JP2009101376A - Welding wire with copper plating - Google Patents

Welding wire with copper plating Download PDF

Info

Publication number
JP2009101376A
JP2009101376A JP2007274369A JP2007274369A JP2009101376A JP 2009101376 A JP2009101376 A JP 2009101376A JP 2007274369 A JP2007274369 A JP 2007274369A JP 2007274369 A JP2007274369 A JP 2007274369A JP 2009101376 A JP2009101376 A JP 2009101376A
Authority
JP
Japan
Prior art keywords
wire
copper
copper oxide
plating
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007274369A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konishi
良宏 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007274369A priority Critical patent/JP2009101376A/en
Priority to CN2008101701592A priority patent/CN101417372B/en
Priority to KR1020080103026A priority patent/KR20090040856A/en
Publication of JP2009101376A publication Critical patent/JP2009101376A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding wire with copper plating which generates little plating waste, has a good conducting property, and is excellent in feeding property. <P>SOLUTION: In the welding wire which is copper-plated on the surface of a steel wire, the concentration of copper and copper oxide in the wire surface is measured by X-ray photoelectric spectroscopy, and the existence ratio of copper oxide with respect to copper is calculated as a copper oxide ratio (atomic%). When the surface layer part having the copper oxide ratio of more than 6% is defined as a copper oxide enriched layer and the wire surface is sputtered using an argon laser beam, the depth of this copper oxide enriched layer is less than 10 nm from the wire surface in terms of the sputter rate using SiO<SB>2</SB>as a standard sample. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両、鉄骨、橋梁などの溶接構造物のアーク溶接施工に広く使用される銅メッキあり溶接ワイヤに関する。   The present invention relates to a copper-plated welding wire widely used for arc welding construction of welded structures such as vehicles, steel frames and bridges.

従来、アーク溶接時における溶接作業性を向上させるため、アーク溶接ワイヤのワイヤ表面の酸素量を規定することが試みられている。   Conventionally, in order to improve welding workability at the time of arc welding, it has been attempted to define the amount of oxygen on the surface of the arc welding wire.

例えば、特許文献1に記載されているように、メッキなしのアーク溶接ワイヤのワイヤ表面から21.6〜43.2nmの深さにおいて、検出される酸素濃度の平均値を20原子%以下に規定する。この酸素量の規定により、溶滴の表面張力および粘性を最適化することでアーク溶接におけるスパッタ発生量を低減している。   For example, as described in Patent Document 1, the average value of the detected oxygen concentration is specified to be 20 atomic% or less at a depth of 21.6 to 43.2 nm from the wire surface of an arc welding wire without plating. To do. By regulating the amount of oxygen, the surface tension and viscosity of the droplets are optimized to reduce the amount of spatter generated in arc welding.

また、例えば、特許文献2に記載されているように、銅メッキを施した銅メッキありアーク溶接ワイヤのワイヤ表面から50μm深さまでの酸素量を所定範囲に規定し、銅メッキ厚を0.3μm以下に規定している。酸素量の規定により、溶滴の表面張力および粘性を最適化することでアークを安定化させることができ、銅メッキ厚を規定することでワイヤ酸素量を増加するのと同様の効果(アークの安定化)を得ている。   For example, as described in Patent Document 2, the amount of oxygen from the wire surface of the copper-plated arc welding wire with copper plating to a depth of 50 μm is defined within a predetermined range, and the copper plating thickness is set to 0.3 μm. It is defined below. By defining the amount of oxygen, the arc can be stabilized by optimizing the surface tension and viscosity of the droplet, and by defining the copper plating thickness, the effect is similar to increasing the amount of wire oxygen (arc Stabilization).

特開2003−236694号公報JP 2003-236694 A 特開2002−239783号公報Japanese Patent Application Laid-Open No. 2002-239783

しかし、特許文献1に記載された技術を銅メッキありアーク溶接ワイヤに適用することはできない。鋼と銅との酸素親和力の相違により、銅メッキにおける酸化皮膜の膜厚及び酸素量が全く異なるものとなるためである。また、特許文献1では、ワイヤ表面の酸素量を測定しているが、酸素源が何かを特定できておらず、そのため、ワイヤ表面汚染に起因する酸素量と酸素濃化層に起因する酸素量とを分離できていない。この結果、ワイヤ表面の酸素量の規定では、ワイヤ表面から20nmの深さまでの酸素濃化層に起因する酸素量を規定することとはならない。従って、銅メッキありアーク溶接ワイヤでは溶接作業性を十分に向上させることができない。   However, the technique described in Patent Document 1 cannot be applied to an arc welding wire with copper plating. This is because the film thickness and oxygen amount of the oxide film in copper plating are completely different due to the difference in oxygen affinity between steel and copper. Further, in Patent Document 1, the amount of oxygen on the wire surface is measured, but the oxygen source cannot be specified. Therefore, the amount of oxygen due to wire surface contamination and the oxygen due to the oxygen concentrated layer are not determined. The amount cannot be separated. As a result, the regulation of the amount of oxygen on the wire surface does not define the amount of oxygen attributed to the oxygen-enriched layer from the wire surface to a depth of 20 nm. Accordingly, the welding workability cannot be sufficiently improved with an arc welding wire with copper plating.

また、特許文献2では、ワイヤ表面の酸素濃化層について、銅メッキ(0.3μm)部と鋼材部とを分離せず、主に鋼部分の酸素量を説明しており、銅メッキ部の酸素量を説明できていない。銅メッキ部の酸素量が高いと、絶縁性の高い酸化銅の生成により、ワイヤ表面の通電が滞り、溶接電流が安定せず、アークが不安定になるという問題がある。また、酸化銅は延性が低いので、溶接時に送給ローラやライナーとの接触において銅メッキが剥離し、その結果メッキ屑が発生して目詰まりし、アークが不安定になるという問題がある。   Moreover, in patent document 2, it does not isolate | separate a copper plating (0.3 micrometer) part and a steel material part about the oxygen concentration layer of the wire surface, but mainly explains the oxygen amount of the steel part, The amount of oxygen cannot be explained. If the amount of oxygen in the copper-plated portion is high, there is a problem that due to the formation of highly insulating copper oxide, the current on the wire surface is delayed, the welding current is not stable, and the arc becomes unstable. Further, since copper oxide has low ductility, there is a problem that the copper plating is peeled off in contact with the feeding roller and the liner during welding, resulting in generation of plating scraps and clogging, and the arc becoming unstable.

本発明はかかる問題点に鑑みてなされたものであって、メッキ屑の発生が少なく、通電性が良好で送給性に優れた銅メッキあり溶接ワイヤを提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a copper-plated welding wire with less generation of plating scraps, good electrical conductivity and excellent feedability.

本発明に係る銅メッキあり溶接ワイヤは、鋼線の表面に銅メッキが施された溶接ワイヤにおいて、X線光電子分光法によりワイヤ表面の銅および酸化銅の濃度を測定し、銅に対する酸化銅の存在比率を酸化銅比率(原子%)として算出し、この酸化銅比率が6%以上である表面層部分を酸化銅濃化層と定義したとき、アルゴンビームを使用してワイヤ表面をスパッタリングした場合に、標準試料としてSiOを使用したスパッタレート換算で、この酸化銅濃化層の深さがワイヤ表面から10nm以下であることを特徴とする。 The welding wire with copper plating according to the present invention is a welding wire in which the surface of a steel wire is plated with copper. The concentration of copper and copper oxide on the surface of the wire is measured by X-ray photoelectron spectroscopy. When the abundance ratio is calculated as the copper oxide ratio (atomic%), and when the surface layer portion where the copper oxide ratio is 6% or more is defined as a copper oxide concentrated layer, the wire surface is sputtered using an argon beam Further, the depth of the copper oxide concentrated layer is 10 nm or less from the wire surface in terms of sputtering rate using SiO 2 as a standard sample.

本発明においては、ワイヤ表面に、MoS,WS、ZnS、グラファイト、BNからなる群から選択された1種以上の物質が、ワイヤ10kg当たり0.01乃至0.80g存在してもよい。 In the present invention, 0.01 to 0.80 g of one or more substances selected from the group consisting of MoS 2 , WS 2 , ZnS, graphite, and BN may be present on the wire surface per 10 kg of the wire.

ワイヤ表面に、鉱物油、動物油、植物油及び合成油からなる群から選択された1種以上の油脂が、ワイヤ10kg当たり0.1乃至2.0g存在してもよい。   0.1 to 2.0 g of one or more oils and fats selected from the group consisting of mineral oil, animal oil, vegetable oil and synthetic oil may be present on the wire surface per 10 kg of the wire.

本発明は、メッキ屑の発生が少なく、通電性が良好で、送給性が優れた銅メッキありアーク溶接ワイヤを提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a copper-plated arc welding wire with less generation of plating scraps, good electrical conductivity, and excellent feedability.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

アーク溶接用ワイヤは、一般的に、酸洗処理、メッキ前伸線(以下、「1次伸線」という)、洗浄処理、メッキ処理及び仕上伸線(以下、「2次伸線」という)の工程を経て製造される。   Arc welding wires are generally pickled, pre-plated (hereinafter referred to as “primary wire drawing”), cleaning, plating, and finish wire drawing (hereinafter referred to as “secondary wire drawing”). It is manufactured through the process.

先ず、スケールが完全になくなるまで酸洗処理を行った素線を、所定の線径まで1次伸線する。続いて、1次伸線で線材表面に付着した伸線潤滑剤を除去するために洗浄処理した後、メッキ処理を行う。   First, the wire subjected to the pickling treatment until the scale is completely removed is first drawn to a predetermined wire diameter. Subsequently, after performing a cleaning process to remove the wire drawing lubricant adhering to the surface of the wire by primary wire drawing, a plating process is performed.

メッキ処理したワイヤにおいて、メッキは2次伸線工程における潤滑皮膜の役割を担っており、メッキの付着性が良好でないと2次伸線で潤滑不良が発生し、メッキの酸化を促進する危険がある。メッキが酸化しすぎると本発明の目的を達成できなくなる。従って、良好なメッキの付着性を得ることが、本発明を実施するための前提条件となる。   In the plated wire, the plating plays the role of a lubricating film in the secondary wire drawing process. If the adhesion of the plating is not good, there is a risk that a lubrication failure occurs in the secondary wire drawing and the oxidation of the plating is promoted. is there. If the plating is too oxidized, the object of the present invention cannot be achieved. Therefore, obtaining good plating adhesion is a prerequisite for carrying out the present invention.

メッキの付着性を良好にするには、1次伸線を行う前の洗浄処理が肝要である。即ち、洗浄処理が不十分であるとメッキ生成が阻害され、メッキの付着性が悪化する。そこで、本発明に係る溶接用ワイヤを製造するための1次伸線工程では、洗浄性に優れるK石鹸、Na石鹸、Ba石鹸を使用する。伸線潤滑性能に優れるCa石鹸などを適用することも可能であるが、その場合、アルカリ脱脂や、洗浄目的の焼鈍及び酸洗工程が必要となり、コスト面の問題があり好ましくない。一方、K石鹸、Na石鹸乃至Ba石鹸は、比較的潤滑性に富まない。そこで、極圧剤や軟化点調整剤を添加し、潤滑性と洗浄性を兼ね備えた潤滑剤とすることが好ましい。極圧剤としては、MoS、WS、BN、ZnS、ポリテトラフルオロエチレン、ワックス乃至グラファイトを潤滑剤に適宜配合する。また、軟化点調整剤として燐酸Na、硼酸Na、硝酸Na、炭酸Na、燐酸K、硼酸K、硝酸K乃至炭酸Kから1種以上を使用する。 In order to improve the adhesion of the plating, it is important to perform a cleaning process before the primary wire drawing. That is, if the cleaning process is insufficient, the plating generation is hindered and the adhesion of the plating is deteriorated. Therefore, in the primary wire drawing process for producing the welding wire according to the present invention, K soap, Na soap, and Ba soap having excellent cleaning properties are used. Although it is also possible to apply Ca soap excellent in wire drawing lubrication performance, in that case, alkaline degreasing, annealing for the purpose of washing and pickling steps are required, which is not preferred because of cost problems. On the other hand, K soap, Na soap and Ba soap are relatively poor in lubricity. Therefore, it is preferable to add an extreme pressure agent or a softening point adjuster to obtain a lubricant having both lubricity and detergency. As the extreme pressure agent, MoS 2 , WS, BN, ZnS, polytetrafluoroethylene, wax or graphite is appropriately blended in the lubricant. Further, as a softening point adjusting agent, at least one selected from Na phosphate, Na borate, Na nitrate, Na carbonate, K phosphate, K phosphate, K nitrate and K carbonate is used.

続いて、ワイヤ表面温度やメッキ浴への浸漬時間等を調整して銅メッキ処理を行い、このようにメッキ処理した半製品を、最終製品径まで2次伸線する。製品の表面品質に最も影響するのは、この2次伸線であり、この工程でメッキの酸化を抑制することが本発明において、最も肝要である。   Subsequently, a copper plating process is performed by adjusting the wire surface temperature, the dipping time in the plating bath, etc., and the semi-finished product thus plated is secondarily drawn to the final product diameter. It is this secondary wire drawing that has the greatest influence on the surface quality of the product, and it is most important in the present invention to suppress oxidation of the plating in this step.

発明者等は、銅の酸化が促進される温度に関して基礎調査を行い、2次伸線ワイヤの表面の酸化は、ワイヤ表面温度が70℃以上となると活性化を始め、本発明に規定する酸化銅濃化層が生成されにくいことを見出した。また、特にワイヤ表面温度が100℃を超えると、著しくワイヤ表面に酸化膜が生成され、本発明に規定する酸化銅濃化層を得ることができないことを見出した。   The inventors have conducted basic investigations on the temperature at which copper oxidation is promoted, and the surface of the secondary wire is oxidized when the wire surface temperature reaches 70 ° C. or higher, and the oxidation specified in the present invention. It has been found that a copper enriched layer is hardly generated. Further, it has been found that when the wire surface temperature exceeds 100 ° C., an oxide film is remarkably generated on the wire surface, and the copper oxide concentrated layer defined in the present invention cannot be obtained.

従って、本発明に規定する酸化銅濃化層を生成させるためには、加工中のワイヤ表面温度を100℃以下、望ましくは70℃以下に維持することが必要である。   Therefore, in order to produce the copper oxide concentrated layer defined in the present invention, it is necessary to maintain the wire surface temperature during processing at 100 ° C. or lower, desirably 70 ° C. or lower.

ここで、ワイヤ表面温度を100℃以下に維持する手段として、発熱量を抑えることと、発熱後に冷却することが有効である。   Here, as means for maintaining the wire surface temperature at 100 ° C. or lower, it is effective to suppress the heat generation amount and to cool after the heat generation.

先ず、発熱量の抑制について記述する。加工中の発熱量は主に加工率が支配しているので、発熱量の抑制には加工率を抑えることが有効である。発熱量は、線材の変形抵抗により異なるが、一般軟鋼では、ダイスの加工減面率を34%以下、望ましくは18%以下とすることで、ワイヤ温度を所定の温度以下に維持することが可能となり、本発明において規定される酸化銅濃化層を得ることができる。特に、最終製品径付近の減面率が製品の表面品質に与える影響度は高い。従って、最終製品径付近の加工では、減面率を15%以下とすることが望ましい。   First, suppression of heat generation will be described. Since the heat generation amount during processing is mainly governed by the processing rate, it is effective to suppress the processing rate in order to suppress the heat generation amount. Although the amount of heat generated varies depending on the deformation resistance of the wire, in general mild steel, it is possible to keep the wire temperature below a predetermined temperature by setting the die work area reduction to 34% or less, preferably 18% or less. Thus, a copper oxide concentrated layer defined in the present invention can be obtained. In particular, the degree of influence on the surface quality of the product by the reduction in area near the final product diameter is high. Therefore, it is desirable to reduce the area reduction rate to 15% or less in processing near the final product diameter.

また、メッキ処理を行う線径を細目にすることで、メッキ処理を施してから最終製品径に至るまでの総加工量を減らし、発熱量を抑制することもできる。メッキ処理において、必要なメッキ量を確保するには、メッキ浴中にある程度の時間ワイヤを浸漬させる必要がある。そのため、メッキ処理工程を通過するワイヤの速度には上限がある。メッキ処理を行う線径を余りに細目にすると、上限速度内で十分な量のワイヤを生産できず、著しく生産性がダウンする。従って、メッキ径は生産性と酸化状態とを共に満足する範囲を設定する必要がある。本発明では、メッキ処理を行う線径をφ1.7mm〜φ3.0mmとする。   Further, by reducing the diameter of the wire to be plated, the total amount of processing from the plating to the final product diameter can be reduced, and the amount of heat generated can be suppressed. In the plating process, in order to secure a necessary plating amount, it is necessary to immerse the wire in the plating bath for a certain period of time. Therefore, there is an upper limit on the speed of the wire passing through the plating process. If the wire diameter for plating is made too fine, a sufficient amount of wire cannot be produced within the upper limit speed, and the productivity is significantly reduced. Therefore, it is necessary to set a range in which the plating diameter satisfies both productivity and oxidation state. In the present invention, the wire diameter for plating is set to φ1.7 mm to φ3.0 mm.

次に、発熱後の冷却について記述する。4個から10個のダイスブロックを連続的に配置した連続伸線機(以下、「連伸機」という)では、製品径付近になるにつれ、ワイヤ表面は高温になりやすい。これは、N番目のダイスブロックでの発熱が十分に冷却される前にN+1番目以降のダイスブロックでの発熱がワイヤに順次加算されるためである。製品径付近の温度こそ最も低温に維持すべきであるので、最終製品径付近の2次伸線は連伸機を使用せず、単一のダイスもしくはせいぜい3個までの限定的なダイスブロック数とした連伸機が望ましい。しかし、ダイスブロック数が少なすぎると、複数回の2次伸線を行う必要があり、極めて生産性が悪くなる。そこで、本発明では、ダイス引抜後の釜を十分に冷却し、更にダイス加工直後のワイヤ表面に冷却エアーを高速で吹き付けることで、所定の表面温度を維持させる。この方法により、4個から10個のダイスブロックを連続的に配置した連伸機でも本発明で規定する酸化銅濃化層を得ることができる。   Next, cooling after heat generation will be described. In a continuous wire drawing machine (hereinafter referred to as “continuous drawing machine”) in which 4 to 10 die blocks are continuously arranged, the wire surface tends to become hot as it approaches the product diameter. This is because the heat generated in the (N + 1) th and subsequent die blocks is sequentially added to the wire before the heat generated in the Nth die block is sufficiently cooled. Since the temperature near the product diameter should be kept at the lowest temperature, secondary wire drawing near the final product diameter does not use a continuous drawing machine, and a single die or a limited number of die blocks up to 3 at most. The continuous stretcher is desirable. However, if the number of die blocks is too small, it is necessary to perform secondary wire drawing a plurality of times, and productivity is extremely deteriorated. Therefore, in the present invention, the hook after the die drawing is sufficiently cooled, and a predetermined surface temperature is maintained by blowing cooling air at a high speed onto the wire surface immediately after the die processing. By this method, the copper oxide concentrated layer defined in the present invention can be obtained even with a continuous stretcher in which 4 to 10 die blocks are continuously arranged.

ここで、冷却液としては汎用的な機械油、水などの液体が使用できるが、揮発性があり、気化熱により高い冷却効果を得られる有機溶剤を使用することが望ましい。水溶液を使用する場合、工業用水等の一般的な水のままでは酸化を促進してしまい、逆効果となる。そこで、水のpH調整、還元剤の添加などを行い、酸化促進を抑制する必要がある。   Here, liquids such as general-purpose machine oil and water can be used as the cooling liquid, but it is desirable to use an organic solvent which is volatile and can obtain a high cooling effect by heat of vaporization. In the case of using an aqueous solution, the general water such as industrial water will promote oxidation and have an adverse effect. Therefore, it is necessary to suppress oxidation promotion by adjusting the pH of water, adding a reducing agent, and the like.

低合金鋼など、加工熱量が極めて大きい場合には、別の手法を検討する必要がある。即ち、仕上製品径付近まで加工した半製品を還元ガス雰囲気中で焼鈍する手法である。本手法は、焼鈍工程の追加によるコスト面の問題はあるが、2次伸線工程での発熱量を考慮する必要もなく、また、伸線に使用する潤滑剤の洗浄工程を省略できるなどの利点もあり、低合金鋼などで良好な酸化状態を得るには有効な手法である。   When the amount of heat of processing is extremely large, such as low alloy steel, it is necessary to consider another method. That is, it is a technique in which a semi-finished product processed to near the finished product diameter is annealed in a reducing gas atmosphere. Although this method has a cost problem due to the addition of the annealing process, it is not necessary to consider the heat generation amount in the secondary wire drawing process, and the cleaning process of the lubricant used for wire drawing can be omitted. There is also an advantage, and it is an effective technique for obtaining a good oxidation state with a low alloy steel or the like.

次に、本発明の数値限定理由について説明する。   Next, the reason for limiting the numerical value of the present invention will be described.

「酸化銅濃化層の深さがワイヤ表面から10nm以下」
酸化銅は絶縁性が高いため、酸化銅濃化層の深さが10nmより大きいとアーク溶接中の通電を阻害する可能性が高くなり、送給性が低下する。また、酸化銅は延性が低いため、ライナーなどとの接触により剥離しやすくなり、詰まり性が低下する。
"The depth of the copper oxide concentrated layer is 10nm or less from the wire surface"
Since copper oxide has high insulating properties, if the depth of the copper oxide concentrated layer is greater than 10 nm, there is a high possibility that current conduction during arc welding will be hindered, and feedability will be reduced. Moreover, since copper oxide has low ductility, it becomes easy to peel off by contact with a liner or the like, and clogging properties are reduced.

「ワイヤ表面にMoS、WS、ZnS、グラファイト、BNからなる群から選択された1種以上の物質がワイヤ10kg当たり0.01乃至0.8g」
MoS、WS、ZnS、グラファイト、BNからなる群から選択された1種以上の物質が総量で0.01g/ワイヤ10kg未満では、ワイヤの滑り性が向上せず、送給性が劣る。また、当該物質が0.8gより多いと、ライナー内部に、これら固型潤滑剤が目詰まりする危険性がある。
“One or more substances selected from the group consisting of MoS 2 , WS 2 , ZnS, graphite, and BN on the wire surface are 0.01 to 0.8 g per 10 kg of wire”
When the total amount of one or more kinds of substances selected from the group consisting of MoS 2 , WS 2 , ZnS, graphite, and BN is less than 0.01 g / 10 kg of wire, the slipperiness of the wire is not improved and the feedability is inferior. Further, if the amount of the substance is more than 0.8 g, there is a risk that these solid lubricants are clogged inside the liner.

「ワイヤ表面に鉱物油、動物油、植物油及び合成油からなる群から選択された1種以上の油脂がワイヤ10kg当たり0.1乃至2.0g」
油脂が0.1g/ワイヤ10kg未満ではワイヤの滑り性が悪くなり、送給性が劣る。また、油脂が2.0gより多いと、ライナー内部に油脂類が目詰まりしたり、送給ローラーでワイヤがスリップするなどの問題が発生する。
“One or more oils and fats selected from the group consisting of mineral oil, animal oil, vegetable oil and synthetic oil on the wire surface are 0.1 to 2.0 g per 10 kg of wire”
If the oil and fat is less than 0.1 g / 10 kg of wire, the slipping property of the wire is deteriorated and the feeding property is inferior. On the other hand, when the amount of oil is more than 2.0 g, problems such as clogging of oil and fat inside the liner and slipping of the wire by the feeding roller occur.

以下、本発明の実施例の効果について、本発明から外れる比較例と比較して説明する。   Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from this invention.

先ず、試料の評価方法について説明する。下記表1はこの評価基準を示す。   First, a sample evaluation method will be described. Table 1 below shows this evaluation standard.

「溶接条件」
通電性及び送給性の評価には、6mの間で2箇所の曲がり部を有する、市販のアーク溶接用送給装置を使用した。COガスシールド溶接機でのアーク溶接試験を行い、その実験結果の評価を行った。溶接条件は、下向きビードオンで、突き出し長さは25mmとし、溶接速度は30cpmで、アークタイムは15分とした。
"Welding conditions"
A commercially available feeding device for arc welding having two bent portions between 6 m was used for the evaluation of the electric conductivity and the feeding property. An arc welding test was conducted with a CO 2 gas shielded welder, and the experimental results were evaluated. The welding conditions were a downward bead on, a protruding length of 25 mm, a welding speed of 30 cpm, and an arc time of 15 minutes.

「通電性の評価」
電流域180Aと280Aとについて計測した。電流域180Aは、短絡移行領域であり、電圧は、常時一定の変動幅で変化する。溶接中に通電不安定が発生すると、電圧変動幅が安定溶接時と比較して著しく変動する。ここで、本発明では、電圧値が30V以下となった場合に通電不良が発生したと考え、15分間の溶接中に発生した通電不良の回数を計測した。そして、下記表1に示すように、通電不良の回数が0〜1回の場合は、通電性が非常に優れている(◎)、2〜5回の場合は通電性が優れている(○)、6〜12回の場合は通電性が基準レベル(△)、13回以上である場合は通電性が劣っている(×)と評価した。
"Evaluation of electrical conductivity"
Measurements were made for current ranges 180A and 280A. The current region 180A is a short-circuit transition region, and the voltage always changes with a constant fluctuation range. When energization instability occurs during welding, the voltage fluctuation range fluctuates significantly compared to that during stable welding. Here, in this invention, when the voltage value was set to 30V or less, it was thought that the electricity supply failure generate | occur | produced, and the frequency | count of the electricity supply failure which generate | occur | produced during welding for 15 minutes was measured. And as shown in Table 1 below, when the number of energization failures is 0 to 1, the conductivity is very excellent (◎), and when it is 2 to 5 times, the conductivity is excellent (○ ), In the case of 6 to 12 times, the conductivity was evaluated as a reference level (Δ), and in the case of 13 times or more, the conductivity was evaluated as inferior (x).

電流域280Aは、グロビュール移行形態であるために、時折、溶融プールと溶接ワイヤ間で短絡が発生し、瞬間的に電圧が下がることがある。そこで、本発明では、溶接電圧が5V以下となった場合に通電不良が発生したと考え、15分間の溶接中に通電不良の回数を計測した。そして、下記表1に示すように、通電不良の回数が0〜3回の場合は、通電性が非常に優れている(◎)、4〜10回の場合は通電性が優れている(○)、10〜20回の場合は通電性が基準レベル(△)、20回以上である場合は通電性が劣っている(×)と評価した。   Since the current region 280A is a globule transition form, a short circuit may occasionally occur between the molten pool and the welding wire, and the voltage may drop instantaneously. Therefore, in the present invention, it was considered that an energization failure occurred when the welding voltage became 5 V or less, and the number of energization failures was measured during welding for 15 minutes. And as shown in following Table 1, when the frequency | count of an electrical conduction failure is 0-3 times, electrical conductivity is very excellent ((double-circle)), and when 4-10 times, electrical conductivity is excellent ((circle) In the case of 10 to 20 times, the electrical conductivity was evaluated as a reference level (Δ), and in the case of 20 times or more, the electrical conductivity was evaluated to be inferior (x).

「送給性の評価」
送給ローラにロードセルを組み込み、送給ローラがワイヤから受ける送給抵抗を測定した。下記表1に示すように、電流域180Aにおいては、送給抵抗(kgf)が0.0〜1.5(kgf)の場合は、送給性が非常に優れている(◎)、1.5〜2.5(kgf)の場合は送給性が優れている(○)、2.5〜4.0(kgf)の場合は送給性が基準レベル(△)、4.0以上である場合は送給性が劣っている(×)と評価した。一方、電流域280Aにおいては、送給抵抗が0.0〜2.0(kgf)の場合は、送給性が非常に優れている(◎)、2.0〜4.0(kgf)の場合は送給性が優れている(○)、4.0〜6.0(kgf)の場合は送給性が基準レベル(△)、6.0以上である場合は送給性が劣っている(×)と評価した。
"Evaluation of transportability"
A load cell was incorporated in the feed roller, and the feed resistance received from the wire by the feed roller was measured. As shown in Table 1 below, in the current region 180A, when the feed resistance (kgf) is 0.0 to 1.5 (kgf), the feedability is very excellent (◎). In the case of 5 to 2.5 (kgf), the feedability is excellent (◯), and in the case of 2.5 to 4.0 (kgf), the feedability is the reference level (Δ), 4.0 or more. In some cases, the feedability was inferior (x). On the other hand, in the current region 280A, when the feeding resistance is 0.0 to 2.0 (kgf), the feeding property is very excellent (◎), 2.0 to 4.0 (kgf). In the case of excellent feedability (◯), in the case of 4.0 to 6.0 (kgf), the feedability is the standard level (Δ), and in the case of 6.0 or more, the feedability is inferior. (×).

「詰まり性の評価」
1.5mmライナーに直径300mmのループを2箇所つくり、8の字状に配置した送給経路に、ワイヤ10kgを送給した。この場合に発生するライナー重量の増加量を差分法で測定することにより、送給中にライナー内部で発生するメッキ屑やワイヤ表面の付着物が脱落し、ライナー内に詰まる物の量を測定した。この重量に基づいて、下記表1に示すように詰まり性を評価した。具体的には、ワイヤ10kgに対する当該詰まる物の量が0.0200(g)未満である場合は詰まり性が非常に優れている(◎)、当該詰まる物の量が0.0200〜0.0700(g)の場合は詰まり性が優れている(○)、0.0700〜0.1200(g)の場合は詰まり性が基準レベル(△)、0.1200(g)以上である場合は詰まり性が劣っている(×)と評価した。
"Evaluation of clogging"
Two loops with a diameter of 300 mm were made on a 1.5 mm liner, and 10 kg of wire was fed to a feeding path arranged in an 8-shape. By measuring the amount of increase in liner weight generated in this case by the differential method, the amount of clogging generated inside the liner during the feeding and deposits on the surface of the wire dropped off and clogged in the liner was measured. . Based on this weight, the clogging property was evaluated as shown in Table 1 below. Specifically, when the amount of the clogged material with respect to 10 kg of wire is less than 0.0200 (g), the clogging property is very excellent ((), and the amount of the clogged material is 0.0200 to 0.0700. In the case of (g), the clogging property is excellent (◯). In the case of 0.0700 to 0.1200 (g), the clogging property is clogged when the clogging property is a reference level (Δ) or more than 0.1200 (g). The quality was inferior (x).

Figure 2009101376
Figure 2009101376

次に、試料の製造方法について説明する。先ず、スケールが完全になくなるまで塩酸により酸洗処理を行った素線を、総径1.8mmまで1次伸線した。使用した線材の化学組成は、JIS YGW11及びYGW12である。下記表2に、実際に試験評価に使用したソリッドワイヤの成分組成の具体例を示す。なお、単位は質量%であり、Trとは、微量(Trace)であることを示す。   Next, a method for manufacturing a sample will be described. First, a strand subjected to pickling with hydrochloric acid until the scale was completely removed was first drawn to a total diameter of 1.8 mm. The chemical composition of the used wire is JIS YGW11 and YGW12. Table 2 below shows specific examples of the component composition of the solid wire actually used for the test evaluation. In addition, a unit is mass%, and Tr shows that it is a trace amount (Trace).

Figure 2009101376
Figure 2009101376

1次伸線では、K石鹸を使用した。この際、極圧剤として、MoS、WS、BN、ZnS、ポリテトラフルオロエチレン、ワックス乃至グラファイトを適宜組み合わせて使用した。軟化点調整剤は、炭酸K及び硼酸Kを石鹸重量に対して10wt%配合した。 For the primary wire drawing, K soap was used. At this time, MoS 2 , WS, BN, ZnS, polytetrafluoroethylene, wax or graphite was used in appropriate combination as an extreme pressure agent. As the softening point adjuster, carbonic acid K and boric acid K were blended in an amount of 10 wt% with respect to the soap weight.

続いて、40℃以上に保温した水により、ワイヤに付着する伸線潤滑剤を洗浄した後、ワイヤ表面温度やメッキ浴への浸漬時間等を調整して銅メッキ処理を行った。   Subsequently, the wire drawing lubricant adhering to the wire was washed with water kept at a temperature of 40 ° C. or higher, and then the copper plating treatment was performed by adjusting the wire surface temperature, the dipping time in the plating bath, and the like.

実施例の2次伸線においては、ワイヤ表面温度を90℃以下に維持した。   In the secondary wire drawing of the example, the wire surface temperature was maintained at 90 ° C. or lower.

具体的には、全てのダイスの加工減面率を25%以下、特に、最終製品径付近の加工では15%以下として、銅メッキ済みの半製品を、最終製品径まで2次伸線(仕上伸線)した。   Specifically, the reduction in the processing area of all dies is 25% or less, especially 15% or less in the vicinity of the final product diameter, and the copper-plated semi-finished product is subjected to secondary wire drawing to the final product diameter (finishing) Drawn).

また、5℃以下に冷却した水を用いてダイス引抜後の釜を十分に冷却し、更にダイス加工直後のワイヤ表面に冷却エアーを高速で吹き付けることで、所定のワイヤ表面温度を維持した。   Further, the water after cooling to 5 ° C. or lower was used to sufficiently cool the pot after drawing the die, and further, cooling air was blown onto the wire surface immediately after the die processing at a high speed to maintain a predetermined wire surface temperature.

比較例については、これらの冷却処理を行わず、加工中のワイヤを高温にしたまま伸線を行った。   About the comparative example, these cooling processes were not performed but the wire under process was drawn with the temperature being high.

このように作製した試料1〜7についてCu Oxide Rateが6%以上となる深さを測定した結果を下記表3に記載する。さらに試料1〜7に施したMoS、WS、ZnS、グラファイト、BN、送給油について分類し、分類したワイヤそれぞれに対して通電性、送給性、詰まり性を評価したものをサンプル1−1〜7−4として記載する。また、本発明では、XPS(アルバック・ファイ社:Quantera SXM、X線源 Al単色線:1486.6eV)を使用し、深さ方向ついて、ワイヤ表面の酸素量および酸化銅濃化層の深さを測定した。測定条件は、X線プローブ径を100μm、Arスパッタ 1kV2×2(本測定前に、100nmのSiO膜でスパッタレートを算出する)とし、光電子取り出し角45°でCuLMNおよびCup3を取得した。最表面のCuLMNスペクトルを酸化銅、最内部のCuLMNスペクトルを金属Cuとし、スペクトル面積比から原子%で存在比を算出した。 Table 3 below shows the results of measuring the depth at which the Cu Oxide Rate is 6% or more for Samples 1 to 7 produced in this manner. Further, MoS 2 , WS 2 , ZnS, graphite, BN, and feed oil applied to Samples 1 to 7 were classified, and samples 1- were evaluated for the conductivity, feedability, and clogging properties for each of the classified wires. It describes as 1-7-4. Further, in the present invention, XPS (ULVAC-PHI: Quantera SXM, X-ray source Al monochromatic line: 1486.6 eV) is used, and in the depth direction, the amount of oxygen on the wire surface and the depth of the copper oxide concentrated layer Was measured. The measurement conditions were an X-ray probe diameter of 100 μm, Ar sputter 1 kV2 × 2 (calculate the sputter rate with a 100 nm SiO 2 film before this measurement), and CuLMN and Cu 2 p3 were obtained at a photoelectron extraction angle of 45 °. . The abundance ratio was calculated in terms of atomic% from the spectrum area ratio, where the outermost CuLMN spectrum was copper oxide and the innermost CuLMN spectrum was metal Cu.

図1は、本発明に係るアーク溶接ワイヤ1の断面図である。同図に示すように、鋼材10の表面に銅メッキ20が施されている。   FIG. 1 is a cross-sectional view of an arc welding wire 1 according to the present invention. As shown in the figure, a copper plating 20 is applied to the surface of the steel material 10.

図5に、縦軸を酸化銅比率(Cu Oxide Rate)(原子%)、横軸をワイヤ表面からの深さ(nm)として酸化銅比率(原子%)の測定結果を示す。同図に示すように、試料1〜7において、酸化銅比率(原子%)が6%以上となる深さ(nm)はそれぞれ、12.0nm(試料1)、10、5nm(試料2)、10.5nm(試料3)、7.0nm(試料4)、6.8nm(試料5)、6.0nm(試料6)、4.0nm(試料7)であった。試料1〜3は酸化銅比率(原子%)が6%以上となる深さ(nm)が10nmより大きく、本発明の範囲外の比較例である。試料4〜7は、酸化銅比率(原子%)が6%以上となる深さ(nm)が10nm以下であり、本発明の範囲内の実施例である。   FIG. 5 shows the measurement results of the copper oxide ratio (atomic%) with the vertical axis representing the copper oxide ratio (Cu Oxide Rate) (atomic%) and the horizontal axis representing the depth (nm) from the wire surface. As shown in the figure, in samples 1 to 7, the depth (nm) at which the copper oxide ratio (atomic%) is 6% or more is 12.0 nm (sample 1), 10, 5 nm (sample 2), They were 10.5 nm (sample 3), 7.0 nm (sample 4), 6.8 nm (sample 5), 6.0 nm (sample 6), and 4.0 nm (sample 7). Samples 1 to 3 have a depth (nm) larger than 10 nm at which the copper oxide ratio (atomic%) is 6% or more, and are comparative examples outside the scope of the present invention. Samples 4 to 7 have a depth (nm) of 10 nm or less at which the copper oxide ratio (atomic%) is 6% or more, and are examples within the scope of the present invention.

図2は、実施例(試料4〜7)の銅メッキ部分の拡大図である。同図に示すように、銅メッキは、100nm〜2000nmの深さに施され、酸化銅は、20nm〜50nmの深さに分布する。そして、酸化銅比率(原子%)が6%以上となる酸化銅濃化層の厚さは、10nm以下である。   FIG. 2 is an enlarged view of a copper plating portion of the example (samples 4 to 7). As shown in the figure, the copper plating is performed at a depth of 100 nm to 2000 nm, and the copper oxide is distributed at a depth of 20 nm to 50 nm. And the thickness of the copper oxide concentrated layer from which a copper oxide ratio (atomic%) will be 6% or more is 10 nm or less.

一方、図3は、比較例(試料1〜3)の銅メッキ部分の拡大図である。同図に示すように、銅メッキは、100nm〜2000nmの深さに施され、酸化銅は、20nm〜50nmの深さに分布する。そして、酸化銅比率(原子%)が6%以上となる酸化銅濃化層の厚さは、10nmより大きい。   On the other hand, FIG. 3 is an enlarged view of the copper plating portion of the comparative example (samples 1 to 3). As shown in the figure, the copper plating is performed at a depth of 100 nm to 2000 nm, and the copper oxide is distributed at a depth of 20 nm to 50 nm. And the thickness of the copper oxide concentrated layer in which the copper oxide ratio (atomic%) is 6% or more is larger than 10 nm.

これらの試料1〜7にMoS、WS、ZnS、グラファイト、及びBNからなる群から選択された1種以上の物質を含有する潤滑剤を所定量塗布したものと、塗布しないものとを用意した。そして、これらの試料1〜7を使用して図4に示すように、アーク溶接を行い、通電性、送給性、詰まり性を評価した。なお、送給性についてはYGW11、YGW12の両方で評価した。 These samples 1 to 7 are prepared by applying a predetermined amount of a lubricant containing one or more substances selected from the group consisting of MoS 2 , WS 2 , ZnS, graphite, and BN and those not applied. did. And using these samples 1-7, as shown in FIG. 4, arc welding was performed and the electrical conductivity, feeding property, and clogging property were evaluated. In addition, about the feeding property, it evaluated by both YGW11 and YGW12.

下記表3に試験結果を示す。表3に示すように、サンプル1−1〜3−2(比較例)において、通電性、送給性、詰まり性は、全てに問題ないと評価できるものはなかった。全ての試料について、いずれかが基準レベル(△)又は劣る(×)評価であった。   Table 3 below shows the test results. As shown in Table 3, none of the samples 1-1 to 3-2 (comparative examples) could be evaluated as having no problem with respect to conductivity, feeding property, and clogging. For all samples, either was a reference level (Δ) or inferior (x) evaluation.

Figure 2009101376
Figure 2009101376

YGW12は、溶接速度が低く、求められる通電性、送給性は比較的過酷でないため、全ての試料が、通電性、送給性を満足することができた。特に、酸化銅濃化層が薄いサンプル7−1〜7−4は、塗布油中に固形潤滑剤を含ませることなく、通電性、送給性を満足することができた。サンプル7−1では、少量の固形潤滑剤を添加するだけで優れた送給性、通電性を満足することが可能となった。サンプル4−1は、酸化銅濃化層が特に薄く、また、少量の固形潤滑剤による滑り性が良いため、特に詰まり性が優れる結果となった。   Since YGW12 has a low welding speed and the required electrical conductivity and feedability are not relatively severe, all the samples were able to satisfy the electrical conductivity and feedability. In particular, Samples 7-1 to 7-4 having a thin copper oxide concentrated layer were able to satisfy the electrical conductivity and the feedability without including a solid lubricant in the coating oil. In Sample 7-1, it was possible to satisfy excellent feedability and electrical conductivity simply by adding a small amount of solid lubricant. In Sample 4-1, the copper oxide concentrated layer was particularly thin, and the slipperiness with a small amount of solid lubricant was good, so that the clogging property was particularly excellent.

以上に示したように、通電性、送給性、詰まり性と酸化銅比率(原子%)との間には、良好な相関関係が認められた。   As shown above, a good correlation was recognized between the electrical conductivity, the feeding property, the clogging property, and the copper oxide ratio (atomic%).

酸化銅比率(原子%)との比較のため、酸素濃度と通電性、送給性、詰まり性との相関関係についても調べてみる。図6に、縦軸を酸素濃度(原子%)、横軸をワイヤ表面からの深さ(nm)とした、酸素濃度(原子%)の測定結果を示す。同図及び表3に示す実験結果から、酸素濃度と通電性、送給性、詰まり性との間にも大まかな相関関係が見られる。しかしながら、試料2及び試料4において、相関関係が崩れている。ここで、図5及び図6の実験結果から、試料2の酸素量は比較的低いが、酸化銅比率(原子%)は高いこと、及び試料4の酸素量は比較的高いが、酸化銅比率(原子%)は低いことがわかる。   For comparison with the copper oxide ratio (atomic%), we will also examine the correlation between oxygen concentration and electrical conductivity, feedability, and clogging. FIG. 6 shows the measurement results of the oxygen concentration (atomic%) where the vertical axis represents the oxygen concentration (atomic%) and the horizontal axis represents the depth (nm) from the wire surface. From the experimental results shown in FIG. 3 and Table 3, a rough correlation is also found between the oxygen concentration and the conductivity, feedability, and clogging properties. However, the correlation between the sample 2 and the sample 4 is broken. Here, from the experimental results of FIGS. 5 and 6, the oxygen amount of the sample 2 is relatively low, but the copper oxide ratio (atomic%) is high, and the oxygen amount of the sample 4 is relatively high, but the copper oxide ratio is high. It can be seen that (Atom%) is low.

この試料2及び4に着目して、通電性、送給性、詰まり性との相関関係を向上させる酸素源を特定するため、ワイヤ表面の各元素の残留量をX線光電子分光法で測定した。図7及び図8に、試料2及び試料4の測定結果を示す。図7に示すように、試料2のワイヤ表面には、有機物が比較的少ないのに対し、図8に示すように、試料4のワイヤ表面には、有機物が比較的多い。図7及び図8の測定結果より、試料4の酸素量が試料2に比較して高いのは、油脂など有機物に含まれる酸素の影響である。そして、この試料4の酸素量が比較的高いのに対して、酸化銅比率(原子%)が比較的低いことより、通電性、送給性、詰まり性の向上に関係するのは、金属結合した酸素であることが言える。   Paying attention to Samples 2 and 4, the residual amount of each element on the wire surface was measured by X-ray photoelectron spectroscopy in order to identify the oxygen source that improves the correlation with the electrical conductivity, feedability, and clogging properties. . 7 and 8 show the measurement results of Sample 2 and Sample 4. FIG. As shown in FIG. 7, the sample 2 has a relatively small amount of organic matter on the wire surface, whereas as shown in FIG. 8, the sample 4 has a relatively large amount of organic matter on the wire surface. From the measurement results of FIG. 7 and FIG. 8, the oxygen content of the sample 4 is higher than that of the sample 2 due to the influence of oxygen contained in organic matter such as fats and oils. And since the oxygen amount of this sample 4 is relatively high, the ratio of copper oxide (atomic%) is relatively low. It can be said that it is oxygen.

従って、酸素量の規定でなく、酸化銅比率(原子%)を規定することにより、通電性、送給性、詰まり性が良好なアーク溶接ワイヤを得ることができることが言える。   Therefore, it can be said that by specifying not the oxygen amount but the copper oxide ratio (atomic%), it is possible to obtain an arc welding wire with good electrical conductivity, feedability and clogging properties.

本発明に係るアーク溶接ワイヤの断面図である。It is sectional drawing of the arc welding wire which concerns on this invention. 本発明の実施例に係るアーク溶接ワイヤのメッキ部の拡大図である。It is an enlarged view of the plating part of the arc welding wire which concerns on the Example of this invention. 本発明の比較例に係るアーク溶接ワイヤのメッキ部の拡大図である。It is an enlarged view of the plating part of the arc welding wire which concerns on the comparative example of this invention. 本発明に係るアーク溶接ワイヤへの通電方法を示した図である。It is the figure which showed the electricity supply method to the arc welding wire which concerns on this invention. 本発明に係るアーク溶接ワイヤ表面の酸化銅比率(原子%)の測定結果を示した図である。It is the figure which showed the measurement result of the copper oxide ratio (atomic%) of the arc welding wire surface which concerns on this invention. 本発明に係るアーク溶接ワイヤ表面の酸素濃度(原子%)の測定結果を示した図である。It is the figure which showed the measurement result of the oxygen concentration (atomic%) of the arc welding wire surface which concerns on this invention. 本発明に係る試料2のワイヤ表面の各元素の残留量の測定結果を示した図である。It is the figure which showed the measurement result of the residual amount of each element of the wire surface of the sample 2 which concerns on this invention. 本発明に係る試料4のワイヤ表面の各元素の残留量の測定結果を示した図である。It is the figure which showed the measurement result of the residual amount of each element of the wire surface of the sample 4 which concerns on this invention.

符号の説明Explanation of symbols

1 アーク溶接ワイヤ
10 鋼材
20 銅メッキ
1 Arc welding wire 10 Steel 20 Copper plating

Claims (3)

鋼線の表面に銅メッキが施された溶接ワイヤにおいて、X線光電子分光法によりワイヤ表面の銅および酸化銅の濃度を測定し、銅に対する酸化銅の存在比率を酸化銅比率(原子%)として算出し、この酸化銅比率が6%以上である表面層部分を酸化銅濃化層と定義したとき、アルゴンビームを使用してワイヤ表面をスパッタリングした場合に、標準試料としてSiOを使用したスパッタレート換算で、この酸化銅濃化層の深さがワイヤ表面から10nm以下であることを特徴とする銅メッキあり溶接ワイヤ。 In a welding wire with copper plating on the surface of the steel wire, the copper and copper oxide concentrations on the wire surface are measured by X-ray photoelectron spectroscopy, and the copper oxide to copper ratio is defined as the copper oxide ratio (atomic%). When the surface layer portion where the copper oxide ratio is calculated to be 6% or more is defined as a copper oxide concentrated layer, when the wire surface is sputtered using an argon beam, sputtering using SiO 2 as a standard sample A copper-plated welding wire characterized in that the depth of the copper oxide concentrated layer is 10 nm or less from the wire surface in terms of rate. ワイヤ表面に、MoS,WS、ZnS、グラファイト、BNからなる群から選択された1種以上の物質が、ワイヤ10kg当たり0.01乃至0.80g存在することを特徴とする請求項1の銅メッキあり溶接ワイヤ。 2. The wire surface according to claim 1, wherein one or more substances selected from the group consisting of MoS 2 , WS 2 , ZnS, graphite, and BN are present in an amount of 0.01 to 0.80 g per 10 kg of the wire. Welding wire with copper plating. ワイヤ表面に、鉱物油、動物油、植物油及び合成油からなる群から選択された1種以上の油脂が、ワイヤ10kg当たり0.1乃至2.0g存在することを特徴とする請求項1又は2に記載の銅メッキあり溶接ワイヤ。   3. The oil according to claim 1, wherein at least one oil selected from the group consisting of mineral oil, animal oil, vegetable oil, and synthetic oil is present on the wire surface in an amount of 0.1 to 2.0 g per 10 kg of the wire. Welding wire with copper plating as described.
JP2007274369A 2007-10-22 2007-10-22 Welding wire with copper plating Pending JP2009101376A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007274369A JP2009101376A (en) 2007-10-22 2007-10-22 Welding wire with copper plating
CN2008101701592A CN101417372B (en) 2007-10-22 2008-10-13 Copper plating soldering wire
KR1020080103026A KR20090040856A (en) 2007-10-22 2008-10-21 Cupper-coated wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274369A JP2009101376A (en) 2007-10-22 2007-10-22 Welding wire with copper plating

Publications (1)

Publication Number Publication Date
JP2009101376A true JP2009101376A (en) 2009-05-14

Family

ID=40628473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274369A Pending JP2009101376A (en) 2007-10-22 2007-10-22 Welding wire with copper plating

Country Status (3)

Country Link
JP (1) JP2009101376A (en)
KR (1) KR20090040856A (en)
CN (1) CN101417372B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626386A4 (en) * 2017-06-16 2020-10-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Arc welding method and solid wire

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613006C2 (en) 2012-10-24 2017-03-14 Либурди Инжиниринг Лимитед Composition welding wire
US10702953B2 (en) 2014-10-15 2020-07-07 Liburdi Engineering Limited Composite welding wire and method of manufacturing
CN105154944B (en) * 2015-10-16 2017-07-28 天津市永昌焊丝有限公司 CO2Drying device after gas shield welding wire copper facing
JP7376411B2 (en) * 2020-03-31 2023-11-08 株式会社神戸製鋼所 Solid wire for arc welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336997A (en) * 1986-07-29 1988-02-17 Kobe Steel Ltd Production of steel wire for welding
JPH079192A (en) * 1993-06-25 1995-01-13 Daido Steel Co Ltd Drawing method and device for manufacture of welding wire
JP2006341309A (en) * 2005-05-13 2006-12-21 Kobe Steel Ltd Copper-plated wire for welding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876127B2 (en) * 2001-02-16 2007-01-31 日鐵住金溶接工業株式会社 Steel wire for gas shielded arc welding
JP3868306B2 (en) * 2002-02-15 2007-01-17 株式会社神戸製鋼所 Wire for arc welding without plating
JP3959385B2 (en) * 2003-08-26 2007-08-15 株式会社神戸製鋼所 Manufacturing method of solid wire for welding
KR100626416B1 (en) * 2004-12-03 2006-09-20 고려용접봉 주식회사 Copper plated wire for gas-shielded arc welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336997A (en) * 1986-07-29 1988-02-17 Kobe Steel Ltd Production of steel wire for welding
JPH079192A (en) * 1993-06-25 1995-01-13 Daido Steel Co Ltd Drawing method and device for manufacture of welding wire
JP2006341309A (en) * 2005-05-13 2006-12-21 Kobe Steel Ltd Copper-plated wire for welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626386A4 (en) * 2017-06-16 2020-10-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Arc welding method and solid wire
US11407055B2 (en) 2017-06-16 2022-08-09 Kobe Steel, Ltd. Arc welding method and solid wire

Also Published As

Publication number Publication date
CN101417372A (en) 2009-04-29
CN101417372B (en) 2011-08-24
KR20090040856A (en) 2009-04-27

Similar Documents

Publication Publication Date Title
JP6830489B2 (en) Plated steel with excellent abrasion resistance and white rust resistance and its manufacturing method
JP2009101376A (en) Welding wire with copper plating
JP5884200B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JP4398439B2 (en) Solid wire for copper plating mag welding with excellent arc stability during welding
JP5488735B2 (en) Method for producing hot-dip galvanized steel pipe
JP2006315059A (en) Copper-plated solid wire for arc welding
JP5871035B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JP3753173B2 (en) Steel wire for gas shielded arc welding
KR100502039B1 (en) Welding solid wire
JP3830409B2 (en) Solid wire for welding
JP3734030B2 (en) Steel wire for gas shielded arc welding
JP3901600B2 (en) Solid wire for MAG welding without plating
KR100536977B1 (en) Plating-free solid wire for welding
JP3584894B2 (en) Steel wire for gas shielded arc welding
JP3780453B2 (en) Solid wire for arc welding without copper plating
JP5930136B1 (en) Method for producing hot-dip galvanized steel
JP3901571B2 (en) Solid wire for welding without plating
JPS649117B2 (en)
JP5979186B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JPH07100687A (en) Wire for arc welding
JP3983155B2 (en) Steel wire for gas shielded arc welding
JP7252463B2 (en) Method for producing hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP2003236694A (en) Unplated arc welding wire
JPH09141487A (en) Low spatter steel wire for welding and its manufacture
KR20010003071A (en) A Welding Wire and Method for Manufacturing It

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615