JP2009103437A - High temperature regenerator for absorption chiller and heater - Google Patents

High temperature regenerator for absorption chiller and heater Download PDF

Info

Publication number
JP2009103437A
JP2009103437A JP2008261237A JP2008261237A JP2009103437A JP 2009103437 A JP2009103437 A JP 2009103437A JP 2008261237 A JP2008261237 A JP 2008261237A JP 2008261237 A JP2008261237 A JP 2008261237A JP 2009103437 A JP2009103437 A JP 2009103437A
Authority
JP
Japan
Prior art keywords
solution
temperature regenerator
absorption chiller
burner
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008261237A
Other languages
Japanese (ja)
Inventor
Hyun Uk Cho
ヒュン ウク チョウ,
Jin Hee Jeong
ジン ヒー ジョン,
Sang Chul Nam
サン チュル ナム,
Hwan Hee Oh
フワン ヒー オー,
Yang-Hoon Kim
ヤン−フー キム,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Mtron Ltd
Original Assignee
LS Mtron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Mtron Ltd filed Critical LS Mtron Ltd
Publication of JP2009103437A publication Critical patent/JP2009103437A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/082Grilles, registers or guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high temperature regenerator for an absorption chiller and heater capable of increasing heat exchanging efficiency and minimizing its volume. <P>SOLUTION: The high temperature regenerator for the absorption chiller and heater includes an outer cylinder connected to a burner, an inner cylinder installed in the outer cylinder and in which a combustion chamber is formed, a liquid chamber for storing a solution between the outer and inner cylinders, a first solution tube installed adjacent to the burner in the combustion chamber for heating the solution therein, and a second solution tube installed at the downstream side of the first solution tube in the combustion chamber. The second solution tube is equipped with a rib projected along a direction perpendicular to the direction of a combustion gas flow generated by the burner. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、吸収式冷温水機に係り、より詳しくは、バーナーによって溶液管内の溶液を加熱する吸収式冷温水機用の高温再生器に関する。   The present invention relates to an absorption chiller / heater, and more particularly to a high-temperature regenerator for an absorption chiller / heater that heats a solution in a solution tube with a burner.

図1は、従来技術による吸収式冷温水機の概念図である。   FIG. 1 is a conceptual diagram of an absorption chiller / heater according to the prior art.

図1に示されたように、吸収式冷温水機1は、LPG、LNGなどのようなガスを熱源として使用し、吸収液冷媒からなる冷房サイクルを運転するものである。吸収式冷温水機1は、電気をエネルギー源として使用する冷温水機とは異なって、一次的に熱エネルギーを利用することから、夏季における過多な電力負荷を解消し、廃熱を利用した熱併合システムの活用などといった様々な長所を持っている。   As shown in FIG. 1, the absorption chiller / heater 1 uses a gas such as LPG or LNG as a heat source and operates a cooling cycle made of an absorbent refrigerant. The absorption chiller / heater 1 uses heat energy primarily, unlike the chiller / heater that uses electricity as an energy source, thus eliminating excessive power load in summer and using waste heat. It has various advantages such as the use of an annexation system.

このような吸収式冷温水機の構成について簡略に説明すれば、吸収式冷温水機を構成する蒸発及び吸収本体30は、蒸発器31及び吸収器32を一緒に具備し、高温再生器10にはバーナー11が収容される。   Briefly explaining the structure of such an absorption chiller / heater, the evaporation and absorption body 30 constituting the absorption chiller / heater includes an evaporator 31 and an absorber 32 together. Contains the burner 11.

上記吸収器32から上記高温再生器10に延在している希薄溶液配管83には、吸収液ポンプ72、低温熱交換器40及び高温熱交換器50が順に設置される。そして、再生及び凝縮本体20は、低温再生器23とコンデンサー21を一緒に具備している。   In a dilute solution pipe 83 extending from the absorber 32 to the high temperature regenerator 10, an absorbing liquid pump 72, a low temperature heat exchanger 40, and a high temperature heat exchanger 50 are sequentially installed. The regeneration and condensation main body 20 includes a low-temperature regenerator 23 and a condenser 21 together.

そして、上記高温再生器10から低温再生器23に延在している管は冷媒蒸気管81であり、上記コンデンサー21から上記蒸発器31に延在している管は冷媒液流下管82であり、上記吸収器32に延在している管は冷却水管86である。   The pipe extending from the high temperature regenerator 10 to the low temperature regenerator 23 is a refrigerant vapor pipe 81, and the pipe extending from the condenser 21 to the evaporator 31 is a refrigerant liquid lower pipe 82. The pipe extending to the absorber 32 is a cooling water pipe 86.

上記のように構成された吸収式冷温水機の運転の際、上記高温再生器10のバーナー11で燃料ガス(LPG、LNG)が燃焼すると、上記吸収器32から流れてきた臭化リチウム水溶液(界面活性剤を含む)のような希薄溶液が加熱され沸騰して冷媒蒸気が希薄溶液から分離される。このように加熱されつつ希薄溶液が濃縮され、その濃度が濃くなった中間溶液になる。一方、冷媒蒸気は、冷媒蒸気管81内を流れていき、上記低温再生器23に流れ込まれる。そして、上記高温再生器10から低温再生器23に流れ込まれてきた中間溶液は、低温再生器23で再加熱される。上記コンデンサー21では、上記低温再生器23から流れ込まれてきた冷媒蒸気が凝縮されてから冷媒液になり、上記蒸発器31に流れていく。   During the operation of the absorption chiller / heater configured as described above, when the fuel gas (LPG, LNG) is burned by the burner 11 of the high-temperature regenerator 10, an aqueous lithium bromide solution flowing from the absorber 32 ( A dilute solution (including a surfactant) is heated and boiled to separate the refrigerant vapor from the dilute solution. The dilute solution is concentrated while being heated in this way, resulting in an intermediate solution having a high concentration. On the other hand, the refrigerant vapor flows through the refrigerant vapor pipe 81 and flows into the low temperature regenerator 23. Then, the intermediate solution that has flowed from the high temperature regenerator 10 into the low temperature regenerator 23 is reheated by the low temperature regenerator 23. In the condenser 21, the refrigerant vapor that has flowed from the low-temperature regenerator 23 is condensed to become a refrigerant liquid, and flows to the evaporator 31.

上記蒸発器31では、冷媒ポンプ71の作動によって冷媒液が散布される。そして、上記蒸発器31で気化した冷媒蒸気は、上記吸収器32に流れていき、散布される吸収液に吸収される。一方、上記高温再生器10での冷媒蒸気の分離によりその濃度が上がった中間溶液は、中間溶液配管84、高温熱交換器50を通って上記低温再生器23に流れていく。   In the evaporator 31, the refrigerant liquid is dispersed by the operation of the refrigerant pump 71. Then, the refrigerant vapor evaporated in the evaporator 31 flows into the absorber 32 and is absorbed by the sprayed absorbing liquid. On the other hand, the intermediate solution whose concentration is increased by the separation of the refrigerant vapor in the high temperature regenerator 10 flows to the low temperature regenerator 23 through the intermediate solution pipe 84 and the high temperature heat exchanger 50.

上記中間溶液は、上記高温再生器10から流れ込まれてきた冷媒蒸気がその内部を流れている加熱器25によって加熱される。そして、上記中間溶液から冷媒蒸気が分離されることで吸収液の濃度が更に上がる。上記低温再生器23で加熱された濃厚溶液は濃厚溶液配管85に流れ込まれ、上記低温熱交換器40を通って上記吸収器32に流れ込まれていき、吸収器散布装置35で上記冷却水管86に滴下される。   The intermediate solution is heated by the heater 25 in which the refrigerant vapor flowing from the high temperature regenerator 10 flows. And the density | concentration of an absorption liquid rises further by a refrigerant | coolant vapor | steam being isolate | separated from the said intermediate solution. The concentrated solution heated by the low-temperature regenerator 23 flows into the concentrated solution pipe 85, flows into the absorber 32 through the low-temperature heat exchanger 40, and enters the cooling water pipe 86 by the absorber spraying device 35. It is dripped.

そして、吸収液は、上記蒸発器31を通って流れ込まれてくる冷媒蒸気を吸収することでその濃度が下がる。濃度が下がった吸収液は、上記吸収液ポンプ72の駆動力によって低温熱交換器40及び高温熱交換器50で予熱されて高温再生器10に流れ込まれる。図面において説明されていない符号13は、バーナーに燃料を供給する燃料タンクであり、15はバーナーに燃焼空気を供給する送風機である。   Then, the concentration of the absorbing liquid decreases by absorbing the refrigerant vapor flowing through the evaporator 31. The absorbent having a reduced concentration is preheated by the low temperature heat exchanger 40 and the high temperature heat exchanger 50 by the driving force of the absorption liquid pump 72 and flows into the high temperature regenerator 10. Reference numeral 13 not illustrated in the drawings is a fuel tank that supplies fuel to the burner, and 15 is a blower that supplies combustion air to the burner.

上記のような吸収式冷温水機における高温再生器10は、燃焼ガスと希薄溶液間の熱交換効率を改善するために、希薄溶液が流れる配管の外側に複数のフィンを設けた。しかしながら、このようなフィンが相当の面積を占めることで高温再生器の体積を増し、熱交換効率を落とすという問題点がある。   The high temperature regenerator 10 in the absorption chiller / heater as described above is provided with a plurality of fins outside the pipe through which the diluted solution flows in order to improve the heat exchange efficiency between the combustion gas and the diluted solution. However, since such fins occupy a considerable area, there is a problem that the volume of the high-temperature regenerator is increased and the heat exchange efficiency is lowered.

そこで、本発明は、上記のような問題点を解決するためになされたものであって、その目的は、熱交換効率を増大させ且つ体積を最小化することができる吸収式冷温水機用の高温再生器を提供することである。   Therefore, the present invention has been made to solve the above-described problems, and its purpose is to increase the efficiency of heat exchange and minimize the volume for an absorption chiller / heater. It is to provide a high temperature regenerator.

上記のような目的を達成するための本発明の実施形態による吸収式冷温水機用の高温再生器は、バーナーに連結される外筒と、該外筒の内部に設置され、内部に燃焼室が形成される内筒と、上記外筒と内筒との間に溶液を貯留する液室と、上記燃焼室の内部において上記バーナーに隣接して設置され内部の溶液を加熱する第1の溶液管、及び上記燃焼室の内部において上記第1の溶液管の下流側に設置される第2の溶液管と、を含み、上記第2の溶液管は、上記バーナーによる燃焼ガスの流れ方向に対し垂直の方向に沿って突設されるリブを具備する。   In order to achieve the above object, a high-temperature regenerator for an absorption chiller / heater according to an embodiment of the present invention includes an outer cylinder connected to a burner, an inner cylinder, and a combustion chamber in the outer cylinder. An inner cylinder in which is formed, a liquid chamber for storing a solution between the outer cylinder and the inner cylinder, and a first solution that is installed adjacent to the burner inside the combustion chamber and heats the internal solution And a second solution tube installed on the downstream side of the first solution tube inside the combustion chamber, the second solution tube with respect to the flow direction of the combustion gas by the burner Ribs are provided so as to project along the vertical direction.

また、上記第2の溶液管は、その断面が燃焼ガスの流れ方向に沿って長く形成される扁平管であればよく、上記リブは所定の間隔をあけて複数に配設されてよい。   The second solution tube may be a flat tube whose cross section is formed long along the flow direction of the combustion gas, and a plurality of the ribs may be arranged at predetermined intervals.

また、上記リブはその断面が四角形であればよく、このとき、上記リブの幅または高さは3mm以上であればよい。   Moreover, the said rib should just be a square in the cross section, and the width or height of the said rib should just be 3 mm or more at this time.

また、上記リブの間隔は43mm以下であればよい。   The interval between the ribs may be 43 mm or less.

また、上記リブの間隔は上記第2の溶液管の直線部の幅の25%以下であればよい。   The rib spacing may be 25% or less of the width of the straight portion of the second solution tube.

以上で詳細に説明したように、本発明の実施形態による吸収式冷温水機用の高温再生器は、既存の吸収式冷温水機の効率を増大させ、且つ高温再生器の体積を減少させて小型化を可能にする。   As described in detail above, the high temperature regenerator for an absorption chiller / heater according to an embodiment of the present invention increases the efficiency of the existing absorption chiller / heater and reduces the volume of the high temperature regenerator. Enables miniaturization.

以下、本発明の実施形態による吸収式冷温水機用の高温再生器について、添付した図面を参照して詳しく説明する。   Hereinafter, a high temperature regenerator for an absorption chiller / heater according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図2は、本発明の実施形態による吸収式冷温水機用の高温再生器の断面図であり、図3は、図2に示された第2の溶液管の斜視図であり、図4は、本発明の実施形態による吸収式冷温水機用の高温再生器の第2の溶液管の断面図である。   2 is a cross-sectional view of a high-temperature regenerator for an absorption chiller / heater according to an embodiment of the present invention, FIG. 3 is a perspective view of the second solution tube shown in FIG. 2, and FIG. FIG. 3 is a cross-sectional view of a second solution tube of a high-temperature regenerator for an absorption chiller / heater according to an embodiment of the present invention.

図2を参照すると、本発明の実施形態による吸収式冷温水機の高温再生器110は、バーナー120に連結された外筒150、該外筒150の内部に設置される内筒160、及び外筒150と内筒160との間に溶液を貯留する液室162を具備する。上記内筒160の内部には、溶液を加熱する燃焼室130が具備される。   Referring to FIG. 2, the high-temperature regenerator 110 of the absorption chiller / heater according to the embodiment of the present invention includes an outer cylinder 150 connected to the burner 120, an inner cylinder 160 installed in the outer cylinder 150, and an outer cylinder 150. A liquid chamber 162 for storing the solution is provided between the cylinder 150 and the inner cylinder 160. A combustion chamber 130 for heating the solution is provided in the inner cylinder 160.

上記燃焼室130の内部には、上記バーナー120に隣接して位置してバーナー120の火炎によって内部の溶液を加熱する複数本の第1の溶液管170、及び上記第1の溶液管170の下流側に位置する第2の溶液管180が配設される。第1の溶液管170と第2の溶液管180は、上記液室162と連通する。   In the combustion chamber 130, there are a plurality of first solution tubes 170 that are located adjacent to the burner 120 and heat the solution inside by the flame of the burner 120, and downstream of the first solution tube 170. A second solution tube 180 located on the side is arranged. The first solution tube 170 and the second solution tube 180 communicate with the liquid chamber 162.

上記第1の溶液管170は、バーナー120に連結された内筒160の燃焼室130の一方側縁部に複数の層にて配列される。上記第1の溶液管170は、その断面が円形であればよいが、特に円形に限定されるものではなく、様々に変形可能である。   The first solution tube 170 is arranged in a plurality of layers at one edge of the combustion chamber 130 of the inner cylinder 160 connected to the burner 120. The first solution tube 170 may have a circular cross section, but is not particularly limited to a circular shape and can be variously modified.

そして、上記第2の溶液管180は、第1の溶液管170と所定の距離離間した状態で複数の層にて配列される。このとき、上記第2の溶液管180の断面は、バーナー120の燃焼ガスの流れ方向に沿って長く形成された扁平管の形状であればよい。また、上記第2の溶液管180は、バーナー120の燃焼ガスの流れ方向に沿って一列に配列される。しかし、接触面積を増大させるために、第2の溶液管180を、互い違いに配列することもできる。   The second solution tube 180 is arranged in a plurality of layers while being separated from the first solution tube 170 by a predetermined distance. At this time, the cross section of the second solution tube 180 may be in the shape of a flat tube formed long along the combustion gas flow direction of the burner 120. The second solution tubes 180 are arranged in a line along the flow direction of the combustion gas in the burner 120. However, the second solution tubes 180 can also be staggered to increase the contact area.

また、第1の溶液管170と第2の溶液管180との各間隔は、燃焼ガスの流動環境に応じて適宜配列される。   The intervals between the first solution tube 170 and the second solution tube 180 are appropriately arranged according to the flow environment of the combustion gas.

図3及び図4を参照すると、上記第2の溶液管180の外周面には、バーナー120の燃焼ガスの流れ方向(図3の矢印方向)に対し垂直の方向に沿って所定の間隔をあけて複数のリブ182が突設される。リブ182の断面は、四角形であればよいが、これに限定されるものではなく、半球形、台形などと様々な形状に変形されてもよい。   Referring to FIGS. 3 and 4, a predetermined interval is formed on the outer peripheral surface of the second solution pipe 180 along a direction perpendicular to the combustion gas flow direction of the burner 120 (the arrow direction in FIG. 3). A plurality of ribs 182 are projected. The cross section of the rib 182 may be a quadrangle, but is not limited thereto, and may be deformed into various shapes such as a hemispherical shape and a trapezoidal shape.

リブ182が四角形に形成される場合、その高さaまたは幅bは3mm以上であり、その間隔cは43mm以下であることが、高温再生器の燃焼効率の増大を考慮した上で最適の範囲である。   When the rib 182 is formed in a quadrangular shape, the height a or the width b is 3 mm or more, and the interval c is 43 mm or less, considering the increase in the combustion efficiency of the high-temperature regenerator, the optimum range It is.

また、リブ182の間隔cは、第2の溶液管180の直線部の幅dの25%以下であることが好ましい。   The interval c between the ribs 182 is preferably 25% or less of the width d of the straight portion of the second solution tube 180.

以下、本発明の実施形態による吸収式冷温水機用の高温再生器の作用について説明する。   Hereinafter, the operation of the high-temperature regenerator for an absorption chiller / heater according to an embodiment of the present invention will be described.

燃料ガスと空気が内筒160の燃焼室130に供給されて混合され、バーナー120の点火によって燃焼が開始すると、高温の燃焼ガスが隣接した複数本の第1の溶液管170の間を通りながら冷却され、第1の溶液管170内の溶液が燃焼ガスによって加熱される。   When fuel gas and air are supplied to and mixed with the combustion chamber 130 of the inner cylinder 160 and combustion is started by ignition of the burner 120, high-temperature combustion gas passes between the adjacent first solution tubes 170. Cooled and the solution in the first solution tube 170 is heated by the combustion gas.

上記第1の溶液管170を加熱した燃焼ガスは、複数本の第2の溶液管180の直線部の間を通る時に、第2の溶液管180内の溶液を加熱する。このとき、第2の溶液管180の外周面に形成されたリブ182によって、第2の溶液管180の表面に形成される温度境界層の分布が変化する。すなわち、第2の溶液管180の外周面に形成されたリブ182が燃焼ガスの後段部の温度を下げる。燃焼ガスの後段部の温度が下がるということは、第2の溶液管180内の溶液と燃焼ガスとの熱伝逹効率が増大するということを意味する。   The combustion gas that has heated the first solution tube 170 heats the solution in the second solution tube 180 as it passes between the straight portions of the plurality of second solution tubes 180. At this time, the distribution of the temperature boundary layer formed on the surface of the second solution tube 180 is changed by the rib 182 formed on the outer peripheral surface of the second solution tube 180. That is, the rib 182 formed on the outer peripheral surface of the second solution pipe 180 lowers the temperature of the rear stage portion of the combustion gas. A decrease in the temperature of the rear stage of the combustion gas means that the heat transfer efficiency between the solution in the second solution tube 180 and the combustion gas is increased.

上記のように、リブ182を燃焼ガスの流れ方向に対し垂直の方向、すなわち、第2の溶液管180の長さ方向に形成することにより、燃焼ガスの流動に際し、層流及び乱流による燃焼ガスの出口温度を下げることができる。また、燃焼ガスの出口温度が下がることによって燃焼ガスと溶液との熱伝逹効率が増大し、吸収式冷温水機の冷房能力及びCOPを改善することができる。   As described above, the rib 182 is formed in the direction perpendicular to the flow direction of the combustion gas, that is, in the length direction of the second solution tube 180, so that the combustion by the laminar flow and the turbulent flow occurs during the flow of the combustion gas. The gas outlet temperature can be lowered. Moreover, the heat transfer efficiency between the combustion gas and the solution is increased by lowering the outlet temperature of the combustion gas, and the cooling capacity and COP of the absorption chiller / heater can be improved.

以上、本発明の好適な実施形態について説明したが、本発明は、該実施形態に限定されるものではなく、特許請求の範囲と発明の詳細な説明及び添付した図面の範囲内にでいろいろと変形して実施することが可能であり、このような変形実施も本発明の範囲に属することは当然である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the embodiments, and various modifications can be made within the scope of the claims, the detailed description of the invention, and the attached drawings. The present invention can be modified and implemented, and such a modified implementation naturally falls within the scope of the present invention.

従来の技術による吸収式冷温水機の概念図である。It is a conceptual diagram of the absorption-type cold / hot water machine by a prior art. 本発明の実施形態による吸収式冷温水機用の高温再生器の断面図である。It is sectional drawing of the high temperature regenerator for absorption type cold / hot water machines by embodiment of this invention. 図2に示された第2の溶液管の斜視図である。FIG. 3 is a perspective view of a second solution tube shown in FIG. 2. 本発明の実施形態による吸収式冷温水機用の高温再生器の第2の溶液管の断面図である。It is sectional drawing of the 2nd solution pipe | tube of the high temperature regenerator for absorption type cold / hot water machines by embodiment of this invention.

符号の説明Explanation of symbols

120:バーナー
130:燃焼室
150:外筒
160:内筒
162:液室
170:第1の溶液管
180:第2の溶液管
182:リブ
120: Burner 130: Combustion chamber 150: Outer cylinder 160: Inner cylinder 162: Liquid chamber 170: First solution tube 180: Second solution tube 182: Rib

Claims (6)

バーナーに連結される外筒と、
前記外筒の内部に設置され、内部に燃焼室が形成される内筒と、
前記外筒と内筒との間に溶液を貯留する液室と、
前記燃焼室の内部において前記バーナーに隣接して設置され内部の溶液を加熱する第1の溶液管、及び
前記燃焼室の内部において前記第1の溶液管の下流側に設置される第2の溶液管と、を含み、
前記第2の溶液管は、前記バーナーによる燃焼ガスの流れ方向に対し垂直の方向に沿って突設されるリブを具備することを特徴とする吸収式冷温水機用の高温再生器。
An outer cylinder connected to the burner;
An inner cylinder that is installed inside the outer cylinder and in which a combustion chamber is formed;
A liquid chamber for storing a solution between the outer cylinder and the inner cylinder;
A first solution pipe installed adjacent to the burner inside the combustion chamber for heating the solution inside; and a second solution installed downstream of the first solution pipe inside the combustion chamber. A tube, and
The high-temperature regenerator for an absorption chiller-heater, wherein the second solution pipe includes a rib projecting along a direction perpendicular to the flow direction of the combustion gas by the burner.
前記第2の溶液管は、その断面が燃焼ガスの流れ方向に沿って長く形成される扁平管からなり、
前記リブは、所定の間隔をあけて複数に配設されることを特徴とする請求項1に記載の吸収式冷温水機用の高温再生器。
The second solution tube is a flat tube whose cross section is formed long along the flow direction of the combustion gas,
The high-temperature regenerator for an absorption chiller / heater according to claim 1, wherein the ribs are arranged in a plurality at predetermined intervals.
前記リブは、その断面が四角形であることを特徴とする請求項2に記載の吸収式冷温水機用の高温再生器。   The high-temperature regenerator for an absorption chiller / heater according to claim 2, wherein the rib has a quadrangular cross section. 前記リブの幅または高さは3mm以上であることを特徴とする請求項3に記載の吸収式冷温水機用の高温再生器。   The high-temperature regenerator for an absorption chiller / heater according to claim 3, wherein the rib has a width or height of 3 mm or more. 前記リブの間隔は43mm以下であることを特徴とする請求項2に記載の吸収式冷温水機用の高温再生器。   The high-temperature regenerator for an absorption chiller / heater according to claim 2, wherein the interval between the ribs is 43 mm or less. 前記リブの間隔は、前記第2の溶液管の直線部の幅の25%以下であることを特徴とする請求項2に記載の吸収式冷温水機用の高温再生器。   The high-temperature regenerator for an absorption chiller / heater according to claim 2, wherein a distance between the ribs is 25% or less of a width of the straight portion of the second solution tube.
JP2008261237A 2007-10-22 2008-10-08 High temperature regenerator for absorption chiller and heater Pending JP2009103437A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070106132A KR20090040665A (en) 2007-10-22 2007-10-22 High temperature generator for absorption chiller

Publications (1)

Publication Number Publication Date
JP2009103437A true JP2009103437A (en) 2009-05-14

Family

ID=40629914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261237A Pending JP2009103437A (en) 2007-10-22 2008-10-08 High temperature regenerator for absorption chiller and heater

Country Status (3)

Country Link
JP (1) JP2009103437A (en)
KR (1) KR20090040665A (en)
CN (1) CN101419001B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434640B1 (en) * 2014-04-24 2014-08-26 현대공조 주식회사 high-temperature regenerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221718A (en) * 1993-01-26 1994-08-12 Hitachi Ltd High temperature regenerator absorption type cold/hot water apparatus and the apparatus
JP3789815B2 (en) * 2001-12-21 2006-06-28 株式会社日立製作所 High temperature regenerator and absorption chiller / heater equipped with the same
KR20070047643A (en) * 2005-11-02 2007-05-07 엘에스전선 주식회사 High-temperature regenerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221718A (en) * 1993-01-26 1994-08-12 Hitachi Ltd High temperature regenerator absorption type cold/hot water apparatus and the apparatus
JP3789815B2 (en) * 2001-12-21 2006-06-28 株式会社日立製作所 High temperature regenerator and absorption chiller / heater equipped with the same
KR20070047643A (en) * 2005-11-02 2007-05-07 엘에스전선 주식회사 High-temperature regenerator

Also Published As

Publication number Publication date
CN101419001B (en) 2011-03-30
CN101419001A (en) 2009-04-29
KR20090040665A (en) 2009-04-27

Similar Documents

Publication Publication Date Title
RU2472087C2 (en) Heat exchanger designed in particular for heat generators
JP4048213B2 (en) Absorption air conditioning system
JP5244230B2 (en) Absorber, absorber-evaporator assembly for absorber, and lithium bromide-water absorber incorporating said absorber and absorber-evaporator assembly
WO1999024769A1 (en) Absorption water heater/chiller and high temperature regenerator therefor
JP5580225B2 (en) Vacuum water heater
JPS6135902Y2 (en)
JP2009103437A (en) High temperature regenerator for absorption chiller and heater
JP3997594B2 (en) Air-cooled absorber
JP2004176969A (en) Absorption heat pump
KR100679982B1 (en) Low-temperature regenerator for absorption-type water heating/cooling unit
JP2009236477A (en) Absorption chiller and heater
JP5580224B2 (en) Vacuum water heater
CN102095286B (en) Absorption heat pump evaporator structure for recovering low-pressure vapor residual heat
JP4315855B2 (en) Absorption refrigerator
JP2007071512A (en) Absorption refrigeration machine
KR100428317B1 (en) High Temperature Generator of The Absorption Chiller and Heater
JP3938712B2 (en) High-temperature regenerator and absorption chiller / heater
KR200286538Y1 (en) An apparatus for heat recovery
JPS5812953A (en) Cool air, hot air and hot water supply equipment utilizing solar heat
KR100314471B1 (en) Generator of absorption heat pump using ammonia
JP3754108B2 (en) Absorption chiller / heater regenerator
JP3904726B2 (en) Absorption refrigeration system
KR20100082908A (en) Air peheater for absortion chiller
JPS60599Y2 (en) low temperature generator
KR100781880B1 (en) Absorption chiller

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110322

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004