、ワイヤボビン12とプーリ14と、ワイヤボビン12とプーリ14との間に、往復走行可能に張られたワイヤ16を備えている。そして、例えば、シリコン単結晶等のワーク18を取り付けるワーク取り付け治具20が設けられている。そして、この取り付け治具20は、バランスウェイト機構22に組み込まれ、このバランスウェイト機構22より、ワーク18のワイヤ16に対する加重を調整可能としている。また、ワイヤソー装置10には、ワーク切断中にワイヤ16に対して、加工液を供給する加工液供給部24が備えられている。   FIG. 2 is a schematic view of a wire saw device used in the method of the present embodiment. The wire saw device 10 includes a wire bobbin 12 and a pulley 14, and a wire 16 stretched between the wire bobbin 12 and the pulley 14 so as to be able to reciprocate. For example, a work attachment jig 20 for attaching a work 18 such as a silicon single crystal is provided. The mounting jig 20 is incorporated in the balance weight mechanism 22, and the balance weight mechanism 22 can adjust the load applied to the wire 16 of the workpiece 18. Further, the wire saw device 10 is provided with a machining liquid supply unit 24 that supplies a machining liquid to the wire 16 during workpiece cutting.

さらに、ワイヤソー装置10には、マイクロナノバブル水生成装置26が付設されている。このマイクロナノバブル水生成装置26で生成されたマイクロナノバブル水が、砥粒等と混合され、加工液供給部24からワイヤ16に供給可能となるよう加工液供給系が構成されている。マイクロナノバブル中の気体は、例えば、空気、酸素等を用いることが可能であるが特に限定されるわけではない。   Furthermore, a micro / nano bubble water generating device 26 is attached to the wire saw device 10. The machining liquid supply system is configured such that the micro / nano bubble water generated by the micro / nano bubble water generation device 26 can be mixed with abrasive grains and supplied to the wire 16 from the machining liquid supply unit 24. For example, air, oxygen, or the like can be used as the gas in the micro / nano bubbles, but the gas is not particularly limited.

このマイクロナノバブル水生成装置26は、例えば、旋回流式のマイクロナノバブル発生機構を用いて1000個〜数100万個/mlの密度のマイクロナノバブルを発生可能に設計されている。   The micro-nano bubble water generator 26 is designed to generate micro-nano bubbles having a density of 1,000 to several million / ml using, for example, a swirling flow type micro-nano bubble generating mechanism.

次に、ワイヤソー装置10およびマイクロナノバブル水生成装置26を用いたワーク切断方法について説明する。   Next, a work cutting method using the wire saw device 10 and the micro / nano bubble water generating device 26 will be described.

まず、ワイヤボビン12とプーリ14との間に張られたワイヤ16の張力を所定の張力となるよう調整する。次に、例えば、シリコン単結晶であるワーク18をワーク取り付け治具20に固定する。そして、固定されたワーク18の、切断時のワイヤ16に対する加重が所定の加重となるように、バランスウェイト機構22を調整する。   First, the tension of the wire 16 stretched between the wire bobbin 12 and the pulley 14 is adjusted to a predetermined tension. Next, for example, the workpiece 18 that is a silicon single crystal is fixed to the workpiece mounting jig 20. And the balance weight mechanism 22 is adjusted so that the weight with respect to the wire 16 at the time of the cutting | disconnection of the fixed workpiece | work 18 may become predetermined | prescribed weight.

このように、ワイヤ16の張力と、ワイヤ16に対するワーク18の押し付け加重を調整した後に、ワーク18をワイヤ16に押し付けると共に、ワイヤボビン12に接続されるモータ(図示せず)を駆動してワイヤ16を往復走行運動させ、ワーク18の切断を実行する。ワーク18切断時には、砥粒と、マイクロナノバブル水生成装置26で生成されたマイクロナノバブル水を含む加工液を加工液供給部24からワイヤ16に供給する。この加工液には、公知のワイヤソー用加工液が含有されていてもかまわない。   Thus, after adjusting the tension of the wire 16 and the pressing load of the work 18 against the wire 16, the work 18 is pressed against the wire 16 and a motor (not shown) connected to the wire bobbin 12 is driven to drive the wire 16. Is reciprocatingly moved to cut the workpiece 18. When the workpiece 18 is cut, the machining liquid containing abrasive grains and micro / nano bubble water generated by the micro / nano bubble water generator 26 is supplied from the machining liquid supply unit 24 to the wire 16. This machining fluid may contain a known wire saw machining fluid.

本実施の形態のように、加工液に砥粒に加えてマイクロナノバブル水を含有させることにより、ワークに対する高い切断レートを実現することが可能となる。また、同時にワイヤの磨耗を減少させ、ワイヤ寿命の向上が可能となる。   As in the present embodiment, it is possible to achieve a high cutting rate for a workpiece by adding micro / nano bubble water to the working fluid in addition to the abrasive grains. At the same time, the wear of the wire is reduced, and the life of the wire can be improved.

上述のように、本実施の形態において、ワークに対する高い切断レートを実現することが可能となる理由は次のように考えられる。図3は、マイクロナノバブル水の作用を説明する図である。図3(a)が従来の加工液を使用する場合、図3(b)が本実施の形態のマイクロナノバブル水を含む加工液を使用する場合である。   As described above, in the present embodiment, the reason why a high cutting rate for the workpiece can be realized is considered as follows. FIG. 3 is a diagram illustrating the action of micro / nano bubble water. FIG. 3A shows a case where a conventional machining fluid is used, and FIG. 3B shows a case where a machining fluid containing micro / nano bubble water according to the present embodiment is used.

図3(b)に示すように、砥粒28を含む加工液30にマイクロナノバブル水を含有させることにより、加工液30とワイヤ16とのぬれ性が向上し、加工液30がワイヤ16に対して図3(a)の場合より平滑に付着する。これは、マイクロナノバブルの界面活性効果によるものと考えられる。   As shown in FIG. 3B, the wettability between the machining liquid 30 and the wire 16 is improved by adding the micro-nano bubble water to the machining liquid 30 containing the abrasive grains 28. Therefore, it adheres more smoothly than in the case of FIG. This is considered to be due to the surface active effect of the micro / nano bubbles.

図4も、マイクロナノバブル水の作用を説明する図である。ワイヤ16とワーク18とが接触する加工部分は、図4に示すように細いスリット状になっている。このため、ぬれ性が高い加工液ほどこのスリット状の隙間に入りやすく、結果としてより多くの砥粒が加工部分に供給されることになり、高い切断レートを実現することが可能となる。また、マイクロナノバブルが大きなゼータ電位を有することから、ワイヤ16に対する砥粒の付着が強固になることも高い切断レートの実現に寄与している。   FIG. 4 is also a diagram illustrating the action of micro / nano bubble water. The processed portion where the wire 16 and the workpiece 18 come into contact has a thin slit shape as shown in FIG. For this reason, the higher the wettability of the processing liquid, the easier it is to enter the slit-shaped gap, and as a result, more abrasive grains are supplied to the processed portion, and a high cutting rate can be realized. In addition, since the micro / nano bubbles have a large zeta potential, the adhesion of abrasive grains to the wire 16 also contributes to the realization of a high cutting rate.

そして、ワイヤ16に対する砥粒28の付着が強固になるため、砥粒28とワイヤ16とのすべりが減少する。このため、ワイヤ16の砥粒28との摩擦による磨耗が減少する。よって、ワイヤ寿命の向上が可能となる。   And since the adhesion of the abrasive grains 28 to the wire 16 becomes strong, the slip between the abrasive grains 28 and the wire 16 is reduced. For this reason, the abrasion by the friction with the abrasive grain 28 of the wire 16 reduces. Therefore, the wire life can be improved.

なお、本実施の形態において、マイクロナノバブル水のマイクロナノバブル密度が、1000個/ml以上であることが望ましい。この密度以上であれば、高い切断レート実現効果およびワイヤ寿命の向上効果が実用上十分得られるからである。さらに、マイクロナノバブル水のマイクロナノバブル密度が、50万個/ml以上であることが望ましい。この密度以上であれば、高い切断レート実現効果およびワイヤ寿命の向上効果が顕著に得られるからである。   In the present embodiment, it is desirable that the micro / nano bubble density of the micro / nano bubble water is 1000 / ml or more. This is because if the density is higher than this density, a high cutting rate realization effect and a wire life improvement effect can be obtained sufficiently in practical use. Furthermore, it is desirable that the micro / nano bubble density of the micro / nano bubble water is 500,000 / ml or more. This is because when the density is equal to or higher than this density, a high cutting rate realization effect and a wire life improvement effect are remarkably obtained.

また、マイクロナノバブル水は、マイクロナノバブル生成後10時間以内のマイクロナノバブル水であることが望ましい。マイクロナノバブル水中のマイクロナノバブル密度およびゼータ電位は、時間と共に減少するところ、マイクロナノバブル生成後10時間以内であれば、マイクロナノバブル生成直後同様の効果が得られるためである。   The micro / nano bubble water is preferably micro / nano bubble water within 10 hours after the generation of micro / nano bubbles. This is because the micro-nano bubble density and the zeta potential in the micro-nano bubble water decrease with time, and if it is within 10 hours after the generation of the micro-nano bubble, the same effect is obtained immediately after the generation of the micro-nano bubble.

また、加工液中のマイクロナノバブル水の割合が6.25重量%以上であるであることが望ましい。これは、この割合であれば、高い切断レートおよび実現効果およびワイヤ寿命の向上効果が実用上十分得られるからである。   Moreover, it is desirable that the ratio of the micro / nano bubble water in the working fluid is 6.25% by weight or more. This is because, at this ratio, a high cutting rate, a realization effect, and a wire life improvement effect can be obtained sufficiently in practical use.

以上、具体例を参照しつつ本発明の実施の形態について説明した。実施の形態の説明においては、ワイヤソー装置やワイヤソーによるワーク切断方法等で、本発明の説明に直接必要としない部分等については記載を省略したが、必要とされるワイヤソー装置やワイヤソーによるワーク切断方法等に関わる要素を適宜選択して用いることができる。   The embodiments of the present invention have been described above with reference to specific examples. In the description of the embodiment, the description of the parts that are not directly necessary for the description of the present invention is omitted in the wire saw device, the work cutting method using the wire saw, etc. However, the required wire saw device and the work cutting method using the wire saw are omitted. It is possible to appropriately select and use elements related to the above.

例えば、上記実施の形態においては、ワイヤソー装置として、比較的小さなワークを対象とする装置を例に説明したが、本発明の適用は、このような装置に限らず、シリコン単結晶インゴットのような大型のワークを切断するワイヤソー装置に適用することも可能である。また、ワークとしてシリコン単結晶を例に説明したが、必ずしもシリコン単結晶に限らず、ワイヤソーでの切断対象となる固体であれば、例えば、GaAs単結晶、InP単結晶等のシリコン以外の単結晶、ガラス、セラミックス等についても適用することが可能である。   For example, in the above-described embodiment, the wire saw device has been described by taking a device that targets a relatively small work as an example, but the application of the present invention is not limited to such a device, but a silicon single crystal ingot or the like. It is also possible to apply to a wire saw device that cuts a large workpiece. In addition, the silicon single crystal has been described as an example of the workpiece. However, the work is not necessarily limited to the silicon single crystal, and may be a single crystal other than silicon, such as a GaAs single crystal or InP single crystal, as long as it is a solid to be cut with a wire saw It can also be applied to glass, ceramics and the like.

その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのワイヤソーによるワーク切断方法は、本発明の範囲に包含される。   In addition, any work cutting method using a wire saw that includes the elements of the present invention and can be appropriately modified by those skilled in the art is included in the scope of the present invention.

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

(実施例1)
図2に示すようなワイヤソー装置であるメイワフォーシス株式会社製ワイヤソー装置(型番3032−4/S)を用いて20mm×20mm×20mmのシリコン単結晶のワークを切断した。切断面はSi(100)面とした。ワイヤは線径0.14mmのジャパンファインスチール製SRM0.14mmを用いた。また、加工条件として、ワイヤテンション(張力)を1.0005kgf、ワイヤ走行速度170m/minとした。また、バランスウェイト機構により、ワークのワイヤに対する加重を、0.2Nの一定加重として切断した。
(Example 1)
A 20 mm × 20 mm × 20 mm silicon single crystal workpiece was cut using a wire saw device (model number 3032-4 / S) manufactured by Meiwa Forsys, Ltd., which is a wire saw device as shown in FIG. The cut surface was a Si (100) surface. As the wire, SRM 0.14 mm made by Japan Fine Steel having a wire diameter of 0.14 mm was used. Further, as processing conditions, the wire tension (tension) was 1.0005 kgf and the wire traveling speed was 170 m / min. Moreover, the weight with respect to the wire of a workpiece | work was cut | disconnected by the balance weight mechanism as a fixed load of 0.2N.

マイクロナノバブル水生成装置としては、株式会社協和機設製ナノバブル生成装置BUVITAS(形式:HYK−25)を用いて生成した。マイクロナノバブル中の気体は空気とした。18Lの純水に対し、マイクロナノバブル水生成装置を30分稼動させて生成したマイクロナノバブル水を加工液に含有させた。今回用いたナノバブル水は、比較的バブルの安定する生成後40min経過時にレーザー回折法による粒度分布測定を行った結果、バブル密度が2.7〜7.4×10個/ml、バブル粒径の中央値が0.593〜0.596μm、ヒストグラムのピークは0.1μm、0.3μm、0.5μm付近にそれぞれ見られた。加工液は、上記マイクロナノバブル水、ユシロ化学工業株式会社製ワイヤソー加工液(ユシロテックWL665)および理研コランダム製GC砥粒(GCR#1500)を重量比25:175:200の割合で混合したものを用いた。 As a micro nano bubble water production | generation apparatus, it produced | generated using the Kyowa machine establishment nano bubble production | generation apparatus BUVITAS (form: HYK-25). The gas in the micro / nano bubble was air. The micro-nano bubble water produced | generated by operating a micro-nano bubble water production | generation apparatus for 30 minutes with respect to 18L pure water was made to contain in a processing liquid. The nanobubble water used this time was subjected to particle size distribution measurement by laser diffraction method after 40 minutes had elapsed after the formation of relatively stable bubbles. As a result, the bubble density was 2.7 to 7.4 × 10 6 particles / ml, the bubble particle size was Median of 0.593 to 0.596 μm, and histogram peaks were observed in the vicinity of 0.1 μm, 0.3 μm, and 0.5 μm, respectively. The processing liquid used is a mixture of the above micro-nano bubble water, Yushiro Chemical Co., Ltd. wire saw processing liquid (Yushiro Tech WL665) and Riken Corundum GC abrasive grains (GCR # 1500) in a weight ratio of 25: 175: 200. It was.

マイクロナノバブル水生成から切断までの時間(生成後時間)を変化させて、切断を行い、ワーク切断時間から加工レート(切断レート)を算出した。結果は図1に示す。また、切断後のワイヤの引っ張り強度を、生成後時間直後の場合(実施例1−1)と、生成後時間5日(120時間)の場合(実施例1−2)について測定した。引っ張り強度は、引張試験機(オリンテック社UCT)にて測定した。結果は、図5に示す。また、実施例1−1についてはSEM(1500倍)により、切断後のワイヤ表面観察を行った。結果は図6(b)に示す。   Cutting was performed while changing the time from micro-nano bubble water generation to cutting (time after generation), and the processing rate (cutting rate) was calculated from the workpiece cutting time. The results are shown in FIG. Moreover, the tensile strength of the wire after cutting was measured for the case immediately after the generation (Example 1-1) and the case after the generation 5 days (120 hours) (Example 1-2). The tensile strength was measured with a tensile tester (Olintec UCT). The results are shown in FIG. Moreover, about Example 1-1, the wire surface after a cutting | disconnection was performed by SEM (1500 times). The results are shown in FIG.

(比較例1)
マイクロナノバブル水を加工液に含有させないこと以外は実施例1と同様の条件でワークの切断を行った。
(Comparative Example 1)
The workpiece was cut under the same conditions as in Example 1 except that the micronano bubble water was not included in the processing liquid.

加工レートの結果は図1に、引っ張り強度の結果は図5に、ワイヤ表面観察結果は図6(a)に示す。   The processing rate result is shown in FIG. 1, the tensile strength result is shown in FIG. 5, and the wire surface observation result is shown in FIG. 6 (a).

(比較例2)
マイクロナノバブル水のかわりにマイクロナノバブル含有しない純水を用いること以外は実施例1と同様の条件でワークの切断を行った。
(Comparative Example 2)
The workpiece was cut under the same conditions as in Example 1 except that pure water not containing micro / nano bubbles was used instead of micro / nano bubble water.

引っ張り強度の結果を図5に示す。   The result of the tensile strength is shown in FIG.

(比較例3)
使用前のワイヤを比較例3とした。
(Comparative Example 3)
The wire before use was designated as Comparative Example 3.

引っ張り強度の結果を図5に示す。ワイヤ表面観察結果は図6(c)に示す。   The result of the tensile strength is shown in FIG. The wire surface observation results are shown in FIG.

図1に示すように、マイクロナノバブル水を含む加工液を用いると、マイクロナノバブル水を含まない加工液(比較例1)に比べ、加工レートが向上する。また、マイクロナノバブル水を含む加工液については、生成後時間と加工レートに相関関係が見られ、特に生成後時間10時間以内の場合が、加工レートの向上効果が顕著である。   As shown in FIG. 1, when a processing liquid containing micro / nano bubble water is used, the processing rate is improved as compared to a processing liquid not containing micro / nano bubble water (Comparative Example 1). Moreover, about the processing liquid containing micro nano bubble water, a correlation is seen by the time after production | generation, and a processing rate, and the improvement effect of a processing rate is remarkable especially in the case of less than 10 hours after production | generation.

また、図5に示すように、切断後のワイヤの引っ張り強度は、マイクロナノバブル水を含む加工液(実施例1−1、実施例1−2)を用いると、マイクロナノバブル水を含まない加工液(比較例1、2)に比べ、使用前(比較例3)と比較した場合の引っ張り強度の劣化が抑制される。   Further, as shown in FIG. 5, the tensile strength of the wire after cutting is such that when the processing liquid containing micro-nano bubble water (Example 1-1, Example 1-2) is used, the processing liquid does not include micro-nano bubble water. Compared with (Comparative Examples 1 and 2), deterioration of the tensile strength when compared with before use (Comparative Example 3) is suppressed.

そして、図6に示すように、マイクロナノバブル水を含む加工液(実施例1−1)を用いた場合の表面(図6(b))は、マイクロナノバブル水を含まない加工液(比較例1)の場合の表面(図6(a))にみられるような、砥粒とワイヤの摩擦による筋状の引っかき傷が見られない。   And as shown in FIG. 6, the surface (FIG.6 (b)) at the time of using the process liquid (Example 1-1) containing micro nano bubble water is the process liquid (Comparative Example 1) which does not contain micro nano bubble water. ), No streak-like scratches due to friction between the abrasive grains and the wire as seen on the surface (FIG. 6A) are observed.

以上、本実施例により、本発明の作用・効果が確認された。   As mentioned above, the effect | action and effect of this invention were confirmed by the present Example.

実施例の加工レート算出結果を示す図。The figure which shows the processing rate calculation result of an Example. 実施の形態のワイヤソー装置の概略図。The schematic of the wire saw apparatus of embodiment. 実施の形態の作用の説明図。Explanatory drawing of an effect | action of embodiment. 実施の形態の作用の説明図。Explanatory drawing of an effect | action of embodiment. 実施例の引っ張り強度の測定結果を示す図。The figure which shows the measurement result of the tensile strength of an Example. 実施例のワイヤ表面観察結果を示す図。The figure which shows the wire surface observation result of an Example.

符号の説明Explanation of symbols

10 ワイヤソー装置
12 ワイヤボビン
14 プーリ
16 ワイヤ
18 ワーク
20 ワーク取り付け治具
22 バランスウェイト機構
24 加工液供給部
26 マイクロナノバブル水生成装置
28 砥粒
30 加工液
DESCRIPTION OF SYMBOLS 10 Wire saw apparatus 12 Wire bobbin 14 Pulley 16 Wire 18 Workpiece 20 Work attachment jig 22 Balance weight mechanism 24 Processing liquid supply part 26 Micro nano bubble water production | generation apparatus 28 Abrasive grain 30 Processing liquid

Claims (5)

加工液を供給してワークを切断するワイヤソーによるワーク切断方法であって、
前記加工液に砥粒とマイクロナノバブル水が含まれることを特徴とするワイヤソーによるワーク切断方法。
A workpiece cutting method using a wire saw that supplies a machining fluid to cut a workpiece,
A workpiece cutting method using a wire saw, wherein the machining liquid contains abrasive grains and micro / nano bubble water.
前記マイクロナノバブル水中のマイクロナノバブル密度が、1000個/ml以上であることを特徴とする請求項1記載のワイヤソーによるワーク切断方法。   2. The work cutting method using a wire saw according to claim 1, wherein a density of micro / nano bubbles in the micro / nano bubble water is 1000 / ml or more. 前記マイクロナノバブル水は、マイクロナノバブル生成後10時間以内のマイクロナノバブル水であることを特徴とする請求項1または請求項2記載のワイヤソーによるワーク切断方法。   The said micro nano bubble water is the micro nano bubble water within 10 hours after micro nano bubble production | generation, The workpiece cutting method by the wire saw of Claim 1 or Claim 2 characterized by the above-mentioned. 前記加工液中のマイクロナノバブル水の割合が6.25重量%以上であるであることを特徴とする請求項1ないし請求項3いずれか一項に記載のワイヤソーによるワーク切断方法。   The work cutting method using a wire saw according to any one of claims 1 to 3, wherein a ratio of micro / nano bubble water in the working fluid is 6.25% by weight or more. 前記ワークがシリコン単結晶であることを特徴とする請求項1ないし請求項4いずれか一項に記載のワイヤソーによるワーク切断方法。

The work cutting method using a wire saw according to any one of claims 1 to 4, wherein the work is a silicon single crystal.

JP2007280906A 2007-10-29 2007-10-29 Work cutting method with wire saw Active JP5117163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280906A JP5117163B2 (en) 2007-10-29 2007-10-29 Work cutting method with wire saw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280906A JP5117163B2 (en) 2007-10-29 2007-10-29 Work cutting method with wire saw

Publications (2)

Publication Number Publication Date
JP2009107050A true JP2009107050A (en) 2009-05-21
JP5117163B2 JP5117163B2 (en) 2013-01-09

Family

ID=40776134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280906A Active JP5117163B2 (en) 2007-10-29 2007-10-29 Work cutting method with wire saw

Country Status (1)

Country Link
JP (1) JP5117163B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150107630A (en) * 2014-03-14 2015-09-23 후지코시 기카이 고교 가부시키가이샤 Method for polishing work and work polishing apparatus
WO2017002670A1 (en) * 2015-06-29 2017-01-05 西尾 康明 Cutting assist device for silicon material, cutting method, and cutting system
JP2020146786A (en) * 2019-03-12 2020-09-17 日本タングステン株式会社 Supply mechanism for coolant for machining and supply method for coolant for machining

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141469A (en) * 1983-12-29 1985-07-26 Omron Tateisi Electronics Co Bubble working machine
JPH0215311U (en) * 1988-07-12 1990-01-31
JPH04283069A (en) * 1991-03-12 1992-10-08 Fujitsu Ltd Polishing method for ceramic substrate and polishing device for ceramic substrate
JPH10244468A (en) * 1997-03-04 1998-09-14 Sony Corp Polishing device and polishing method
JP2003001625A (en) * 2001-06-21 2003-01-08 Shinichi Kizawa Coolant for tool
JP2003318138A (en) * 2002-04-24 2003-11-07 Sumitomo Mitsubishi Silicon Corp Method for manufacturing semiconductor wafer
JP2005153071A (en) * 2003-11-26 2005-06-16 Able:Kk Method and device for demolishing metal structure
JP2006114861A (en) * 2004-09-14 2006-04-27 Ebara Corp Polishing apparatus and polishing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141469A (en) * 1983-12-29 1985-07-26 Omron Tateisi Electronics Co Bubble working machine
JPH0215311U (en) * 1988-07-12 1990-01-31
JPH04283069A (en) * 1991-03-12 1992-10-08 Fujitsu Ltd Polishing method for ceramic substrate and polishing device for ceramic substrate
JPH10244468A (en) * 1997-03-04 1998-09-14 Sony Corp Polishing device and polishing method
JP2003001625A (en) * 2001-06-21 2003-01-08 Shinichi Kizawa Coolant for tool
JP2003318138A (en) * 2002-04-24 2003-11-07 Sumitomo Mitsubishi Silicon Corp Method for manufacturing semiconductor wafer
JP2005153071A (en) * 2003-11-26 2005-06-16 Able:Kk Method and device for demolishing metal structure
JP2006114861A (en) * 2004-09-14 2006-04-27 Ebara Corp Polishing apparatus and polishing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150107630A (en) * 2014-03-14 2015-09-23 후지코시 기카이 고교 가부시키가이샤 Method for polishing work and work polishing apparatus
JP2015186838A (en) * 2014-03-14 2015-10-29 不二越機械工業株式会社 Workpiece polishing method and workpiece polishing device
KR102198518B1 (en) 2014-03-14 2021-01-05 후지코시 기카이 고교 가부시키가이샤 Method for polishing work and work polishing apparatus
WO2017002670A1 (en) * 2015-06-29 2017-01-05 西尾 康明 Cutting assist device for silicon material, cutting method, and cutting system
CN107851566A (en) * 2015-06-29 2018-03-27 西尾康明 Cutting auxiliary device, cutting method, the diced system of silicon materials
JPWO2017002670A1 (en) * 2015-06-29 2018-07-19 西尾 康明 Silicon material cutting auxiliary device, cutting method, cutting system
JP2020146786A (en) * 2019-03-12 2020-09-17 日本タングステン株式会社 Supply mechanism for coolant for machining and supply method for coolant for machining
JP7165079B2 (en) 2019-03-12 2022-11-02 日本タングステン株式会社 MACHINING COOLANT SUPPLY MECHANISM AND MACHING COOLANT SUPPLY METHOD

Also Published As

Publication number Publication date
JP5117163B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP3314921B2 (en) Cutting and processing methods for semiconductor materials
JP4730844B2 (en) Method for simultaneously polishing both surfaces of a plurality of semiconductor wafers and semiconductor wafer
JP4525353B2 (en) Method for manufacturing group III nitride substrate
US20110097975A1 (en) Method for producing a semiconductor wafer
JP2007538387A (en) Method and apparatus for cutting out ultra-thin silicon wafer
US9314942B2 (en) Ingot cutting apparatus and ingot cutting method
JP2006272499A (en) Cutting method for ingot
JP2011155265A (en) Method for producing semiconductor wafer
Kim et al. Characterization of diamond wire-cutting performance for lifetime estimation and process optimization
JP2007180527A (en) Method of manufacturing semiconductor substrate, and device of manufacturing the semiconductor substrate
JP2009184023A (en) Workpiece cutting method using wire saw and wire saw cutting device
JP5117163B2 (en) Work cutting method with wire saw
JP2008168432A (en) Cutting method of high-hardness material using bonded abrasive wire saw
JPH10217095A (en) Wire saw and work cutting method by wire saw
JP2000218504A (en) Wire with fixed abrasive grains and cutting method for fixed abrasive grains wire saw
KR101303552B1 (en) Method for chemically grinding a semiconductor wafer on both sides
JP2000288902A (en) Wire with fixed abrasive grains and fixed abrasive grain wire saw
CN113226640B (en) Method for cutting workpiece and wire saw
KR102100839B1 (en) Workpiece cutting method
JP2842307B2 (en) Method for cutting III-V compound semiconductor crystal
JP2008161992A (en) Cutting method for processed member and manufacturing method for wafer
JP2009152622A (en) Group iii nitride substrate and its manufacturing method
JP2009113272A (en) Cutting method of hard material
JP2003159642A (en) Work cutting method and multi-wire saw system
JP2009023066A (en) Saw wire and cutting method by wire saw using saw wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5117163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250