JP2009103514A - Painting defect inspection method - Google Patents

Painting defect inspection method Download PDF

Info

Publication number
JP2009103514A
JP2009103514A JP2007274069A JP2007274069A JP2009103514A JP 2009103514 A JP2009103514 A JP 2009103514A JP 2007274069 A JP2007274069 A JP 2007274069A JP 2007274069 A JP2007274069 A JP 2007274069A JP 2009103514 A JP2009103514 A JP 2009103514A
Authority
JP
Japan
Prior art keywords
coating
temperature difference
substrate
temperature
spray gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007274069A
Other languages
Japanese (ja)
Other versions
JP5016439B2 (en
Inventor
Nobuo Imanishi
信夫 今西
Kazunori Fujinaga
和典 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KMEW Co Ltd
Original Assignee
Kubota Matsushitadenko Exterior Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Matsushitadenko Exterior Works Ltd filed Critical Kubota Matsushitadenko Exterior Works Ltd
Priority to JP2007274069A priority Critical patent/JP5016439B2/en
Publication of JP2009103514A publication Critical patent/JP2009103514A/en
Application granted granted Critical
Publication of JP5016439B2 publication Critical patent/JP5016439B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a painting defect inspection method capable of detecting accurately existence of a painting defect, even when irregularities are formed on a substrate surface, when applying painting onto the substrate. <P>SOLUTION: The temperature of the surface, where a paint 2 is to be painted on the substrate 1 before being painted, is measured. The temperature of the surface, where the paint 2 is painted on the substrate 1 after being painted, is measured. The temperature difference before and after painting on the substrate 1 surface is derived from each measured result. The existence of a painting defect is determined, based on the derived temperature difference of the substrate 1 surface. As a result, the existence of painting defect on the substrate 1 can be detected, based on the temperature decline of the substrate 1 surface, caused by vaporization heat removed, when a solvent in the paint 2 is evaporated, after the application of the paint 2 onto the substrate 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、適宜の基材の表面に塗料を塗布した場合における塗装不良を検出する塗装不良検査方法に関し、特に表面に凹凸を有する基材における塗装不良の検知に好適な塗装不良検査方法に関するものである。   The present invention relates to a coating failure inspection method for detecting a coating failure when a paint is applied to the surface of an appropriate substrate, and particularly relates to a coating failure inspection method suitable for detecting a coating failure in a substrate having an uneven surface. It is.

外壁製品等の種々の製品に対して塗装を施す場合、この塗装後の製品における塗装不良の有無の検査を行う必要がある。   When coating various products such as outer wall products, it is necessary to inspect for the presence of coating defects in the product after coating.

このような塗装不良の検査方法としては、目視により観察する方法もあるが、特にクリアー塗料を塗布する場合には目視による塗装不良の判別が困難な場合がある。   As a method for inspecting such a coating defect, there is a method of visually observing. However, particularly when a clear paint is applied, it may be difficult to visually determine the coating defect.

そこで、従来、塗装不良の検査方法として、例えば図6(a)に示すように塗料2を塗布した後の基材1に対して光源8から光を照射してその反射光をCCDカメラ9等にて測定することで塗装ムラにより生じる光沢の変化を検出する方法や、図6(b)に示すように塗装後の基材1における塗料2の膜厚をレーザ変位計10で検出する方法等が行われている。   Therefore, conventionally, as a method for inspecting coating failure, for example, as shown in FIG. 6A, the substrate 1 after applying the paint 2 is irradiated with light from the light source 8, and the reflected light is converted into the CCD camera 9 or the like. A method of detecting a change in gloss caused by coating unevenness by measuring at a point, a method of detecting a film thickness of the paint 2 on the base material 1 after coating with a laser displacement meter 10 as shown in FIG. Has been done.

しかし、表面に凹凸を有する基材1における塗装不良の検査を行う場合には、図6(a)に示す方法では基材1に照射した光が凹凸部分で乱反射してしまって正確な検査を行うことができず、また上記図6(b)に示す方法でもレーザ変位計10から照射される光が基材1の凹凸部分で散乱することで正確な膜厚測定を行うことができなくなるという問題がある。   However, in the case of inspecting a coating defect in the substrate 1 having an uneven surface, in the method shown in FIG. 6A, the light irradiated to the substrate 1 is irregularly reflected by the uneven portion, and an accurate inspection is performed. In addition, the method shown in FIG. 6 (b) also makes it impossible to perform accurate film thickness measurement because the light emitted from the laser displacement meter 10 is scattered by the uneven portions of the substrate 1. There's a problem.

また、特許文献1では、塗装後の基材1の表面において塗料2中の溶剤の揮発によって気化熱が奪われることに起因する温度低下に着目して、塗装後の基材1の表面温度を測定し、この測定結果から得られる基材1の表面の平均温度に対して一定値以上高い温度の部位に塗装不良が生じているものと判定する手法が提案されている。   Moreover, in patent document 1, paying attention to the temperature fall resulting from the vaporization heat being deprived by volatilization of the solvent in the coating material 2 on the surface of the base material 1 after coating, the surface temperature of the base material 1 after coating is set. There has been proposed a method of measuring and determining that a coating defect has occurred at a temperature higher than a certain value with respect to the average temperature of the surface of the substrate 1 obtained from the measurement result.

しかし、この特許文献1に開示されている方法によっても、基材1の表面にもともと温度ムラが生じている場合には塗装不良を正確に検知することができないという問題があった。特に基材1の表面に凹凸が形成されている場合には基材1の熱容量が部分的に異なるものとなるため、基材1の全体に亘る熱履歴が等しい場合であっても表面温度のムラが生じてしまい、正確な塗装不良の検出は困難なものであった。
特開平8−304036号公報
However, even with the method disclosed in Patent Document 1, there is a problem that a coating failure cannot be accurately detected when temperature unevenness is originally generated on the surface of the substrate 1. In particular, when unevenness is formed on the surface of the base material 1, the heat capacity of the base material 1 is partially different. Therefore, even if the thermal history over the entire base material 1 is equal, the surface temperature Unevenness occurred, and it was difficult to accurately detect poor coating.
JP-A-8-304036

本発明は上記の点に鑑みて為されたものであり、基材に塗装を施す場合、この基材の表面に凹凸が形成されている場合であっても塗装不良の有無を正確に検知することができる塗装不良検査方法を提供することを目的とするものである。   The present invention has been made in view of the above points. When a substrate is coated, the presence or absence of a coating defect is accurately detected even when unevenness is formed on the surface of the substrate. An object of the present invention is to provide a coating defect inspection method that can be applied.

請求項1に係る塗装不良検査方法は、塗装後の基材1における塗装不良を検査する塗装不良検査方法であって、塗装前の基材1における塗料2が塗布されるべき面の温度を測定し、塗装後の基材1における塗料2が塗布された面の温度を測定し、この各測定結果に基づいて基材1表面の塗装前後の温度差を導出し、この導出された基材1表面の温度差に基づいて塗装不良の有無を判定することを特徴とする。   The coating defect inspection method according to claim 1 is a coating defect inspection method for inspecting a coating defect on the substrate 1 after painting, and measures the temperature of the surface to which the paint 2 on the substrate 1 before coating is to be applied. Then, the temperature of the surface of the base material 1 after coating on which the paint 2 is applied is measured, and the temperature difference before and after the coating on the surface of the base material 1 is derived based on each measurement result. It is characterized by determining the presence or absence of coating failure based on the temperature difference of the surface.

請求項2に係る発明は、請求項1において、複数のスプレーガン3を用いたスプレー方式で塗装された基材1を検査対象とし、基材1表面の塗装前後の温度差を導出する際には、塗装前後における基材1表面の温度差の分布を導出し、塗装不良の有無を判定する際には、前記温度差の分布に基材1表面における各スプレーガン3の軌跡5a,5b,5c,5dを重ね合わせ、前記温度差の分布において異常な値の温度差が生じている領域を塗装不良が生じている領域と判定すると共に前記各軌跡5a,5b,5c,5dのうち前記塗装不良が生じている領域と重なる軌跡5cに対応するスプレーガン3を塗装不良の原因となったスプレーガン3であると判定することを特徴とする。   The invention according to claim 2 is the method according to claim 1, wherein the base material 1 coated by a spray method using a plurality of spray guns 3 is an inspection object, and the temperature difference before and after the coating of the surface of the base material 1 is derived. Derives the distribution of the temperature difference on the surface of the base material 1 before and after coating, and determines whether or not there is a coating defect, the locus 5a, 5b, 5c and 5d are overlapped, and a region where an abnormal temperature difference occurs in the temperature difference distribution is determined as a region where a coating failure occurs, and the coating among the trajectories 5a, 5b, 5c and 5d is determined. It is characterized in that the spray gun 3 corresponding to the trajectory 5c overlapping with the defective area is determined to be the spray gun 3 causing the coating failure.

請求項3に係る発明は、請求項1又は2において、複数のスプレーガン3を用いたスプレー方式で塗装された基材1を検査対象とし、基材1表面の塗装前後の温度差を導出する際には、塗装前後における前記基材1表面の所定のライン7上の温度差の分布を導出し、塗装不良の有無を判定する際には、前記導出された温度差の分布における温度差の値の変化パターンに基づいて塗装不良の有無を判定することを特徴とする。   The invention according to claim 3 derives the temperature difference before and after the coating of the surface of the base material 1 with the base material 1 coated by the spray method using the plurality of spray guns 3 as the inspection object. In this case, the distribution of the temperature difference on the predetermined line 7 on the surface of the substrate 1 before and after coating is derived, and when determining the presence or absence of coating failure, the temperature difference in the derived temperature difference distribution is determined. It is characterized in that the presence / absence of a coating failure is determined based on a value change pattern.

請求項4に係る塗装不良検査方法は、請求項3において、塗装不良の有無を判定する際には、上記温度差の値の変化パターンにおける部分的な乱れの有無を判定し、この乱れが生じた部位に対応する位置で基材1上に塗装不良が生じていると共に、この乱れが生じた部位に対応するスプレーガン3が塗装不良の原因となったスプレーガン3であると判定することを特徴とする。   According to a fourth aspect of the present invention, in the method for inspecting defective coating, when determining the presence or absence of defective coating, the presence or absence of partial disturbance in the change pattern of the temperature difference value is determined. It is determined that a coating failure has occurred on the base material 1 at a position corresponding to the region where the spray gun 3 is a spray gun 3 that has caused the coating failure. Features.

請求項5に係る塗装不良検査装置は、請求項3又は4において、塗装不良の有無を判定する際には、上記温度差の値の変化パターンにおける前記値の変化の振幅と、この値の変化の周期とのうち、少なくとも一方が所定の許容範囲を逸脱した場合に、塗装不良が発生していると共に、スプレーガン3による塗装動作に異常が発生しているものと判定することを特徴とする。   In the coating failure inspection apparatus according to claim 5, in determining whether there is a coating failure in claim 3 or 4, the amplitude of the change in the value in the change pattern of the temperature difference value and the change in this value are determined. When at least one of the periods deviates from a predetermined allowable range, it is determined that a coating failure has occurred and an abnormality has occurred in the painting operation by the spray gun 3. .

請求項1に係る発明によれば、基材1に塗料2を塗布した後、塗料2中の溶剤が揮発する際に奪われる気化熱に起因する基材1表面の温度低下に基づいて基材1の塗装不良の有無を検出することができ、このときの温度低下を、塗料2が塗布される前の基材1の温度と塗料2が塗布された後の基材1の温度との差に基づいて導出することで、塗装前の基材1に元々存在する温度ムラ等とは無関係に基材1の塗装不良の有無を正確に判定することができ、特に表面に凹凸を有する基材1などのような部分的に熱容量の異なる部位がある基材1における塗装不良の有無の判定に好適なものである。   According to the first aspect of the present invention, after applying the coating material 2 to the base material 1, the base material is based on the temperature decrease of the surface of the base material 1 due to the heat of vaporization taken away when the solvent in the coating material 2 volatilizes. 1 can detect the presence or absence of coating failure, and the temperature drop at this time is the difference between the temperature of the substrate 1 before the coating 2 is applied and the temperature of the substrate 1 after the coating 2 is applied. Can be accurately determined whether there is a coating failure of the base material 1 regardless of the temperature unevenness originally existing in the base material 1 before coating, and in particular, a base material having unevenness on the surface. This is suitable for determining the presence or absence of coating failure in the base material 1 having a part having a partially different heat capacity such as 1.

請求項2に係る発明によれば、塗装不良の発生を検出すると共に、複数のスプレーガン3のうち塗装不良の原因となるような異常な動作を行ったスプレーガン3を特定することができるものである。   According to the second aspect of the invention, it is possible to detect the occurrence of a coating failure and to identify the spray gun 3 that has performed an abnormal operation that causes the coating failure among a plurality of spray guns 3. It is.

請求項3に係る発明によれば、基材1上の所定のライン7上における温度差の値の変化パターンに基づき、この変化パターンに正常なパターンと比較した乱れが生じた場合に、塗装不良を検出することができるものである。   According to the third aspect of the present invention, when the change pattern of the temperature difference value on the predetermined line 7 on the substrate 1 is disturbed as compared with the normal pattern, the coating failure occurs. Can be detected.

請求項4に係る発明によれば、温度差の値の変化パターンにおける部分的な乱れに基づいて塗装不良の発生を検出すると共に、複数のスプレーガン3のうち塗装不良の原因となるような異常な動作を行ったスプレーガン3を特定することができるものである。   According to the fourth aspect of the invention, the occurrence of a coating failure is detected based on partial disturbance in the change pattern of the temperature difference value, and an abnormality that causes a coating failure among the plurality of spray guns 3 is detected. It is possible to identify the spray gun 3 that has performed various operations.

請求項5に係る発明によれば、温度差の値の変化パターンにおける前記値の変化の振幅と、この値の変化の周期に基づいて、塗装不良の発生を検出すると共に、この塗装不良の原因となったスプレーガン3の移動速度や基材1の搬送速度の異常を検出することができるものである。   According to the fifth aspect of the present invention, the occurrence of a coating failure is detected based on the amplitude of the change in the value in the temperature difference value change pattern and the period of the change in the value, and the cause of the coating failure. It is possible to detect an abnormality in the moving speed of the spray gun 3 and the conveyance speed of the substrate 1.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明における塗装の対象である基材1としては適宜のものを用いることができるが、例えばセメント系の無機質板を挙げることができる。   As the base material 1 to be coated in the present invention, an appropriate one can be used, and for example, a cement-based inorganic plate can be mentioned.

基材1に塗装を行うための塗料2としては適宜のものが挙げられるが、本発明における塗装不良検査の対象となる塗料2としては、水や有機溶剤等の溶媒を含有し、この塗料2を基材1に塗布した場合に溶媒の揮発が生じるものが挙げられる。   The paint 2 for coating the base material 1 may be an appropriate one, but the paint 2 to be subjected to the coating defect inspection in the present invention contains a solvent such as water or an organic solvent. Examples include those in which volatilization of the solvent occurs when the is applied to the substrate 1.

このような塗料2としては、例えばアクリルエマルション系塗料等の有機塗料を挙げることができる。この有機塗料は無色透明のクリア塗料であるほか、適宜の顔料や染料等を配合した着色塗料であっても良い。この場合、例えば基材1に対して有機塗料をスプレー等にて塗布した後、有機塗料の組成に応じた適宜の条件、例えば100〜150℃で30秒以上加熱乾燥することにより成膜して、有機塗膜を形成することができる。有機塗膜の厚みは特に制限されないが、5〜100μmの範囲であることが好ましい。   Examples of such a paint 2 include organic paints such as acrylic emulsion paints. The organic paint may be a colorless and transparent clear paint, or may be a colored paint containing an appropriate pigment or dye. In this case, for example, after applying the organic paint to the substrate 1 by spraying or the like, the film is formed by heating and drying at an appropriate condition according to the composition of the organic paint, for example, at 100 to 150 ° C. for 30 seconds or more. An organic coating film can be formed. The thickness of the organic coating film is not particularly limited, but is preferably in the range of 5 to 100 μm.

また、この基材1に有機塗膜を形成した後、更に紫外線吸収剤を含有する無機塗料を塗布成膜することができる。これにより形成されるクリア塗膜は、例えば基材1の表面保護や耐候性の向上のために設けられる。   Moreover, after forming an organic coating film on the substrate 1, an inorganic coating containing an ultraviolet absorber can be further applied to form a film. The clear coating film formed by this is provided, for example, for surface protection of the substrate 1 and improvement of weather resistance.

無機質塗料としては適宜のものを用いることができるが、例えばオルガノシランのシリカ分散オリゴマー溶液に、ポリオルガノシロキサンや、アルキルチタン酸塩等の縮合反応触媒を加え、或いは更にシリカを加えたケイ素アルコキシド系塗料等を用いることができる。   As the inorganic coating material, an appropriate one can be used. For example, a silicon alkoxide system in which a condensation reaction catalyst such as polyorganosiloxane and alkyl titanate is added to silica dispersion oligomer solution of organosilane, or silica is further added. Paint or the like can be used.

このような無機質塗料を塗布した後、例えば60〜120℃で焼き付け乾燥等することにより成膜することで、クリア塗膜を形成することができる。このクリア塗膜の厚みは特に制限されないが、通常は1〜10μmの範囲の薄膜に形成される。   After applying such an inorganic coating, a clear coating film can be formed by forming a film by baking and drying at 60 to 120 ° C., for example. The thickness of the clear coating film is not particularly limited, but is usually formed as a thin film in the range of 1 to 10 μm.

また、このクリア塗膜に積層して形成される、クリア塗膜より紫外線吸収性が低い外層クリア塗膜としては、光触媒を含有する無機塗膜を挙げることができる。この外層クリア塗膜は、クリア塗膜の表面に光触媒を含有する無機質塗料を塗布成膜することで形成することができ、例えば基材1の防汚性を向上する目的で形成される。   Moreover, as an outer-layer clear coating film which is formed by laminating on this clear coating film and has an ultraviolet absorption lower than that of the clear coating film, an inorganic coating film containing a photocatalyst can be exemplified. This outer layer clear coating film can be formed by applying an inorganic coating containing a photocatalyst to the surface of the clear coating film, and is formed, for example, for the purpose of improving the antifouling property of the substrate 1.

光触媒を含有する無機質塗料としては適宜のものを用いることができるが、例えば上記クリア塗膜を形成するために使用されるケイ素アルコキシド系塗料に酸化チタン等の光触媒を加えたもの等を用いることができる。   As the inorganic paint containing a photocatalyst, an appropriate one can be used. For example, a silicon alkoxide paint used for forming the above clear coating film added with a photocatalyst such as titanium oxide can be used. it can.

このような無機質塗料を塗布した後、例えば60〜120℃で焼き付け乾燥等することにより成膜して、外層クリア塗膜を形成することができる。この外層クリア塗膜の厚みは特に制限されないが、例えば0.2〜1.0μmの範囲に形成される。   After applying such an inorganic coating, the outer layer clear coating film can be formed by baking and drying at 60 to 120 ° C., for example. Although the thickness of this outer layer clear coating film is not particularly limited, for example, it is formed in the range of 0.2 to 1.0 μm.

図1は、基材1に塗装を施す際に塗装不良検査を行うための工程の一例を概略的に示したものである。   FIG. 1 schematically shows an example of a process for performing a coating defect inspection when a substrate 1 is coated.

図示の例では、板状の基材1がベルトコンベア等の搬送機構にて搬送されながら、塗装前の基材1における塗料2が塗布されるべき面の温度を測定する工程(第一工程)と、この基材1に塗料2を塗布する工程(第二工程)と、塗料2が塗布された後の基材1におけるその塗料2が塗布された面の温度を測定する工程(第三工程)とを順次通過するようになっている。   In the example shown in the figure, the step of measuring the temperature of the surface on which the coating material 2 on the base material 1 before coating is to be applied while the plate-like base material 1 is transported by a transport mechanism such as a belt conveyor (first step). And a step of applying the paint 2 to the substrate 1 (second step), and a step of measuring the temperature of the surface of the substrate 1 on which the paint 2 is applied after the coating 2 is applied (third step). ) And pass sequentially.

上記第一工程では、サーモグラフィセンサや放射温度計4等の温度測定器を用い、基材1の表面の温度を測定して、この基材1の表面の温度分布を導出する。このとき好ましくは基材1表面における塗料2が塗布される面の全面における温度分布を導出する。   In the first step, a temperature measurement device such as a thermographic sensor or a radiation thermometer 4 is used to measure the temperature of the surface of the base material 1 to derive the temperature distribution of the surface of the base material 1. At this time, the temperature distribution in the entire surface of the surface of the base material 1 to which the paint 2 is applied is preferably derived.

この基材1の表面温度の測定にあたっては、例えば基材1の上方に複数の放射温度計4を、前記基材1の搬送方向と直交する方向に並べて配設し、各放射温度計4により基材1の移動と同期して周期的に各放射温度計4の下方における基材1の表面温度を測定することができる。このとき、基材1の搬送速度をエンコーダ等の適宜の計測装置にて計測し、この計測結果に基づいて、各放射温度計4による周期的な温度測定を行うようにすることができる。このような放射温度計4を用いると、サーモグラフィセンサを設ける場合に比べて低コストで基材1の広い範囲における表面の温度分布を測定することができる。   In measuring the surface temperature of the base material 1, for example, a plurality of radiation thermometers 4 are arranged above the base material 1 in a direction orthogonal to the transport direction of the base material 1. The surface temperature of the base material 1 below each radiation thermometer 4 can be periodically measured in synchronization with the movement of the base material 1. At this time, the conveyance speed of the base material 1 can be measured by an appropriate measuring device such as an encoder, and periodic temperature measurement by each radiation thermometer 4 can be performed based on the measurement result. When such a radiation thermometer 4 is used, the temperature distribution of the surface in a wide range of the substrate 1 can be measured at a lower cost than in the case where a thermographic sensor is provided.

第二工程では、スプレー方式、カーテンコータ、ロールコータ等の適宜の方法で基材1に塗料2を塗布する。本実施形態ではスプレーガン3を用いたスプレー方式にて塗料2を塗布している。スプレー方式による塗料2の塗布にあたっては固定式、レシプロ式、ロータリ式等の適宜の方式を採用することができるが、本実施形態では複数のスプレーガン3を基材1の搬送方向に沿って配列すると共にこのスプレーガン3を搬送機構による基材1の移動と同期して適宜の機構により搬送方向と直交する方向に往復駆動させるレシプロ式を採用している。   In the second step, the paint 2 is applied to the substrate 1 by an appropriate method such as a spray method, a curtain coater, or a roll coater. In the present embodiment, the paint 2 is applied by a spray method using a spray gun 3. In applying the paint 2 by the spray method, an appropriate method such as a fixed method, a reciprocating method, or a rotary method can be adopted. In this embodiment, a plurality of spray guns 3 are arranged along the conveying direction of the substrate 1. In addition, a reciprocating system is adopted in which the spray gun 3 is driven to reciprocate in a direction orthogonal to the transport direction by an appropriate mechanism in synchronization with the movement of the substrate 1 by the transport mechanism.

第三工程では、上記第一工程と同様にして塗料2が塗布された基材1の表面の温度を測定してその温度分布を導出することができる。   In the third step, the temperature distribution of the surface of the substrate 1 on which the paint 2 is applied can be measured in the same manner as in the first step, and the temperature distribution can be derived.

そして、上記第一工程で得られた塗料2の塗布前の基材1の表面の温度分布と、第三工程で得られた塗料2の塗布後の基材1の表面の温度分布から、塗料2の塗布の前後に亘る基材1の表面の温度差の分布を導出する。   And from the temperature distribution of the surface of the base material 1 before application | coating of the coating material 2 obtained at the said 1st process and the temperature distribution of the surface of the base material 1 after application | coating of the coating material 2 obtained at the 3rd process, The distribution of the temperature difference on the surface of the substrate 1 before and after the application of 2 is derived.

このとき、例えば上記第三工程において、上記第一工程と同一の配列で放射温度計4を配設すると共に第一工程と同一周期で基材1上の同一位置の温度を測定することができる。この場合、第一工程における基材1上の各測定位置での測定結果と、第三工程における基材1上の各測定位置での測定結果に基づいて、基材1の上の同一位置における第一工程で測定される温度と第三工程で測定される温度との差を、基材1上の各測定位置ごとに導出することができる。これにより基材1の表面の温度差の分布を導出することができる。   At this time, for example, in the third step, the radiation thermometer 4 is arranged in the same arrangement as the first step, and the temperature at the same position on the substrate 1 can be measured in the same cycle as the first step. . In this case, based on the measurement result at each measurement position on the substrate 1 in the first step and the measurement result at each measurement position on the substrate 1 in the third step, at the same position on the substrate 1. The difference between the temperature measured in the first step and the temperature measured in the third step can be derived for each measurement position on the substrate 1. Thereby, the distribution of the temperature difference on the surface of the substrate 1 can be derived.

このようにして得られる、基材1表面の塗装前後の温度差の分布の例を、図2に示す。このような温度差の分布は、例えば第一工程と第三工程における測定結果をパーソナルコンピュータ等で構成されている適宜の制御装置で演算処理することで導出することができ、またこのように得られた温度差の分布をディスプレイ等の表示装置に表示することができる。図示の例では、温度差の分布は、放射温度計4等で測定された基材1上の各測定位置ごとに、温度差の大きさに応じた色分けを行うことで表示されている。   An example of the distribution of the temperature difference obtained before and after the coating of the surface of the substrate 1 is shown in FIG. Such a temperature difference distribution can be derived, for example, by processing the measurement results in the first step and the third step with an appropriate control device constituted by a personal computer or the like. The obtained temperature difference distribution can be displayed on a display device such as a display. In the illustrated example, the distribution of the temperature difference is displayed by color-coding according to the magnitude of the temperature difference for each measurement position on the substrate 1 measured by the radiation thermometer 4 or the like.

このようにして得られた温度差の分布に基づき、温度差の値が他の領域よりも小さくなっている領域の存在が観察された場合には、その領域で塗装不良が発生しているものと判定することができる。この判定は、例えばディスプレイ等に表示された温度差の分布を作業者が逐次確認して行うこともできるが、例えば予め温度差の閾値を制御装置に記憶させておき、温度差の分布中で温度差が前記閾値を下回ったものが発生した場合に制御装置により塗装不良の発生を判定するようにしても良く、またこのとき同時に制御装置による自動制御により警報を発するようにしても良い。   Based on the distribution of the temperature difference obtained in this way, if the existence of a region where the temperature difference value is smaller than other regions is observed, a coating failure has occurred in that region Can be determined. This determination can be performed by, for example, the operator sequentially confirming the temperature difference distribution displayed on the display or the like. For example, the temperature difference threshold value is stored in the control device in advance, and the temperature difference distribution is When a temperature difference occurs that falls below the threshold value, the controller may determine whether a coating failure has occurred, and at this time, an alarm may be issued by automatic control by the controller.

ここで、基材1に塗料2を塗布した場合には、この塗料2中の溶剤が揮発することにより基材1から気化熱が奪われ、このため基材1の表面温度が低下する。このとき、基材1の表面において塗料2の塗布量にムラが生じている場合には、塗料2の塗布量が少ない部分や塗料2が塗布されていない部分では溶剤の揮発が少なくなり、塗料2の塗布前後での温度差が小さくなる。本発明ではこのような温度差が小さくなった領域を検出することにより、塗装不良を検出することができるものである。   Here, when the coating material 2 is applied to the base material 1, the solvent in the coating material 2 volatilizes, whereby the heat of vaporization is removed from the base material 1, and thus the surface temperature of the base material 1 decreases. At this time, if the coating amount of the paint 2 is uneven on the surface of the substrate 1, the solvent volatilization is reduced in a portion where the coating amount of the coating material 2 is small or a portion where the coating material 2 is not applied. The temperature difference before and after application of 2 is reduced. In the present invention, it is possible to detect a coating failure by detecting such a region where the temperature difference is small.

また、塗料2を塗布した後の基材1の表面温度を基準にするのではなく、塗料2の塗布前後における基材1の表面の温度差を基準にして塗装不良を検出するため、塗料2を塗布する前に存在する基材1の表面温度のムラとは無関係に塗装不良の有無を正確に検出することができる。このため、特に基材1の表面に凹凸が形成されている場合などといった、基材1の表面に温度のムラが生じやすい場合であっても、塗装不良を正確に検出することができるものである。   In addition, since the surface temperature of the base material 1 after application of the paint 2 is not used as a reference, the paint 2 is detected based on the temperature difference between the surfaces of the base material 1 before and after the application of the paint 2. It is possible to accurately detect the presence or absence of coating failure regardless of the surface temperature unevenness of the base material 1 existing before coating. For this reason, even if it is a case where unevenness in temperature is likely to occur on the surface of the base material 1 such as when the surface of the base material 1 is uneven, it is possible to accurately detect coating defects. is there.

また、このようにして検査不良の検知を行う場合には、上記のようにして得られる基材1上の温度差の分布に、第二工程における塗料2の塗布に用いられる各スプレーガン3の軌跡5a,5b,5c,5dを重ね合わせても良い。図示の例では、四個のスプレーガン3を用いてレシプロ式で塗装を行った場合の、各スプレーガン3の軌跡5a,5b,5c,5dを、温度差の分布と重ね合わせている。この温度差の分布とスプレーガン3の軌跡5a,5b,5c,5dとの重ね合わせも、上記制御装置により行い、その結果をディスプレイ等の適宜の表示手段で表示することができる。   Further, in the case of detecting an inspection defect in this way, the distribution of the temperature difference on the base material 1 obtained as described above is applied to each spray gun 3 used for applying the paint 2 in the second step. The trajectories 5a, 5b, 5c, 5d may be overlapped. In the illustrated example, the trajectories 5a, 5b, 5c, and 5d of the spray guns 3 when the four spray guns 3 are used for reciprocal coating are superimposed on the temperature difference distribution. This temperature difference distribution and the trajectories 5a, 5b, 5c, 5d of the spray gun 3 are also superposed by the control device, and the result can be displayed by an appropriate display means such as a display.

このようにすると、温度差の分布により塗装不良と判定された領域と重なる軌跡5cに対応するスプレーガン3を、塗装不良の原因となったスプレーガン3であると判定して、故障やノズル詰まり等により動作異常が生じているスプレーガン3を特定することができる。この場合、特定されたスプレーガン3を修理し、或いは交換することにより、以後の塗装不良の発生を防止することができる。   If it does in this way, it will determine with the spray gun 3 corresponding to the locus | trajectory 5c which overlaps with the area | region determined to be coating failure by temperature difference distribution being the spray gun 3 which caused the coating failure, and a failure or nozzle clogging. It is possible to identify the spray gun 3 in which an operation abnormality has occurred. In this case, by repairing or replacing the specified spray gun 3, it is possible to prevent the occurrence of subsequent coating defects.

また、基材1表面の塗装前後の温度差の分布を導出する際には、上記のように基材1表面の全面に亘る温度差の分布を導出するほか、基材1表面における基材1の搬送方向に沿った所定のライン7上の温度差の分布を導出しても良い。   Moreover, when deriving the distribution of the temperature difference before and after the coating on the surface of the substrate 1, the distribution of the temperature difference over the entire surface of the substrate 1 is derived as described above, and the substrate 1 on the surface of the substrate 1 is also derived. The distribution of the temperature difference on the predetermined line 7 along the conveyance direction may be derived.

このような所定のライン7上の温度差の分布を測定するにあたっては、例えば上記第一工程と第三工程において、放射温度計4を前記所定のライン7に対応する位置にそれぞれ一つだけ設けて、このライン7上における温度をそれぞれ測定する。或いは、図1に示すものと同様に第一工程と第三工程にそれぞれ複数の放射温度計4を設けると共に、各工程ごとに、前記所定のライン7に対応する放射温度計4による測定結果のみを利用してこのライン7上における温度差の導出を行っても良い。そして、前記所定ライン7上の同一位置における第一工程で測定される温度と第三工程で測定される温度との差を、基材1上の各測定位置ごとに導出することができる。これにより基材1の表面の所定のライン7上の温度差の分布を導出することができる。   In measuring the distribution of the temperature difference on the predetermined line 7, for example, in the first step and the third step, only one radiation thermometer 4 is provided at a position corresponding to the predetermined line 7. Then, each temperature on the line 7 is measured. Alternatively, as in the case shown in FIG. 1, a plurality of radiation thermometers 4 are provided in each of the first process and the third process, and only the measurement result by the radiation thermometer 4 corresponding to the predetermined line 7 is provided for each process. The temperature difference on the line 7 may be derived using The difference between the temperature measured in the first step at the same position on the predetermined line 7 and the temperature measured in the third step can be derived for each measurement position on the substrate 1. Thereby, the distribution of the temperature difference on the predetermined line 7 on the surface of the substrate 1 can be derived.

このようにして得られる所定ライン7上の温度差の分布における、温度差の値の変化パターンに基づいて、塗装不良の有無を判定することができる。   Based on the change pattern of the temperature difference value in the temperature difference distribution on the predetermined line 7 obtained in this way, it is possible to determine the presence or absence of coating failure.

図3(a)は基材1を搬送しながら四個のスプレーガン3によりレシプロ式で塗装を施した場合の、基材1上の各スプレーガン3ごとの塗料2の塗布領域6a,6b,6c,6dを示したものである。このような基材1における、図中のライン7上の温度差の分布を導出した例を、図3(b)に示す。このとき、各スプレーガン3の動作が正常であって、各スプレーガン3ごとの塗料2の噴霧量が均一であり、各スプレーガン3が所定の速度で往復運動し、且つ基材1が所定の速度で搬送されている場合には、前記ライン7上における塗料2の塗布量は一定の範囲で一定のパターンで変化するものとなる。このため、このライン7上における基材1表面の温度差の分布は、図3(b)に示すように一定の周期及び振幅で変化することになる。   FIG. 3A shows the coating areas 6a, 6b, 6b, 6b, 6b, 6b, 6b, 6b, 6b, 6b, 6b, 6b, 6b, 6b, and 6b- 6 for the coating 2 for each spray gun 3 on the substrate 1. 6c and 6d are shown. FIG. 3B shows an example in which the temperature difference distribution on the line 7 in the figure in the base material 1 is derived. At this time, the operation of each spray gun 3 is normal, the spray amount of the paint 2 for each spray gun 3 is uniform, each spray gun 3 reciprocates at a predetermined speed, and the substrate 1 is predetermined. In this case, the coating amount of the paint 2 on the line 7 changes in a certain pattern within a certain range. For this reason, the distribution of the temperature difference on the surface of the substrate 1 on the line 7 changes with a constant period and amplitude as shown in FIG.

一方、複数のスプレーガン3のうち、ノズルの詰まり等により塗料2の噴霧量が他のスプレーガン3よりも少なくなっているものがある場合には、塗装領域6a,6b,6c,6dは図4(a)に示すようなものとなり、噴霧量が少ないスプレーガン3による塗料2の塗布領域6bが狭くなって、基材1上に塗料2の塗布量が少ない領域、或いは塗料2が塗布されない領域が発生する。この場合、前記ライン7上における基材1表面の温度差の分布には、図4(b)に示すように一定周期で温度差の値が小さくなる領域が現れる。このような温度差の値の変化パターンの乱れが生じた場合には、塗装不良が発生しているものと判定すると共に、この変化パターンの乱れに対応するスプレーガン3に動作異常が発生しているものと判定することができる。尚、ここでは特定のスプレーガン3の噴霧量が少なくなった場合の例を示しているが、逆に噴霧量が多くなった場合には一定周期で温度差の値が大きくなる領域が現れることとなり、この場合も塗装不良の発生を判定すると共に、この変化パターンの乱れに対応するスプレーガン3に動作異常が発生しているものと判定することができる。   On the other hand, when there are some spray guns 3 in which the spray amount of the paint 2 is smaller than that of the other spray guns 3 due to nozzle clogging or the like, the coating regions 6a, 6b, 6c and 6d are shown in FIG. 4 (a), the application area 6b of the paint 2 by the spray gun 3 with a small spray amount becomes narrow, and the area where the application quantity of the paint 2 is small or the paint 2 is not applied on the substrate 1. A region occurs. In this case, in the distribution of the temperature difference on the surface of the base material 1 on the line 7, a region where the value of the temperature difference becomes smaller at a constant period as shown in FIG. 4B appears. When such a change pattern of the temperature difference value is disturbed, it is determined that a coating failure has occurred, and an operation abnormality has occurred in the spray gun 3 corresponding to the disorder of the change pattern. Can be determined. In addition, although the example when the spray amount of the specific spray gun 3 decreases is shown here, the region where the value of the temperature difference increases at a constant cycle appears conversely when the spray amount increases. In this case as well, it is possible to determine the occurrence of coating failure and to determine that an abnormal operation has occurred in the spray gun 3 corresponding to the disturbance of the change pattern.

このような塗装不良の判定及びスプレーガン3の動作異常の判定は、制御装置によってディスプレイ等に表示された前記所定ライン7上における温度差の分布のパターンを作業者が逐次確認して行うこともできるが、例えば予め正常動作時における温度差の分布のパターンに基づいて温度差の値の振幅の許容範囲を制御装置に設定しておき、温度差の値の振幅が前記許容範囲を超えた場合に制御装置により塗装不良の発生を判定し、或いは更にこの振幅の異常が発生している箇所に対応するスプレーガン3が動作異常を起こしているものと判定するようにしても良い。また、このとき同時に制御装置による自動制御により警報を発するようにしても良い。   Such determination of coating failure and determination of abnormal operation of the spray gun 3 may be performed by the operator sequentially confirming the distribution pattern of the temperature difference on the predetermined line 7 displayed on the display or the like by the control device. Yes, for example, when the allowable range of the temperature difference value is set in the control device in advance based on the temperature difference distribution pattern during normal operation, and the temperature difference value amplitude exceeds the allowable range. In addition, it may be determined that a defective coating is generated by the control device, or that it is further determined that the spray gun 3 corresponding to the location where the abnormality of the amplitude has caused an abnormal operation. At the same time, an alarm may be issued by automatic control by the control device.

このとき作業者は塗装ラインを停止し、塗装不良が発生している基材1を取り除くと共に、異常動作を起こしているスプレーガン3の修理や交換等を行うことができる。   At this time, the operator can stop the coating line, remove the base material 1 in which the coating failure has occurred, and repair or replace the spray gun 3 that is operating abnormally.

また、基材1の搬送速度に異常をきたした場合、或いはスプレーガン3の往復速度に異常をきたした場合には、前記所定ライン7上における温度差の分布のパターンの周期及び振幅に変化をきたすこととなる。例えばスプレーガン3の往復速度が所定の速度よりも遅くなった場合には、塗装領域6a,6b,6c,6dは図5(a)に示すようなものとなり、スプレーガン3が往復するまでの間に基材1が進む長さが長くなる。この場合、前記ライン7上における基材1表面の温度差の分布のパターンは、図5(b)に示すように温度差の値の振幅が大きくなると共にこの値の変化の周期も長くなる。このような温度差の値の変化パターンの乱れが生じた場合には、塗装不良が発生しているものと判定することができる。尚、ここではスプレーガン3の往復速度が遅くなった場合の例を示しているが、逆にスプレーガン3の往復速度が速くなった場合や、基材1の搬送速度が遅くなったり速くなったりした場合にも、それに応じて前記ライン7上における基材1表面の温度差の分布のパターンに、周期や振幅の変化が生じる。このような温度差の値の変化パターンの乱れに基づいて、スプレーガン3の往復速度或いは基材1の搬送速度の異常に起因する塗装不良の発生を判定することができる。   In addition, when the conveyance speed of the base material 1 is abnormal or when the reciprocating speed of the spray gun 3 is abnormal, the period and amplitude of the temperature difference distribution pattern on the predetermined line 7 are changed. Will come. For example, when the reciprocating speed of the spray gun 3 becomes lower than a predetermined speed, the coating areas 6a, 6b, 6c, and 6d are as shown in FIG. The length in which the base material 1 advances becomes longer. In this case, the distribution pattern of the temperature difference on the surface of the base material 1 on the line 7 increases the amplitude of the value of the temperature difference and the period of change of this value as shown in FIG. When such a change pattern of the temperature difference value is disturbed, it can be determined that a coating failure has occurred. Here, an example is shown in which the reciprocating speed of the spray gun 3 is slow, but conversely, when the reciprocating speed of the spray gun 3 is fast, or the conveyance speed of the substrate 1 is slowed or fast. Even in the case where the temperature difference is detected, the period and amplitude change in the distribution pattern of the temperature difference on the surface of the substrate 1 on the line 7 accordingly. Based on such disturbance of the change pattern of the temperature difference value, it is possible to determine the occurrence of coating failure due to an abnormality in the reciprocating speed of the spray gun 3 or the conveyance speed of the substrate 1.

このような塗装不良の判定、並びにスプレーガン3の往復速度或いは基材1の搬送速度の異常の判定は、ディスプレイ等に表示された前記所定ライン7上における温度差の分布のパターンを作業者が逐次確認して行うこともできるが、例えば予め正常動作時における温度差の分布のパターンに基づいて温度差の値の振幅の許容範囲並びに周期の許容範囲を制御装置に設定しておき、この振幅或いは周期が前記許容範囲を超えた場合に制御装置により塗装不良の発生を判定し、或いは更にスプレーガン3の往復速度或いは基材1の搬送速度に異常が発生していることを判定するようにしても良い。また、このとき同時に制御装置による自動制御により警報を発するようにしても良い。   The determination of such a coating failure and the determination of the reciprocating speed of the spray gun 3 or the abnormality of the conveying speed of the base material 1 are performed by the operator using the pattern of the temperature difference distribution on the predetermined line 7 displayed on the display or the like. Although it can be performed by sequentially confirming, for example, based on the temperature difference distribution pattern during normal operation, the allowable range of the temperature difference value and the allowable range of the period are set in the control device in advance. Alternatively, when the cycle exceeds the allowable range, it is determined by the control device that a coating failure has occurred, or further, it is determined that an abnormality has occurred in the reciprocating speed of the spray gun 3 or the conveying speed of the substrate 1. May be. At the same time, an alarm may be issued by automatic control by the control device.

このとき作業者は塗装ラインを停止し、塗装不良が発生している基材1を取り除くと共に、コンベアベルト等の基材1の搬送機構やスプレーガン3を往復駆動する機構のチェックを行い、必要に応じて修理等を行うことができる。   At this time, the operator stops the coating line, removes the base material 1 in which the coating failure has occurred, checks the transport mechanism of the base material 1 such as a conveyor belt, and the mechanism for reciprocating the spray gun 3, and is necessary. Repairs can be made according to the situation.

以上に示した塗装不良検査方法は、複数の検査方法を適宜組み合わせて行うことができる。   The coating defect inspection method described above can be performed by appropriately combining a plurality of inspection methods.

このような塗装検査を行った後、塗装不良が検出されなかった基材1には、必要に応じて成膜のために加熱処理が施され、或いは種々の後処理が施される。   After performing such a coating inspection, the substrate 1 on which no coating failure has been detected is subjected to heat treatment for film formation or various post-treatments as necessary.

本発明の実施の形態の一例を示す概略の斜視図である。It is a schematic perspective view which shows an example of embodiment of this invention. 本発明において導出される基材表面の塗装前後の温度差の分布の例を示す説明図である。It is explanatory drawing which shows the example of distribution of the temperature difference before and behind the coating of the base-material surface derived | led-out in this invention. (a)は基材上における各スプレーガンごとの塗料の塗布領域の一例を示す概略の平面図、(b)はこの基材上における所定のライン上での温度差の分布を導出した例を示すグラフである。(A) is a schematic plan view showing an example of a coating region of each spray gun on a base material, and (b) is an example in which a distribution of temperature differences on a predetermined line on this base material is derived. It is a graph to show. (a)は基材上における各スプレーガンごとの塗料の塗布領域の他例を示す概略の平面図、(b)はこの基材上における所定のライン上での温度差の分布を導出した例を示すグラフである。(A) is a schematic plan view showing another example of the coating region of each spray gun on the substrate, and (b) is an example in which a distribution of temperature differences on a predetermined line on this substrate is derived. It is a graph which shows. (a)は基材上における各スプレーガンごとの塗料の塗布領域の更に他例を示す概略の平面図、(b)はこの基材上における所定のライン上での温度差の分布を導出した例を示すグラフである。(A) is a schematic plan view showing still another example of the coating area of each spray gun on the substrate, and (b) is a distribution of temperature difference on a predetermined line on this substrate. It is a graph which shows an example. (a)及び(b)は従来技術の例を示す概略の断面図である。(A) And (b) is a schematic sectional drawing which shows the example of a prior art.

符号の説明Explanation of symbols

1 基材
2 塗料
3 スプレーガン
5a,5b,5c,5d 軌跡
7 ライン
1 base material 2 paint 3 spray gun 5a, 5b, 5c, 5d locus 7 lines

Claims (5)

塗装後の基材における塗装不良を検査する塗装不良検査方法であって、
塗装前の基材における塗料が塗布されるべき面の温度を測定し、
塗装後の基材における塗料が塗布された面の温度を測定し、
この各測定結果に基づいて基材表面の塗装前後の温度差を導出し、
この導出された基材表面の温度差に基づいて塗装不良の有無を判定することを特徴とする塗装不良検査方法。
A coating defect inspection method for inspecting a coating defect on a substrate after painting,
Measure the temperature of the surface on which the paint on the substrate before coating is to be applied,
Measure the temperature of the coated surface of the base material after painting,
Based on each measurement result, the temperature difference before and after the coating of the substrate surface is derived,
A coating failure inspection method, wherein the presence or absence of a coating failure is determined based on the derived temperature difference of the substrate surface.
複数のスプレーガンを用いたスプレー方式で塗装された基材を検査対象とし、
基材表面の塗装前後の温度差を導出する際には、塗装前後における基材表面の温度差の分布を導出し、
塗装不良の有無を判定する際には、前記温度差の分布に基材表面における各スプレーガンの軌跡を重ね合わせ、前記温度差の分布において異常な値の温度差が生じている領域を塗装不良が生じている領域と判定すると共に前記各軌跡のうち前記塗装不良が生じている領域と重なる軌跡に対応するスプレーガンを塗装不良の原因となったスプレーガンであると判定することを特徴とする請求項1に記載の塗装不良検査方法。
Substrates painted by spraying using multiple spray guns are targeted for inspection.
When deriving the temperature difference between before and after painting on the substrate surface, derive the distribution of temperature difference on the substrate surface before and after painting,
When determining the presence or absence of coating defects, the trajectory of each spray gun on the surface of the substrate is superimposed on the temperature difference distribution, and areas with abnormal temperature differences in the temperature difference distribution are painted poorly. It is determined that the spray gun corresponding to the trajectory that overlaps the region in which the poor coating is generated among the trajectories is determined to be the spray gun that has caused the defective coating. The coating defect inspection method according to claim 1.
複数のスプレーガンを用いたスプレー方式で塗装された基材を検査対象とし、
基材表面の塗装前後の温度差を導出する際には、塗装前後における前記基材表面の所定のライン上の温度差の分布を導出し、
塗装不良の有無を判定する際には、前記導出された温度差の分布における温度差の値の変化パターンに基づいて塗装不良の有無を判定することを特徴とする請求項1又は2に記載の塗装不良検査方法。
Substrates painted by spraying using multiple spray guns are targeted for inspection.
When deriving the temperature difference before and after the coating of the substrate surface, the distribution of the temperature difference on the predetermined line of the substrate surface before and after the coating is derived,
The presence or absence of a coating defect is determined based on a change pattern of a value of a temperature difference in the derived temperature difference distribution when determining the presence or absence of a coating defect. Painting defect inspection method.
塗装不良の有無を判定する際には、上記温度差の値の変化パターンにおける部分的な乱れの有無を判定し、この乱れが生じた部位に対応する位置で基材上に塗装不良が生じていると共に、この乱れが生じた部位に対応するスプレーガンが塗装不良の原因となったスプレーガンであると判定することを特徴とする請求項3に記載の塗装不良検査方法。   When determining the presence or absence of coating failure, determine the presence or absence of partial disturbance in the change pattern of the temperature difference value, the coating failure has occurred on the substrate at the position corresponding to the site where this disturbance has occurred 4. The coating failure inspection method according to claim 3, wherein the spray gun corresponding to the portion where the disturbance has occurred is determined to be a spray gun causing the coating failure. 塗装不良の有無を判定する際には、上記温度差の値の変化パターンにおける前記値の変化の振幅と、この値の変化の周期とのうち、少なくとも一方が所定の許容範囲を逸脱した場合に、塗装不良が発生していると共に、スプレーガンによる塗装動作に異常が発生しているものと判定することを特徴とする請求項3又は4に記載の塗装不良検査方法。   When determining the presence or absence of coating failure, if at least one of the amplitude of the change of the value in the temperature difference value change pattern and the period of change of the value deviates from a predetermined allowable range, 5. The coating defect inspection method according to claim 3, wherein it is determined that a coating defect has occurred and an abnormality has occurred in a painting operation by a spray gun.
JP2007274069A 2007-10-22 2007-10-22 Painting defect inspection method Expired - Fee Related JP5016439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274069A JP5016439B2 (en) 2007-10-22 2007-10-22 Painting defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274069A JP5016439B2 (en) 2007-10-22 2007-10-22 Painting defect inspection method

Publications (2)

Publication Number Publication Date
JP2009103514A true JP2009103514A (en) 2009-05-14
JP5016439B2 JP5016439B2 (en) 2012-09-05

Family

ID=40705328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274069A Expired - Fee Related JP5016439B2 (en) 2007-10-22 2007-10-22 Painting defect inspection method

Country Status (1)

Country Link
JP (1) JP5016439B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066645A (en) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 Method of inspecting heat sink and method of manufacturing heat sink
CN111232592A (en) * 2020-02-27 2020-06-05 江苏理工学院 Black paint detection and paint removal device of radiator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132848A (en) * 1984-12-03 1986-06-20 Nippon Kokan Kk <Nkk> Non-contact painting inspecting device
JPS6388071A (en) * 1987-09-10 1988-04-19 Tokiwa Denki:Kk Automatic painting apparatus of track circuit type
JPH01156650A (en) * 1987-12-15 1989-06-20 Yokohama Rubber Co Ltd:The Method and device for detecting application failure of paint
JP2003220355A (en) * 2002-01-30 2003-08-05 Dainippon Printing Co Ltd Coverage judgment device
JP2005172488A (en) * 2003-12-09 2005-06-30 Fuji Heavy Ind Ltd Coated state inspection apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132848A (en) * 1984-12-03 1986-06-20 Nippon Kokan Kk <Nkk> Non-contact painting inspecting device
JPS6388071A (en) * 1987-09-10 1988-04-19 Tokiwa Denki:Kk Automatic painting apparatus of track circuit type
JPH01156650A (en) * 1987-12-15 1989-06-20 Yokohama Rubber Co Ltd:The Method and device for detecting application failure of paint
JP2003220355A (en) * 2002-01-30 2003-08-05 Dainippon Printing Co Ltd Coverage judgment device
JP2005172488A (en) * 2003-12-09 2005-06-30 Fuji Heavy Ind Ltd Coated state inspection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066645A (en) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 Method of inspecting heat sink and method of manufacturing heat sink
CN111232592A (en) * 2020-02-27 2020-06-05 江苏理工学院 Black paint detection and paint removal device of radiator
CN111232592B (en) * 2020-02-27 2021-08-24 江苏理工学院 Black paint detection and paint removal device of radiator

Also Published As

Publication number Publication date
JP5016439B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
AU2010251869B2 (en) Dry coating thickness measurement and instrument
US10739286B2 (en) Method for coating a surface of a metal strip and a metal strip-coating device
US8000515B2 (en) Automatic detection of coating flaws
US9713928B2 (en) Decoration line
JP2018144007A (en) Coating apparatus
US7129492B2 (en) Systems and methods for inspecting coatings
JP5016439B2 (en) Painting defect inspection method
JP5118611B2 (en) Non-contact measurement method for substrate and coating defect inspection method
JP5297007B2 (en) Painting defect inspection method
JP2007292605A (en) Coating inspection method of coated plate
CN108896331B (en) Method for online detection of grease cleaning efficiency of cleaning equipment before coating
CN107636189A (en) Heat spraying method
CN106415805A (en) Method and device for determining a barrier effect of a coating on a substrate
CZ20011247A3 (en) Method for monitoring a two-dimensional or three-dimensional distribution process
JP6939156B2 (en) Coating film inspection equipment
US20140127837A1 (en) Thin film deposition apparatus and method of depositing thin film using the same
JPH08304036A (en) Method and apparatus for inspection of coating irregularity in coating film
Omar et al. Self‐adjusting robotic painting system
JP2015097998A (en) Device of manufacturing coating film product, and method of manufacturing the coating film product
JP2001038273A (en) Coating quantity measurement apparatus and coating apparatus
JP2005103445A (en) Multilayer-coated color steel sheet production method and apparatus
Omar et al. Thermal vision system for protective coat coverage inspection
JP5962168B2 (en) Manufacturing method of high-lubrication hot-dip galvanized steel sheet with excellent appearance
Cohen Process Characterization
JP2014046261A (en) Sealer agent inspection system and sealer agent inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees