JP2009106995A - Method for manufacturing rolling bearing unit for supporting wheel - Google Patents

Method for manufacturing rolling bearing unit for supporting wheel Download PDF

Info

Publication number
JP2009106995A
JP2009106995A JP2007283618A JP2007283618A JP2009106995A JP 2009106995 A JP2009106995 A JP 2009106995A JP 2007283618 A JP2007283618 A JP 2007283618A JP 2007283618 A JP2007283618 A JP 2007283618A JP 2009106995 A JP2009106995 A JP 2009106995A
Authority
JP
Japan
Prior art keywords
wheel
bearing unit
hot forging
rolling bearing
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007283618A
Other languages
Japanese (ja)
Other versions
JP4893585B2 (en
Inventor
Hiroki Komata
弘樹 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007283618A priority Critical patent/JP4893585B2/en
Publication of JP2009106995A publication Critical patent/JP2009106995A/en
Application granted granted Critical
Publication of JP4893585B2 publication Critical patent/JP4893585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a rolling bearing unit for supporting a wheel having high fatigue strength and long service life. <P>SOLUTION: A hub-ring 2 in the rolling bearing unit 1 for supporting the wheel is obtained by forming step by step into a prescribed shape by applying hot-forging in the plurality of processes in order to a steel blank. In the plurality of hot-forgings, the hot-forging at the last process is performed while controlling the working temperature of the based part S of a flange 10 for fitting the wheel, an introduced von-Mises strain quantity and a hot-forging parameter P<SB>F</SB>. Further, a cooling process after hot-forging in the plurality of processes is performed while controlling the cooling speed according to the hot-forging parameter P<SB>F</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車等の車輪を懸架装置に対して回転自在に支持する車輪支持用転がり軸受ユニットの製造方法に関する。   The present invention relates to a method of manufacturing a wheel-supporting rolling bearing unit that rotatably supports a wheel of an automobile or the like with respect to a suspension device.

自動車等の車輪を懸架装置に対して回転自在に支持する車輪支持用転がり軸受ユニットは、一般的には、以下のような構造を有している。すなわち、外周面に複列の軌道面を有する内方部材と、内周面に複列の軌道面を有する外方部材と、内方部材の軌道面と外方部材の軌道面との間に転動自在に配された複数の転動体と、を備えており、内方部材が回転輪、外方部材が固定輪(非回転輪)とされている。   A wheel bearing rolling bearing unit that rotatably supports a wheel of an automobile or the like with respect to a suspension device generally has the following structure. That is, an inner member having a double-row raceway surface on the outer peripheral surface, an outer member having a double-row raceway surface on the inner peripheral surface, and between the raceway surface of the inner member and the raceway surface of the outer member A plurality of rolling elements which are arranged to be freely rollable, the inner member being a rotating wheel and the outer member being a fixed wheel (non-rotating wheel).

また、内方部材の外周面には、車輪を取り付けるためのフランジが設けられ、外方部材の外周面には、懸架装置を取り付けるためのフランジが設けられている。そして、このような車輪支持用転がり軸受ユニットは、前述のフランジが内方部材や外方部材に一体化された構造となっている。
車輪支持用転がり軸受ユニットを構成する内方部材,外方部材は、例えばS53Cのような機械構造用炭素鋼の中炭素鋼を材料とし、以下のようにして製造される。すなわち、鋼製素材に複数工程の熱間鍛造を順次施して所定の形状に段階的に成形した後に冷却し、さらに必要により旋削,研削,削孔等を施して、初析フェライトとパーライトとが複合したフェライト・パーライト組織を有する内方部材,外方部材を得る。
Further, a flange for attaching a wheel is provided on the outer peripheral surface of the inner member, and a flange for attaching a suspension device is provided on the outer peripheral surface of the outer member. Such a wheel-supporting rolling bearing unit has a structure in which the aforementioned flange is integrated with the inner member and the outer member.
The inner member and the outer member constituting the wheel support rolling bearing unit are made of, for example, medium carbon steel for machine structural carbon steel such as S53C as follows. In other words, a steel material is subjected to multiple steps of hot forging in order and formed into a predetermined shape in stages, then cooled, and if necessary, turning, grinding, drilling, etc. An inner member and an outer member having a composite ferrite-pearlite structure are obtained.

車輪支持用転がり軸受ユニットの駆動時には、内方部材,外方部材に応力が負荷されるので、内方部材,外方部材には高い疲労強度が要求される。特に、車輪や懸架装置が取り付けられるフランジの付け根部分には、高い曲げ応力や捩り応力が負荷されるため、特に高い疲労強度が要求される。
そこで、複数工程の熱間鍛造のうち最終工程の熱間鍛造を、A1 点以上A3 点よりも100℃高い温度以下の温度域(S53Cの場合はおよそ750〜850℃)で所定の歪を加えるように行うことにより、結晶粒径を微細(10μm以下)にして疲労強度を高める方法が、特許文献1に提案されている。
特開2007−23321号公報 特開2007−24273号公報 特開2004−100946号公報
When driving the wheel-supporting rolling bearing unit, stress is applied to the inner member and the outer member, so that high fatigue strength is required for the inner member and the outer member. In particular, since a high bending stress or torsional stress is applied to the base portion of the flange to which the wheel or the suspension device is attached, a particularly high fatigue strength is required.
Therefore, the hot forging in the final step among the hot forgings in a plurality of steps is performed at a predetermined strain in a temperature range (approximately 750 to 850 ° C. in the case of S53C) within a temperature range of 100 ° C. higher than the A 1 point to the A 3 point. Patent Document 1 proposes a method for increasing the fatigue strength by making the crystal grain size fine (10 μm or less) by performing the above-described process.
JP 2007-23321 A JP 2007-24273 A Japanese Patent Laid-Open No. 2004-1000094

しかしながら、炭素の含有量が0.4〜0.6質量%である鋼材においては、結晶粒径を微細にすると軟質な初析フェライトが増加するため硬さの低下を招き、かえって疲労強度が低下する場合があった。これを防止するためには、熱間鍛造後の冷却速度を速くする必要があるが、前述のように結晶粒径が過度に微細になった場合は、生産工程上実現できる冷却速度(放冷やファン等による送風冷却での冷却速度)では初析フェライトの増加を十分に抑制することができず、硬さが低下してしまうおそれがあった。
そこで、本発明は上記のような従来技術が有する問題点を解決し、高い疲労強度を有し長寿命な車輪支持用転がり軸受ユニットの製造方法を提供することを課題とする。
However, in steel materials with a carbon content of 0.4 to 0.6% by mass, if the crystal grain size is made fine, soft pro-eutectoid ferrite increases, leading to a decrease in hardness, and in turn a decrease in fatigue strength. There was a case. In order to prevent this, it is necessary to increase the cooling rate after hot forging. However, if the crystal grain size becomes excessively fine as described above, the cooling rate that can be realized in the production process (cooling and The cooling rate by cooling with a fan or the like) cannot sufficiently suppress the increase in pro-eutectoid ferrite, and the hardness may be reduced.
Accordingly, it is an object of the present invention to solve the above-described problems of the prior art and to provide a method for manufacturing a wheel support rolling bearing unit having high fatigue strength and a long service life.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る請求項1の車輪支持用転がり軸受ユニットの製造方法は、外周面に軌道面を有する内方部材と、前記内方部材の軌道面に対向する軌道面を有し前記内方部材の外方に配された外方部材と、前記内方部材の軌道面と前記外方部材の軌道面との間に転動自在に配された複数の転動体と、を備える車輪支持用転がり軸受ユニットを製造するに際して、鋼製素材に複数工程の熱間鍛造を順次施して所定の形状に段階的に成形することにより、前記内方部材及び前記外方部材の少なくとも一方を得るとともに、前記複数工程の熱間鍛造のうち最終工程の熱間鍛造を、下記の条件A,条件B,及び条件Cを満足するように行い、前記複数工程の熱間鍛造の後の冷却工程を、下記の条件Dを満足するように行うことを特徴とする。   In order to solve the above problems, the present invention has the following configuration. That is, the method for manufacturing a wheel-supporting rolling bearing unit according to claim 1 of the present invention includes an inner member having a raceway surface on an outer peripheral surface and a raceway surface facing the raceway surface of the inner member. A wheel support comprising: an outer member arranged outward of the direction member; and a plurality of rolling elements arranged to roll freely between the raceway surface of the inner member and the raceway surface of the outer member. When manufacturing a rolling bearing unit for use, a plurality of steps of hot forging are sequentially applied to a steel material to form a predetermined shape in stages, thereby obtaining at least one of the inner member and the outer member. The hot forging of the final step among the hot forging of the plurality of steps is performed so as to satisfy the following conditions A, B, and C, and the cooling step after the hot forging of the plurality of steps is performed. It is characterized in that the following condition D is satisfied.

条件A)前記内方部材又は前記外方部材のうち車輪支持用転がり軸受ユニットの駆動時に高応力が負荷される高負荷部位は、900℃以上1100℃以下の加工温度で熱間鍛造される。
条件B)前記最終工程の熱間鍛造によって、前記高負荷部位には0.3以上1.5以下のvon Mises歪が導入される。
Condition A) Of the inner member or the outer member, a high load portion that is subjected to high stress when the wheel bearing rolling bearing unit is driven is hot forged at a processing temperature of 900 ° C. or higher and 1100 ° C. or lower.
Condition B) A von Mises strain of 0.3 or more and 1.5 or less is introduced into the high load portion by the hot forging in the final step.

条件C)[前記加工温度]−150×[前記von Mises歪]なる式で定義される熱間鍛造パラメータPF が1000以下である。
条件D)前記熱間鍛造パラメータPF が850超過1000以下である場合は、前記冷却工程の冷却速度は0.25℃/s以上3℃/s以下であり、前記熱間鍛造パラメータPF が850以下である場合は、前記冷却工程の冷却速度は0.5℃/s以上3℃/s以下である。
Condition C) [the processing temperature] -150 × [the von Mises strain] becomes hot forging parameters P F defined by the formula is 1000 or less.
If the condition D) the hot forging parameters P F is 850 exceed 1,000 or less, the cooling rate of the cooling step is at 3 ° C. / s or less 0.25 ° C. / s or higher, the hot forging parameters P F is When it is 850 or less, the cooling rate of the cooling step is 0.5 ° C./s or more and 3 ° C./s or less.

また、本発明に係る請求項2の車輪支持用転がり軸受ユニットの製造方法は、請求項1に記載の車輪支持用転がり軸受ユニットの製造方法において、前記高負荷部位においては、日本工業規格JIS G0551に規定の方法で測定された旧オーステナイト結晶粒度が、粒度番号で6以上9以下であることを特徴とする。
さらに、本発明に係る請求項3の車輪支持用転がり軸受ユニットの製造方法は、請求項1又は請求項2に記載の車輪支持用転がり軸受ユニットの製造方法において、前記内方部材及び前記外方部材の少なくとも一方には、車輪又は懸架装置が取り付けられるフランジが設けられており、前記高負荷部位が該フランジの付け根部分であることを特徴とする。
According to a second aspect of the present invention, there is provided a method for manufacturing a wheel-supporting rolling bearing unit according to the first aspect of the present invention. In the method for manufacturing a wheel-supporting rolling bearing unit according to the first aspect, in the high load part, the Japanese Industrial Standard JIS G0551. The prior austenite grain size measured by the method specified in 1) is 6 to 9 in grain size number.
Furthermore, the manufacturing method of the rolling bearing unit for wheel support of Claim 3 which concerns on this invention is a manufacturing method of the rolling bearing unit for wheel support of Claim 1 or Claim 2 in the said inner member and the said outer side. At least one of the members is provided with a flange to which a wheel or a suspension device is attached, and the high load portion is a base portion of the flange.

本発明の車輪支持用転がり軸受ユニットの製造方法は、高い疲労強度を有し長寿命な車輪支持用転がり軸受ユニットを製造することができる。   The method for producing a wheel-supporting rolling bearing unit of the present invention can produce a wheel-supporting rolling bearing unit having high fatigue strength and a long service life.

本発明に係る車輪支持用転がり軸受ユニットの製造方法の実施の形態を、図面を参照しながら詳細に説明する。図1は、本発明に係る車輪支持用転がり軸受ユニットの一実施形態の構造を示す断面図である。なお、本実施形態においては、車輪支持用転がり軸受ユニットを自動車等の車両に取り付けた状態において、車両の幅方向外側を向いた部分を外端側部分と称し、幅方向中央側を向いた部分を内端側部分と称する。すなわち、図1においては、左側が外端側となり、右側が内端側となる。   An embodiment of a method for manufacturing a wheel bearing rolling bearing unit according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing the structure of an embodiment of a wheel bearing rolling bearing unit according to the present invention. In this embodiment, in a state where the wheel bearing rolling bearing unit is attached to a vehicle such as an automobile, the portion facing the width direction outside of the vehicle is referred to as an outer end side portion, and the portion facing the width direction center side Is referred to as an inner end portion. That is, in FIG. 1, the left side is the outer end side, and the right side is the inner end side.

図1の車輪支持用転がり軸受ユニット1は、ハブ輪2と、内輪3と、外輪4と、二列の転動体5,5と、転動体5を保持する保持器6,6と、を備えている。ハブ輪2の内端側部分には外径の小さい円筒部11が形成されており、該円筒部11に内輪3が圧入されている。そして、内輪3よりも内端側に突出している円筒部11の先端部分が径方向外方に加締め広げられて、内輪3とハブ輪2とが一体的に固定されている。ただし、内輪3とハブ輪2とを、ナットにより一体的に固定してもよい。この場合には、ナットによって内輪3に必要な予圧を付与することができる。そして、ハブ輪2及び内輪3の外方には、略円筒形状の外輪4が同心に配されている。なお、内輪3とハブ輪2とが一体的に固定されたものが、本発明の構成要件である内方部材に相当し、外輪4が本発明の構成要件である外方部材に相当する。   The wheel support rolling bearing unit 1 of FIG. 1 includes a hub wheel 2, an inner ring 3, an outer ring 4, two rows of rolling elements 5 and 5, and cages 6 and 6 that hold the rolling elements 5. ing. A cylindrical portion 11 having a small outer diameter is formed on the inner end side portion of the hub wheel 2, and the inner ring 3 is press-fitted into the cylindrical portion 11. And the front-end | tip part of the cylindrical part 11 which protrudes in the inner end side rather than the inner ring | wheel 3 is caulked and spread radially outward, and the inner ring | wheel 3 and the hub ring 2 are being fixed integrally. However, the inner ring 3 and the hub ring 2 may be integrally fixed with a nut. In this case, the necessary preload can be applied to the inner ring 3 by the nut. A substantially cylindrical outer ring 4 is disposed concentrically outside the hub ring 2 and the inner ring 3. In addition, what fixed the inner ring | wheel 3 and the hub ring | wheel 2 integrally is corresponded to the inner member which is the structural requirements of this invention, and the outer ring | wheel 4 is equivalent to the outer member which is the structural requirements of this invention.

ハブ輪2の外周面の軸方向中間部及び内輪3の外周面には、それぞれ軌道面が形成されており、ハブ輪2の軌道面は第一内側軌道面20a、内輪3の軌道面は第二内側軌道面20bとされている。また、外輪4の内周面には、前記両内側軌道面20a,20bに対向する軌道面が形成されており、第一内側軌道面20aに対向する軌道面は第一外側軌道面21a、第二内側軌道面20bに対向する軌道面は第二外側軌道面21bとされている。さらに、第一内側軌道面20aと第一外側軌道面21aとの間、及び、第二内側軌道面20bと第二外側軌道面21bとの間には、それぞれ複数の転動体5が転動自在に配されている。なお、図示の例では、転動体として玉を使用しているが、車輪支持用転がり軸受ユニット1の用途等に応じて、ころを使用してもよい。   A raceway surface is formed on each of the axially intermediate portion of the outer peripheral surface of the hub wheel 2 and the outer peripheral surface of the inner ring 3. The raceway surface of the hub wheel 2 is the first inner raceway surface 20a, and the raceway surface of the inner ring 3 is the first. Two inner raceway surfaces 20b are provided. Further, a raceway surface facing both the inner raceway surfaces 20a and 20b is formed on the inner peripheral surface of the outer ring 4, and the raceway surface facing the first inner raceway surface 20a is the first outer raceway surface 21a and the second raceway surface. The track surface facing the second inner track surface 20b is a second outer track surface 21b. Further, a plurality of rolling elements 5 are freely rollable between the first inner raceway surface 20a and the first outer raceway surface 21a and between the second inner raceway surface 20b and the second outer raceway surface 21b. It is arranged in. In the illustrated example, balls are used as rolling elements, but rollers may be used depending on the application of the wheel bearing rolling bearing unit 1 or the like.

さらに、外輪4の内端側部分の内周面と内輪3の内端側部分の外周面との間、並びに、外輪4の外端側部分の内周面とハブ輪2の中間部の外周面との間には、それぞれシール装置7a,7bが設けられている。
さらに、ハブ輪2の外周面の外端側部分には、図示しない車輪を固定するための車輪取り付け用フランジ10が設けられている。そして、外輪4の外周面には、車輪取り付け用フランジ10から離間する側の端部に、懸架装置取り付け用フランジ13が設けられている。
Further, between the inner peripheral surface of the inner end side portion of the outer ring 4 and the outer peripheral surface of the inner end side portion of the inner ring 3, and the outer periphery of the inner peripheral surface of the outer end side portion of the outer ring 4 and the intermediate portion of the hub ring 2. Sealing devices 7a and 7b are provided between the surfaces.
Furthermore, a wheel mounting flange 10 for fixing a wheel (not shown) is provided on the outer end side portion of the outer peripheral surface of the hub wheel 2. A suspension device mounting flange 13 is provided on the outer peripheral surface of the outer ring 4 at an end portion on the side away from the wheel mounting flange 10.

このような車輪支持用転がり軸受ユニット1を自動車等の車両に組み付けるには、懸架装置取り付け用フランジ13を懸架装置に固定し、車輪を車輪取り付け用フランジ10に固定する。その結果、車輪支持用転がり軸受ユニット1によって車輪が懸架装置に対し回転自在に支持される。すなわち、内輪3とハブ輪2とが一体的に固定されたものが回転輪となり、外輪4が固定輪(非回転輪)となる。   In order to assemble such a wheel support rolling bearing unit 1 to a vehicle such as an automobile, the suspension device mounting flange 13 is fixed to the suspension device, and the wheel is fixed to the wheel mounting flange 10. As a result, the wheel is rotatably supported by the wheel support rolling bearing unit 1 with respect to the suspension device. That is, the inner ring 3 and the hub ring 2 are integrally fixed to be a rotating ring, and the outer ring 4 is a fixed ring (non-rotating ring).

このような車輪支持用転がり軸受ユニット1において、ハブ輪2,内輪3,及び外輪4は、鋼製素材に熱間鍛造を施して所定の形状に成形してなる熱間鍛造品である。熱間鍛造品の製造方法を、ハブ輪2を例にして説明する。ハブ輪2は複雑な形状で、1工程の熱間鍛造で成形することは困難なので、円柱形状の鋼製素材に複数工程の熱間鍛造を順次施して段階的に形状を変化させていくことにより成形する。
熱間鍛造の工程数は特に限定されるものではないが、通常は3〜4工程である。例えば3工程の場合は、第一工程で据え込みを行い、第二工程で荒成形を行い、第三工程で仕上げ成形を行う。そして、前記複数工程の熱間鍛造のうち最終工程(上記の例では第三工程)の熱間鍛造を、下記の条件A,条件B,及び条件Cを満足するように行う。
In such a wheel support rolling bearing unit 1, the hub wheel 2, the inner ring 3, and the outer ring 4 are hot forged products formed by hot forging a steel material into a predetermined shape. A method for manufacturing a hot forged product will be described using the hub wheel 2 as an example. The hub wheel 2 has a complicated shape, and it is difficult to form it by one-step hot forging. Therefore, multiple steps of hot forging are sequentially applied to a cylindrical steel material, and the shape is changed step by step. Molded by
The number of hot forging steps is not particularly limited, but is usually 3 to 4 steps. For example, in the case of three steps, upsetting is performed in the first step, rough forming is performed in the second step, and finish forming is performed in the third step. Then, the hot forging of the final process (the third process in the above example) among the multiple processes of hot forging is performed so as to satisfy the following conditions A, B, and C.

条件A)ハブ輪2の各部位には、車輪支持用転がり軸受ユニット1の駆動時に応力が負荷されることとなるが、高応力が負荷される高負荷部位(例えば、車輪取り付け用フランジ10の付け根部分S(特に外端側))については、900℃以上1100℃以下の加工温度で熱間鍛造される。
条件B)前記高負荷部位には0.3以上1.5以下のvon Mises歪が導入される(ただし、より好ましくは0.5以上1.5以下である)。
条件C)[加工温度]−150×[von Mises歪]なる式で定義される熱間鍛造パラメータPF が1000以下である。
Condition A) A stress is applied to each part of the hub wheel 2 when the wheel supporting rolling bearing unit 1 is driven, but a high load part (for example, the wheel mounting flange 10 of the wheel mounting flange 10) is subjected to a high stress. The base portion S (particularly the outer end side) is hot forged at a processing temperature of 900 ° C. or higher and 1100 ° C. or lower.
Condition B) A von Mises strain of 0.3 to 1.5 is introduced into the high-load portion (however, more preferably 0.5 to 1.5).
Condition C) [processing temperature] -150 × [von Mises strain] becomes hot forging parameters P F defined by the formula is 1000 or less.

次に、このような熱間鍛造の後に熱間鍛造品の冷却を行うが、この冷却工程を、下記の条件Dを満足するように行う。
条件D)熱間鍛造パラメータPF が850超過1000以下である場合は、冷却工程の冷却速度は0.25℃/s以上3℃/s以下であり、熱間鍛造パラメータPF が850以下である場合は、冷却工程の冷却速度は0.5℃/s以上3℃/s以下である。
Next, after such hot forging, the hot forged product is cooled, and this cooling step is performed so as to satisfy the following condition D.
If the condition D) hot forging parameters P F is 850 exceed 1000 or less, the cooling rate of the cooling step is at 3 ° C. / s or less 0.25 ° C. / s or higher, in the hot forging parameters P F is 850 or less In some cases, the cooling rate of the cooling step is not less than 0.5 ° C./s and not more than 3 ° C./s.

このようにして製造されたハブ輪2は、高負荷部位において軟質な初析フェライトの増加が抑制されており、適正なフェライト・パーライト組織を有するため、疲労強度が優れていて長寿命である。さらに、高負荷部位においては、日本工業規格JIS G0551に規定の方法で測定された旧オーステナイト結晶粒度が、粒度番号で6以上9以下であることがより好ましい。   The hub wheel 2 manufactured in this manner has an increase in soft pro-eutectoid ferrite at a high load site and has an appropriate ferrite / pearlite structure, so that it has excellent fatigue strength and a long life. Furthermore, in a high load site | part, it is more preferable that the prior austenite crystal grain size measured by the method prescribed | regulated to Japanese Industrial Standard JISG0551 is 6-9.

なお、これら加工温度,von Mises歪,旧オーステナイト結晶粒度の条件は、高負荷部位についての条件であるが、高負荷部位に限らず全部位について同条件を満たしていることがより好ましい。そうすれば、全部位において軟質な初析フェライトの増加が抑制されており、適正なフェライト・パーライト組織を有するため、疲労強度が大変優れていてより長寿命となる。   The conditions for the processing temperature, the von Mises strain, and the prior austenite grain size are conditions for a high load site, but it is more preferable that the same conditions are satisfied for all sites as well as the high load site. By doing so, an increase in soft pro-eutectoid ferrite is suppressed in all parts, and since it has an appropriate ferrite / pearlite structure, fatigue strength is very excellent and a longer life is achieved.

また、本発明は、種々の車輪支持用転がり軸受ユニットに適用することが可能である。例えば、車輪取り付け用フランジがハブ輪や外輪と別体に設けられた、所謂第一世代の車輪支持用転がり軸受ユニット、車輪取り付け用フランジ又は懸架装置取り付け用フランジが外輪と一体に設けられた、所謂第二世代の車輪支持用転がり軸受ユニット、車輪取り付け用フランジ及び懸架装置取り付け用フランジがそれぞれ内輪及び外輪のいずれかと一体に設けられた、所謂第三世代の車輪支持用転がり軸受ユニットに適用することが可能である。   Further, the present invention can be applied to various wheel bearing rolling bearing units. For example, a wheel mounting flange is provided separately from a hub wheel or an outer ring, a so-called first-generation wheel support rolling bearing unit, a wheel mounting flange or a suspension device mounting flange is provided integrally with the outer ring, It is applied to a so-called third generation rolling bearing unit for wheel support in which a so-called second generation wheel supporting rolling bearing unit, a wheel mounting flange and a suspension mounting flange are provided integrally with either the inner ring or the outer ring, respectively. It is possible.

〔実施例〕
以下に、実施例を示して、本発明をさらに具体的に説明する。円柱形状のS53C製素材に3工程の熱間鍛造を施してハブ輪の形状に成形し、その後に冷却した。最終工程である第三工程の熱間鍛造の条件(高応力が負荷される車輪取り付け用フランジの付け根部分における加工温度,von Mises歪,及び熱間鍛造パラメータPF )及び冷却工程の冷却速度は、表1に示す通りである。
なお、加工温度は、放射温度計を用いてワーク表面の温度を測定することにより求めた。また、von Mises歪は熱間鍛造時の形状寸法を変更することにより調整し、有限要素法を用いて求めた。さらに、冷却速度は、空冷ファンの風量と風速によって調整した。
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to examples. The cylindrical S53C material was hot forged in three steps to form a hub wheel shape, and then cooled. The conditions of the hot forging in the third process, which is the final process (processing temperature, von Mises strain, and hot forging parameter P F at the root of the wheel mounting flange where high stress is applied) and the cooling rate of the cooling process are As shown in Table 1.
The processing temperature was determined by measuring the temperature of the workpiece surface using a radiation thermometer. Further, the von Mises strain was adjusted by changing the shape dimension at the time of hot forging, and was determined using a finite element method. Furthermore, the cooling rate was adjusted by the air volume and air speed of the air cooling fan.

Figure 2009106995
Figure 2009106995

得られた熱間鍛造品に、旋削加工,高周波焼入れ,焼戻し,研削加工,超仕上げ加工を施して、ハブ輪を得た。そして、このハブ輪を用いて、前述の車輪支持用転がり軸受ユニット1とほぼ同様の構成の車輪支持用転がり軸受ユニットを製造した。この車輪支持用転がり軸受ユニットの複列の軌道面間の距離は25mm、車輪取り付け用フランジの厚さ(軸方向幅)は10mm、ハブボルトのボルト径は14mmである。   The resulting hot forged product was subjected to turning, induction hardening, tempering, grinding, and superfinishing to obtain a hub wheel. And using this hub wheel, the wheel support rolling bearing unit of the structure substantially the same as the above-mentioned wheel support rolling bearing unit 1 was manufactured. The distance between the double-row raceway surfaces of the wheel supporting rolling bearing unit is 25 mm, the thickness (axial width) of the wheel mounting flange is 10 mm, and the hub bolt has a bolt diameter of 14 mm.

この車輪支持用転がり軸受ユニットの車輪取り付け用フランジに、ハブボルトを介してアキシアル荷重3000N及びラジアル荷重2000Nを入力し、車輪支持用転がり軸受ユニットを回転速度100min-1で回転させて、繰り返し応力を付与した。そして、106 回付与されてもハブ輪に疲労破壊が生じない繰り返し応力を求め、それを疲労強度とした。結果を表1に示す。なお、表1の疲労強度の数値は、比較例1の疲労強度を1とした場合の相対値で示してある。また、旧オーステナイト結晶粒度(日本工業規格JIS G0551に規定の方法で測定された旧オーステナイト結晶粒度)の欄に記載の数値は、粒度番号である。 An axial load of 3000 N and a radial load of 2000 N are input to the wheel mounting flange of the wheel support rolling bearing unit via hub bolts, and the wheel support rolling bearing unit is rotated at a rotational speed of 100 min −1 to repeatedly apply stress. did. Then, repeated stress at which fatigue failure does not occur in the hub wheel even when applied 10 6 times was determined and used as fatigue strength. The results are shown in Table 1. In addition, the numerical value of the fatigue strength of Table 1 is shown as a relative value when the fatigue strength of Comparative Example 1 is 1. Moreover, the numerical value described in the column of former austenite crystal grain size (old austenite crystal grain size measured by the method specified in Japanese Industrial Standards JIS G0551) is a grain size number.

非焼入れ部の疲労強度を高めるためには、結晶粒を微細にすることが効果的であることが知られている。非焼入れ部の結晶粒(フェライト−パーライト組織における旧オーステナイト結晶粒)は、熱間鍛造時に再結晶が生じて形成されるが、加工温度を低くするほど、導入される歪量を大きくするほど、結晶粒を微細にすることができる。
本発明者は、さらに鋭意検討を行った結果、複数工程の熱間鍛造のうち最終工程の熱間鍛造を、前述の条件A,条件B,及び条件Cを満足するように行うことによって(実施例1〜10であり、図2のグラフの斜線部である)、適正なフェライト−パーライト組織を有し且つ旧オーステナイト結晶粒度を粒度番号で6以上9以下とすることができ、高い疲労強度が得られることを見出した。
In order to increase the fatigue strength of the non-quenched portion, it is known that making the crystal grains fine is effective. The crystal grains of the non-quenched part (former austenite crystal grains in the ferrite-pearlite structure) are formed by recrystallization during hot forging, but the lower the processing temperature, the larger the strain introduced, Crystal grains can be made fine.
As a result of further earnest studies, the present inventor conducted the hot forging of the final process among the multiple processes of hot forging so as to satisfy the above-described conditions A, B, and C (implementation) Example 1-10, which is the hatched portion of the graph of FIG. 2), has an appropriate ferrite-pearlite structure, and the prior austenite grain size can be made from 6 to 9 in grain size number, and has high fatigue strength It was found that it can be obtained.

比較例4のように加工温度が900℃未満であると、結晶粒が過度に微細となるため、初析フェライトが増加して硬さが低下し、高い疲労強度が得られない。また、比較例1,2のように加工温度が1100℃超過であると、十分なvon Mises歪を加えても結晶粒が微細にならないため、高い疲労強度が得られない。
さらに、比較例5のようにvon Mises歪が0.3未満であると、十分に再結晶できないため、加工温度が適切であっても結晶粒が微細にならず、高い疲労強度が得られない。さらに、von Mises歪が1.5超過であると、加工発熱が生じて、かえって結晶粒が大きくなってしまう場合がある。加工温度が低い場合でも、金型への負担が大きくなるおそれがあるため、好ましくない。
When the processing temperature is less than 900 ° C. as in Comparative Example 4, the crystal grains become excessively fine, so that the pro-eutectoid ferrite increases and the hardness decreases, and high fatigue strength cannot be obtained. Further, when the processing temperature is over 1100 ° C. as in Comparative Examples 1 and 2, the crystal grains do not become fine even when sufficient von Mises strain is applied, so that high fatigue strength cannot be obtained.
Furthermore, if the von Mises strain is less than 0.3 as in Comparative Example 5, the crystal cannot be sufficiently recrystallized, so that the crystal grains do not become fine even if the processing temperature is appropriate, and high fatigue strength cannot be obtained. . Furthermore, if the von Mises strain exceeds 1.5, processing heat generation may occur, and the crystal grains may be enlarged. Even when the processing temperature is low, the burden on the mold may increase, which is not preferable.

さらに、比較例3のように、加工温度及びvon Mises歪が適正であっても、熱間鍛造パラメータPF が1000超過であると、結晶粒が微細にならず高い疲労強度が得られない。
ただし、結晶粒が過度に微細であると、軟質な初析フェライトが増加してしまうため、硬さが低下して、かえって疲労強度が低下するおそれがある。初析フェライトは、結晶粒が大きいほど、熱間鍛造後の冷却工程における冷却速度が速いほど少量となる。
Furthermore, as in Comparative Example 3, even a fair processing temperature and von Mises strain, the hot forging parameters P F is a 1000 exceeded, grain can not be obtained a high fatigue strength does not become fine.
However, if the crystal grains are excessively fine, soft pro-eutectoid ferrite is increased, so that the hardness is lowered and the fatigue strength may be lowered. The amount of pro-eutectoid ferrite becomes smaller as the crystal grain becomes larger and the cooling rate in the cooling step after hot forging becomes faster.

熱間鍛造パラメータPF が850以上1000以下である場合には、旧オーステナイト結晶粒度が粒度番号で8未満であり、冷却速度を0.25℃/s以上とすれば硬さの低下を抑制することができる。熱間鍛造パラメータPF が850以下である場合には、冷却速度を0.5℃/s以上とすれば硬さの低下を抑制することができる。
冷却速度が3℃/sよりも大きいと、局部的にマルテンサイト変態を生じるため、割れ等が発生するおそれがある。
When hot forging parameters P F is 850 to 1,000 is less than 8 at prior austenite grain size grain size number, to suppress a decrease in hardness if the cooling rate between 0.25 ° C. / s or higher be able to. When hot forging parameters P F is 850 or less, the cooling rate it is possible to suppress a decrease in hardness if 0.5 ° C. / s or higher.
When the cooling rate is higher than 3 ° C./s, martensitic transformation is locally generated, so that cracking or the like may occur.

比較例6は、熱間鍛造パラメータPF は900であるが冷却速度が遅いため、疲労強度が向上していない。また、比較例7は、熱間鍛造パラメータPF は800であるが冷却速度が遅いため、疲労強度が向上していない。
なお、非焼入れ部の疲労強度を向上させるためには、少なくとも高負荷部位であるフランジの付け根部分に、本発明を適用する必要がある。
Comparative Example 6, since hot forging parameters P F is the slow cooling rate is 900, the fatigue strength is not improved. In Comparative Example 7, since hot forging parameters P F is the slow cooling rate is 800, the fatigue strength is not improved.
In addition, in order to improve the fatigue strength of a non-hardened part, it is necessary to apply this invention to the root part of the flange which is a high load site | part at least.

本発明に係る車輪支持用転がり軸受ユニットの一実施形態の構造を示す断面図である。It is sectional drawing which shows the structure of one Embodiment of the rolling bearing unit for wheel support which concerns on this invention. 実施例,比較例のハブ輪の製造において行った熱間鍛造の条件(加工温度及びvon Mises歪)を示すグラフである。It is a graph which shows the conditions (working temperature and von Mises distortion) of the hot forging performed in manufacture of the hub wheel of an Example and a comparative example. 旧オーステナイト結晶粒度(粒度番号)と疲労強度との関係を示すグラフである。It is a graph which shows the relationship between prior austenite grain size (grain number) and fatigue strength.

符号の説明Explanation of symbols

1 車輪支持用転がり軸受ユニット
2 ハブ輪
3 内輪
4 外輪
5 転動体
10 車輪取り付け用フランジ
13 懸架装置取り付け用フランジ
20a 第一内側軌道面
20b 第二内側軌道面
21a 第一外側軌道面
21b 第二外側軌道面
S 付け根部分
DESCRIPTION OF SYMBOLS 1 Rolling bearing unit for wheel support 2 Hub wheel 3 Inner ring 4 Outer ring 5 Rolling body 10 Wheel mounting flange 13 Suspension device mounting flange 20a First inner raceway surface 20b Second inner raceway surface 21a First outer raceway surface 21b Second outer race Track surface S Base part

Claims (3)

外周面に軌道面を有する内方部材と、前記内方部材の軌道面に対向する軌道面を有し前記内方部材の外方に配された外方部材と、前記内方部材の軌道面と前記外方部材の軌道面との間に転動自在に配された複数の転動体と、を備える車輪支持用転がり軸受ユニットを製造するに際して、
鋼製素材に複数工程の熱間鍛造を順次施して所定の形状に段階的に成形することにより、前記内方部材及び前記外方部材の少なくとも一方を得るとともに、
前記複数工程の熱間鍛造のうち最終工程の熱間鍛造を、下記の条件A,条件B,及び条件Cを満足するように行い、前記複数工程の熱間鍛造の後の冷却工程を、下記の条件Dを満足するように行うことを特徴とする車輪支持用転がり軸受ユニットの製造方法。
条件A)前記内方部材又は前記外方部材のうち車輪支持用転がり軸受ユニットの駆動時に高応力が負荷される高負荷部位は、900℃以上1100℃以下の加工温度で熱間鍛造される。
条件B)前記最終工程の熱間鍛造によって、前記高負荷部位には0.3以上1.5以下のvon Mises歪が導入される。
条件C)[前記加工温度]−150×[前記von Mises歪]なる式で定義される熱間鍛造パラメータPF が1000以下である。
条件D)前記熱間鍛造パラメータPF が850超過1000以下である場合は、前記冷却工程の冷却速度は0.25℃/s以上3℃/s以下であり、前記熱間鍛造パラメータPF が850以下である場合は、前記冷却工程の冷却速度は0.5℃/s以上3℃/s以下である。
An inner member having a raceway surface on an outer peripheral surface; an outer member having a raceway surface facing the raceway surface of the inner member; and the raceway surface of the inner member. And a plurality of rolling elements arranged so as to be freely rollable between the outer member and the raceway surface of the outer member, when manufacturing a wheel support rolling bearing unit,
By sequentially performing hot forging of a plurality of steps on a steel material and forming it in a predetermined shape step by step, obtaining at least one of the inner member and the outer member,
Among the multiple processes of hot forging, the final process of hot forging is performed so as to satisfy the following conditions A, B and C, and the cooling process after the multiple processes of hot forging is as follows: A method for manufacturing a wheel-supporting rolling bearing unit, wherein the method is carried out so as to satisfy the condition D.
Condition A) Of the inner member or the outer member, a high load portion that is subjected to high stress when the wheel bearing rolling bearing unit is driven is hot forged at a processing temperature of 900 ° C. or higher and 1100 ° C. or lower.
Condition B) A von Mises strain of 0.3 or more and 1.5 or less is introduced into the high load portion by the hot forging in the final step.
Condition C) [the processing temperature] -150 × [the von Mises strain] becomes hot forging parameters P F defined by the formula is 1000 or less.
If the condition D) the hot forging parameters P F is 850 exceed 1,000 or less, the cooling rate of the cooling step is at 3 ° C. / s or less 0.25 ° C. / s or higher, the hot forging parameters P F is When it is 850 or less, the cooling rate of the cooling step is 0.5 ° C./s or more and 3 ° C./s or less.
前記高負荷部位においては、日本工業規格JIS G0551に規定の方法で測定された旧オーステナイト結晶粒度が、粒度番号で6以上9以下であることを特徴とする請求項1に記載の車輪支持用転がり軸受ユニットの製造方法。   2. The wheel support rolling according to claim 1, wherein in the high-load portion, the prior austenite grain size measured by a method defined in Japanese Industrial Standard JIS G0551 is 6 to 9 in grain size number. Manufacturing method of bearing unit. 前記内方部材及び前記外方部材の少なくとも一方には、車輪又は懸架装置が取り付けられるフランジが設けられており、前記高負荷部位が該フランジの付け根部分であることを特徴とする請求項1又は請求項2に記載の車輪支持用転がり軸受ユニットの製造方法。   A flange to which a wheel or a suspension device is attached is provided on at least one of the inner member and the outer member, and the high load portion is a base portion of the flange. The manufacturing method of the rolling bearing unit for wheel support of Claim 2.
JP2007283618A 2007-10-31 2007-10-31 Manufacturing method of wheel bearing rolling bearing unit Expired - Fee Related JP4893585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007283618A JP4893585B2 (en) 2007-10-31 2007-10-31 Manufacturing method of wheel bearing rolling bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007283618A JP4893585B2 (en) 2007-10-31 2007-10-31 Manufacturing method of wheel bearing rolling bearing unit

Publications (2)

Publication Number Publication Date
JP2009106995A true JP2009106995A (en) 2009-05-21
JP4893585B2 JP4893585B2 (en) 2012-03-07

Family

ID=40776090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007283618A Expired - Fee Related JP4893585B2 (en) 2007-10-31 2007-10-31 Manufacturing method of wheel bearing rolling bearing unit

Country Status (1)

Country Link
JP (1) JP4893585B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112122A (en) * 2009-11-25 2011-06-09 Nsk Ltd Railway vehicle bearing unit
WO2015056413A1 (en) * 2013-10-17 2015-04-23 日本精工株式会社 Method for producing wheel-supporting roller bearing unit
WO2022199738A1 (en) 2021-03-26 2022-09-29 Schaeffler Technologies AG & Co. KG Process for producing a component for a wheel bearing and wheel bearing comprising such a component
DE102022104075A1 (en) 2021-03-26 2022-09-29 Schaeffler Technologies AG & Co. KG Process for producing a component for a wheel bearing and wheel bearing with such a component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156764A (en) * 2002-08-29 2004-06-03 Nsk Ltd Bearing unit with flange and manufacturing method thereof
JP2005232581A (en) * 2004-01-19 2005-09-02 Jfe Steel Kk Hot-forged product excellent in fatigue-strength and its producing method
JP2006326606A (en) * 2005-05-23 2006-12-07 Daido Steel Co Ltd Method for predicting service life of metal die

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156764A (en) * 2002-08-29 2004-06-03 Nsk Ltd Bearing unit with flange and manufacturing method thereof
JP2005232581A (en) * 2004-01-19 2005-09-02 Jfe Steel Kk Hot-forged product excellent in fatigue-strength and its producing method
JP2006326606A (en) * 2005-05-23 2006-12-07 Daido Steel Co Ltd Method for predicting service life of metal die

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112122A (en) * 2009-11-25 2011-06-09 Nsk Ltd Railway vehicle bearing unit
WO2015056413A1 (en) * 2013-10-17 2015-04-23 日本精工株式会社 Method for producing wheel-supporting roller bearing unit
WO2022199738A1 (en) 2021-03-26 2022-09-29 Schaeffler Technologies AG & Co. KG Process for producing a component for a wheel bearing and wheel bearing comprising such a component
DE102022104075A1 (en) 2021-03-26 2022-09-29 Schaeffler Technologies AG & Co. KG Process for producing a component for a wheel bearing and wheel bearing with such a component

Also Published As

Publication number Publication date
JP4893585B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP2006200700A (en) Rolling bearing device for supporting wheel
JP6090436B2 (en) Method of manufacturing race ring member and metal material for race ring member
JP2007321901A (en) Rolling member manufacturing method, rolling bearing manufacturing method, rolling bearing and for rolling bearing, and its raceway track member
WO2007010774A1 (en) Process for producing bearing device for wheel
JP2012183563A (en) Method of manufacturing shaft member for wheel rolling bearing device
JP2006291250A (en) Rolling bearing unit for wheel supporting
JP5136146B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP4893585B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP5050446B2 (en) Bearing unit
JP2006064036A (en) Bearing device for supporting axle
JP2007022464A (en) Bearing device for wheels
JP2006142916A (en) Rolling bearing unit for supporting vehicle wheel
JP2006329287A (en) Wheel supporting rolling bearing unit and its inner ring manufacturing method
JP5644881B2 (en) Manufacturing method of wheel bearing rolling bearing device
JP5195081B2 (en) Rolling bearing unit for wheel support and manufacturing method thereof
JP2008169941A (en) Wheel bearing device
JP5050587B2 (en) Rolling bearing device for wheel support
JP5168852B2 (en) Bearing unit
JP2010013039A (en) Rolling bearing unit for wheel support and method of manufacturing the same
JP2008266667A (en) Rolling bearing device for supporting wheel
JP2006153188A (en) Roller bearing system for supporting wheel
JP5195089B2 (en) Hub unit bearing and manufacturing method thereof
JP2007107647A (en) Rolling bearing device for supporting wheel
JP2006046353A (en) Wheel supporting hub bearing unit
JP4225061B2 (en) Rolling bearing unit for wheel support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101022

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees