JP2009106059A - Battery simulator - Google Patents

Battery simulator Download PDF

Info

Publication number
JP2009106059A
JP2009106059A JP2007275118A JP2007275118A JP2009106059A JP 2009106059 A JP2009106059 A JP 2009106059A JP 2007275118 A JP2007275118 A JP 2007275118A JP 2007275118 A JP2007275118 A JP 2007275118A JP 2009106059 A JP2009106059 A JP 2009106059A
Authority
JP
Japan
Prior art keywords
battery
charge
capacity
value
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007275118A
Other languages
Japanese (ja)
Inventor
Makoto Ono
誠 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007275118A priority Critical patent/JP2009106059A/en
Publication of JP2009106059A publication Critical patent/JP2009106059A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery simulator that simulates characteristics similar to those of an actual battery without measuring battery characteristics under various operation conditions. <P>SOLUTION: A simulation calculation part 23 stores a value obtained by integrating a battery charge/discharge capacity and a battery charging/discharging power capacity on the basis of measurement values of a battery input/output current and a battery input/output voltage, in a charge/discharge history storage part 25. The simulation calculation part calculates a correction value, in which a voltage change shown by an actual battery is simulated, from the values stored in the charge/discharge history storage part and battery characteristics. The simulation calculation part corrects a setting value, set by an output voltage setting part 21, with the correction value so as to control an output voltage of a power converter 10. Further, the simulation calculation part executes correction control in which changes in battery output voltage, changes in charge/discharge capacity, and changes or the like in charging/discharging efficiency are simulated according to a battery temperature, a charging state, and secular changes or the like that are set in a condition setting part 24. The simulation calculation part generates an alarm from an alarm generating part 28 when each value deviates from an operating range such as a charge/discharge upper limit value set in a battery. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、バッテリを直流電源とする電力変換装置の試験に、バッテリに代えた電力変換器からバッテリを模擬した直流出力を前記電力変換装置に供給するバッテリシミュレータに関する。   The present invention relates to a battery simulator that supplies a DC output simulating a battery from a power converter replaced with a battery to the power converter for testing a power converter using a battery as a DC power source.

電気自動車、ハイブリッド電気自動車などにおいて、バッテリを電源としたインバータの開発、検証が行なわれている。   In an electric vehicle, a hybrid electric vehicle, etc., an inverter using a battery as a power source has been developed and verified.

電気自動車などの実際の装置では、バッテリにてインバータに直流を供給するのであるが、インバータの開発・検証に際しては、以下の理由により、実際のバッテリを使用することには問題がある。   In an actual device such as an electric vehicle, a direct current is supplied to the inverter by a battery. However, when developing and verifying the inverter, there is a problem in using the actual battery for the following reasons.

・検証開始時には、想定する状態になるようにバッテリを充放電させなければならないため、時間を要する。   -At the start of verification, it takes time because the battery must be charged and discharged so as to be in an assumed state.

・バッテリの特性は温度、経年変化、固体差によって特性が異なってくるため、試験の再現性に乏しい。また、バッテリの経年変化を想定した検証ができない。   ・ Characteristics of batteries vary depending on temperature, aging, and individual differences, so test reproducibility is poor. In addition, it is not possible to verify that the battery has changed over time.

上記などの理由により、実際のバッテリをインバータの開発・検証に使用するのは困難なため、バッテリを模擬する装置(バッテリシミュレータ)として、交流と直流の双方向に電力変換できる双方向電力変換装置が用いられている。   Because of the above reasons, it is difficult to use an actual battery for the development and verification of an inverter. Therefore, a bidirectional power conversion device that can convert power in both directions of alternating current and direct current as a battery simulation device (battery simulator) Is used.

この装置は、交流電源から直流に電力を変換してインバータへ供給(駆動)、あるいはインバータの負荷(モータ)からの回生電力をインバータで直流に変換し、この直流電力を交流に変換して交流電源に戻す(回生)ことができる。これらの機能をもつ双方向電力変換装置は、バッテリの充放電特性などを模擬した制御を必要とする。   This device converts power from an AC power source to DC and supplies (drives) it to the inverter, or converts regenerative power from the inverter load (motor) into DC by the inverter, converts this DC power to AC and converts it to AC. It can be returned to power (regeneration). Bidirectional power converters having these functions require control that simulates the charge / discharge characteristics of the battery.

この模擬特性を得るため、例えば、バッテリがもつ垂下特性を実際のバッテリを充放電させることで自動測定し、この測定データを基に双方向電力変換装置の制御を行うバッテリシミュレータが提案されている(例えば、特許文献1参照)。   In order to obtain this simulation characteristic, for example, a battery simulator has been proposed in which the drooping characteristic of a battery is automatically measured by charging and discharging an actual battery, and the bidirectional power converter is controlled based on this measurement data. (For example, refer to Patent Document 1).

また、バッテリシミュレータの負荷の出力電圧からバッテリの出力電流に相当する値を算出し、この電流からバッテリの内部電圧降下値を測定する方法が提案されている(例えば、特許文献2参照)。
特開平10−144355号公報 特開平11−64462号公報
Further, a method has been proposed in which a value corresponding to the output current of the battery is calculated from the output voltage of the load of the battery simulator, and the internal voltage drop value of the battery is measured from this current (for example, see Patent Document 2).
JP-A-10-144355 JP-A-11-64462

従来のバッテリシミュレータは、実際のバッテリの直流電圧・電流を模擬した充放電制御、さらに垂下特性や内部電圧降下などを模擬した制御ができる。   A conventional battery simulator can perform charge / discharge control that simulates the direct current voltage / current of an actual battery, and control that simulates drooping characteristics and an internal voltage drop.

しかし、インバータなどの電力変換装置の開発・検証には、前述したように、バッテリの温度、充電状態、経年変化などを含めた模擬特性をもつバッテリシミュレータが必要となるが、このような特性をもつものはなかった。   However, development and verification of power converters such as inverters require a battery simulator with simulation characteristics including battery temperature, charge state, aging, etc. as described above. There was nothing to have.

このような模擬特性をもつバッテリシミュレータとして、特許文献1や特許文献2のように、実際のバッテリを使ってその温度、充電状態、経年変化などの条件を変えて測定し、これを模擬特性のパラメータとして設定することが想定されるが、この測定と設定には、その都度想定されるバッテリの特性となるように、膨大な入出力電圧・電流を測定・設定することになり、その作業は煩雑・複雑なものとなる。   As a battery simulator having such a simulation characteristic, as in Patent Document 1 and Patent Document 2, an actual battery is used to measure the conditions such as temperature, state of charge, aging, etc. It is assumed that it is set as a parameter, but in this measurement and setting, a huge amount of input / output voltage and current are measured and set so as to have the expected battery characteristics each time. It becomes complicated and complicated.

本発明の目的は、種々の運転条件におけるバッテリ特性の測定を不要にして、実際のバッテリと同等の特性を模擬できるバッテリシミュレータを提供することにある。   An object of the present invention is to provide a battery simulator that can simulate the characteristics equivalent to those of an actual battery without requiring measurement of battery characteristics under various operating conditions.

本発明は、前記の課題を解決するため、バッテリの充放電容量および充放電電力容量を計測およびそれらの積算値を求め、充放電容量および電力の積算値とバッテリ特性から実際のバッテリが呈する電圧変化を模擬した補正値を求め、この補正値で電力変換器にバッテリを模擬した入出力電圧を得、この電圧制御にバッテリの温度、充電状態、経年変化などに応じて、バッテリの出力電圧の変化、充放電容量の変化、充放電効率の変化などを模擬した補正制御を行い、さらにバッテリがもつ充電上限値など、バッテリの充放電動作の制限事項について監視を行い、この動作範囲を逸脱したときに警報を発生させるようにしたもので、以下の構成を特徴とする。   In order to solve the above-mentioned problems, the present invention measures the charge / discharge capacity and charge / discharge power capacity of a battery and determines the integrated value thereof, and the voltage exhibited by the actual battery from the integrated value of the charge / discharge capacity and power and the battery characteristics. Obtain a correction value that simulates the change, obtain an input / output voltage that simulates the battery in the power converter with this correction value, and adjust the output voltage of the battery according to the battery temperature, charge state, aging, etc. The correction control which simulates the change, the change of charge / discharge capacity, the change of charge / discharge efficiency, etc., and the limit of the charge / discharge operation of the battery such as the upper limit value of the charge of the battery, etc. were monitored. An alarm is sometimes generated and has the following configuration.

(1)バッテリを直流電源とする電力変換装置の試験に、バッテリに代えた電力変換器からバッテリを模擬した直流出力を前記電力変換装置に供給するバッテリシミュレータであって、
前記電力変換器の制御装置は、
電力変換器の入出力電流、電圧の計測値から該電力変換器の充放電容量および充放電電力を積算しておき、これらの積算値とバッテリ特性から実際のバッテリが呈する電圧変化を模擬した補正値を求め、この補正値で電力変換器の出力電圧設定値を補正して該電力変換器にバッテリを模擬した出力電圧を得る電圧制御手段を備えたことを特徴とする。
(1) A battery simulator that supplies a DC output simulating a battery from a power converter replaced with a battery to the power converter for testing a power converter using a battery as a DC power source,
The power converter control device comprises:
The charge / discharge capacity and charge / discharge power of the power converter are integrated from the measured values of the input / output current and voltage of the power converter, and a correction that simulates the voltage change of the actual battery from these integrated values and battery characteristics A voltage control means is provided for obtaining a value, correcting the output voltage set value of the power converter with the correction value, and obtaining an output voltage simulating a battery in the power converter.

(2)前記制御装置は、バッテリの温度、充電状態、経年変化などの条件が設定され、この設定値に応じてバッテリの出力電圧の変化、充放電容量の変化、充放電効率の変化を模擬した補正値を求め、この補正値で前記電圧制御手段の補正値を補正する補正制御手段を備えたことを特徴とする。   (2) The control device is set with conditions such as battery temperature, state of charge, aging, etc., and according to the set values, changes in battery output voltage, changes in charge / discharge capacity, and changes in charge / discharge efficiency are simulated. The correction control means for obtaining the corrected value and correcting the correction value of the voltage control means with the correction value is provided.

(3)前記制御装置は、バッテリの充放電動作の制限事項について監視を行い、この動作範囲を逸脱したときに警報を発生させる警報制御手段を備えたことを特徴とする。   (3) The control device includes a warning control unit that monitors restrictions on a charging / discharging operation of the battery and generates an alarm when the operation range is exceeded.

(4)前記電圧制御手段は、バッテリの充電と放電の切り替わり点(±0)でステップ的な電圧変化を模擬した充放電電流―電圧特性を基に前記補正値を求める演算手段を備えたことを特徴とする。   (4) The voltage control means includes a calculation means for obtaining the correction value based on a charge / discharge current-voltage characteristic simulating a stepwise voltage change at a battery charging / discharging switching point (± 0). It is characterized by.

(5)前記電圧制御手段は、現在の充電容量に応じた電圧変化を模擬した充電容量―電圧特性を基に前記補正値を求める演算手段を備えたことを特徴とする。   (5) The voltage control means includes a calculation means for obtaining the correction value based on a charge capacity-voltage characteristic simulating a voltage change according to a current charge capacity.

(6)前記補正制御手段は、現在のバッテリ温度に対する充電容量を模擬した温度―充電容量特性を基に前記電圧制御手段の充電容量を補正する演算手段を備えたことを特徴とする。   (6) The correction control means includes a calculation means for correcting the charge capacity of the voltage control means based on a temperature-charge capacity characteristic simulating the charge capacity with respect to the current battery temperature.

(7)前記補正制御手段は、バッテリの経年による充電容量上限値を模擬した経年―充電容量上限値特性を基に前記電圧制御手段の充電容量を補正する演算手段、またはバッテリの経年による充電電力容量上限値を模擬した経年―充電電力容量上限値特性を基に前記電圧制御手段の充電電力容量を補正する演算手段を備えたことを特徴とする。   (7) The correction control means is an arithmetic means for correcting the charge capacity of the voltage control means based on an aging-charge capacity upper limit characteristic simulating a charge capacity upper limit value due to battery aging, or charging power due to battery aging An arithmetic means for correcting the charging power capacity of the voltage control means based on the aging-charging power capacity upper limit characteristic simulating the capacity upper limit value is provided.

(8)前記補正制御手段は、バッテリの運転時間による充電容量上限値を模擬した運転時間―充電容量上限値特性を基に前記電圧制御手段の充電容量を補正する演算手段、またはバッテリの運転時間による充電電力容量上限値を模擬した運転時間―充電電力容量上限値特性を基に前記電圧制御手段の充電電力容量を補正する演算手段を備えたことを特徴とする。   (8) The correction control means is a computing means for correcting the charge capacity of the voltage control means based on an operation time-charge capacity upper limit value characteristic simulating the charge capacity upper limit value according to the battery operation time, or the battery operation time. And a calculating means for correcting the charging power capacity of the voltage control means on the basis of the operation time-charging power capacity upper limit characteristic simulating the charging power capacity upper limit value according to the above.

(9)前記補正制御手段は、バッテリ温度による充放電効率を模擬した温度―充電容量効率特性を基に前記電圧制御手段の充電容量の積算係数を補正する演算手段、またはバッテリ温度による充電電力容量効率を模擬した温度―充電電力容量効率特性を基に前記電圧制御手段の充電電力容量の積算係数を補正する演算手段を備えたことを特徴とする。   (9) The correction control means is an arithmetic means for correcting an integration coefficient of the charge capacity of the voltage control means based on a temperature-charge capacity efficiency characteristic simulating charge / discharge efficiency according to battery temperature, or a charge power capacity according to battery temperature An arithmetic means for correcting an integration coefficient of the charging power capacity of the voltage control means based on a temperature-charging power capacity efficiency characteristic simulating efficiency is provided.

(10)前記補正制御手段は、現在のバッテリ充電容量による充放電効率を模擬した充電容量―充放電効率特性を基に前記電圧制御手段の充電容量の積算係数を補正する演算手段、またはバッテリ充電電力容量による充放電効率を模擬した充電電力容量―充放電効率特性を基に前記電圧制御手段の充電電力容量の積算係数を補正する演算手段を備えたことを特徴とする。   (10) The correction control means is a calculation means for correcting an integration coefficient of the charge capacity of the voltage control means based on a charge capacity-charge / discharge efficiency characteristic simulating the charge / discharge efficiency of the current battery charge capacity, or battery charge And a calculation means for correcting an integration coefficient of the charge power capacity of the voltage control means based on a charge power capacity-charge / discharge efficiency characteristic simulating the charge / discharge efficiency by the power capacity.

(11)前記補正制御手段は、バッテリの経年による充電容量効率を模擬した経年―充電容量効率特性を基に前記電圧制御手段の充電容量の積算係数を補正する演算手段、またはバッテリの経年による充電電力容量効率を模擬した経年―充電電力容量効率特性を基に前記電圧制御手段の充電電力容量の積算係数を補正する演算手段を備えたことを特徴とする。   (11) The correction control means is a calculation means for correcting an integration coefficient of the charge capacity of the voltage control means based on an aging-charge capacity efficiency characteristic simulating the charge capacity efficiency over time of the battery, or charging over time of the battery A calculation means for correcting an integration coefficient of the charge power capacity of the voltage control means based on an aged-charge power capacity efficiency characteristic simulating power capacity efficiency is provided.

(12)前記補正制御手段は、バッテリの現在の充放電電流による充放電効率を模擬した充放電電流―充放電効率特性を基に前記電圧制御手段の充電容量の積算係数を補正する演算手段、またはバッテリの現在の充放電電流による充放電電力容量効率を模擬した充放電電流―充放電電力容量効率特性を基に前記電圧制御手段の充電電力容量の積算係数を補正する演算手段を備えたことを特徴とする。   (12) The correction control means corrects the integration coefficient of the charge capacity of the voltage control means based on a charge / discharge current-charge / discharge efficiency characteristic simulating the charge / discharge efficiency by the current charge / discharge current of the battery, Or a calculation means for correcting the integration coefficient of the charge power capacity of the voltage control means based on the charge / discharge current-charge / discharge power capacity efficiency characteristics simulating the charge / discharge power capacity efficiency by the current charge / discharge current of the battery. It is characterized by.

(13)前記警報制御手段は、バッテリの充電容量またはその積算値、または充電電力容量またはその積算値がそれぞれの上限値を超えたときに警報を発生する演算手段を備えたことを特徴とする。   (13) The alarm control means includes a calculation means for generating an alarm when the charge capacity of the battery or the integrated value thereof, or the charge power capacity or the integrated value thereof exceeds the respective upper limit values. .

(14)前記警報制御手段は、バッテリ温度による許容充電容量またはその積算値を模擬した温度―許容充電容量特性を基に前記電圧制御手段の充電容量のまたはその積算値の上限値を補正する演算手段、またはバッテリ温度による許容充電電力容量またはその積算値を模擬した温度―許容充電電力容量特性を基に前記電圧制御手段の充電電力容量のまたはその積算値の上限値を補正する演算手段を備えたことを特徴とする。   (14) The alarm control means calculates the charge capacity of the voltage control means or the upper limit value of the integrated value based on a temperature-allowable charge capacity characteristic simulating the allowable charge capacity or the integrated value depending on the battery temperature. Or an arithmetic means for correcting the charging power capacity of the voltage control means or the upper limit value of the integrated value based on a temperature-allowable charging power capacity characteristic simulating the allowable charging power capacity depending on the battery temperature or the integrated value thereof. It is characterized by that.

(15)前記警報制御手段は、バッテリの経年による許容充電容量またはその積算値を模擬した経年―許容充電容量特性を基に前記電圧制御手段の充電容量のまたはその積算値の上限値を補正する演算手段、またはバッテリの経年による許容充電電力容量またはその積算値を模擬した経年―許容充電電力容量特性を基に前記電圧制御手段の充電電力容量のまたはその積算値の上限値を補正する演算手段を備えたことを特徴とする。   (15) The alarm control unit corrects the charge capacity of the voltage control unit or the upper limit value of the integrated value based on an aging-allowable charge capacity characteristic simulating the allowable charge capacity or the integrated value of the battery over time. Calculation means, or calculation means for correcting the charging power capacity of the voltage control means or the upper limit value of the integrated value based on the aging-allowable charging power capacity characteristic simulating the allowable charging power capacity or the integrated value of the battery over time It is provided with.

(16)前記警報制御手段は、バッテリの充放容量の積算値がバッテリに許容される発熱・過熱値を超過したときに警報を発生する演算手段を備えたことを特徴とする。   (16) The alarm control means includes a calculation means for generating an alarm when the integrated value of the charge / discharge capacity of the battery exceeds a heat generation / overheat value allowed for the battery.

以上のとおり、本発明によれば、バッテリの充放電容量および充放電電力容量を計測およびそれらの積算値を求め、充放電容量および電力の積算値とバッテリ特性から実際のバッテリが呈する電圧変化を模擬した補正値を求め、この補正値で電力変換器にバッテリを模擬した入出力電圧を得、この電圧制御にバッテリの温度、充電状態、経年変化などに応じて、バッテリの出力電圧の変化、充放電容量の変化、充放電効率の変化などを模擬した補正制御をするため、種々の運転条件におけるバッテリ特性の測定を不要にして、実際のバッテリと同等の特性を模擬できる。   As described above, according to the present invention, the charge / discharge capacity and charge / discharge power capacity of the battery are measured and their integrated values are obtained, and the voltage change exhibited by the actual battery is calculated from the integrated values of the charge / discharge capacity and power and the battery characteristics. Obtain a simulated correction value, obtain an input / output voltage that simulates the battery in the power converter with this correction value, change the output voltage of the battery according to the battery temperature, charge state, aging, etc. Since correction control that simulates changes in charge / discharge capacity, changes in charge / discharge efficiency, and the like is performed, measurement of battery characteristics under various operating conditions is unnecessary, and characteristics equivalent to those of an actual battery can be simulated.

また、バッテリがもつ充電上限値など、バッテリの充放電動作の制限事項について監視を行い、この動作範囲を逸脱したときに警報を発生させるため、実際のバッテリの振る舞いを模擬した監視ができる。   In addition, since the battery charging / discharging operation restrictions such as the charging upper limit value of the battery are monitored and an alarm is generated when the operation range is deviated, monitoring of actual battery behavior can be performed.

図1は、本発明の実施形態を示すバッテリシミュレータの構成図である。双方向電力変換器10は、交流電源ACを電源として実際のバッテリを模擬した直流入出力を得、開発、検証対象となるインバータINVへの電力供給とインバータINVからの回生電力を吸収する。なお、インバータINVからの回生電力は、モータMの制動運転により発生するもので、電力変換器10の逆変換で交流電源ACに回生する。   FIG. 1 is a configuration diagram of a battery simulator showing an embodiment of the present invention. The bidirectional power converter 10 obtains a DC input / output simulating an actual battery using the AC power supply AC as a power supply, and absorbs power supplied to the inverter INV to be developed and verified and regenerative power from the inverter INV. The regenerative power from the inverter INV is generated by the braking operation of the motor M, and is regenerated to the AC power source AC by the reverse conversion of the power converter 10.

電力変換器10の制御装置は、出力(定格)電圧設定部21、係数演算部22、模擬演算部23、条件設定部24、充放電履歴記憶部25、電流検出部26、電圧検出部27および警報発生部28で構成し、電力変換器10に実際のバッテリを模擬した入出力電流、電圧特性になるよう制御する。この制御装置は、ディジタル処理するコンピュータ構成にされ、演算部22,23はコンピュータ資源を利用したソフトウェアで構成される。   The control device of the power converter 10 includes an output (rated) voltage setting unit 21, a coefficient calculation unit 22, a simulation calculation unit 23, a condition setting unit 24, a charge / discharge history storage unit 25, a current detection unit 26, a voltage detection unit 27, and The alarm generating unit 28 is configured to control the power converter 10 so as to have input / output current and voltage characteristics simulating an actual battery. This control device has a computer configuration for digital processing, and the arithmetic units 22 and 23 are configured by software using computer resources.

制御装置は、基本的には、電流検出部26、電圧検出部27によるバッテリ入出力電流、電圧の計測値を模擬演算部23に取り込んでバッテリの充放電容量および充放電電力容量およびそれらの積算値を充放電履歴記憶部25に現在値として記憶しておき、模擬演算部23が充放電容量および電力容量とそれらの積算値とバッテリ特性から実際のバッテリが呈する電圧変化を模擬した補正値を求め、この補正値で出力電圧設定部21による設定値を補正して電力変換器10の出力電圧にバッテリを模擬した入出力電圧を得る。さらに、模擬演算部23は、条件設定部24に設定されるバッテリの温度、充電状態、経年変化などに応じて、バッテリの出力電圧の変化、充放電容量の変化、充放電効率の変化などを模擬した補正制御をする。さらにまた、模擬演算部23は、バッテリがもつ充電上限値など、バッテリの充放電動作の制限事項について監視を行い、この動作範囲を逸脱したときに警報発生部28から警報を発生させる。   The control device basically takes the battery input / output current and voltage measurement values obtained by the current detection unit 26 and the voltage detection unit 27 into the simulation calculation unit 23 to charge / discharge capacity and charge / discharge power capacity of the battery and their integration. The value is stored as a current value in the charge / discharge history storage unit 25, and the simulation calculation unit 23 calculates a correction value that simulates the voltage change exhibited by the actual battery from the charge / discharge capacity, the power capacity, their integrated value, and the battery characteristics. Then, the set value by the output voltage setting unit 21 is corrected with this correction value to obtain an input / output voltage that simulates a battery in the output voltage of the power converter 10. Further, the simulation calculation unit 23 performs a change in the output voltage of the battery, a change in the charge / discharge capacity, a change in the charge / discharge efficiency, etc. according to the temperature, charge state, aging, etc. of the battery set in the condition setting unit 24. Simulate correction control. Furthermore, the simulation calculation unit 23 monitors battery charging / discharging operation restrictions such as a charging upper limit value of the battery, and generates an alarm from the alarm generation unit 28 when the operation range is exceeded.

以下、バッテリの状態を模擬した演算および制御を詳細に説明する。なお、電力変換器10は以下ではBTS10と呼ぶ。   Hereinafter, calculation and control simulating the state of the battery will be described in detail. The power converter 10 is hereinafter referred to as BTS10.

(1)充放電容量の積算
模擬演算部23は、充放電の電流・電圧を積算することにより、バッテリを模擬する電力変換器10で充放電した容量(充電される電気量)を積算しておき、この積算値は模擬するバッテリの現在の充放電容量(現在値容量)として利用する。
(1) Accumulation of charge / discharge capacity The simulation calculation unit 23 integrates the capacity (the amount of electricity to be charged) charged / discharged by the power converter 10 simulating a battery by integrating the current / voltage of charge / discharge. The integrated value is used as the current charge / discharge capacity (current value capacity) of the simulated battery.

この演算は、図2の(a),(b)に示す演算部31A、31Bで行う。演算部31Aは、電流のみを容量として積算する場合であり、電流検出部6で検出する検出値Iを積算した充電電流容量Ahを求める。演算部31Bは、電力を容量として積算する場合であり、電流検出部6で検出する検出値Iと電圧検出部27で検出する検出値Vの積(I×V)を積算した充電電力容量Whを求める。   This calculation is performed by the calculation units 31A and 31B shown in FIGS. The calculation unit 31A is a case where only the current is accumulated as the capacity, and obtains the charging current capacity Ah obtained by integrating the detection value I detected by the current detection unit 6. The calculation unit 31B is a case where power is accumulated as a capacity, and a charging power capacity Wh obtained by integrating the product (I × V) of the detection value I detected by the current detection unit 6 and the detection value V detected by the voltage detection unit 27. Ask for.

なお、電流はバッテリを模擬しているため、BTS10に流れ込む方向を充電電流としてプラス、BTSから流れ出す方向を放電電流としてマイナスで扱うこととする。以下同様に扱う。   Since the current simulates a battery, the direction flowing into the BTS 10 is treated as plus as a charging current, and the direction flowing out from the BTS is treated as minus as a discharging current. The same applies hereinafter.

(2)現在値からの充放電容量の積算
模擬演算部23は、試験開始時のバッテリの初期充電状態を設定し、この状態からの充放電容量の積算を行う。この初期充電状態の設定は充放電履歴記憶部25で記憶する前記の現在値容量が設定され、この現在値に充放電容量を加減算して、模擬バッテリの充電容量(充電されている電気量)を求める。
(2) Accumulation of charge / discharge capacity from current value The simulation calculation unit 23 sets the initial charge state of the battery at the start of the test, and integrates the charge / discharge capacity from this state. The initial charge state is set by setting the current value capacity stored in the charge / discharge history storage unit 25, and adding / subtracting the charge / discharge capacity to / from the current value to charge the simulated battery (charged electric charge). Ask for.

この演算は、図3の(a),(b)に示す演算部32A、32Bと現在値設定部33A、33Bで行う。現在値設定部33A、33Bは、前記の演算部31A、31Bで求めた容量値Ah1、Wh1を現在値として設定することで、前回試験までのバッテリの現在の充電状態とする。演算部32A、32Bは、現在値Ah1,Wh1と、電流検出値I,電圧検出値Vの積算値から充放電容量を求める。   This calculation is performed by the calculation units 32A and 32B and the current value setting units 33A and 33B shown in FIGS. The current value setting units 33A and 33B set the capacity values Ah1 and Wh1 obtained by the calculation units 31A and 31B as current values, thereby setting the current charge state of the battery until the previous test. Arithmetic units 32A and 32B obtain the charge / discharge capacity from the current values Ah1 and Wh1, and the integrated value of current detection value I and voltage detection value V.

(3)充放電の切り替わり点の出力電圧制御
バッテリは充電時、放電時それぞれに、電流によって電圧が変化する。バッテリの充放電電流―電圧の特性は、バッテリが化学反応によって充放電を行なうため、内部抵抗を模擬した電流による線形的な充放電電流―電圧の特性で模擬するのでは不十分であり、充電と放電の切り替わり点(±0)でステップ的な電圧変化を伴う。
(3) Output voltage control at charging / discharging switching point The battery changes its voltage depending on the current during charging and discharging. The charge / discharge current-voltage characteristics of the battery are not sufficient to simulate the linear charge / discharge current-voltage characteristics of the current that simulates the internal resistance because the battery charges and discharges by chemical reaction. With step change of voltage at the switching point (± 0).

これを模擬するため、図4に示すように、模擬演算部23にもつ演算部34は、ステップ的な電圧変化を模擬した充放電電流―電圧特性のテーブルデータを作成しておき、このデータを基に現在の充放電電流に応じた補正係数を係数演算部22に与え、この補正係数を出力電圧設定値に乗じて出力電圧を制御する。   In order to simulate this, as shown in FIG. 4, the calculation unit 34 included in the simulation calculation unit 23 creates charge / discharge current-voltage characteristic table data simulating stepwise voltage changes. Based on the current charging / discharging current, a correction coefficient corresponding to the current charging / discharging current is given to the coefficient calculation unit 22, and the output voltage is controlled by multiplying this correction coefficient by the output voltage setting value.

なお、上記のテーブルデータに代えて、関数演算機能を使用して同等の補正係数を求めることでもよい。同様に、以降の説明で記載するテーブルデータに代えて関数演算機能を使用することでもよい。   Instead of the above table data, an equivalent correction coefficient may be obtained using a function calculation function. Similarly, a function calculation function may be used instead of the table data described in the following description.

(4)充電容量による出力電圧制御
バッテリは充電されている容量(現在の充電容量)によって出力電圧が変化する。これを模擬するため、図5に示すように、模擬演算部23にもつ演算部35は、現在の充電容量に応じた電圧変化を模擬した充電容量―電圧特性のテーブルデータを作成しておき、このデータを基に充電容量に応じた補正係数を係数演算部22に与え、この補正係数で出力電圧設定値を制御する。充電容量設定部36はバッテリの現在の充電容量を求めて演算部35に入力するもので、この充電容量設定値は前記の演算部32A、32Bで求めたもの、もしくは初期設定された値とする。
(4) Output voltage control by charging capacity The output voltage of the battery varies depending on the charged capacity (current charging capacity). In order to simulate this, as shown in FIG. 5, the calculation unit 35 included in the simulation calculation unit 23 creates table data of charge capacity-voltage characteristics simulating voltage change according to the current charge capacity, Based on this data, a correction coefficient corresponding to the charge capacity is given to the coefficient calculation unit 22, and the output voltage set value is controlled by this correction coefficient. The charge capacity setting unit 36 obtains the current charge capacity of the battery and inputs it to the calculation unit 35. The charge capacity setting value is obtained by the calculation units 32A and 32B or is an initially set value. .

(5)充電容量と温度設定による出力電圧の補正制御
ある容量に充電された状態のバッテリは、化学反応により充放電が行なわれるため、充放電しなくても、バッテリの温度が変化するのみで、充電された容量(充放電可能な電力量)が異なってくる。充電された容量の変化は充放電する際の、バッテリの電圧の上昇・低下となって現れる。
(5) Output voltage correction control by charging capacity and temperature setting A battery charged to a certain capacity is charged / discharged by a chemical reaction, so even if it is not charged / discharged, only the temperature of the battery changes. The charged capacity (the amount of power that can be charged and discharged) differs. The change in the charged capacity appears as an increase / decrease in battery voltage when charging / discharging.

これを模擬するため、図6に示すように、模擬演算部23にもつ演算部37は温度による充電容量の変化を補正する。図6は、図5の構成に演算部37とバッテリ温度設定部38を追加するもので、演算部37には現在のバッテリ温度に対する充電容量を模擬した温度―充電容量補正係数のテーブルデータを作成しておき、条件設定部24に設けるバッテリ温度設定部38によるバッテリ温度設定に応じて、充電容量補正係数を求め、この補正係数で充電容量設定部36の設定値を補正する。   In order to simulate this, as shown in FIG. 6, the calculation unit 37 included in the simulation calculation unit 23 corrects the change in the charge capacity due to the temperature. 6 adds a calculation unit 37 and a battery temperature setting unit 38 to the configuration of FIG. 5, and creates table data of temperature-charge capacity correction coefficient simulating the charge capacity with respect to the current battery temperature. In addition, a charging capacity correction coefficient is obtained according to the battery temperature setting by the battery temperature setting section 38 provided in the condition setting section 24, and the setting value of the charging capacity setting section 36 is corrected with this correction coefficient.

(6)充電容量と温度計測による出力電圧の補正制御
前記の図6の補正制御では、バッテリ温度の設定値に応じて充電容量を補正するため、設定値と実際のバッテリ温度との差が大きいと精度が低下する場合がある。そこで、図7に示すように、バッテリ温度設定部38に代えてバッテリ温度検出器39を設け、現在のバッテリ温度検出値を基に演算部37で充電容量補正を行う。
(6) Output Voltage Correction Control by Charging Capacity and Temperature Measurement In the above-described correction control of FIG. 6, the charging capacity is corrected according to the set value of the battery temperature, so the difference between the set value and the actual battery temperature is large. And accuracy may be reduced. Therefore, as shown in FIG. 7, a battery temperature detector 39 is provided instead of the battery temperature setting unit 38, and the charge capacity is corrected by the calculation unit 37 based on the current battery temperature detection value.

バッテリ温度検出器39は、BTS10の外部(例えば、実際のバッテリを設置する環境)での温度を検出する。   The battery temperature detector 39 detects the temperature outside the BTS 10 (for example, an environment in which an actual battery is installed).

(7)充電容量上限値の補正制御
バッテリは充電可能な充電容量上限値があり、その容量以上に充電しても漏れ電流が増加し、充電できない。この場合、前記の図3に示す充電容量積算や図5〜図7における充電容量設定部36の設定値が実際の値と異なり、模擬特性に誤差を生じさせる。
(7) Charging capacity upper limit correction control The battery has a charge capacity upper limit value that can be charged, and even if it is charged beyond that capacity, the leakage current increases and charging cannot be performed. In this case, the charge capacity integration shown in FIG. 3 and the set value of the charge capacity setting unit 36 in FIGS. 5 to 7 are different from actual values, and an error is caused in the simulation characteristics.

この充電容量上限値による充電容量の変化を補正するため、図8に示すように、図3における演算部32A、32Bに代えて、充電容量制限値で制限した演算部40A、40Bを設ける。これら演算部40A、40Bによる制限は、積算値が上限値Ahmax、Whmax以上になるときに設定値(一定値)Ah1,Wh1に制限する。   In order to correct the change in the charge capacity due to the charge capacity upper limit value, as shown in FIG. 8, instead of the operation parts 32A and 32B in FIG. 3, operation parts 40A and 40B limited by the charge capacity limit value are provided. The limitation by these arithmetic units 40A and 40B is limited to set values (constant values) Ah1 and Wh1 when the integrated value is equal to or higher than the upper limit values Ahmax and Whmax.

同様に、図5〜図7における充電容量設定部36での設定値を充電容量上限値により制限した特性のものとする。   Similarly, it is assumed that the set value in the charge capacity setting unit 36 in FIGS. 5 to 7 has characteristics limited by the charge capacity upper limit value.

また、バッテリの充電可能な充電容量上限値は、経年によって変化する。この経年による充電容量上限値の変化を補正した模擬をするため、図8の(a)における演算部40Aに設定する充電電流容量上限値Ahmaxを経年に応じて補正する。この補正演算は、図9に示すように、演算部41Aにはバッテリの経年―充電電流容量上限値補正係数のテーブルデータを作成しておき、経年設定部42Aによるバッテリ経年設定に応じて、上限値補正係数を求め、この補正係数で充電電流容量上限設定部43Aの設定値を補正する。   Further, the upper limit value of the chargeable capacity of the battery changes with time. In order to simulate the change in the charge capacity upper limit due to aging, the charge current capacity upper limit Ahmax set in the calculation unit 40A in FIG. 8A is corrected according to aging. As shown in FIG. 9, in this correction calculation, table data of the battery age-charging current capacity upper limit correction coefficient is created in the calculation unit 41A, and the upper limit is set according to the battery age setting by the age setting unit 42A. A value correction coefficient is obtained, and the set value of the charging current capacity upper limit setting unit 43A is corrected by this correction coefficient.

同様に、図8の(b)における演算部40Bに設定する充電電流容量上限値Whmaxを経年に応じて補正するため、図10に示すように、演算部41Bにはバッテリの経年―充電電力容量上限値補正係数のテーブルデータを作成しておき、経年設定部42Bによるバッテリ経年設定に応じて、上限値補正係数を求め、この補正係数で充電電力容量上限設定部43Bの設定値を補正する。   Similarly, in order to correct the charging current capacity upper limit value Whmax set in the calculation unit 40B in FIG. 8B according to the aging, as shown in FIG. 10, the calculation unit 41B includes the battery aging-charging power capacity. Table data of the upper limit correction coefficient is created, an upper limit correction coefficient is obtained according to the battery age setting by the age setting unit 42B, and the set value of the charging power capacity upper limit setting unit 43B is corrected by this correction coefficient.

(8)運転時間による充電容量上限値の補正制御
前記の経年による充電容量上限値の補正に代えて、図9または図10における充電容量上限値をバッテリの運転時間に応じて補正する。
(8) Correction Control of Charging Capacity Upper Limit Value Based on Operating Time Instead of correcting the charging capacity upper limit value due to the above-mentioned aging, the charging capacity upper limit value in FIG. 9 or FIG. 10 is corrected according to the operating time of the battery.

このときの運転時間は、電力変換器10の運転時間を実測したものとすることができる。さらに、図11に示すように、実際の運転時間計測値に、加速度係数を乗じた加速時間での制御も可能とする。   The operation time at this time can be obtained by actually measuring the operation time of the power converter 10. Furthermore, as shown in FIG. 11, it is also possible to perform control with an acceleration time obtained by multiplying an actual driving time measurement value by an acceleration coefficient.

(9)温度−充放電効率による充放電容量/電力容量の補正制御
バッテリは温度により充放電効率が異なり、さらに充電時と放電時によっても充放電効率が異なることがある。この充放電効率は前記のバッテリの充放電容量の積算に誤差を発生させる。
(9) Charge / Discharge Capacity / Power Capacity Correction Control Based on Temperature-Charge / Discharge Efficiency The battery has different charge / discharge efficiency depending on the temperature, and the charge / discharge efficiency may differ depending on whether the battery is charged or discharged. This charge / discharge efficiency causes an error in the integration of the charge / discharge capacity of the battery.

この充放電効率の変化に応じて充放電容量の変化を補正するため、図12に示すように、図3の(a)における演算部32Aに代えて、充電電流効率Kを含めた演算で充電電流容量を求める演算部44Aとし、この充電電流効率Kをバッテリ温度に応じて補正する演算部45Aを設ける。   In order to correct the change in the charge / discharge capacity in accordance with the change in the charge / discharge efficiency, as shown in FIG. 12, charging is performed by calculation including the charging current efficiency K instead of the calculation unit 32A in FIG. A calculation unit 44A for obtaining the current capacity is provided, and a calculation unit 45A for correcting the charging current efficiency K according to the battery temperature is provided.

演算部45Aには、温度設定部46Aによりバッテリ温度が設定または実測値が入力され、バッテリ温度に対する温度―充電効率補正係数をテーブルデータとして作成しておき、この係数で充電電流効率設定部47Aの設定値を補正する。なお、充電時と放電時で係数が異なる場合はそれぞれの補正係数テーブルを使用する。   A battery temperature is set or measured by the temperature setting unit 46A, and a temperature-charging efficiency correction coefficient for the battery temperature is created as table data in the calculation unit 45A, and the charging current efficiency setting unit 47A uses this coefficient as a table data. Correct the set value. If the coefficients are different between charging and discharging, the respective correction coefficient tables are used.

図13は、図3の(b)における演算部32Bに代えて、充電電流効率Kを含めた演算で充電電力容量を求める演算部44Bとし、この充電電流効率Kをバッテリ温度に対する温度―充電効率補正係数応じて補正する演算部45Bを設け、バッテリ温度に応じて充電電力効率設定値を補正する。   FIG. 13 shows a calculation unit 44B that obtains the charging power capacity by calculation including the charging current efficiency K instead of the calculation unit 32B in FIG. 3B, and this charging current efficiency K is a temperature-charging efficiency relative to the battery temperature. A calculation unit 45B that corrects the correction power according to the correction coefficient is provided to correct the charging power efficiency setting value according to the battery temperature.

(10)充電容量−充放電効率による充放電容量/電力容量の補正制御
バッテリは、現在の充電容量によって充放電効率が異なる。例えば、定格容量に充電されている状態(満充電)で、さらに充電電流を流しても、この電流は漏れ電流となり、充電容量に積算されないで、発熱となる。
(10) Charging / discharging capacity / power capacity correction control based on charging capacity-charging / discharging efficiency The charging / discharging efficiency of a battery varies depending on the current charging capacity. For example, even when a charging current is further supplied in a state where the rated capacity is charged (full charge), this current becomes a leakage current, and is not accumulated in the charging capacity, but generates heat.

この充放電効率の変化に応じて充放電容量の変化を補正するため、図14に示すように、図3の(a)における演算部32Aに代えて、充電電流効率K(Ah)を含めた演算で充電電流容量を求める演算部48Aとし、この充電電流効率K(Ah)を現在の充電容量に応じて補正する演算部49Aを設ける。   In order to correct the change in the charge / discharge capacity in accordance with the change in the charge / discharge efficiency, as shown in FIG. 14, the charge current efficiency K (Ah) is included instead of the calculation unit 32A in FIG. A calculation unit 48A that calculates the charging current capacity by calculation is provided, and a calculation unit 49A that corrects the charging current efficiency K (Ah) according to the current charging capacity is provided.

演算部49Aには、演算部48Aから現在の充電容量が入力され、この充電容量に応じた充電電流効率補正係数をテーブルデータとして作成しておき、この係数で充電電流効率設定部47Aの設定値を補正する。なお、充電時と放電時で係数が異なる場合はそれぞれの補正係数テーブルを使用する。   The calculation unit 49A receives the current charging capacity from the calculation unit 48A, creates a charging current efficiency correction coefficient corresponding to the charging capacity as table data, and uses this coefficient to set a value set in the charging current efficiency setting unit 47A. Correct. If the coefficients are different between charging and discharging, the respective correction coefficient tables are used.

図15は、図3の(b)における演算部32Bに代えて、充電電流効率K(Wh)を含めた演算で充電電力容量を求める演算部48Bとし、この充電電流効率K(Wh)を充電容量に応じて補正する演算部49Bを設け、充電容量に応じて充電電力効率設定値を補正する。   FIG. 15 shows a calculation unit 48B that obtains the charging power capacity by calculation including the charging current efficiency K (Wh) instead of the calculation unit 32B in FIG. 3B, and this charging current efficiency K (Wh) is charged. A calculation unit 49B for correcting according to the capacity is provided, and the charging power efficiency setting value is corrected according to the charging capacity.

(11)経年−充放電効率による充放電容量/電力容量の補正制御
バッテリは経年によって充放電効率が異なる。この充放電効率は前記のバッテリの充放電容量の積算に誤差を発生させる。
(11) Aging / Charging / Discharging Capacity / Power Capacity Correction Control Based on Aging / Charging / Discharging Efficiency Battery has different charging / discharging efficiency depending on aging. This charge / discharge efficiency causes an error in the integration of the charge / discharge capacity of the battery.

この充放電効率の変化に応じて充放電容量の変化を補正するため、図16に示すように、図3の(a)における演算部32Aに代えて、充電電流効率Kを含めた演算で充電電流容量を求める演算部50Aとし、この充電電流効率Kをバッテリの経年に応じて補正する演算部51Aを設ける。   In order to correct the change in the charge / discharge capacity in accordance with the change in the charge / discharge efficiency, as shown in FIG. 16, charging is performed by calculation including the charge current efficiency K instead of the calculation unit 32A in FIG. The calculation unit 50A for obtaining the current capacity is provided, and a calculation unit 51A for correcting the charging current efficiency K according to the aging of the battery is provided.

演算部51Aには、経年設定部52Aから現在までの経年が入力され、この経年に応じた充電電流効率補正係数をテーブルデータとして作成しておき、この係数で充電電流効率設定部47Aの設定値を補正する。   The calculation unit 51A receives the aging from the aging setting unit 52A to the present, creates a charging current efficiency correction coefficient corresponding to the aging as table data, and sets the value of the charging current efficiency setting unit 47A using this coefficient. Correct.

図17は、図3における演算部32Bに代えて、充電電流効率Kを含めた演算で充電電力容量を求める演算部50Bとし、この充電電流効率Kをバッテリの経年に応じて補正する演算部51Bを設け、経年に応じて充電電力効率設定値を補正する。   FIG. 17 replaces the calculation unit 32B in FIG. 3 with a calculation unit 50B that calculates the charge power capacity by calculation including the charge current efficiency K, and a calculation unit 51B that corrects this charge current efficiency K according to the aging of the battery. The charging power efficiency setting value is corrected according to aging.

(12)充放電電流−充放電効率による充放電容量/電力容量の補正制御
バッテリは現在の充放電電流によって充放電効率が異なり、さらに充電時と放電時によっても充放電効率が異なる。この充放電効率は前記のバッテリの充放電容量の積算に誤差を発生させる。
(12) Charging / Discharging Current / Charging / Discharging Capacity / Power Capacity Correction Control According to Charging / Discharging Current Battery The charging / discharging efficiency differs depending on the current charging / discharging current, and the charging / discharging efficiency differs depending on whether charging or discharging. This charge / discharge efficiency causes an error in the integration of the charge / discharge capacity of the battery.

この充放電効率の変化に応じて充放電容量の変化を補正するため、図18に示すように、図3の(a)における演算部32Aに代えて、充電電流効率K(I)を含めた演算で充電電流容量を求める演算部53Aとし、この充電電流効率K(I)を現在の充放電電流に応じて補正する演算部54Aを設ける。   In order to correct the change in the charge / discharge capacity in accordance with the change in the charge / discharge efficiency, the charging current efficiency K (I) is included instead of the calculation unit 32A in FIG. 3 (a) as shown in FIG. A calculation unit 53A that calculates the charging current capacity by calculation is provided, and a calculation unit 54A that corrects the charging current efficiency K (I) according to the current charge / discharge current is provided.

演算部54Aには、演算部53Aで使用する現在の充放電電流Iが入力され、この電流Iに応じた充電電流効率補正係数をテーブルデータとして作成しておき、この係数で充電電流効率設定部47Aの設定値を補正する。   The current charging / discharging current I used in the calculation unit 53A is input to the calculation unit 54A, a charging current efficiency correction coefficient corresponding to the current I is created as table data, and the charge current efficiency setting unit is calculated using this coefficient. The set value of 47A is corrected.

なお、図3の(b)における充電電力容量Whの演算にも同様のものを設けることができる。   Note that the same can be provided for the calculation of the charging power capacity Wh in FIG.

(13)充電容量/電力容量超過の警報制御
バッテリは定格容量に充電された状態に、さらに充電電流を流すと、この電流は漏れ電流となり、発熱・過熱して危険な状態となる。しかし、BTS10では回生電力を電源AC側に無限に回生させるため、実際のバッテリのように発熱することは無い。
(13) Charging capacity / power capacity excess alarm control If the battery is charged to its rated capacity and a charging current is passed further, this current becomes a leakage current, which generates a dangerous state due to heat generation and overheating. However, in the BTS 10, regenerative power is regenerated infinitely to the power supply AC side, so that it does not generate heat unlike an actual battery.

この充電容量超過の保護対策として、前記の図2、図3の演算部31A,31B,32A,32Bには、図19に示すように、充電容量/電力容量またはそれらの積算値について監視しておき、これらの値が許容される上限値を超過した場合に警報発生部28から警報を発生させる。   As a measure for protecting the charging capacity from being exceeded, the arithmetic units 31A, 31B, 32A, and 32B shown in FIGS. 2 and 3 monitor the charging capacity / power capacity or their integrated values as shown in FIG. An alarm is generated from the alarm generation unit 28 when these values exceed the allowable upper limit.

(14)温度による充電容量/電力容量の警報制御
バッテリに許容される充電容量/電力容量はその温度によって変化する。このため、前記の演算部31A,31B,32A,32Bでの超過判定基準を固定のものとすると、実際のバッテリに許容される充電容量/電力容量との間に誤差が生じる。
(14) Alarm control of charge capacity / power capacity depending on temperature The charge capacity / power capacity allowed for the battery varies depending on the temperature. For this reason, if the criterion for excess determination in the arithmetic units 31A, 31B, 32A, 32B is fixed, an error occurs between the charge capacity / power capacity allowed for the actual battery.

この温度による許容充電容量/電力容量超過の変化を補正するため、図20に許容充電容量の場合を示すように、演算部55には、バッテリ温度設定部56から現在のバッテリ温度が入力され、このバッテリ温度に対する温度−許容充電容量補正係数をテーブルデータとして作成しておき、この係数で許容充電容量警報出力基本設定部57の設定値を補正し、許容充電容量警報出力設定値とする。   In order to correct the change in the allowable charge capacity / power capacity excess due to this temperature, as shown in FIG. 20, the current battery temperature is input from the battery temperature setting unit 56 to the calculation unit 55, as shown in FIG. 20. A temperature-allowable charge capacity correction coefficient for the battery temperature is created as table data, and the set value of the allowable charge capacity alarm output basic setting unit 57 is corrected with this coefficient to obtain an allowable charge capacity alarm output set value.

なお、バッテリ温度は設定部56による設定に代えて、バッテリの設置位置での温度を計測値とすることもできる。   It should be noted that the battery temperature can be set as a measured value instead of the setting by the setting unit 56 at the battery installation position.

(15)経年変化による充電容量/電力容量の警報制御
バッテリに許容される充電容量/電力容量は経年変化によって変化する。このため、前記の演算部31A,31B,32A,32Bでの充電容量/電力容量超過判定基準を固定のものとすると、実際のバッテリに許容される充電容量/電力容量との間に誤差が生じる。
(15) Charging capacity / power capacity alarm control due to secular change The charging capacity / power capacity allowed for the battery varies with secular change. For this reason, if the charging capacity / power capacity excess determination criterion in the arithmetic units 31A, 31B, 32A, 32B is fixed, an error occurs between the charging capacity / power capacity allowed for the actual battery. .

この温度による許容充電容量/電力容量超過の変化を補正するため、図21に許容充電容量の場合を示すように、演算部58には、経年設定部59から現在までの経年数が入力され、この経年に応じた経年−許容充電容量補正係数をテーブルデータとして作成しておき、この係数で許容充電容量警報出力基本設定部57の設定値を補正し、許容充電容量警報出力設定値とする。   In order to correct the change in the allowable charge capacity / power capacity excess due to this temperature, as shown in FIG. 21 for the case of the allowable charge capacity, the calculation unit 58 receives the number of years from the aging setting unit 59 to the present, An aged-tolerable charge capacity correction coefficient corresponding to this age is created as table data, and the set value of the allowable charge capacity alarm output basic setting unit 57 is corrected with this coefficient to obtain an allowable charge capacity alarm output set value.

このときの経年数は、電力変換器10の運転時間を実測したものとすることができる。さらに、図22に示すように、実際の運転時間計測値に、加速度係数を乗じた加速時間での制御も可能とする。   The age at this time can be obtained by actually measuring the operation time of the power converter 10. Furthermore, as shown in FIG. 22, it is also possible to perform control with an acceleration time obtained by multiplying an actual driving time measurement value by an acceleration coefficient.

(16)発熱・過熱による警報制御
バッテリは充放電により発熱する。一般には充電は吸熱反応、放電は発熱反応となるが、合計すると発熱となる。実際のバッテリでは頻繁に充放電を繰り返すと発熱・過熱して危険な状態となる。しかし、BTS10では、交流電源AC側に回生制御されるため、バッテリと同様の発熱・過熱とはならない。
(16) Alarm control by heat generation / overheating The battery generates heat by charging / discharging. In general, charging is an endothermic reaction, and discharging is an exothermic reaction. In an actual battery, if charging and discharging are repeated frequently, the battery will generate heat and overheat, resulting in a dangerous state. However, since the BTS 10 is regeneratively controlled to the AC power supply AC side, it does not generate heat or overheat similar to a battery.

このバッテリの発熱・過熱の保護対策として、充放電電流検出値を積算しておき、この値がバッテリに許容される発熱・過熱値を超過したときに警報発生部28から警報を出力させる。   As a measure for protecting the battery from heat generation and overheating, charge / discharge current detection values are integrated, and an alarm is output from the alarm generation unit 28 when this value exceeds the heat generation / overheat value allowed for the battery.

図23の演算部60は、バッテリがもつ発熱係数C(I)を係数とする充放電電流Iの積分で決まる発熱量係数Chを求める充放電電流―発熱のテーブルを作成しておき、検出した充放電電流Iの積分値から発熱量を求める。発熱判定部61は、演算部60で求めた発熱量が設定値Cmaxを超過した場合に警報を発する。   The calculation unit 60 of FIG. 23 creates and detects a charge / discharge current-heat generation table for obtaining a heat generation amount coefficient Ch determined by integration of the charge / discharge current I with the heat generation coefficient C (I) of the battery as a coefficient. The calorific value is obtained from the integrated value of the charge / discharge current I. The heat generation determination unit 61 issues an alarm when the heat generation amount obtained by the calculation unit 60 exceeds the set value Cmax.

(17)複合制御
前記までの補正制御または警告制御は、複数の制御を複合した制御とする。例えば、図4に示す充放電時の出力電圧の補正制御と、図5に示す充電容量による出力電圧の補正制御を組み合わせる。
(17) Combined control The correction control or warning control described above is a combination of a plurality of controls. For example, the output voltage correction control at the time of charging / discharging shown in FIG. 4 and the output voltage correction control by the charging capacity shown in FIG. 5 are combined.

この例を図24に示し、演算部62は、出力電流Iとこれを積算した充電電流容量Ahを基にバッテリ電圧を模擬する出力電圧補正係数テーブルを作成しておき、この補正係数によって出力電圧設定値を制御する。   This example is shown in FIG. 24, and the calculation unit 62 creates an output voltage correction coefficient table that simulates the battery voltage based on the output current I and the charging current capacity Ah obtained by integrating the output current I. Control the set value.

本発明の実施形態を示すバッテリシミュレータの構成図。The block diagram of the battery simulator which shows embodiment of this invention. 充放電容量/電力容量の演算。Calculation of charge / discharge capacity / power capacity. 充放電容量/電力容量の積算演算。Integration calculation of charge / discharge capacity / power capacity. 充放電の切り替わり点の出力電圧制御。Output voltage control at charging / discharging switching point. 充電容量による出力電圧制御。Output voltage control by charge capacity. 充電容量と温度設定による出力電圧の補正制御。Output voltage correction control by charging capacity and temperature setting. 充電容量と温度計測による出力電圧の補正制御。Output voltage correction control by charging capacity and temperature measurement. 充電容量/電力容量上限値の補正制御。Charging capacity / power capacity upper limit correction control. 経年による充電容量上限値の補正制御。Correction control of charging capacity upper limit over time. 経年による電力容量上限値の補正制御。Correction control of power capacity upper limit over time. 運転時間による充電容量上限値の補正制御。Correction control of the charging capacity upper limit value according to the operation time. 温度−充放電効率による充電容量の補正制御。Charge-capacity correction control based on temperature-charge / discharge efficiency. 温度−充放電効率による電力容量の補正制御。Power capacity correction control based on temperature-charge / discharge efficiency. 充電容量−充放電効率による充電容量の補正制御。Charge capacity-Correction control of charge capacity by charge / discharge efficiency. 充電容量−充放電効率による電力容量の補正制御。Charge capacity-Power capacity correction control by charge / discharge efficiency. 経年−充放電効率による充電容量の補正制御。Aging-Charge capacity correction control by charge / discharge efficiency. 経年−充放電効率による電力容量の補正制御。Aging-Power capacity correction control by charge / discharge efficiency. 充放電電流−充放電効率による充電容量の補正制御。Charge capacity correction control by charge / discharge current-charge / discharge efficiency. 充電容量超過の警報制御。Alarm control over charge capacity. 温度による許容充電容量の警報制御。Alarm control of allowable charge capacity by temperature. 経年変化による許容充電容量の警報制御。Alarm control of allowable charge capacity due to aging. 経年変化による許容電力容量の警報制御。Alarm control of allowable power capacity due to aging. 発熱・過熱による警報制御。Alarm control by heat generation and overheating. 複合制御。Compound control.

符号の説明Explanation of symbols

10 双方向電力変換器(BTS)
21 出力電圧設定部
22 係数演算部
23 模擬演算部
24 条件設定部
25 充放電履歴記憶部
26 電流検出部
27 電圧検出部
28 警報発生部
10 Bidirectional power converter (BTS)
DESCRIPTION OF SYMBOLS 21 Output voltage setting part 22 Coefficient calculating part 23 Simulation calculating part 24 Condition setting part 25 Charging / discharging log | history storage part 26 Current detection part 27 Voltage detection part 28 Alarm generation part

Claims (16)

バッテリを直流電源とする電力変換装置の試験に、バッテリに代えた電力変換器からバッテリを模擬した直流出力を前記電力変換装置に供給するバッテリシミュレータであって、
前記電力変換器の制御装置は、
電力変換器の入出力電流、電圧の計測値から該電力変換器の充放電容量および充放電電力を積算しておき、これらの積算値とバッテリ特性から実際のバッテリが呈する電圧変化を模擬した補正値を求め、この補正値で電力変換器の出力電圧設定値を補正して該電力変換器にバッテリを模擬した出力電圧を得る電圧制御手段を備えたことを特徴とするバッテリシミュレータ。
A battery simulator that supplies a DC output simulating a battery from a power converter replaced with a battery to the power converter for testing a power converter using a battery as a DC power source,
The power converter control device comprises:
The charge / discharge capacity and charge / discharge power of the power converter are integrated from the measured values of the input / output current and voltage of the power converter, and a correction that simulates the voltage change of the actual battery from these integrated values and battery characteristics A battery simulator comprising voltage control means for obtaining a value and correcting an output voltage set value of the power converter with the correction value to obtain an output voltage simulating a battery in the power converter.
前記制御装置は、バッテリの温度、充電状態、経年変化などの条件が設定され、この設定値に応じてバッテリの出力電圧の変化、充放電容量の変化、充放電効率の変化を模擬した補正値を求め、この補正値で前記電圧制御手段の補正値を補正する補正制御手段を備えたことを特徴とする請求項1に記載のバッテリシミュレータ。   The control device is set with conditions such as battery temperature, state of charge, aging, etc., and in accordance with this set value, a correction value that simulates a change in battery output voltage, a change in charge / discharge capacity, and a change in charge / discharge efficiency The battery simulator according to claim 1, further comprising a correction control unit that calculates the correction value of the voltage control unit with the correction value. 前記制御装置は、バッテリの充放電動作の制限事項について監視を行い、この動作範囲を逸脱したときに警報を発生させる警報制御手段を備えたことを特徴とする請求項1に記載のバッテリシミュレータ。   2. The battery simulator according to claim 1, wherein the control device includes a warning control unit that monitors a restriction on a charging / discharging operation of the battery and generates a warning when the operation range is exceeded. 前記電圧制御手段は、バッテリの充電と放電の切り替わり点(±0)でステップ的な電圧変化を模擬した充放電電流―電圧特性を基に前記補正値を求める演算手段を備えたことを特徴とする請求項1に記載のバッテリシミュレータ。   The voltage control means includes a calculation means for obtaining the correction value based on a charge / discharge current-voltage characteristic simulating a stepwise voltage change at a battery charge / discharge switching point (± 0). The battery simulator according to claim 1. 前記電圧制御手段は、現在の充電容量に応じた電圧変化を模擬した充電容量―電圧特性を基に前記補正値を求める演算手段を備えたことを特徴とする請求項1に記載のバッテリシミュレータ。   2. The battery simulator according to claim 1, wherein the voltage control means includes a calculation means for obtaining the correction value based on a charge capacity-voltage characteristic simulating a voltage change according to a current charge capacity. 前記補正制御手段は、現在のバッテリ温度に対する充電容量を模擬した温度―充電容量特性を基に前記電圧制御手段の充電容量を補正する演算手段を備えたことを特徴とする請求項2に記載のバッテリシミュレータ。   The said correction control means is provided with the calculating means which correct | amends the charge capacity of the said voltage control means based on the temperature-charge capacity characteristic which simulated the charge capacity with respect to the present battery temperature. Battery simulator. 前記補正制御手段は、バッテリの経年による充電容量上限値を模擬した経年―充電容量上限値特性を基に前記電圧制御手段の充電容量を補正する演算手段、またはバッテリの経年による充電電力容量上限値を模擬した経年―充電電力容量上限値特性を基に前記電圧制御手段の充電電力容量を補正する演算手段を備えたことを特徴とする請求項2に記載のバッテリシミュレータ。   The correction control means is a computing means for correcting the charge capacity of the voltage control means based on an aging-charge capacity upper limit characteristic simulating the charge capacity upper limit value due to battery aging, or the charge power capacity upper limit value due to battery aging The battery simulator according to claim 2, further comprising a calculation unit that corrects the charging power capacity of the voltage control unit based on an aged-charging power capacity upper limit value characteristic that simulates the above. 前記補正制御手段は、バッテリの運転時間による充電容量上限値を模擬した運転時間―充電容量上限値特性を基に前記電圧制御手段の充電容量を補正する演算手段、またはバッテリの運転時間による充電電力容量上限値を模擬した運転時間―充電電力容量上限値特性を基に前記電圧制御手段の充電電力容量を補正する演算手段を備えたことを特徴とする請求項2に記載のバッテリシミュレータ。   The correction control means is a calculation means for correcting the charge capacity of the voltage control means based on an operation time-charge capacity upper limit value characteristic simulating the charge capacity upper limit value according to the battery operation time, or charging power according to the battery operation time. 3. The battery simulator according to claim 2, further comprising a calculation unit that corrects a charging power capacity of the voltage control unit based on an operating time-charging power capacity upper limit value characteristic that simulates a capacity upper limit value. 前記補正制御手段は、バッテリ温度による充放電効率を模擬した温度―充電容量効率特性を基に前記電圧制御手段の充電容量の積算係数を補正する演算手段、またはバッテリ温度による充電電力容量効率を模擬した温度―充電電力容量効率特性を基に前記電圧制御手段の充電電力容量の積算係数を補正する演算手段を備えたことを特徴とする請求項2に記載のバッテリシミュレータ。   The correction control means is a calculation means for correcting an integration coefficient of the charge capacity of the voltage control means based on a temperature-charge capacity efficiency characteristic simulating the charge / discharge efficiency according to the battery temperature, or a charge power capacity efficiency due to the battery temperature. 3. The battery simulator according to claim 2, further comprising a calculation unit that corrects an integration coefficient of the charging power capacity of the voltage control unit based on the temperature-charging power capacity efficiency characteristic. 前記補正制御手段は、現在のバッテリ充電容量による充放電効率を模擬した充電容量―充放電効率特性を基に前記電圧制御手段の充電容量の積算係数を補正する演算手段、またはバッテリ充電電力容量による充放電効率を模擬した充電電力容量―充放電効率特性を基に前記電圧制御手段の充電電力容量の積算係数を補正する演算手段を備えたことを特徴とする請求項2に記載のバッテリシミュレータ。   The correction control means is a calculation means for correcting an integration coefficient of the charge capacity of the voltage control means based on a charge capacity-charge / discharge efficiency characteristic simulating the charge / discharge efficiency of the current battery charge capacity, or a battery charge power capacity 3. The battery simulator according to claim 2, further comprising a calculation unit that corrects an integration coefficient of the charging power capacity of the voltage control unit based on a charging power capacity-charging / discharging efficiency characteristic that simulates charging / discharging efficiency. 前記補正制御手段は、バッテリの経年による充電容量効率を模擬した経年―充電容量効率特性を基に前記電圧制御手段の充電容量の積算係数を補正する演算手段、またはバッテリの経年による充電電力容量効率を模擬した経年―充電電力容量効率特性を基に前記電圧制御手段の充電電力容量の積算係数を補正する演算手段を備えたことを特徴とする請求項2に記載のバッテリシミュレータ。   The correction control means is an arithmetic means for correcting an integration coefficient of the charge capacity of the voltage control means based on an aging-charge capacity efficiency characteristic simulating the charge capacity efficiency due to battery aging, or a charge power capacity efficiency due to battery aging The battery simulator according to claim 2, further comprising a calculation unit that corrects an integration coefficient of the charging power capacity of the voltage control unit based on an aging-charging power capacity efficiency characteristic that simulates the above. 前記補正制御手段は、バッテリの現在の充放電電流による充放電効率を模擬した充放電電流―充放電効率特性を基に前記電圧制御手段の充電容量の積算係数を補正する演算手段、またはバッテリの現在の充放電電流による充放電電力容量効率を模擬した充放電電流―充放電電力容量効率特性を基に前記電圧制御手段の充電電力容量の積算係数を補正する演算手段を備えたことを特徴とする請求項2に記載のバッテリシミュレータ。   The correction control means is a computing means for correcting an integration coefficient of the charge capacity of the voltage control means based on a charge / discharge current-charge / discharge efficiency characteristic simulating the charge / discharge efficiency by the current charge / discharge current of the battery, or A calculation means for correcting the integration coefficient of the charge power capacity of the voltage control means based on a charge / discharge current-charge / discharge power capacity efficiency characteristic simulating the charge / discharge power capacity efficiency by the current charge / discharge current is provided. The battery simulator according to claim 2. 前記警報制御手段は、バッテリの充電容量またはその積算値、または充電電力容量またはその積算値がそれぞれの上限値を超えたときに警報を発生する演算手段を備えたことを特徴とする請求項3に記載のバッテリシミュレータ。   The said alarm control means is provided with the calculating means which generate | occur | produces an alarm, when charge capacity of a battery or its integration value, or charge power capacity or its integration value exceeds each upper limit. The battery simulator described in 1. 前記警報制御手段は、バッテリ温度による許容充電容量またはその積算値を模擬した温度―許容充電容量特性を基に前記電圧制御手段の充電容量のまたはその積算値の上限値を補正する演算手段、またはバッテリ温度による許容充電電力容量またはその積算値を模擬した温度―許容充電電力容量特性を基に前記電圧制御手段の充電電力容量のまたはその積算値の上限値を補正する演算手段を備えたことを特徴とする請求項3に記載のバッテリシミュレータ。   The alarm control means is an arithmetic means for correcting the charge capacity of the voltage control means or the upper limit value of the integrated value based on a temperature-allowable charge capacity characteristic simulating the allowable charge capacity or the integrated value depending on the battery temperature, or Comprising arithmetic means for correcting the charging power capacity of the voltage control means or the upper limit value of the integrated value based on the temperature-allowable charging power capacity characteristic simulating the allowable charging power capacity depending on the battery temperature or the integrated value thereof The battery simulator according to claim 3. 前記警報制御手段は、バッテリの経年による許容充電容量またはその積算値を模擬した経年―許容充電容量特性を基に前記電圧制御手段の充電容量のまたはその積算値の上限値を補正する演算手段、またはバッテリの経年による許容充電電力容量またはその積算値を模擬した経年―許容充電電力容量特性を基に前記電圧制御手段の充電電力容量のまたはその積算値の上限値を補正する演算手段を備えたことを特徴とする請求項3に記載のバッテリシミュレータ。   The alarm control means is an arithmetic means for correcting the charge capacity of the voltage control means or the upper limit value of the integrated value based on an aged-allowable charge capacity characteristic simulating the allowable charge capacity or the integrated value of the battery over time, Or an arithmetic unit that corrects the charging power capacity of the voltage control unit or the upper limit value of the integrated value based on an aging-allowable charging power capacity characteristic that simulates the allowable charging power capacity or the integrated value of the battery over time. The battery simulator according to claim 3. 前記警報制御手段は、バッテリの充放容量の積算値がバッテリに許容される発熱・過熱値を超過したときに警報を発生する演算手段を備えたことを特徴とする請求項3に記載のバッテリシミュレータ。   4. The battery according to claim 3, wherein the alarm control unit includes a calculation unit that generates an alarm when the integrated value of the charge / discharge capacity of the battery exceeds a heat generation / overheat value allowed for the battery. Simulator.
JP2007275118A 2007-10-23 2007-10-23 Battery simulator Pending JP2009106059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007275118A JP2009106059A (en) 2007-10-23 2007-10-23 Battery simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275118A JP2009106059A (en) 2007-10-23 2007-10-23 Battery simulator

Publications (1)

Publication Number Publication Date
JP2009106059A true JP2009106059A (en) 2009-05-14

Family

ID=40707215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275118A Pending JP2009106059A (en) 2007-10-23 2007-10-23 Battery simulator

Country Status (1)

Country Link
JP (1) JP2009106059A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032669B1 (en) 2009-09-07 2011-05-06 국방과학연구소 Apparatus for simulating a reserved battery and method thereof
JP2011160567A (en) * 2010-02-01 2011-08-18 Sinfonia Technology Co Ltd Battery simulator protection device, and battery simulator
KR101101947B1 (en) 2010-09-12 2012-01-02 주식회사 브이앤아이 Battery simulator for battery management system
KR101127898B1 (en) 2011-12-19 2012-03-21 국방과학연구소 Cell based battery system emulator
CN103675686A (en) * 2012-09-21 2014-03-26 华北电力大学 Electric vehicle power battery charging and discharging operating condition simulation system and method
CN104319427A (en) * 2014-08-26 2015-01-28 惠州Tcl移动通信有限公司 Acquiring apparatus of cell temperature, mobile terminal and debugging method
JP2015519034A (en) * 2012-05-24 2015-07-06 アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for testing a drive train of a vehicle that is at least partially electrically driven
JP2015224876A (en) * 2014-05-26 2015-12-14 株式会社デンソー Battery internal state estimation device
CN106291157A (en) * 2015-06-10 2017-01-04 致茂电子(苏州)有限公司 Battery simulating device
KR101915101B1 (en) * 2015-12-23 2018-11-05 자동차부품연구원 Apparatus for simulating alternator of vehicle
TWI692170B (en) * 2017-12-29 2020-04-21 財團法人船舶暨海洋產業研發中心 Battery charging and discharging simulation system and operation method thereof
JP2021035169A (en) * 2019-08-23 2021-03-01 三菱電機株式会社 Motor simulator and program thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104602A (en) * 1996-06-14 1998-01-06 Hino Motors Ltd Controller of battery, mounted on vehicle
JPH10144355A (en) * 1996-11-12 1998-05-29 Shinko Electric Co Ltd Battery simulator
JP2000295869A (en) * 1999-03-31 2000-10-20 Shinko Electric Co Ltd Chopper output power supply and battery simulator
JP2002372573A (en) * 2001-06-14 2002-12-26 Mitsubishi Heavy Ind Ltd Motor testing device
JP2006194718A (en) * 2005-01-13 2006-07-27 Toyota Motor Corp Abnormality detection device
JP2007195360A (en) * 2006-01-20 2007-08-02 Toyota Motor Corp Testing device of hybrid system and power supply unit therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104602A (en) * 1996-06-14 1998-01-06 Hino Motors Ltd Controller of battery, mounted on vehicle
JPH10144355A (en) * 1996-11-12 1998-05-29 Shinko Electric Co Ltd Battery simulator
JP2000295869A (en) * 1999-03-31 2000-10-20 Shinko Electric Co Ltd Chopper output power supply and battery simulator
JP2002372573A (en) * 2001-06-14 2002-12-26 Mitsubishi Heavy Ind Ltd Motor testing device
JP2006194718A (en) * 2005-01-13 2006-07-27 Toyota Motor Corp Abnormality detection device
JP2007195360A (en) * 2006-01-20 2007-08-02 Toyota Motor Corp Testing device of hybrid system and power supply unit therewith

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032669B1 (en) 2009-09-07 2011-05-06 국방과학연구소 Apparatus for simulating a reserved battery and method thereof
JP2011160567A (en) * 2010-02-01 2011-08-18 Sinfonia Technology Co Ltd Battery simulator protection device, and battery simulator
KR101101947B1 (en) 2010-09-12 2012-01-02 주식회사 브이앤아이 Battery simulator for battery management system
KR101127898B1 (en) 2011-12-19 2012-03-21 국방과학연구소 Cell based battery system emulator
JP2015519034A (en) * 2012-05-24 2015-07-06 アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for testing a drive train of a vehicle that is at least partially electrically driven
CN103675686A (en) * 2012-09-21 2014-03-26 华北电力大学 Electric vehicle power battery charging and discharging operating condition simulation system and method
JP2015224876A (en) * 2014-05-26 2015-12-14 株式会社デンソー Battery internal state estimation device
CN104319427A (en) * 2014-08-26 2015-01-28 惠州Tcl移动通信有限公司 Acquiring apparatus of cell temperature, mobile terminal and debugging method
CN106291157A (en) * 2015-06-10 2017-01-04 致茂电子(苏州)有限公司 Battery simulating device
CN106291157B (en) * 2015-06-10 2019-02-19 致茂电子(苏州)有限公司 Battery simulating device
KR101915101B1 (en) * 2015-12-23 2018-11-05 자동차부품연구원 Apparatus for simulating alternator of vehicle
TWI692170B (en) * 2017-12-29 2020-04-21 財團法人船舶暨海洋產業研發中心 Battery charging and discharging simulation system and operation method thereof
JP2021035169A (en) * 2019-08-23 2021-03-01 三菱電機株式会社 Motor simulator and program thereof
JP7170601B2 (en) 2019-08-23 2022-11-14 三菱電機株式会社 Motor simulator and its program

Similar Documents

Publication Publication Date Title
JP2009106059A (en) Battery simulator
Barreras et al. An advanced HIL simulation battery model for battery management system testing
JP6787660B2 (en) Battery control device, power system
US10408887B2 (en) Method for estimating degradation of rechargeable battery, degradation estimation circuit, electronic apparatus and vehicle including same
JP5008863B2 (en) Secondary battery control device, secondary battery deterioration determination method using secondary battery temperature estimation method
JP4818468B1 (en) Charge state estimation device
JP4762505B2 (en) Battery warm-up control device
JP5448865B2 (en) Battery system
US20130314049A1 (en) Battery cell temperature detection
BRPI0416652B1 (en) METHOD FOR ESTIMATING THE MAXIMUM DISCHARGE POWER OF A BATTERY AND METHOD FOR ESTIMATING THE MINIMUM CHARGE OF A BATTERY
KR20160132954A (en) Energy accumulator emulator and method for emulation of an energy accumulator emulator
JP6868976B2 (en) Deterioration estimation method for rechargeable batteries, deterioration estimation circuit, and electronic devices and automobiles using it
WO2017090156A1 (en) Power control device and power control system
US20230041052A1 (en) Method for predicting an electric load imparted on each battery unit in an electric energy storage system
JP2006174597A (en) Battery warm-up controller for hybrid car
Barreras et al. Functional analysis of Battery Management Systems using multi-cell HIL simulator
JP6313522B2 (en) Power control apparatus and power control system
JP3582318B2 (en) Output voltage control method of DC power supply for simulating and outputting drooping characteristics of battery and output voltage control device using the method
JP6821525B2 (en) Secondary battery controller
JP2015114135A (en) Battery control device
JP2010203935A (en) Device of estimating inputtable/outputtable power of secondary battery
Scacchioli et al. Hierarchical model-based fault diagnosis for an electrical power generation storage automotive system
JP2019008907A (en) Battery management device, battery management method, and power storage system
WO2017002953A1 (en) Data extracting device, data extracting method, and data extracting program
KR20210077948A (en) Method and apparatus for diagnosing soh of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807