JP2009104023A - Polarizer and its manufacturing method - Google Patents

Polarizer and its manufacturing method Download PDF

Info

Publication number
JP2009104023A
JP2009104023A JP2007277254A JP2007277254A JP2009104023A JP 2009104023 A JP2009104023 A JP 2009104023A JP 2007277254 A JP2007277254 A JP 2007277254A JP 2007277254 A JP2007277254 A JP 2007277254A JP 2009104023 A JP2009104023 A JP 2009104023A
Authority
JP
Japan
Prior art keywords
film
light
polarizer
absorption
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007277254A
Other languages
Japanese (ja)
Other versions
JP2009104023A5 (en
Inventor
Hiroyoshi Furusato
大喜 古里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2007277254A priority Critical patent/JP2009104023A/en
Publication of JP2009104023A publication Critical patent/JP2009104023A/en
Publication of JP2009104023A5 publication Critical patent/JP2009104023A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarizer of high polarization splitting efficiency wherein polarization splitting characteristics is improved and to provide the manufacturing method of the polarizer by which the polarizer can be easily and inexpensively mass-produced by using an optical thin film. <P>SOLUTION: In the polarizer 1, a plurality of rectangular poles 13, each of which is obtained by sticking hypotenuses of two glass materials 11, 12 having the cross-section of a right-angled triangle shape, are arranged in parallel to each other along a light incident surface 1a. A polarization splitting film 14 for splitting the incident light to two kinds of linearly polarized light is provided to a hypotenuse interface between the glass materials 11, 12 and an absorption film 15 for absorbing the linearly polarized light which is made incident after being split by the polarization splitting film 14 is provided to the right-angled interface of the rectangular pole 13 each of which is arranged in parallel to each other. Only one kind of p polarized light among light beams made incident on the light incident surface 1a of the polarizer 1 (s polarized light + p polarized light) is emitted from a light emitting surface 1b. The absorption film 15 comprises an antireflection layer and an absorption layer made of a dielectric film composed of at least one of Si, TiO<SB>x</SB>and Nb<SB>2</SB>O<SB>5</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光学薄膜を用いた偏光子およびその製造方法に関する。   The present invention relates to a polarizer using an optical thin film and a method for manufacturing the same.

偏光子は自然光(無偏光)や円偏光などのランダム光から直線偏光を得るための偏光光学素子であり、吸収型偏光子、反射型偏光子、薄膜型偏光子、複屈折型偏光子など、様々な構成の偏光子が実用化されている。これら偏光子は、高解像度スペクトルカメラや蛍光顕微鏡などに用いられる分光フィルタ(液晶フィルタ)、光の偏光情報を得るための各種計測機器および液晶プロジェクタを構成する偏光変換素子などに広く使用されている。
例えば、1枚または複数枚の液晶セルを1対の偏光子で挟んだ液晶パネルを用いた分光装置が提案されている(特許文献1参照)。また、複数の透明基板の間に入射光に対して所定の屈折率を有する光学的に透明な高屈折率層と低屈折率層とから成る基本構造膜の所定繰り返し構造を有する偏光分離膜を配置して成る偏光ビームスプリッタおよびこの偏光ビームスプリッタを備えて自然光を特定の偏光状態に揃える偏光子が提案されている(特許文献2参照)。
A polarizer is a polarizing optical element for obtaining linearly polarized light from random light such as natural light (non-polarized light) and circularly polarized light. Absorbing polarizer, reflective polarizer, thin film polarizer, birefringent polarizer, etc. Various configurations of polarizers have been put into practical use. These polarizers are widely used in spectral filters (liquid crystal filters) used in high-resolution spectral cameras and fluorescent microscopes, various measuring instruments for obtaining polarization information of light, and polarization conversion elements constituting liquid crystal projectors. .
For example, a spectroscopic device using a liquid crystal panel in which one or a plurality of liquid crystal cells are sandwiched between a pair of polarizers has been proposed (see Patent Document 1). A polarization separation film having a predetermined repeating structure of a basic structure film composed of an optically transparent high refractive index layer having a predetermined refractive index with respect to incident light and a low refractive index layer between a plurality of transparent substrates. A polarizing beam splitter that is arranged and a polarizer that includes the polarizing beam splitter and aligns natural light in a specific polarization state have been proposed (see Patent Document 2).

特開2005−31007号公報Japanese Patent Laid-Open No. 2005-31007 特開2003−172824号公報JP 2003-172824 A

こうした特許文献1および特許文献2などに示される偏光子には、一方の偏光方向の偏光光を吸収することにより偏光方向を決定する吸収型偏光子、あるいは誘電体薄膜の反射率の入射角度依存性による薄膜型偏光子が用いられている。これらの偏光子は、大きい面積のものを得ることは可能であるが、偏光子に入射する入射光の散乱や反射などの迷光による変換効率(透過率または反射率)の損失を招き易い課題を有している。また、量産化が容易で安価な偏光子が求められている。   In the polarizers shown in Patent Document 1 and Patent Document 2 or the like, an absorption polarizer that determines the polarization direction by absorbing polarized light in one polarization direction, or the incident angle dependence of the reflectance of the dielectric thin film A thin film type polarizer is used. Although it is possible to obtain these polarizers with a large area, there is a problem that the conversion efficiency (transmittance or reflectivity) is easily lost due to stray light such as scattering or reflection of incident light incident on the polarizer. Have. There is also a need for a polarizer that is easy to mass-produce and inexpensive.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]
本適用例に係る偏光子は、入射光を直線偏光光に作り出す偏光子であって、断面形状が直角三角形の二つの透光性基材が互いの斜辺同士で貼り合わされた矩形柱が、前記入射光の入射面に沿って複数並列配置され、前記透光性基材の前記斜辺の界面に前記入射光を、第1の直線偏光光と第2の直線偏光光とに分離する偏光分離膜と、前記並列配置された前記矩形柱の界面に前記偏光分離膜において分離されて入射する前記第1の直線偏光光を吸収する吸収膜と、前記第2の直線偏光光を射出する光射出面と、を備えたことを特徴とする。
[Application Example 1]
The polarizer according to this application example is a polarizer that generates incident light into linearly polarized light, and a rectangular column in which two translucent substrates having a cross-sectional shape of a right triangle are bonded to each other on the oblique sides of each other, A polarization separation film that is arranged in parallel along the incident surface of incident light and separates the incident light into first linearly polarized light and second linearly polarized light at the interface of the oblique side of the translucent substrate. An absorption film that absorbs the first linearly polarized light that is separated and incident on the interface of the rectangular columns arranged in parallel with each other, and a light exit surface that emits the second linearly polarized light And.

これによれば、偏光子が、断面形状が直角三角形の二つの透光性基材が互いの斜辺同士で貼り合わされた矩形柱が、入射光の入射面に沿って複数並列配置され、透光性基材の斜辺界面に入射光を二種類の第1の直線偏光光と第2の直線偏光光とに分離する偏光分離膜と、並列配置された矩形柱の直角界面に偏光分離膜で分離されて入射する第1の直線偏光光を吸収する吸収膜とを備えることにより、吸収膜において、偏光分離膜で分離されて入射する直線偏光光とともに、入射方向(入射角度)が異なって偏光子に入射する入射光の散乱や反射などによる迷光を吸収し、偏光子から一種類の第2の直線偏光光を射出することができる。すなわち、偏光分離特性が向上した分離効率の高い偏光子が得られる。   According to this, a plurality of rectangular pillars in which two light-transmitting substrates having cross-sectional shapes of right-angled triangles are bonded to each other on the oblique sides are arranged in parallel along the incident light incident surface, The separation of the incident light into two kinds of first linearly polarized light and second linearly polarized light at the oblique side interface of the base material, and the polarization separation film at the right angle interface of the rectangular columns arranged in parallel And an absorbing film that absorbs the incident first linearly polarized light, and the incident light (incident angle) is different in the absorbing film together with the linearly polarized light that is separated by the polarization separating film and incident. It is possible to absorb stray light caused by scattering or reflection of incident light incident on the light and to emit one type of second linearly polarized light from the polarizer. That is, a polarizer with high separation efficiency and improved polarization separation characteristics can be obtained.

[適用例2]
上記適用例に係る偏光子において、前記吸収膜は誘電体多層膜より成り、少なくともSi、TiOx、Nb25の内のいずれかの誘電体膜より成る吸収層を含むのが好ましい。
これによれば、矩形柱の界面に形成された吸収膜が誘電体多層膜より成り、少なくともSi、TiOx、Nb25のうちのいずれかの誘電体膜より成る吸収層を含むことにより、偏光分離膜で分離されて入射する直線偏光光とともに、入射角度が異なって偏光子に入射する入射光の散乱や反射などによる迷光を吸収することができる。
[Application Example 2]
In the polarizer according to the application example described above, it is preferable that the absorption film includes a dielectric multilayer film and includes an absorption layer including at least one of a dielectric film of Si, TiO x , and Nb 2 O 5 .
According to this, the absorption film formed at the interface of the rectangular column is made of a dielectric multilayer film, and includes an absorption layer made of at least one of the dielectric films of Si, TiO x , and Nb 2 O 5. In addition to the linearly polarized light incident after being separated by the polarization separation film, stray light due to scattering or reflection of incident light having different incident angles and incident on the polarizer can be absorbed.

[適用例3]
本適用例に係る偏光子は、前記吸収膜は、前記吸収層と反射防止層とを含み構成されているのが好ましい。
これによれば、矩形柱の界面に形成された吸収膜が吸収層と反射防止層とを含み構成されていることにより、透過率および反射率ともに略0(ゼロ)に近い値の優れた光吸収性能を備えた吸収膜が得られる。したがって、偏光分離膜で分離されて入射する直線偏光光とともに、入射角度が異なって偏光子に入射する入射光の散乱や反射などによる迷光を吸収することができる。
[Application Example 3]
In the polarizer according to this application example, it is preferable that the absorption film includes the absorption layer and an antireflection layer.
According to this, since the absorption film formed at the interface of the rectangular column includes the absorption layer and the antireflection layer, both the transmittance and the reflectance are excellent light with values close to approximately 0 (zero). An absorption film having absorption performance is obtained. Therefore, stray light caused by scattering or reflection of incident light having different incident angles and incident on the polarizer can be absorbed together with linearly polarized light incident after being separated by the polarization separation film.

[適用例4]
本適用例に係る偏光子の製造方法は、透光性基板の一方の表面上に、入射光を二種類の直線偏光光に分離する偏光分離膜を形成する偏光分離膜形成工程と、複数の前記透光性基板の前記偏光分離膜が形成された面を一方方向に揃えて板厚方向に順次重ね合わせて貼り合わせたガラスブロックを形成するガラスブロック形成工程と、前記ガラスブロックを、該ガラスブロックの表面と略45°の角度を成す互いに略平行な複数の切断線に沿って切断して、複数の素子ユニットを形成するガラスブロック切断工程と、複数の前記素子ユニットの一方の表面上に、二種類の前記直線偏光光の一方を吸収する吸収膜を形成する吸収膜形成工程と、複数の前記素子ユニットの前記吸収膜が形成された面を一方方向に揃えて、前記素子ユニットに形成された前記偏光分離膜が略一直線上となるように位置決めして板厚方向に順次重ね合わせて貼り合わせた素子ブロックを形成する素子ブロック形成工程と、前記素子ブロックを、該素子ブロックの表面と略90°の角度を成す互いに略平行な複数の切断線に沿って切断する素子ブロック切断工程と、を備えたことを特徴とする。
[Application Example 4]
A method for manufacturing a polarizer according to this application example includes a polarization separation film forming step of forming a polarization separation film that separates incident light into two types of linearly polarized light on one surface of a light-transmitting substrate, and a plurality of steps A glass block forming step of forming a glass block in which the surface of the translucent substrate on which the polarization separation film is formed is aligned in one direction and is sequentially stacked and bonded together, and the glass block is made of the glass A glass block cutting step of forming a plurality of element units by cutting along a plurality of substantially parallel cutting lines forming an angle of about 45 ° with the surface of the block, and on one surface of the plurality of element units Forming an absorption film that absorbs one of the two types of linearly polarized light, and forming the absorption unit on the element unit by aligning the surface of the element unit on which the absorption film is formed in one direction. Is An element block forming step of forming an element block in which the polarization separation film is positioned so as to be substantially in a straight line and are sequentially stacked and bonded together in the plate thickness direction; And an element block cutting step of cutting along a plurality of cutting lines substantially parallel to each other at an angle of °.

この製造方法によれば、透光性基板の一方の表面上に入射光を二種類の直線偏光光に分離する偏光分離膜を形成する偏光分離膜形成工程と、複数の透光性基板の偏光分離膜が形成された面を一方方向に揃えて板厚方向に順次重ね合わせて貼り合わせるガラスブロック形成工程と、ガラスブロックの表面と略45°の角度を成す互いに略平行な複数の切断線に沿って切断して複数の素子ユニットを形成するガラスブロック切断工程と、複数の素子ユニットの一方の表面上に、二種類の直線偏光光の一方を吸収する吸収膜を形成する吸収膜形成工程と、素子ユニットに形成された偏光分離膜が略一直線上となるように位置決めして板厚方向に順次重ね合わせて貼り合わせる素子ブロック形成工程と、素子ブロックの表面と略90°の角度を成す互いに略平行な複数の切断線に沿って切断する素子ブロック切断工程と、を備えることによって、断面形状が直角三角形の二つの透光性基材の斜辺同士で貼り合わされた矩形柱の斜辺界面に偏光分離膜と、並列配置された矩形柱の直角界面に偏光分離膜において分離されて入射する直線偏光光を吸収する吸収膜が形成された偏光子を、一度に多数を得ることができる。すなわち、量産化が容易で、しかも安価な偏光子を得ることができる。   According to this manufacturing method, a polarization separation film forming step for forming a polarization separation film for separating incident light into two types of linearly polarized light on one surface of the light transmissive substrate, and polarization of a plurality of light transmissive substrates A glass block forming process in which the surface on which the separation film is formed is aligned in one direction and is sequentially stacked and bonded in the thickness direction, and a plurality of cutting lines that are substantially parallel to each other and form an angle of about 45 ° with the surface of the glass block. A glass block cutting step for forming a plurality of element units by cutting along an absorption film forming step for forming an absorption film for absorbing one of two types of linearly polarized light on one surface of the plurality of element units; An element block forming step in which the polarization separation films formed on the element unit are positioned so as to be substantially in a straight line and are sequentially stacked and bonded together in the thickness direction, and the surface of the element block forms an angle of approximately 90 ° with each other. An element block cutting step that cuts along a plurality of cutting lines substantially parallel to the cross-section of the rectangular column bonded to each other between the hypotenuses of two translucent substrates having a right-angled triangular cross-section. It is possible to obtain a large number of polarizers each having a polarization separating film and an absorbing film that absorbs linearly polarized light that is separated and incident on the orthogonal interface between the rectangular columns arranged in parallel. That is, it is possible to obtain a polarizer that is easily mass-produced and that is inexpensive.

また、透光性基板の板厚、透光性基板の平面サイズおよび使用枚数を適宜選択することで、所望の平面サイズ又は/及び厚さの偏光子を容易に得ることができる。したがって、大きな平面サイズの偏光子、あるいは厚さの薄い偏光子が容易に得られ、広い面積を有する測定物の偏光情報を測定する分光器や、各種光学機器における薄型光学フィルタとして広く適用することができる。   Moreover, the polarizer of a desired plane size or / and thickness can be obtained easily by selecting suitably the board | plate thickness of a translucent board | substrate, the planar size of a translucent board | substrate, and the number of sheets to be used. Therefore, a large planar size polarizer or a thin thickness polarizer can be easily obtained, and it can be widely applied as a spectroscope for measuring polarization information of a measurement object having a large area and as a thin optical filter in various optical instruments. Can do.

以下、実施形態を図面に基づいて説明する。
図1(a)は本実施形態に係る偏光子の構成を模式的に示す正面図であり、図1(b)は図1(a)のA−A断面における偏光子を模式的に示す断面図である。なお、これらの図面は、説明の便宜のために各構成要素の寸法や比率を実際のものとは異ならせてある。
Hereinafter, embodiments will be described with reference to the drawings.
Fig.1 (a) is a front view which shows typically the structure of the polarizer which concerns on this embodiment, FIG.1 (b) is a cross section which shows typically the polarizer in the AA cross section of Fig.1 (a). FIG. In these drawings, the dimensions and ratios of each component are different from actual ones for convenience of explanation.

図1(a)および図1(b)において、偏光子1は、断面形状が直角三角形を成して正面図(図1(a))中に示すy方向に延伸する透光性基材としてのガラス材11と、同様に断面形状がガラス材11と同一の直角三角形を成してy方向に延伸する透光性基材としてのガラス材12とが、互いの斜辺で貼り合わされた多数の矩形柱13が、光入射面1aおよび光射出面1bに沿って並列配置され、正面視、矩形形状を成している。   1 (a) and 1 (b), a polarizer 1 is a translucent substrate whose cross-sectional shape forms a right triangle and extends in the y direction shown in the front view (FIG. 1 (a)). The glass material 11 and the glass material 12 as a translucent base material extending in the y direction in the same right-angled triangle having the same cross-sectional shape as the glass material 11 are bonded together at the oblique sides of each other. Rectangular columns 13 are arranged in parallel along the light incident surface 1a and the light exit surface 1b, and form a rectangular shape in front view.

ガラス材11とガラス材12とが貼り合わされた直角三角形の斜辺(斜辺界面)には、偏光分離膜14が形成されている。また、ガラス材11とガラス材12とが貼り合わされた矩形柱13がx方向に順次貼り合わされた界面(直角界面)には、吸収膜15が形成されている。なお、光入射面1aと光射出面1bとの間隔、すなわち偏光子1の光入射面1a方向における厚さ寸法は、用いる機器などに対応して任意に設定することができるが、薄型を求める場合には1mm〜5mm程度が好ましい。   A polarization separation film 14 is formed on the hypotenuse (hypotenuse interface) of the right triangle where the glass material 11 and the glass material 12 are bonded together. In addition, an absorption film 15 is formed on an interface (right angle interface) in which the rectangular columns 13 on which the glass material 11 and the glass material 12 are bonded are sequentially bonded in the x direction. Note that the distance between the light incident surface 1a and the light exit surface 1b, that is, the thickness dimension of the polarizer 1 in the direction of the light incident surface 1a can be arbitrarily set according to the device to be used. In such a case, about 1 mm to 5 mm is preferable.

ガラス材11とガラス材12とが貼り合わされた斜辺界面が光入射面1aおよび光射出面1bと成す角度は、略45°である。したがって、ガラス材11およびガラス材12の断面形状は、それぞれ直角二等辺三角形を成している。すなわち、斜辺界面に偏光分離膜14が形成された矩形柱13は、それぞれ断面形状が略正方形を成した偏光ビームスプリッタとしての機能を有する。   The angle formed by the hypotenuse interface where the glass material 11 and the glass material 12 are bonded to the light incident surface 1a and the light emitting surface 1b is approximately 45 °. Therefore, the cross-sectional shapes of the glass material 11 and the glass material 12 are each a right isosceles triangle. That is, the rectangular column 13 having the polarization separation film 14 formed on the oblique side interface functions as a polarization beam splitter having a substantially square cross section.

偏光分離膜14を介して互いに隣り合うガラス材11とガラス材12、および光入射面1aおよび光射出面1bに沿う方向に吸収膜15を介して隣り合う矩形柱13同士は、それぞれ接着剤(図示せず)により貼着されて(貼り合わされて)いる。接着剤としては、例えば、接着加工が容易で比較的高温度に耐えうる一液性エポキシまたは一液性アクリル系の紫外線硬化型接着剤を用いることができる。接着剤(接着層)の厚さは、例えば10μm程度である。
なお、これらの貼り合わせには、接着剤に代えて粘着剤を用いたり、シランカップリング剤を塗布する又は/及び活性エネルギー線を照射する直接接合法を用いることができる。
The glass material 11 and the glass material 12 that are adjacent to each other via the polarization separation film 14, and the rectangular columns 13 that are adjacent to each other via the absorption film 15 in the direction along the light incident surface 1 a and the light emitting surface 1 b are bonded to each other by an adhesive ( (Not shown) is attached (attached). As the adhesive, for example, a one-component epoxy or one-component acrylic ultraviolet curable adhesive that can be easily bonded and can withstand relatively high temperatures can be used. The thickness of the adhesive (adhesive layer) is, for example, about 10 μm.
In addition, it can replace with an adhesive agent and can use the direct joining method which apply | coats a silane coupling agent and / or irradiates an active energy ray for these bonding.

ガラス材11およびガラス材12の材質は、透光性を有する基材(透光性基材)であれば限定されない。したがって、白板ガラス、各種光学ガラス、ホウケイ酸ガラスおよび青板ガラスなどを用いることができる。本実施形態におけるガラス材11およびガラス材12は、例えば白板ガラスよりなる。   The material of the glass material 11 and the glass material 12 will not be limited if it is a base material (translucent base material) which has translucency. Therefore, white plate glass, various optical glasses, borosilicate glass, blue plate glass, and the like can be used. The glass material 11 and the glass material 12 in this embodiment consist of white plate glass, for example.

偏光分離膜14は、誘電体多層膜で形成される。誘電体多層膜は、例えば、SiO2(二酸化ケイ素)、MgF2(フッ化マグネシウム)、ランタンアルミネートなどより成る低・中屈折率層と、TiO2(二酸化チタン)、Ta25(酸化タンタル)などより成る高屈折率層とが、所定の順序および光学膜厚で形成された多層膜が挙げられる。偏光分離膜14は、入射する光線束(s偏光光+p偏光光)を、s偏光の部分光線束(s偏光光)とp偏光の部分光線束(p偏光光)とに分離して、s偏光光を反射し、p偏光光を透過する機能(偏光分離機能)を有する。 The polarization separation film 14 is formed of a dielectric multilayer film. The dielectric multilayer film includes, for example, a low / medium refractive index layer made of SiO 2 (silicon dioxide), MgF 2 (magnesium fluoride), lanthanum aluminate, etc., TiO 2 (titanium dioxide), Ta 2 O 5 (oxidation). Examples thereof include a multilayer film in which a high refractive index layer made of tantalum or the like is formed in a predetermined order and an optical film thickness. The polarization separation film 14 separates an incident light bundle (s-polarized light + p-polarized light) into an s-polarized partial light bundle (s-polarized light) and a p-polarized partial light bundle (p-polarized light). It has a function of reflecting polarized light and transmitting p-polarized light (polarization separation function).

吸収膜15は、例えば、Ta25、SiO2、Al23(酸化アルミニウム)、ランタンチタネートなどの誘電体膜より成る反射防止層と、Si(シリコン)、TiOx、Nb25(五酸化ニオブ)などの誘電体膜よりなる吸収層とが、所定の順序および光学膜厚で組み合わされた誘電体多層膜で構成される。吸収膜15は、所定の波長領域において透過率および反射率の値が略0(ゼロ)の不透明膜であり、偏光分離膜14において反射されて入射するs偏光光を主体とする偏光光を吸収する光吸収機能を有する。 The absorption film 15 includes, for example, an antireflection layer made of a dielectric film such as Ta 2 O 5 , SiO 2 , Al 2 O 3 (aluminum oxide), lanthanum titanate, Si (silicon), TiO x , Nb 2 O 5. An absorption layer made of a dielectric film such as (niobium pentoxide) is composed of a dielectric multilayer film combined in a predetermined order and optical thickness. The absorption film 15 is an opaque film having transmittance and reflectance values of approximately 0 (zero) in a predetermined wavelength region, and absorbs polarized light mainly composed of s-polarized light that is reflected by the polarization separation film 14 and incident thereon. It has a light absorption function.

なお、TiOxは、通常のTiO2結晶内のTiが八面体六配位であるのに対して四面体配位で構成され、Ti量によって吸収ベクトルを変位することができる物質である。また、Ta25は、成膜条件(光学膜厚)の違いにより吸収層にも透明な誘電体層にもなることができる物質である。
偏光分離膜14および吸収膜15は、各誘電体材料を真空蒸着法、スパッタリング法またはイオンプレーティング法などを用いて成膜し、形成される。
Note that TiO x is a substance that is composed of tetrahedral coordination while Ti in the normal TiO 2 crystal is octahedral hexacoordinate, and whose absorption vector can be displaced by the amount of Ti. Ta 2 O 5 is a substance that can be an absorption layer or a transparent dielectric layer depending on the film formation conditions (optical film thickness).
The polarization separation film 14 and the absorption film 15 are formed by depositing each dielectric material using a vacuum deposition method, a sputtering method, an ion plating method, or the like.

こうした偏光分離膜14および吸収膜15の具体的な膜構成を説明する。
なお、膜構成は、可視光波長領域(420nm〜680nm程度)に対して好適な偏光分離膜14および吸収膜15の場合の一例を示す。
A specific film configuration of the polarization separation film 14 and the absorption film 15 will be described.
In addition, a film | membrane structure shows an example in the case of the polarization separation film 14 and the absorption film 15 suitable with respect to a visible light wavelength range (about 420 nm-about 680 nm).

「表1」は可視光波長領域の偏光分離機能を有する偏光分離膜の膜構成を示し、「表2」は可視光波長領域の光吸収機能を有する吸収膜の膜構成を示す。なお、偏光分離膜の膜構成は、設計波長760nm、入射角度45°における設計値であり、吸収膜の膜構成は、設計波長865nm、入射角度0°における設計値である。   “Table 1” shows a film configuration of a polarization separation film having a polarization separation function in the visible light wavelength region, and “Table 2” shows a film configuration of an absorption film having a light absorption function in the visible light wavelength region. The film configuration of the polarization separation film is a design value at a design wavelength of 760 nm and an incident angle of 45 °, and the film configuration of the absorption film is a design value at a design wavelength of 865 nm and an incident angle of 0 °.

また、それぞれの表には、各多層膜を構成する層No.に対する膜材料、光学膜厚(nd)、物理膜厚(d(nm))を示す。層No.は、成膜されるガラス材11またはガラス材12の表面側から順に1層、2層、3層…と表す。   In each table, the layer numbers constituting each multilayer film are shown. Film thickness, optical film thickness (nd), and physical film thickness (d (nm)). Layer No. Is expressed as one layer, two layers, three layers, ... in order from the surface side of the glass material 11 or glass material 12 to be formed.

Figure 2009104023
Figure 2009104023

Figure 2009104023
偏光分離膜14は、「表1」に示すように、SiO2を1層目として、2層目〜36層目の間をLaAlO3(ランタンアルミネート)とMgF2(フッ化マグネシウム)とがこの順序に交互に成膜されて、最上層をSiO2とする37層の誘電体多層膜で構成される。
一方、吸収膜15は、「表2」に示すように、Ta25(酸化タンタル)を1層目として、2層目にSiO2、以後3層目〜8層目にTa25とSiO2が交互に成膜され、9層目にTiOx、そして最上層の10層目にSiO2よりなる10層の誘電体多層膜で構成される。この誘電体多層膜中の9層目のTiOx層において光吸収が行われる。
Figure 2009104023
As shown in “Table 1”, the polarization separation film 14 includes SiO 2 as the first layer, and LaAlO 3 (lanthanum aluminate) and MgF 2 (magnesium fluoride) between the second layer and the 36th layer. The films are alternately formed in this order, and are composed of a 37-layer dielectric multilayer film with the uppermost layer being SiO 2 .
On the other hand, as shown in “Table 2”, the absorption film 15 has Ta 2 O 5 (tantalum oxide) as the first layer, SiO 2 as the second layer, and Ta 2 O 5 as the third to eighth layers thereafter. and SiO 2 is deposited alternately, TiO x 9-layer, and consists of a dielectric multilayer film 10 layers made of SiO 2 is 10 layer of the top layer. Light absorption is performed in the ninth TiO x layer in the dielectric multilayer film.

このように構成された偏光分離膜14の偏光分離特性および吸収膜15の光吸収特性を図2、図3に示す。
図2は、「表1」に示す(可視光波長領域の偏光分離機能を有する)偏光分離膜の透過率および反射率の波長分散特性を示すグラフであり、図3は、「表1」に示す(可視光波長領域の光吸収機能を有する)吸収膜の透過率および反射率の波長分散特性を示すグラフである。
FIG. 2 and FIG. 3 show the polarization separation characteristics of the polarization separation film 14 thus configured and the light absorption characteristics of the absorption film 15.
FIG. 2 is a graph showing the wavelength dispersion characteristics of transmittance and reflectance of the polarization separation film (having a polarization separation function in the visible light wavelength region) shown in “Table 1”. FIG. It is a graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of an absorption film (having the light absorption function of visible light wavelength region) to show.

グラフの横軸は、波長領域400nm〜750nmの範囲における入射光の波長(nm)を示し、縦軸にp偏光光の透過率(T(%))またはs偏光光の反射率(R(%))を示す。なお、各図に示す線図a〜線図dは、計算により求めた波長領域400nm〜750nmにおける1nm毎のプロット点を結んだ線図である。   The horizontal axis of the graph indicates the wavelength (nm) of incident light in the wavelength range of 400 nm to 750 nm, and the vertical axis indicates the transmittance (T (%)) of p-polarized light or the reflectance (R (%) of s-polarized light. )). Each of the diagrams a to d shown in each drawing is a diagram connecting plot points for every 1 nm in the wavelength region of 400 nm to 750 nm obtained by calculation.

図2において、線図aで示す偏光分離膜14の可視光波長領域(420nm〜680nm程度)におけるp偏光光の透過率は、平均値が99.68%、最小値であっても98.76%であり、優れた透過性能を備えている。一方、線図bで示すs偏光光の反射率は、平均値が99.44%、最小値であっても98.95%であり、優れた反射性能を備えている。   In FIG. 2, the transmittance of p-polarized light in the visible light wavelength region (about 420 nm to 680 nm) of the polarization separation film 14 shown by the diagram a is 99.68% on average and 98.76 even if it is the minimum value. %, And has excellent transmission performance. On the other hand, the reflectance of the s-polarized light shown in the diagram b is 99.44% on average and 98.95% even on the minimum, and has excellent reflection performance.

一方、図3において、線図cで示す吸収膜15の可視光波長領域(420nm〜680nm程度)における透過率の平均値は0.16%、線図dで示す反射率の平均値は0.54%であり、透過率および反射率ともに略0(ゼロ)に近い値を示し、優れた光吸収性能を備えている。   On the other hand, in FIG. 3, the average value of the transmittance in the visible light wavelength region (about 420 nm to 680 nm) of the absorption film 15 shown in the diagram c is 0.16%, and the average value of the reflectance shown in the diagram d is 0. It is 54%, the transmittance and the reflectance both show values close to 0 (zero), and have excellent light absorption performance.

次に、このように構成された偏光子1に入射する入射光の動作について説明する。   Next, the operation of the incident light that enters the polarizer 1 configured as described above will be described.

図1(b)において、システム光軸ALに沿って偏光子1の光入射面1aに入射した光線束(s偏光光+p偏光光)は、ガラス材11とガラス材12との斜辺界面に形成された偏光分離膜14に、略45°の入射角で入射して、第1の直線偏光光としてのs偏光光と、第2の直線偏光光としてのp偏光光との2つの部分光線束に分離される。そして、偏光分離膜14において分離されたp偏光光は偏光分離膜14を透過して光射出面1b側に向かう。一方、偏光分離膜14において分離されたs偏光光は、偏光分離膜14で反射されて直角界面に形成された吸収膜15に向かい、吸収膜15に対して略0°の入射角で入射して、吸収膜15に吸収される。すなわち、偏光子1の光入射面1aに入射した光(s偏光光+p偏光光)は、一種類のp偏光光(直線偏光光)のみが、光射出面1bからシステム光軸ALに略平行方向に射出される。   In FIG. 1B, the light bundle (s-polarized light + p-polarized light) incident on the light incident surface 1a of the polarizer 1 along the system optical axis AL is formed at the hypotenuse interface between the glass material 11 and the glass material 12. Two partial beam bundles of the s-polarized light as the first linearly polarized light and the p-polarized light as the second linearly polarized light are incident on the polarized light separating film 14 at an incident angle of about 45 °. Separated. Then, the p-polarized light separated in the polarization separation film 14 passes through the polarization separation film 14 and travels toward the light exit surface 1b. On the other hand, the s-polarized light separated in the polarization separation film 14 is reflected by the polarization separation film 14 toward the absorption film 15 formed at the right-angle interface, and is incident on the absorption film 15 at an incident angle of approximately 0 °. And absorbed by the absorption film 15. That is, only one type of p-polarized light (linearly polarized light) is incident on the light incident surface 1a of the polarizer 1 and is approximately parallel to the system optical axis AL from the light exit surface 1b. Injected in the direction.

なお、吸収膜15では、偏光分離膜14において透過されずに反射された一部のp偏光光や、光入射面1aより入射してガラス材11とガラス材12内に散乱した迷光なども吸収される。さらに、吸収膜15において吸収されずに吸収膜15を透過した些細な量の一部の偏光光の内のs偏光光は、隣り合うガラス材11とガラス材12との斜辺界面に形成された偏光分離膜14に入射した後に、偏光分離膜14において反射されて光入射面1a側に向かい、光入射面1aから射出される。   The absorption film 15 also absorbs part of the p-polarized light that is reflected without being transmitted by the polarization separation film 14, or stray light that is incident on the light incident surface 1a and scattered in the glass material 11 and the glass material 12. Is done. Furthermore, s-polarized light out of a small amount of a part of the polarized light that is transmitted through the absorption film 15 without being absorbed by the absorption film 15 is formed at the hypotenuse interface between the adjacent glass material 11 and glass material 12. After entering the polarization separation film 14, the light is reflected by the polarization separation film 14, travels toward the light incident surface 1a, and is emitted from the light incident surface 1a.

一方、p偏光光は、隣り合うガラス材11とガラス材12との斜辺界面に形成された偏光分離膜14に入射した後に、偏光分離膜14を透過して、隣り合う直角界面に形成された吸収膜15に向かい、その吸収膜15に吸収される。したがって、偏光分離特性が向上し、変換効率の高い偏光子1が得られる。   On the other hand, the p-polarized light is incident on the polarization separation film 14 formed on the oblique side interface between the adjacent glass material 11 and the glass material 12, and then transmitted through the polarization separation film 14 and formed on the adjacent right-angle interface. It goes to the absorption film 15 and is absorbed by the absorption film 15. Therefore, the polarizer 1 with improved polarization separation characteristics and high conversion efficiency can be obtained.

次に、このように構成された偏光子1の製造方法について説明する。
図4および図5は、本実施形態に係る偏光子を製造する主要な工程を示す工程断面図である。なお、これらの図面は、説明の便宜のために各構成要素の寸法や比率を実際のものとは異ならせてある。
Next, a manufacturing method of the polarizer 1 configured as described above will be described.
4 and 5 are process cross-sectional views showing main processes for manufacturing the polarizer according to the present embodiment. In these drawings, the dimensions and ratios of each component are different from actual ones for convenience of explanation.

先ず、図4(a)に示す工程では、同一の矩形状の外形形状で同一の所定厚さの白板ガラスより成る複数の透光性基板としてのガラス板111を準備して、それぞれのガラス板111の2つの表面のうちの一方の表面上に、偏光分離膜14を形成する(偏光分離膜形成工程)。なお、本実施形態におけるガラス板111の所定厚さは、例えば3mm程度である。   First, in the process shown in FIG. 4A, a plurality of glass plates 111 as a light-transmitting substrate made of white glass having the same rectangular outer shape and the same predetermined thickness are prepared, and each glass plate is prepared. A polarization separation film 14 is formed on one of the two surfaces 111 (polarization separation film forming step). In addition, the predetermined thickness of the glass plate 111 in this embodiment is about 3 mm, for example.

偏光分離膜14は、上記「表1」に示したSiO2を1層目として、2層目にランタンアルミネート、以後3層目〜36層目に、MgF2とランタンアルミネートとが交互に成膜されて、最上層をSiO2とする37層の誘電体多層膜が形成される。偏光分離膜14は、各誘電体材料を真空蒸着法、スパッタリング法またはイオンプレーティング法などを用いて成膜される。 The polarization separation film 14 is composed of the lanthanum aluminate in the second layer, and the MgF 2 and lanthanum aluminate alternately in the third to thirty-sixth layers, with the SiO 2 shown in “Table 1” as the first layer. A 37-layer dielectric multilayer film having SiO 2 as the uppermost layer is formed. The polarization separation film 14 is formed by using a dielectric material, such as a vacuum deposition method, a sputtering method, or an ion plating method.

このガラス板111は、後に断面形状が直角三角形を成した柱状のガラス材11およびガラス材12(矩形柱13)を形成する。
なお、図4(a)および図5を含む以後の図面において、ガラス板111は、実際の枚数とは異なる省略した枚数で示す。
This glass plate 111 forms the columnar glass material 11 and the glass material 12 (rectangular column 13) whose cross-sectional shape later formed a right triangle.
In the subsequent drawings including FIG. 4A and FIG. 5, the glass plate 111 is shown by an omitted number different from the actual number.

そして、図4(b)に示す工程では、偏光分離膜形成工程において偏光分離膜14が形成された複数のガラス板111を、それぞれのガラス板111の偏光分離膜14が形成された面を一方方向に揃えて板厚方向に順次重ね合わせて、それぞれの界面に紫外線硬化型接着剤(図示せず)を塗布してガラス板111同士を互いに貼り合わせる(ガラスブロック形成工程)。
界面に塗布された紫外線硬化型接着剤は、ケミカルランプや高圧水銀灯などの光(紫外線)を照射することによって硬化される。これにより複数のガラス板111同士が板厚方向に重ね合わされて、重なり合う界面に偏光分離膜14が配置されたガラスブロック112が形成される。
4B, the plurality of glass plates 111 on which the polarization separation film 14 has been formed in the polarization separation film formation step are arranged on one side of each glass plate 111 on which the polarization separation film 14 is formed. Aligned in the direction and sequentially stacked in the plate thickness direction, an ultraviolet curable adhesive (not shown) is applied to each interface, and the glass plates 111 are bonded to each other (glass block forming step).
The ultraviolet curable adhesive applied to the interface is cured by irradiating light (ultraviolet light) such as a chemical lamp or a high pressure mercury lamp. As a result, a plurality of glass plates 111 are overlapped in the plate thickness direction, and a glass block 112 in which the polarization separation film 14 is disposed at the overlapping interface is formed.

そして、図4(c)に示す工程では、ガラスブロック形成工程において形成されたガラスブロック112を、互いに略平行な複数の切断線CL1(図中、一点鎖線で示す)に沿って切断する(ガラスブロック切断工程)。
切断線CL1が、ガラス板111の表面と成す角度αは、略45°であり、切断線CL1同士のガラス板111の表面における間隔は、後に光入射面1aを構成するガラス板111の断面形状における直角三角形の辺の長さである。
切断線CL1に沿って切断されたガラスブロック112からは、図中にドットで示す領域形状の素子ユニット113が複数切り出される。
In the step shown in FIG. 4C, the glass block 112 formed in the glass block forming step is cut along a plurality of cutting lines CL1 (shown by alternate long and short dash lines in the drawing) (glass). Block cutting process).
The angle α that the cutting line CL1 forms with the surface of the glass plate 111 is approximately 45 °, and the interval between the cutting lines CL1 on the surface of the glass plate 111 is the cross-sectional shape of the glass plate 111 that later constitutes the light incident surface 1a. Is the length of the side of the right triangle.
From the glass block 112 cut along the cutting line CL1, a plurality of element units 113 having a region shape indicated by dots in the drawing are cut out.

そして、工程として図示しないが、ガラスブロック切断工程において切り出された素子ユニット113の2つの表面のうちの一方の表面上に、吸収膜15を形成する(吸収膜形成工程)。素子ユニット113の表面に形成される吸収膜15は、上記「表2」に示したTa25を1層目として、2層目にSiO2、3層目にTa25、4層目にSiO2、5層目にTa25、6層目にSiO2、7層目にTa25、8層目にSiO2、9層目にTiOx、最上層の10層目にSiO2よりなる、10層の誘電体多層膜SiO2が形成される。吸収膜15は、各誘電体材料を真空蒸着法、スパッタリング法またはイオンプレーティング法などを用いて成膜される。
そして、図5(a)に示す工程では、一方の表面上に吸収膜15が形成された複数の素子ユニット113を準備する(素子ユニット準備工程)。
And although not shown as a process, the absorption film 15 is formed on one surface of the two surfaces of the element unit 113 cut out in the glass block cutting process (absorption film formation process). The absorption film 15 formed on the surface of the element unit 113 is composed of Ta 2 O 5 shown in “Table 2” as the first layer, SiO 2 as the second layer, Ta 2 O 5 as the third layer, and four layers. SiO 2 eyes, Ta 2 O 5 in the fifth layer, SiO 2 to 6 th layer, the seventh layer to Ta 2 O 5, 8 th layer to SiO 2, 9-layer to TiO x, 10-layer top layer consisting SiO 2, of 10 layer dielectric multilayer film SiO 2 is formed. The absorption film 15 is formed by using each dielectric material using a vacuum deposition method, a sputtering method, an ion plating method, or the like.
5A, a plurality of element units 113 having the absorption film 15 formed on one surface are prepared (element unit preparation process).

そして、図5(b)に示す工程では、素子ユニット準備工程において準備された複数の素子ユニット113を、それぞれの素子ユニット113の吸収膜15が形成された面を一方方向に揃えて板厚方向に順次重ね合わせて、それぞれの界面に紫外線硬化型接着剤(図示せず)を塗布して素子ユニット113同士を互いに貼り合わせる(素子ブロック形成工程)。
素子ユニット113同士の貼り合わせの際には、それぞれの素子ユニット113に形成された複数の偏光分離膜14が略一直線上となるように位置決めして重ね合わされる。
In the step shown in FIG. 5B, the plurality of element units 113 prepared in the element unit preparation step are aligned in the plate thickness direction with the surface on which the absorption film 15 of each element unit 113 is formed aligned in one direction. Are stacked one after another, and an ultraviolet curable adhesive (not shown) is applied to each interface to bond the element units 113 together (element block forming step).
When the element units 113 are bonded to each other, the plurality of polarization separation films 14 formed on each element unit 113 are positioned and overlapped so as to be substantially in a straight line.

界面に塗布された紫外線硬化型接着剤は、ケミカルランプや高圧水銀灯などの光(紫外線)を照射することによって硬化される。これにより複数の素子ユニット113同士が板厚方向に重ね合わされて、重なり合う界面に吸収膜15が配置された素子ブロック114が形成される。   The ultraviolet curable adhesive applied to the interface is cured by irradiating light (ultraviolet light) such as a chemical lamp or a high pressure mercury lamp. Thereby, a plurality of element units 113 are overlapped with each other in the plate thickness direction, and an element block 114 in which the absorption film 15 is disposed at the overlapping interface is formed.

そして、図5(c)に示す工程では、素子ブロック形成工程において形成された素子ブロック114を、互いに略平行な複数の切断線CL2(図中、一点鎖線で示す)に沿って切断する(素子ブロック切断工程)。
素子ブロック114を切断する切断線CL2は、素子ブロック114を形成する最上段に位置する素子ユニット113に形成された偏光分離膜14の表面位置毎に、素子ブロック114の表面と成す角度βが略90°に切断される。切断線CL2に沿って切断された素子ブロック114からは、図中にドットで示す領域形状の偏光子1が複数切り出されて、偏光子1が完成する。切断線CL2に沿って切断されて切り出された偏光子1の切断面方向における厚さは、3mm程度である。
In the step shown in FIG. 5C, the element block 114 formed in the element block forming step is cut along a plurality of cutting lines CL2 (shown by alternate long and short dash lines in the figure) that are substantially parallel to each other (elements). Block cutting process).
The cutting line CL2 that cuts the element block 114 has an angle β that is substantially equal to the surface of the element block 114 for each surface position of the polarization separation film 14 formed in the element unit 113 positioned at the uppermost stage that forms the element block 114. Cut to 90 °. A plurality of region-shaped polarizers 1 indicated by dots in the drawing are cut out from the element block 114 cut along the cutting line CL2 to complete the polarizer 1. The thickness in the cut plane direction of the polarizer 1 cut and cut along the cutting line CL2 is about 3 mm.

完成した偏光子1は、互いに断面形状が直角三角形を成したガラス材11とガラス材12とが貼り合わされた斜辺界面に偏光分離膜14と、ガラス材11とガラス材12とが貼り合わされた矩形柱13が順次貼り合わされた直角界面に吸収膜15とを備え、光入射面1aに入射する光線束(s偏光光+p偏光光)の内のp偏光光(直線偏光光)のみを、光射出面1bからシステム光軸ALに略平行方向に射出する機能を有する(図1参照)。   The completed polarizer 1 is a rectangle in which the polarization separation film 14 and the glass material 11 and the glass material 12 are bonded to each other on the oblique side interface where the glass material 11 and the glass material 12 whose cross-sectional shapes form a right triangle are bonded to each other. An absorption film 15 is provided at a right-angle interface where the columns 13 are sequentially bonded, and only p-polarized light (linearly polarized light) out of the light bundle (s-polarized light + p-polarized light) incident on the light incident surface 1a is emitted. It has a function of emitting light from the surface 1b in a direction substantially parallel to the system optical axis AL (see FIG. 1).

なお、偏光子1の製造方法は主要な工程のみ説明したが、ガラスブロック切断工程および素子ブロック切断工程の後には、各ブロックが切断されて形成された素子ユニット113および偏光子1のそれぞれの切断面を、片面ポリッシュ装置または両面ポリッシュ装置を用いて研磨することで、切断面の平坦度および面精度を整えるのが好ましい。   In addition, although the manufacturing method of the polarizer 1 demonstrated only the main processes, after the glass block cutting process and an element block cutting process, each cutting | disconnection of the element unit 113 formed by cutting each block and the polarizer 1 is carried out. It is preferable to adjust the flatness and surface accuracy of the cut surface by polishing the surface using a single-side polishing device or a double-side polishing device.

また、完成した偏光子1には、少なくとも一方の面または双方の面に、反射防止(AR)層を設けてもよい。偏光子1は、構成要素が全て無機物で構成されて耐光性、耐熱性に優れることから、AR膜の形成の際に高温に加熱処理することが可能となり、例えば、二酸化珪素、酸化チタンなどの物質を蒸着またはスパッタリング処理した広帯域AR膜を形成することができる。   Further, the completed polarizer 1 may be provided with an antireflection (AR) layer on at least one surface or both surfaces. Since the polarizer 1 is composed of all inorganic substances and has excellent light resistance and heat resistance, the polarizer 1 can be heat-treated at a high temperature when forming the AR film. For example, silicon dioxide, titanium oxide, etc. A broadband AR film can be formed by depositing or sputtering a material.

さらに、上記偏光子1の製造方法は、素子ブロック114が複数の切断線CL2に沿って切断することにより、図1に示す偏光子1が完成する場合で説明したが、準備するガラス板111の平面サイズや枚数は、所望とする偏光子のサイズに対応して適宜設定することができる。したがって、この場合には、素子ブロック114を複数の切断線CL2に沿って切断した後に、所定サイズや所定の外形形状に、切断および切断面の研磨などを行うのが好ましい。   Furthermore, although the manufacturing method of the polarizer 1 has been described in the case where the polarizer 1 shown in FIG. 1 is completed by cutting the element block 114 along a plurality of cutting lines CL2, the manufacturing method of the glass plate 111 to be prepared is as follows. The plane size and the number of sheets can be appropriately set according to the desired size of the polarizer. Therefore, in this case, after cutting the element block 114 along the plurality of cutting lines CL2, it is preferable to perform cutting and polishing of the cut surface into a predetermined size or a predetermined outer shape.

さらにまた、偏光子1は、次のように構成することもできる。
図5(b)に示す素子ブロック形成工程において、紫外線硬化型接着剤に代えて粘着剤などを用いて、素子ユニット113同士を仮接着した素子ブロック114を形成する。そして、その素子ブロック114を図5(c)に示す素子ブロック切断工程において互いに略平行な複数の切断線CL2に沿って切断した後に、切断された偏光子1から仮接着した粘着剤層を剥がして、斜辺界面に偏光分離膜14を有し、直角界面の一方の面に吸収膜15が形成された複数の矩形柱13に分離する。そして、所定個数の矩形柱13を、形成された吸収膜15方向を揃えて並列配置した後、外周部をホルダなどで一体に固定して所望平面サイズの偏光子1が完成する。この構成によれば、サイズの異なるホルダに所定数の矩形柱13を並列配置することで、平面サイズの異なる偏光子1を容易に得ることができる。
Furthermore, the polarizer 1 can also be configured as follows.
In the element block forming step shown in FIG. 5B, an element block 114 is formed by temporarily adhering the element units 113 using an adhesive or the like instead of the ultraviolet curable adhesive. Then, the element block 114 is cut along a plurality of cutting lines CL2 substantially parallel to each other in the element block cutting step shown in FIG. 5 (c), and then the pressure-sensitive adhesive layer temporarily bonded from the cut polarizer 1 is peeled off. Thus, the light is separated into a plurality of rectangular pillars 13 each having a polarization separation film 14 at the oblique interface and having an absorption film 15 formed on one surface of the right-angle interface. Then, a predetermined number of rectangular pillars 13 are arranged in parallel with the direction of the formed absorption film 15 aligned, and then the outer peripheral portion is integrally fixed with a holder or the like to complete the polarizer 1 having a desired plane size. According to this configuration, the polarizers 1 having different plane sizes can be easily obtained by arranging the predetermined number of rectangular pillars 13 in parallel on the holders having different sizes.

このように構成および製造された偏光子1は、偏光子1の配置方向を替えることによって、入射する非偏光光に対してp波またはs波の偏光光を射出する機能を得ることができる。
図14(a)は完成した偏光子の正面、上面および側面を一括して示す模式図であり、図14(b)は同図(a)に示す偏光子の正面図に対して90°の角度回転した状態の正面、上面および側面を一括して示す模式図である。
The polarizer 1 configured and manufactured in this manner can obtain a function of emitting p-wave or s-wave polarized light with respect to incident non-polarized light by changing the arrangement direction of the polarizer 1.
FIG. 14 (a) is a schematic view showing the front, top and side surfaces of the completed polarizer in a lump, and FIG. 14 (b) is 90 ° with respect to the front view of the polarizer shown in FIG. 14 (a). It is a schematic diagram which shows the front surface, the upper surface, and the side surface of the state which rotated the angle collectively.

上記において説明したように、図14(a)において、偏光子1を柱状の各ガラス材11,12が延伸する方向をy軸方向に配置して用いることによって、システム光軸に略平行に光入射面1aに入射する非偏光光を、電界が光入射面1aに対して水平方向のp波(TM波)の偏光光を射出することができる。   As described above, in FIG. 14 (a), the polarizer 1 is used by arranging the direction in which the columnar glass materials 11 and 12 extend in the y-axis direction, so that the light is substantially parallel to the system optical axis. Unpolarized light incident on the incident surface 1a can be emitted as polarized light of p-waves (TM waves) whose electric field is horizontal to the light incident surface 1a.

一方、その偏光子1を90°の角度、右回転して、図14(b)に示すように、偏光子1を構成する柱状の各ガラス材11,12が延伸する方向をx軸方向に配置して用いることによって、システム光軸に略平行に光入射面1aに入射する非偏光光を、電界が光入射面1aに対して垂直方向のs波(TE波)の偏光光を射出することができる。
なお、偏光子1の回転方向は、右回転または左回転のどちらであってもよい。
On the other hand, the polarizer 1 is rotated 90 ° to the right, and as shown in FIG. 14B, the direction in which the columnar glass materials 11 and 12 constituting the polarizer 1 extend is the x-axis direction. By arranging and using, unpolarized light that is incident on the light incident surface 1a substantially parallel to the system optical axis and s-wave (TE wave) polarized light whose electric field is perpendicular to the light incident surface 1a are emitted. be able to.
The rotation direction of the polarizer 1 may be either right rotation or left rotation.

以上に説明した偏光子1は、入射する光(s偏光光+p偏光光)から一種類のp偏光光またはs偏光光の内のどちらか一種類の直線偏光光を射出する光学素子として、透過型プロジェクタ、反射型プロジェクタなどの照明光学系に好ましく用いることができる。こうしたプロジェクタにおいては、特に、波長が短くパワーの強い青色光の射出側用の偏光子として用いることにより、耐光性をより向上することができる。   The polarizer 1 described above is transmitted as an optical element that emits one type of p-polarized light or s-polarized light from incident light (s-polarized light + p-polarized light). It can be preferably used in an illumination optical system such as a projection projector or a reflection projector. In such a projector, in particular, the light resistance can be further improved by using it as a polarizer for emitting blue light having a short wavelength and high power.

また、偏光子1は、断面形状が直角二等辺三角形のガラス材11およびガラス材12が互いの斜辺で貼り合わされた複数の矩形柱13が、光入射面1aに沿って並列配置されて製造されるので、大きいサイズ(広い面積)で、しかも薄型の偏光子1を容易に得ることが可能である。これにより、広い面積を有する測定物の偏光情報を測定する分光器や、各種光学機器における光学フィルタなどとして好適に用いることができる。   Further, the polarizer 1 is manufactured by arranging a plurality of rectangular pillars 13 in which a glass material 11 and a glass material 12 having a right-angled isosceles triangle cross section are bonded to each other along the oblique sides, along the light incident surface 1a. Therefore, it is possible to easily obtain a thin polarizer 1 having a large size (wide area) and being thin. Thereby, it can use suitably as a spectroscope which measures the polarization information of the measurement object which has a wide area, an optical filter in various optical instruments, etc.

以上のように、本実施形態の偏光子1は、断面形状が直角三角形の二つのガラス材11,12が互いの斜辺同士で貼り合わされた矩形柱13が、光入射面1aに沿って複数並列配置され、ガラス材11,12の斜辺界面に入射光を二種類の直線偏光光に分離する偏光分離膜14と、並列配置された矩形柱13の直角界面に偏光分離膜14において分離されて入射する直線偏光光を吸収する吸収膜15とを備えることにより、吸収膜15において偏光分離膜14で分離されて入射する直線偏光光とともに、入射方向(入射角度)が異なって偏光子1に入射する入射光の散乱や反射などによる迷光を吸収し、偏光子1から一種類の直線偏光光(p偏光光)を射出することができる。すなわち、入射する自然光(無偏光)や円偏光などのランダム光の可視光波長領域にわたり偏光分離特性の向上した分離効率の高い偏光子1が得られる。   As described above, in the polarizer 1 of the present embodiment, a plurality of rectangular pillars 13 in which two glass materials 11 and 12 having a right-angled cross section are bonded to each other at the oblique sides are arranged in parallel along the light incident surface 1a. The polarized light separating film 14 is arranged to separate incident light into two kinds of linearly polarized light at the oblique side interface of the glass materials 11 and 12, and the polarized light separating film 14 is incident on the right angle interface of the rectangular pillars 13 arranged in parallel. The absorption film 15 that absorbs the linearly polarized light to be incident on the polarizer 1 with the incident direction (incident angle) being different from the linearly polarized light that is separated by the polarization separation film 14 and incident on the absorption film 15. It is possible to absorb stray light due to scattering or reflection of incident light and to emit one type of linearly polarized light (p-polarized light) from the polarizer 1. That is, it is possible to obtain the polarizer 1 having high separation efficiency with improved polarization separation characteristics over the visible light wavelength region of random light such as incident natural light (non-polarized light) and circularly polarized light.

また、吸収膜15が、少なくともSi、TiOx、Nb25のうちのいずれかの誘電体膜より成る吸収層を含む誘電体多層膜より成ることにより、偏光分離膜14で分離されて入射するs偏光光とともに、入射角度が異なって偏光子1に入射する入射光の散乱や反射などによる迷光を吸収することができる。また、吸収膜15が吸収層と反射防止層とを含み構成されていることにより、透過率および反射率ともに略0(ゼロ)に近い値の優れた光吸収性能を備えた吸収膜15が得られる。 Further, the absorption film 15 is made of a dielectric multilayer film including an absorption layer made of at least one of Si, TiO x , and Nb 2 O 5 , so that it is separated by the polarization separation film 14 and incident. In addition to the s-polarized light, stray light caused by scattering or reflection of incident light having different incident angles and entering the polarizer 1 can be absorbed. Further, since the absorption film 15 includes the absorption layer and the antireflection layer, the absorption film 15 having excellent light absorption performance with a value close to 0 (zero) in both transmittance and reflectance is obtained. It is done.

また、偏光子1の製造方法が、ガラス板111の一方の表面上に偏光分離膜14を形成する偏光分離膜形成工程と、複数のガラス板111の偏光分離膜14が形成された面を一方方向に揃えて板厚方向に順次重ね合わせて貼り合わせるガラスブロック形成工程と、ガラスブロック112の表面と略45°の角度を成す互いに略平行な複数の切断線CL1に沿って切断して複数の素子ユニット113を形成するガラスブロック切断工程と、複数の素子ユニット113の一方の表面上に吸収膜15を形成する吸収膜形成工程と、素子ユニット113に形成された偏光分離膜14が略一直線上となるように位置決めして板厚方向に順次重ね合わせて貼り合わせる素子ブロック形成工程と、素子ブロック114の表面と略90°の角度を成す互いに略平行な複数の切断線CL2に沿って切断する素子ブロック切断工程と、を備えることによって、断面形状が直角三角形の二つのガラス材11,12の斜辺同士で貼り合わされた矩形柱13の斜辺界面に偏光分離膜14と、並列配置された矩形柱13の直角界面に吸収膜15が形成された偏光子1を、一度に多数得ることができる。すなわち、量産化が容易で、しかも安価な偏光子1を得ることができる。さらに、偏光子1の製造方法は、ガラス材11,12の板厚、ガラス材11,12の平面サイズおよび使用枚数を適宜選択することで、所望の平面サイズ又は/及び厚さの偏光子1を容易に得ることができる。したがって、大きな平面サイズの偏光子1、あるいは厚さの薄い偏光子1が容易に得られ、広い面積を有する測定物の偏光情報を測定する分光器や、各種光学機器における薄型光学フィルタとして広く適用することができる。   Further, the manufacturing method of the polarizer 1 includes a polarization separation film forming step of forming the polarization separation film 14 on one surface of the glass plate 111 and a surface on which the polarization separation films 14 of the plurality of glass plates 111 are formed. A glass block forming step in which the glass block is aligned in the direction and laminated in the thickness direction and bonded together, and a plurality of cutting lines CL1 are cut along a plurality of substantially parallel cutting lines CL1 forming an angle of about 45 ° with the surface of the glass block 112. The glass block cutting step for forming the element unit 113, the absorption film forming step for forming the absorption film 15 on one surface of the plurality of element units 113, and the polarization separation film 14 formed on the element unit 113 are substantially in a straight line. The element block forming step in which the element blocks are positioned and sequentially overlapped in the thickness direction and bonded together, and the surface of the element block 114 forms an approximately 90 ° angle with each other. An element block cutting step that cuts along a plurality of cutting lines CL2 in a row, so that the oblique side interface of the rectangular column 13 bonded by the oblique sides of the two glass materials 11 and 12 having a right-angled triangle cross section A large number of polarizers 1 in which the absorption film 15 is formed at the right-angle interface between the polarization separation film 14 and the rectangular pillars 13 arranged in parallel can be obtained at a time. That is, it is possible to obtain the polarizer 1 that can be easily mass-produced and is inexpensive. Furthermore, the manufacturing method of the polarizer 1 is the polarizer 1 of a desired plane size or / and thickness by selecting suitably the plate | board thickness of the glass materials 11 and 12, the plane size of the glass materials 11 and 12, and the number of sheets to be used. Can be easily obtained. Therefore, a polarizer 1 having a large plane size or a polarizer 1 having a small thickness can be easily obtained, and is widely applied as a spectroscope for measuring polarization information of a measurement object having a large area and a thin optical filter in various optical instruments. can do.

なお、以上の本実施形態において、以下の変形例として挙げられているような形態であっても、本実施形態と同様な効果を得ることが可能である。   It should be noted that, in the above-described embodiment, even if the form is exemplified as the following modification, it is possible to obtain the same effect as the present embodiment.

(変形例1)
上記実施形態において、偏光子1に形成された偏光分離膜14および吸収膜15が、可視光波長領域の偏光分離機能および光吸収機能を有する場合で説明したが、可視光波長領域に代えて青色光波長域、緑色光波長域または赤色光波長域に略対応した膜構成とすることができる。こうした各色光波長域に対応した偏光分離膜14および吸収膜15を備えた偏光子1は、例えば、透過型プロジェクタなどにおいて、各色光間のクロストークを防止したり、コントラストを高めるなどを目的に、各色光用LCDの光射出側に配置して用いることができる。
(Modification 1)
In the above embodiment, the polarization separation film 14 and the absorption film 15 formed on the polarizer 1 have been described as having a polarization separation function and a light absorption function in the visible light wavelength region. It can be set as the film | membrane structure substantially corresponding to a light wavelength range, a green light wavelength range, or a red light wavelength range. The polarizer 1 having the polarization separation film 14 and the absorption film 15 corresponding to each color light wavelength region is used for the purpose of, for example, preventing crosstalk between the color lights or increasing the contrast in a transmission projector or the like. It can be arranged and used on the light exit side of each color light LCD.

「表3」は青色光波長域の偏光分離機能を有する偏光分離膜の膜構成を示し、「表4」は青色光波長域の光吸収機能を有する吸収膜の膜構成を示す。なお、偏光分離膜14の膜構成は、設計波長485nm、入射角度45°における設計値であり、吸収膜15の膜構成は、設計波長485nm、入射角度0°における設計値である。   “Table 3” shows the film configuration of the polarization separation film having the polarization separation function in the blue light wavelength region, and “Table 4” shows the film configuration of the absorption film having the light absorption function in the blue light wavelength region. The film configuration of the polarization separation film 14 is a design value at a design wavelength of 485 nm and an incident angle of 45 °, and the film configuration of the absorption film 15 is a design value at a design wavelength of 485 nm and an incident angle of 0 °.

また、それぞれの表には、各多層膜を構成する層No.に対する膜材料、光学膜厚(nd)、物理膜厚(d(nm))を示す。層No.は、成膜されるガラス材11またはガラス材12の表面側から順に1層、2層、3層…と表す。これについては、以後に示す「表5」〜「表10」についても同様である。   In each table, the layer numbers constituting each multilayer film are shown. Film thickness, optical film thickness (nd), and physical film thickness (d (nm)). Layer No. Is expressed as one layer, two layers, three layers, ... in order from the surface side of the glass material 11 or glass material 12 to be formed. This also applies to “Table 5” to “Table 10” shown below.

Figure 2009104023
Figure 2009104023

Figure 2009104023
偏光分離膜14は、「表3」に示すように、Ta25(酸化タンタル)を1層目として、Ta25とSiO2とが交互に成膜されて、最上層をSiO2とする24層の誘電体多層膜で構成される。
一方、吸収膜15は、「表4」に示すように、Ta25(酸化タンタル)を1層目として、2層目にSiO2、3層目にTa25、4層目にSiO2、5層目にTiOx、そして最上層の6層目にSiO2よりなる、6層の誘電体多層膜で構成される。この誘電体多層膜中の5層目のTiOx層において光吸収が行われる。
Figure 2009104023
As shown in “Table 3”, the polarization separation film 14 has Ta 2 O 5 (tantalum oxide) as the first layer, Ta 2 O 5 and SiO 2 are alternately formed, and the uppermost layer is made of SiO 2. It is comprised with 24 dielectric multilayer films.
On the other hand, as shown in “Table 4”, the absorption film 15 is composed of Ta 2 O 5 (tantalum oxide) as the first layer, SiO 2 as the second layer, Ta 2 O 5 as the third layer, and Ta 4 O as the fourth layer. The dielectric layer is composed of 6 layers of SiO 2 , TiO x as the fifth layer, and SiO 2 as the uppermost layer. Light absorption is performed in the fifth TiO x layer in the dielectric multilayer film.

このように構成された偏光分離膜14の偏光分離特性および吸収膜15の光吸収特性を図6、図7に示す。
図6は、「表3」に示す青色光波長域の偏光分離機能を有する偏光分離膜14の透過率および反射率の波長分散特性を示すグラフであり、図7は、「表4」に示す青色光波長域の光吸収機能を有する吸収膜15の透過率および反射率の波長分散特性を示すグラフである。
FIG. 6 and FIG. 7 show the polarization separation characteristics of the polarization separation film 14 thus configured and the light absorption characteristics of the absorption film 15.
FIG. 6 is a graph showing the wavelength dispersion characteristics of transmittance and reflectance of the polarization separation film 14 having the polarization separation function in the blue light wavelength region shown in “Table 3”, and FIG. 7 is shown in “Table 4”. It is a graph which shows the wavelength dispersion characteristic of the transmittance | permeability and the reflectance of the absorption film 15 which has the light absorption function of a blue light wavelength range.

グラフの横軸は、波長領域400nm〜500nmの範囲における入射光の波長(nm)を示し、縦軸にp偏光光の透過率(T(%))またはs偏光光の反射率(R(%))を示す。なお、各図に示す線図e〜線図hは、計算により求めた波長領域400nm〜500nmにおける1nm毎のプロット点を結んだ線図である。   The horizontal axis of the graph indicates the wavelength (nm) of incident light in the wavelength region of 400 nm to 500 nm, and the vertical axis indicates the transmittance (T (%)) of p-polarized light or the reflectance (R (%) of s-polarized light. )). Each of the diagrams e to h shown in each drawing is a diagram connecting plot points for every 1 nm in the wavelength region 400 nm to 500 nm obtained by calculation.

図6において、線図eで示す偏光分離膜14におけるp偏光光の透過率、および線図fで示すs偏光光の反射率は、青色光波長域の429nm〜466nmにおいて、いずれも99%以上の値を示し、青色光波長域における優れた透過性能および反射性能を備えている。
一方、図7において、線図gで示す吸収膜15の透過率および線図hで示す反射率は、偏光分離膜14に対応した青色光波長域の429nm〜466nmにおいて、共に0.5%以下の値を示し、青色光波長域における優れた光吸収性能を備えている。
In FIG. 6, the transmittance of p-polarized light in the polarization separation film 14 shown by the line e and the reflectance of s-polarized light shown by the line f are 99% or more in the blue light wavelength region of 429 nm to 466 nm. And has excellent transmission performance and reflection performance in the blue light wavelength region.
On the other hand, in FIG. 7, the transmittance of the absorption film 15 indicated by the line g and the reflectance indicated by the line h are both 0.5% or less in the blue light wavelength range corresponding to the polarization separation film 14 429 nm to 466 nm. And has excellent light absorption performance in the blue light wavelength region.

「表5」は緑色光波長域の偏光分離機能を有する偏光分離膜の膜構成を示し、「表6」は緑色光波長域の光吸収機能を有する吸収膜の膜構成を示す。なお、偏光分離膜14の膜構成は、設計波長550nm、入射角度45°における設計値であり、吸収膜15の膜構成は、設計波長555nm、入射角度0°における設計値である。   “Table 5” shows the film configuration of the polarization separation film having the polarization separation function in the green light wavelength region, and “Table 6” shows the film configuration of the absorption film having the light absorption function in the green light wavelength region. The film configuration of the polarization separation film 14 is a design value at a design wavelength of 550 nm and an incident angle of 45 °, and the film configuration of the absorption film 15 is a design value at a design wavelength of 555 nm and an incident angle of 0 °.

Figure 2009104023
Figure 2009104023

Figure 2009104023
偏光分離膜14は、「表5」に示すように、TiO2を1層目として、TiO2とSiO2とが交互に成膜されて、最上層をSiO2とする24層の誘電体多層膜で構成される。
一方、吸収膜15は、「表6」に示すように、Ta25(酸化タンタル)を1層目として、2層目にSiO2、3層目にTa25、4層目にSiO2、5層目にTiOx、そして最上層の6層目にSiO2よりなる、6層の誘電体多層膜で構成される。この誘電体多層膜中の5層目のTiOx層において光吸収が行われる。
Figure 2009104023
As shown in Table 5, the polarization separation film 14 is a 24-layer dielectric multilayer in which TiO 2 is the first layer, TiO 2 and SiO 2 are alternately formed, and the uppermost layer is SiO 2. Consists of a membrane.
On the other hand, as shown in “Table 6”, the absorption film 15 has Ta 2 O 5 (tantalum oxide) as the first layer, SiO 2 as the second layer, Ta 2 O 5 as the third layer, and Ta 2 O 5 as the fourth layer. The dielectric layer is composed of 6 layers of SiO 2 , TiO x as the fifth layer, and SiO 2 as the uppermost layer. Light absorption is performed in the fifth TiO x layer in the dielectric multilayer film.

このように構成された偏光分離膜14の偏光分離特性および吸収膜15の光吸収特性を図8、図9に示す。
図8は、「表5」に示す緑色光波長域の偏光分離機能を有する偏光分離膜14の透過率および反射率の波長分散特性を示すグラフであり、図9は、「表6」に示す緑色光波長域の光吸収機能を有する吸収膜15の透過率および反射率の波長分散特性を示すグラフである。
FIG. 8 and FIG. 9 show the polarization separation characteristics of the polarization separation film 14 thus configured and the light absorption characteristics of the absorption film 15.
FIG. 8 is a graph showing the wavelength dispersion characteristics of transmittance and reflectance of the polarization separation film 14 having the polarization separation function in the green light wavelength region shown in “Table 5”, and FIG. 9 is shown in “Table 6”. It is a graph which shows the wavelength dispersion characteristic of the transmittance | permeability and the reflectance of the absorption film 15 which has the light absorption function of a green light wavelength range.

グラフの横軸は、波長領域450nm〜600nmの範囲における入射光の波長(nm)を示し、縦軸にp偏光光の透過率(T(%))またはs偏光光の反射率(R(%))を示す。なお、各図に示す線図i〜線図lは、計算により求めた波長領域450nm〜600nmにおける1nm毎のプロット点を結んだ線図である。   The horizontal axis of the graph indicates the wavelength (nm) of incident light in the wavelength region of 450 nm to 600 nm, and the vertical axis indicates the transmittance (T (%)) of p-polarized light or the reflectance (R (%) of s-polarized light. )). Each of the diagrams i to l shown in each figure is a diagram connecting plot points for every 1 nm in a wavelength region of 450 nm to 600 nm obtained by calculation.

図8において、線図iで示す偏光分離膜14におけるp偏光光の透過率、および線図jで示すs偏光光の反射率は、緑色光波長域の526nm〜560nmにおいて、いずれも99%以上の値を示し、緑色光波長域における優れた透過性能および反射性能を備えている。
一方、図9において、線図kで示す吸収膜15の透過率および線図lで示す反射率は、偏光分離膜14に対応した緑色光波長域の526nm〜560nmにおいて、共に0.2%以下の値を示し、緑色光波長域における優れた光吸収性能を備えている。
In FIG. 8, the transmittance of p-polarized light in the polarization separation film 14 shown by the line i and the reflectance of s-polarized light shown by the line j are 99% or more in the green light wavelength region of 526 nm to 560 nm. And has excellent transmission performance and reflection performance in the green light wavelength region.
On the other hand, in FIG. 9, the transmittance of the absorption film 15 indicated by the line k and the reflectance indicated by the line l are both 0.2% or less at 526 nm to 560 nm in the green light wavelength range corresponding to the polarization separation film 14. This value is excellent and has excellent light absorption performance in the green light wavelength region.

「表7」は赤色光波長域の偏光分離機能を有する偏光分離膜の膜構成を示し、「表8」は赤色光波長域の光吸収機能を有する吸収膜の膜構成を示す。なお、偏光分離膜14の膜構成は、設計波長670nm、入射角度45°における設計値であり、吸収膜15の膜構成は、設計波長670nm、入射角度0°における設計値である。   “Table 7” shows the film configuration of the polarization separation film having the polarization separation function in the red light wavelength region, and “Table 8” shows the film configuration of the absorption film having the light absorption function in the red light wavelength region. The film configuration of the polarization separation film 14 is a design value at a design wavelength of 670 nm and an incident angle of 45 °, and the film configuration of the absorption film 15 is a design value at a design wavelength of 670 nm and an incident angle of 0 °.

Figure 2009104023
Figure 2009104023

Figure 2009104023
偏光分離膜14は、「表7」に示すように、TiO2を1層目として、TiO2とSiO2とが交互に成膜されて、最上層をSiO2とする24層の誘電体多層膜で構成される。
一方、吸収膜15は、「表8」に示すように、Ta25(酸化タンタル)を1層目として、2層目にSiO2、3層目にTa25、4層目にSiO2、5層目にTiOx、そして最上層の6層目にSiO2よりなる、6層の誘電体多層膜で構成される。この誘電体多層膜中の5層目のTiOx層において光吸収が行われる。
Figure 2009104023
As shown in Table 7, the polarization separation film 14 is a 24-layer dielectric multilayer in which TiO 2 is the first layer, TiO 2 and SiO 2 are alternately formed, and the uppermost layer is SiO 2. Consists of a membrane.
On the other hand, as shown in “Table 8”, the absorption film 15 has Ta 2 O 5 (tantalum oxide) as the first layer, SiO 2 as the second layer, Ta 2 O 5 as the third layer, and Ta 2 O 5 as the fourth layer. The dielectric layer is composed of 6 layers of SiO 2 , TiO x as the fifth layer, and SiO 2 as the uppermost layer. Light absorption is performed in the fifth TiO x layer in the dielectric multilayer film.

このように構成された偏光分離膜14の偏光分離特性および吸収膜15の光吸収特性を図10、図11に示す。
図10は、「表7」に示す赤色光波長域の偏光分離機能を有する偏光分離膜14の透過率および反射率の波長分散特性を示すグラフであり、図11は、「表8」に示す赤色光波長域の光吸収機能を有する吸収膜15の透過率および反射率の波長分散特性を示すグラフである。
10 and 11 show the polarization separation characteristics of the polarization separation film 14 configured as described above and the light absorption characteristics of the absorption film 15.
FIG. 10 is a graph showing the wavelength dispersion characteristics of transmittance and reflectance of the polarization separation film 14 having the polarization separation function in the red light wavelength region shown in “Table 7”, and FIG. 11 is shown in “Table 8”. It is a graph which shows the wavelength dispersion characteristic of the transmittance | permeability and the reflectance of the absorption film 15 which has the light absorption function of a red light wavelength range.

グラフの横軸は、波長領域550nm〜750nmの範囲における入射光の波長(nm)を示し、縦軸にp偏光光の透過率(T(%))またはs偏光光の反射率(R(%))を示す。なお、各図に示す線図m〜線図qは、計算により求めた波長領域550nm〜750nmにおける1nm毎のプロット点を結んだ線図である。   The horizontal axis of the graph indicates the wavelength (nm) of incident light in the wavelength region of 550 nm to 750 nm, and the vertical axis indicates the transmittance (T (%)) of p-polarized light or the reflectance (R (%) of s-polarized light. )). Each of the diagrams m to q shown in each figure is a diagram that connects plot points for every 1 nm in the wavelength region 550 nm to 750 nm obtained by calculation.

図10において、線図mで示す偏光分離膜14におけるp偏光光の透過率、および線図nで示すs偏光光の反射率は、赤色光波長域の610nm〜673nmにおいて、いずれも99%以上の値を示し、赤色光波長域における優れた透過性能および反射性能を備えている。
一方、図11において、線図pで示す吸収膜15の透過率および線図qで示す反射率は、偏光分離膜14に対応した赤色光波長域の610nm〜673nmにおいて、共に0.4%以下の値を示し、赤色光波長域における優れた光吸収性能を備えている。
In FIG. 10, the transmittance of p-polarized light in the polarization separation film 14 shown by the line m and the reflectance of s-polarized light shown by the line n are 99% or more in the red light wavelength range of 610 nm to 673 nm. And has excellent transmission performance and reflection performance in the red light wavelength region.
On the other hand, in FIG. 11, the transmittance of the absorption film 15 indicated by the line p and the reflectance indicated by the line q are both 0.4% or less at 610 nm to 673 nm in the red light wavelength region corresponding to the polarization separation film 14. And has an excellent light absorption performance in the red light wavelength region.

(変形例2)
上記実施形態および変形例1において、偏光子1に形成された吸収膜15が、いずれもTa25、SiO2、TiOxの物質よりなる、6層の誘電体多層膜で構成された場合で説明したが、その他にSi(シリコン)、Al23(酸化アルミニウム)、Nb25(五酸化ニオブ)、LaTiO3(ランタンチタネート)などの物質を用いて構成することができる。
(Modification 2)
In the above-described embodiment and Modification 1, the absorption film 15 formed on the polarizer 1 is composed of a six-layer dielectric multilayer film made of Ta 2 O 5 , SiO 2 , and TiO x materials. However, other materials such as Si (silicon), Al 2 O 3 (aluminum oxide), Nb 2 O 5 (niobium pentoxide), LaTiO 3 (lanthanum titanate) can be used.

吸収膜15の他の膜構成例を、前記「変形例1」中に示した青色光波長域の光吸収機能を有する吸収膜を例に説明する。
「表9」は、青色光波長域の光吸収機能を有する吸収膜の別の膜構成を示し、「表10」は、青色光波長域の光吸収機能を有する吸収膜の、さらに別の膜構成を示す。なお、吸収膜15の膜構成は、設計波長485nm、入射角度0°における設計値である。
Another film configuration example of the absorption film 15 will be described by taking the absorption film having the light absorption function in the blue light wavelength region shown in the above “Modification 1” as an example.
“Table 9” shows another film configuration of the absorption film having the light absorption function in the blue light wavelength region, and “Table 10” shows still another film of the absorption film having the light absorption function in the blue light wavelength region. The configuration is shown. The film configuration of the absorption film 15 is a design value at a design wavelength of 485 nm and an incident angle of 0 °.

Figure 2009104023
Figure 2009104023

Figure 2009104023
「表9」に示す吸収膜15は、LaTiO3(ランタンチタネート)を1層目として、2層目以降Al23、SiO2、LaTiO3、SiO2、LaTiO3、7層目にSi、そして最上層の8層目にSiO2よりなる、8層の誘電体多層膜で構成される。この誘電体多層膜中の7層目のSi層において光吸収が行われる。
「表10」に示す吸収膜15は、Nb25(五酸化ニオブ)を1層目として、2層目にSiO2、3層目にNb25、4層目にSiO2、5層目にTiOx、そして最上層の6層目にSiO2よりなる、6層の誘電体多層膜で構成される。この誘電体多層膜中の5層目のTiOx層において光吸収が行われる。
Figure 2009104023
The absorption film 15 shown in “Table 9” has LaTiO 3 (lanthanum titanate) as the first layer, Al 2 O 3 , SiO 2 , LaTiO 3 , SiO 2 , LaTiO 3 , and the seventh layer with Si, The eighth uppermost layer is composed of an eight-layer dielectric multilayer film made of SiO 2 . Light absorption is performed in the seventh Si layer in the dielectric multilayer film.
Absorbing film 15 shown in "Table 10", SiO 2, 5 Nb 2 O 5 and (niobium pentoxide) as a first layer, the Nb 2 O 5, 4-layer to SiO 2, 3-layer as the second layer It is composed of a six-layer dielectric multilayer film composed of TiO x as the layer and SiO 2 as the uppermost layer. Light absorption is performed in the fifth TiO x layer in the dielectric multilayer film.

このように構成された吸収膜15の光吸収特性を図12、図13に示す。
図12は、「表9」に示す青色光波長域の光吸収機能を有する別の吸収膜15の透過率および反射率の波長分散特性を示すグラフであり、図13は、「表10」に示す青色光波長域の光吸収機能を有する、さらに別の吸収膜15の透過率および反射率の波長分散特性を示すグラフである。
The light absorption characteristics of the absorption film 15 configured as described above are shown in FIGS.
FIG. 12 is a graph showing the wavelength dispersion characteristics of the transmittance and reflectance of another absorption film 15 having a light absorption function in the blue light wavelength range shown in “Table 9”. FIG. It is a graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of another absorption film 15 which has the light absorption function of the blue light wavelength range to show.

各グラフの横軸は、波長領域400nm〜500nmの範囲における入射光の波長(nm)を示し、縦軸にp偏光光の透過率(T(%))またはs偏光光の反射率(R(%))を示す。なお、各図に示す線図r〜線図uは、計算により求めた波長領域400nm〜500nmにおける1nm毎のプロット点を結んだ線図である。   The horizontal axis of each graph indicates the wavelength (nm) of incident light in the wavelength region of 400 nm to 500 nm, and the vertical axis indicates the transmittance of p-polarized light (T (%)) or the reflectance of s-polarized light (R ( %)). Each of the diagrams r to u shown in each drawing is a diagram connecting plot points for every 1 nm in the wavelength region 400 nm to 500 nm obtained by calculation.

図12において、線図rで示す吸収膜15の透過率、線図sで示す吸収膜15の反射率は、偏光分離膜14に対応した青色光波長域の429nm〜466nmにおいて、0.9%以下の値を示す。また、図13において、線図tで示す透過率、線図uで示す反射率は、0.4%以下の値を示し、共に青色光波長域における優れた光吸収性能を備えている。
なお、以上の変形例2において、吸収膜15の吸収層がTiOxおよびSiより成る場合を例示したが、Nb25(五酸化ニオブ)やTa25(酸化タンタル)を吸収層とした誘電体多層膜で吸収膜15を構成することもできる。但し、Ta25を用いる場合には、光吸収性能が低いために、膜厚の厚い誘電体膜を形成する必要がある。
In FIG. 12, the transmittance of the absorption film 15 indicated by the line r and the reflectance of the absorption film 15 indicated by the line s are 0.9% in the blue light wavelength region corresponding to the polarization separation film 14 429 nm to 466 nm. The following values are shown. In FIG. 13, the transmittance shown by the line t and the reflectance shown by the line u show values of 0.4% or less, and both have excellent light absorption performance in the blue light wavelength region.
In the second modification, the case where the absorption layer of the absorption film 15 is made of TiO x and Si has been exemplified. However, Nb 2 O 5 (niobium pentoxide) or Ta 2 O 5 (tantalum oxide) is used as the absorption layer. The absorption film 15 can also be formed of the dielectric multilayer film. However, when Ta 2 O 5 is used, since the light absorption performance is low, it is necessary to form a thick dielectric film.

(a)は本実施形態に係る偏光子の構成を模式的に示す正面図であり、(b)は(a)のA−A断面における偏光子を模式的に示す断面図。(A) is a front view which shows typically the structure of the polarizer which concerns on this embodiment, (b) is sectional drawing which shows typically the polarizer in the AA cross section of (a). 可視光波長領域の偏光分離機能を有する偏光分離膜の透過率および反射率の波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of a polarization separation film having a polarization separation function in the visible light wavelength region. 可視光波長領域の光吸収機能を有する吸収膜の透過率および反射率の波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of an absorption film which has a light absorption function of visible light wavelength region. 本実施形態に係る偏光子を製造する主要な工程を示す工程断面図。Process sectional drawing which shows the main processes which manufacture the polarizer which concerns on this embodiment. 本実施形態に係る偏光子を製造する主要な工程を示す工程断面図。Process sectional drawing which shows the main processes which manufacture the polarizer which concerns on this embodiment. 青色光波長域の偏光分離機能を有する偏光分離膜の透過率および反射率の波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of a polarization separation film which has a polarization separation function of a blue light wavelength region. 青色光波長域の光吸収機能を有する吸収膜の透過率および反射率の波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of an absorption film which has a light absorption function of a blue light wavelength region. 緑色光波長域の偏光分離機能を有する偏光分離膜の透過率および反射率の波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of a polarization separation film which has a polarization separation function of a green light wavelength range. 緑色光波長域の光吸収機能を有する吸収膜の透過率および反射率の波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of an absorption film which has a light absorption function of a green light wavelength range. 赤色光波長域の偏光分離機能を有する偏光分離膜の透過率および反射率の波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of a polarization separation film which has a polarization separation function of a red light wavelength region. 赤色光波長域の光吸収機能を有する吸収膜の透過率および反射率の波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of an absorption film which has the light absorption function of a red light wavelength range. 青色光波長域の光吸収機能を有する別の吸収膜の透過率および反射率の波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of another absorption film which has the light absorption function of a blue light wavelength range. 青色光波長域の光吸収機能を有する、さらに別の吸収膜の透過率および反射率の波長分散特性を示すグラフ。The graph which shows the wavelength dispersion characteristic of the transmittance | permeability and reflectance of another absorption film which has a light absorption function of a blue light wavelength range. (a)は完成した偏光子の正面、上面および側面を一括して示す模式図であり、(b)は(a)に示す偏光子の正面図に対して90°の角度回転した状態の正面、上面および側面を一括して示す模式図。(A) is a schematic diagram collectively showing the front, top and side surfaces of the completed polarizer, and (b) is a front view in a state rotated by an angle of 90 ° with respect to the front view of the polarizer shown in (a). The schematic diagram which shows an upper surface and a side surface collectively.

符号の説明Explanation of symbols

1…偏光子、1a…光入射面、1b…光射出面、11,12…透光性基材としてのガラス材、13…矩形柱、14…偏光分離膜、15…吸収膜、111…透光性基板としてのガラス板、112…ガラスブロック、113…素子ユニット、114…素子ブロック。   DESCRIPTION OF SYMBOLS 1 ... Polarizer, 1a ... Light incident surface, 1b ... Light emission surface, 11, 12 ... Glass material as translucent base material, 13 ... Rectangular column, 14 ... Polarization separation film, 15 ... Absorption film, 111 ... Transmission Glass plate as optical substrate, 112... Glass block, 113... Element unit, 114.

Claims (4)

入射光を直線偏光光に作り出す偏光子であって、
断面形状が直角三角形の二つの透光性基材が互いの斜辺同士で貼り合わされた矩形柱が、前記入射光の入射面に沿って複数並列配置され、
前記透光性基材の前記斜辺の界面に前記入射光を、第1の直線偏光光と第2の直線偏光光とに分離する偏光分離膜と、
前記並列配置された前記矩形柱の界面に前記偏光分離膜において分離されて入射する前記第1の直線偏光光を吸収する吸収膜と、前記第2の直線偏光光を射出する光射出面と、
を備えたことを特徴とする偏光子。
A polarizer that creates incident light into linearly polarized light,
A plurality of rectangular pillars in which two translucent substrates having a right-angled cross-sectional shape are bonded to each other at the oblique sides are arranged in parallel along the incident surface of the incident light,
A polarization separation film that separates the incident light into the first linearly polarized light and the second linearly polarized light at the oblique side interface of the translucent substrate;
An absorbing film that absorbs the first linearly polarized light that is separated and incident on the interface of the rectangular columns arranged in parallel, and a light exit surface that emits the second linearly polarized light;
A polarizer characterized by comprising:
請求項1に記載の偏光子であって、
前記吸収膜は誘電体多層膜より成り、少なくともSi、TiOx、Nb25の内のいずれかの誘電体膜より成る吸収層を含むことを特徴とする偏光子。
The polarizer according to claim 1,
The polarizer is characterized in that the absorption film is made of a dielectric multilayer film and includes an absorption layer made of at least one of a dielectric film of Si, TiO x , and Nb 2 O 5 .
請求項1または請求項2に記載の偏光子であって、
前記吸収膜は、前記吸収層と反射防止層とを含み構成されていることを特徴とする偏光子。
The polarizer according to claim 1 or 2, wherein
The polarizer according to claim 1, wherein the absorption film includes the absorption layer and an antireflection layer.
透光性基板の一方の表面上に、入射光を二種類の直線偏光光に分離する偏光分離膜を形成する偏光分離膜形成工程と、
複数の前記透光性基板の前記偏光分離膜が形成された面を一方方向に揃えて板厚方向に順次重ね合わせて貼り合わせたガラスブロックを形成するガラスブロック形成工程と、
前記ガラスブロックを、該ガラスブロックの表面と略45°の角度を成す互いに略平行な複数の切断線に沿って切断して、複数の素子ユニットを形成するガラスブロック切断工程と、
複数の前記素子ユニットの一方の表面上に、二種類の前記直線偏光光の一方を吸収する吸収膜を形成する吸収膜形成工程と、
複数の前記素子ユニットの前記吸収膜が形成された面を一方方向に揃えて、前記素子ユニットに形成された前記偏光分離膜が略一直線上となるように位置決めして板厚方向に順次重ね合わせて貼り合わせた素子ブロックを形成する素子ブロック形成工程と、
前記素子ブロックを、該素子ブロックの表面と略90°の角度を成す互いに略平行な複数の切断線に沿って切断する素子ブロック切断工程と、
を備えたことを特徴とする偏光子の製造方法。
A polarization separation film forming step of forming a polarization separation film that separates incident light into two types of linearly polarized light on one surface of the translucent substrate;
A glass block forming step of forming a glass block in which the surfaces on which the polarization separation films of the plurality of translucent substrates are formed are aligned in one direction and are sequentially stacked and bonded together;
Cutting the glass block along a plurality of cutting lines substantially parallel to each other at an angle of about 45 ° with the surface of the glass block to form a plurality of element units; and
An absorption film forming step of forming an absorption film that absorbs one of the two types of linearly polarized light on one surface of the plurality of element units;
The surfaces of the plurality of element units on which the absorption films are formed are aligned in one direction, and the polarization separation films formed on the element units are positioned so as to be substantially in a straight line, and are sequentially superimposed in the plate thickness direction. An element block forming step for forming an element block bonded together;
An element block cutting step for cutting the element block along a plurality of cutting lines substantially parallel to each other and forming an angle of about 90 ° with the surface of the element block;
A method for producing a polarizer, comprising:
JP2007277254A 2007-10-25 2007-10-25 Polarizer and its manufacturing method Withdrawn JP2009104023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277254A JP2009104023A (en) 2007-10-25 2007-10-25 Polarizer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277254A JP2009104023A (en) 2007-10-25 2007-10-25 Polarizer and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2009104023A true JP2009104023A (en) 2009-05-14
JP2009104023A5 JP2009104023A5 (en) 2010-11-18

Family

ID=40705737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277254A Withdrawn JP2009104023A (en) 2007-10-25 2007-10-25 Polarizer and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009104023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105656A (en) * 2019-12-26 2021-07-26 パナソニックIpマネジメント株式会社 Display device and projection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105656A (en) * 2019-12-26 2021-07-26 パナソニックIpマネジメント株式会社 Display device and projection device
JP7417892B2 (en) 2019-12-26 2024-01-19 パナソニックIpマネジメント株式会社 Display and projection devices

Similar Documents

Publication Publication Date Title
CN105339818B (en) Polarization converter, the manufacturing method of Polarization converter and optical device
JP2010230856A (en) Polarization conversion device an polarized illumination optical device, and liquid crystal projector
JP2001004828A (en) Manufacture of polarizing separating device
US8035759B2 (en) Polarization conversion device, polarized illumination optical device, and liquid crystal projector
JP2014182280A (en) Display device
US7961392B2 (en) Polarization beam splitter and polarization conversion element
JP2007206225A (en) Polarization conversion element
JP5209932B2 (en) Polarization beam splitter and polarization conversion element
EP1873573A1 (en) Polarization recovery plate
JP2008102183A (en) Hybrid polarizer
JP5182071B2 (en) Polarizer, polarizer manufacturing method and projector
JP3584257B2 (en) Polarizing beam splitter
JP2009104023A (en) Polarizer and its manufacturing method
JP5541813B2 (en) Reflective light modulator
JP2003114326A (en) Polarized beam splitter and optical apparatus using the polarized beam splitter
JP5458545B2 (en) Method for manufacturing optical article
JPS5922022A (en) Beam splitter
JP2003014932A (en) Polarized beam splitter and method for fabricating polarized beam splitter
JP2001083326A (en) Composite phase-contrast plate
JP5493746B2 (en) Polarization conversion element and projection display device
TW201305713A (en) Projection system
JP2007078779A (en) Cross dichroic prism, optical device, projector, and manufacturing method for cross dichroic prism
JP2010181717A (en) Polarizing illumination optical element
JP4285032B2 (en) Polarized beam conversion element, method for manufacturing the same, and liquid crystal display device
JPH10282337A (en) Sheet-like polarization separation and transformation polarizing element, and liquid crystal display device using same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111220