JP2009101293A - Sludge treatment system - Google Patents

Sludge treatment system Download PDF

Info

Publication number
JP2009101293A
JP2009101293A JP2007275271A JP2007275271A JP2009101293A JP 2009101293 A JP2009101293 A JP 2009101293A JP 2007275271 A JP2007275271 A JP 2007275271A JP 2007275271 A JP2007275271 A JP 2007275271A JP 2009101293 A JP2009101293 A JP 2009101293A
Authority
JP
Japan
Prior art keywords
sludge
heat
treatment
reactor
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007275271A
Other languages
Japanese (ja)
Other versions
JP5150199B2 (en
Inventor
Takumi Obara
卓巳 小原
Nobuyuki Ashikaga
伸行 足利
Satoshi Haraguchi
智 原口
Tokusuke Hayami
徳介 早見
Katsuya Yamamoto
勝也 山本
Hiroshi Tamura
博 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007275271A priority Critical patent/JP5150199B2/en
Priority to CN200880112720XA priority patent/CN101835715B/en
Priority to PCT/JP2008/002917 priority patent/WO2009054107A1/en
Priority to KR1020107007627A priority patent/KR101145700B1/en
Publication of JP2009101293A publication Critical patent/JP2009101293A/en
Application granted granted Critical
Publication of JP5150199B2 publication Critical patent/JP5150199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/18Treatment of sludge; Devices therefor by thermal conditioning
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50208Biologic treatment before burning, e.g. biogas generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge treatment system effectively heat-treating sludge without causing lowering of heat exchange efficiency by attachment of a sludge component to heat transfer areas, nor causing clogging of flow passages by sludge. <P>SOLUTION: The sludge is heat-treated by being heated in a reactor 14 at a given pressure. The sludge before the heat treatment by the reactor 14 is subjected to preheating by a preheater 13. The preheater 13 is integrally composed of a direct heat exchanger 15 connected to the supply passage of sludge to the reactor 14, and a vaporizing part 16 connected to the discharge passage of the heat-treated sludge from the reactor 14. The inside of these is kept at a pressure lower than that in the reactor 14. The sludge before heat treatment introduced into the direct heat exchanger 15 is preheated by directly contacting with steam generated from sludge after heat treatment introduced into the vaporizing part 16 via the discharge passage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機物を多く含む汚泥を熱処理して、減容化を図った汚泥処理システムに関する。   The present invention relates to a sludge treatment system that reduces the volume by heat-treating sludge containing a large amount of organic matter.

近年、有機物を多く含む汚泥をメタン生成菌等の嫌気性微生物の働きにより嫌気性発酵させ、消化ガスを回収する処理方法が多く用いられている。この場合、嫌気性微生物の処理対象となるのは主として比較的低分子の有機物であるため、下水処理などによって生じる余剰汚泥などの難分解の有機性汚泥を嫌気性処理により処理しようとすると、汚泥が溶解するのに時間がかかり、装置の大型化や処理効率の悪化を招いていた。   In recent years, many treatment methods have been used in which sludge containing a large amount of organic matter is subjected to anaerobic fermentation by the action of anaerobic microorganisms such as methanogens and digestion gas is recovered. In this case, the treatment target of anaerobic microorganisms is mainly relatively low-molecular organic matter, so if an attempt is made to treat hardly decomposed organic sludge such as excess sludge generated by sewage treatment by anaerobic treatment, the sludge It took a long time to dissolve, leading to an increase in the size of the apparatus and a deterioration in processing efficiency.

そこで、余剰汚泥などの難分解性の有機性汚泥を処理する際に、予め可溶化処理を施し、嫌気性微生物による消化処理を短時間で効率的に行なわせる方法が提案されている。可溶化処理には、高温高圧水の持つ非常に高い反応性を利用した水熱処理法が注目され、そのための手法が提案されている(例えば、特許文献1参照)。   Therefore, a method has been proposed in which a solubilization process is performed in advance when digesting a hardly decomposable organic sludge such as surplus sludge so that digestion with anaerobic microorganisms can be efficiently performed in a short time. As the solubilization treatment, a hydrothermal treatment method utilizing extremely high reactivity of high-temperature high-pressure water has attracted attention, and a technique for that purpose has been proposed (for example, see Patent Document 1).

上記提案における水熱可溶化処理装置は、第1熱交換器と第2熱交換器とを有しており、これらの熱交換器は、液滞留部と、熱交換部を夫々有している。熱交換部は複数のチューブと放熱用フィンが積層された構造であり、液滞留部は有機性汚泥が水熱反応処理に要する時間だけ滞留可能な容量を有する。有機性汚泥は、第1熱交換器の熱交換部に送られ、予備加熱される。予備加熱により中温高圧となった汚泥は第2熱交換器の熱交換部に導入され、この熱交換部にて加熱ガスにより加熱される。加熱された汚泥は高温高圧の水熱可溶化汚泥として排出され、前記第1の熱交換器の水熱反応空間(熱交換部及び液滞留部からなる)に導入される。この水熱反応空間で水熱可溶化反応した汚泥は、熱交換部にて冷却され、低温高圧の水熱可溶化汚泥として排出される。すなわち、第2の熱交換器の水熱反応空間、及び第1の熱交換器の水熱反応空間では有機性汚泥は高温高圧条件下に晒され、水熱可溶化反応がおこる。   The hydrothermal solubilization treatment apparatus in the above proposal has a first heat exchanger and a second heat exchanger, and these heat exchangers each have a liquid retention part and a heat exchange part. . The heat exchanging part has a structure in which a plurality of tubes and heat radiating fins are laminated, and the liquid retaining part has a capacity capable of retaining the organic sludge for the time required for the hydrothermal reaction treatment. The organic sludge is sent to the heat exchange part of the first heat exchanger and preheated. The sludge having a medium temperature and high pressure due to the preheating is introduced into the heat exchange part of the second heat exchanger, and is heated by the heating gas in this heat exchange part. The heated sludge is discharged as a high-temperature and high-pressure hydrothermal solubilized sludge and introduced into the hydrothermal reaction space (consisting of a heat exchange part and a liquid retention part) of the first heat exchanger. Sludge that has undergone hydrothermal solubilization reaction in this hydrothermal reaction space is cooled in a heat exchange section and discharged as low-temperature and high-pressure hydrothermal solubilization sludge. That is, in the hydrothermal reaction space of the second heat exchanger and the hydrothermal reaction space of the first heat exchanger, the organic sludge is exposed to high temperature and high pressure conditions, and hydrothermal solubilization reaction occurs.

このような装置において、第1の熱交換器では、熱処理前の汚泥と熱処理後の汚泥を、熱交換部において高圧のままで伝熱面(複数のチューブや放熱用フィンなど)を介して熱交換する。この第1の熱交換器で予熱された汚泥は第2の熱交換器において、その熱交換部において加熱ガスにより加熱され、この熱交換部を含む水熱反応部で汚泥の可溶化処理をされるというものであった。
特開2005−254165号公報
In such an apparatus, in the first heat exchanger, the sludge before the heat treatment and the sludge after the heat treatment are heated via the heat transfer surface (a plurality of tubes, heat radiation fins, etc.) while maintaining a high pressure in the heat exchange section. Exchange. The sludge preheated in the first heat exchanger is heated by the heating gas in the heat exchange section in the second heat exchanger, and the sludge is solubilized in the hydrothermal reaction section including the heat exchange section. It was that.
JP 2005-254165 A

上述した従来技術では、加温前汚泥と加温後汚泥の熱交換を、熱交換部における複数のチューブと積層された放熱用フィンによる伝熱面を介して行っている。このため、例えば、汚泥によるたんぱく質の凝固物や炭酸カルシウムなどの水和物が伝熱面に付着すると熱交換効率が下がってしまう。また、汚泥による流路の目詰まりが懸念される。   In the prior art described above, heat exchange between the pre-heated sludge and the post-heated sludge is performed via a heat transfer surface formed by heat dissipating fins stacked with a plurality of tubes in the heat exchange section. For this reason, for example, if a protein coagulate or sludge such as calcium carbonate due to sludge adheres to the heat transfer surface, the heat exchange efficiency decreases. There is also concern about clogging of the flow path due to sludge.

本発明の目的は、汚泥成分の伝熱面への付着による熱交換効率の低下が生じることなく、また、汚泥による流路の目詰まりも生じることなく汚泥を効果的に熱処理することができる汚泥処理システムを提供することにある。   An object of the present invention is to make sludge capable of effectively heat-treating sludge without causing deterioration in heat exchange efficiency due to adhesion of sludge components to the heat transfer surface and without causing clogging of the flow path due to sludge. To provide a processing system.

本発明による汚泥処理システムは、汚泥を所定の圧力下で加熱して熱処理する反応器と、前記反応器への汚泥の供給路上に連結された直接熱交換器部と、前記反応器からの熱処理後の汚泥の排出路上に連結された蒸発器部とを一体化し、これらの内部は前記反応器内より低い圧力に保持され、前記直接熱交換器部に導入された熱処理前の汚泥を、前記排出路により前記蒸発器部に導入された熱処理後の汚泥から生じる蒸気を直接的に接触させて加熱する予熱装置とを備えたことを特徴とする。   The sludge treatment system according to the present invention includes a reactor for heating and treating heat sludge under a predetermined pressure, a direct heat exchanger connected to a sludge supply path to the reactor, and a heat treatment from the reactor. The evaporator unit connected on the sludge discharge path is integrated, and the inside thereof is maintained at a lower pressure than that in the reactor, and the sludge before heat treatment introduced into the direct heat exchanger unit is And a preheating device that directly heats the steam generated from the sludge after heat treatment introduced into the evaporator section through a discharge path.

本発明では、予熱装置は、前記汚泥の供給路上及び熱処理後汚泥の排出路上に複数段直列に連結され、これら複数の予熱装置の内部圧力を、前記反応器から見て下流方向になるに従って順次低く設定した構成としてもよい。   In the present invention, the preheating device is connected in a plurality of stages in series on the sludge supply path and the post-heat treatment sludge discharge path, and the internal pressures of the plurality of preheating apparatuses are sequentially increased in the downstream direction when viewed from the reactor. It is good also as a structure set low.

本発明は、予熱装置が複数段直列に連結された熱処理後汚泥の排出路上の、任意の2つの予熱装置間に設置され、内部圧力が、前記反応器から見て上流側の予熱装置から自己を含め下流側の予熱装置に向かって順次低くなるように設定され、前記上流側予熱装置から導入された熱処理後汚泥から、上流側との圧力差によって蒸気を生じさせ、かつ、この蒸気を前記上流側予熱装置の直接熱交換器部に供給するための配管を有する蒸発器を備えた構成でもよい。   The present invention is installed between any two preheating devices on the sludge discharge path after heat treatment in which preheating devices are connected in series in a plurality of stages, and the internal pressure is self-generated from the upstream preheating device as viewed from the reactor. Is set so as to be lowered sequentially toward the preheating device on the downstream side, and steam is generated from the post-heat treatment sludge introduced from the upstream preheating device by the pressure difference with the upstream side, and the steam is The structure provided with the evaporator which has piping for supplying to the direct heat exchanger part of an upstream preheating apparatus may be sufficient.

本発明は、反応器により熱処理され、前記予熱装置の蒸発器部を経て排出される熱処理後汚泥を嫌気性処理する嫌気性処理装置を備えた構成でもよい。   The present invention may have a configuration provided with an anaerobic treatment device for anaerobically treating the sludge after heat treatment which is heat-treated by the reactor and discharged through the evaporator section of the preheating device.

本発明では、嫌気性処理装置から発生する消化ガスを、反応槽に対する加熱源設備の燃料に用いるとよい。   In the present invention, the digestion gas generated from the anaerobic treatment device may be used as fuel for the heating source equipment for the reaction tank.

本発明は、前記予熱装置の蒸発器部を経て排出される熱処理後汚泥を嫌気性処理に適した温度に調整する温度調整装置を備えた構成でもよい。   The present invention may include a temperature adjustment device that adjusts the post-heat treatment sludge discharged through the evaporator section of the preheating device to a temperature suitable for anaerobic treatment.

本発明では、温度調整装置は、予熱装置より低い内部圧力に設定され、この予熱装置の蒸発器部を経て排出された熱処理後の汚泥を導入し、予熱装置との内部圧力差により蒸気を発生させて汚泥温度を低下させる蒸発器で構成するとよい。   In the present invention, the temperature adjustment device is set to an internal pressure lower than that of the preheating device, introduces the sludge after heat treatment discharged through the evaporator part of the preheating device, and generates steam due to the internal pressure difference with the preheating device. It is good to comprise with the evaporator which is made to reduce sludge temperature.

本発明では、温度調整装置は、予熱装置の熱処理後汚泥排出部から嫌気性処理装置への管路に連結されて、この管路に流れる排出汚泥に対し熱処理されていない汚泥を混合させる装置でもよい。   In the present invention, the temperature adjustment device is connected to a pipe line from the sludge discharge section after heat treatment of the preheating device to the anaerobic treatment apparatus, and is an apparatus that mixes sludge that has not been heat-treated with respect to the discharged sludge flowing through this pipe line. Good.

本発明では、反応器は、熱処理された汚泥から、固形分が分離された液分を、予熱装置の蒸発器部に前記排出路を通して供給するように構成してもよい。   In this invention, you may comprise a reactor so that the liquid component from which solid content was isolate | separated from the heat-treated sludge may be supplied to the evaporator part of a preheating apparatus through the said discharge path.

本発明は、液分と分離された熱処理後の汚泥の固形分を、嫌気性処理装置に供給する配管を有する構成でもよい。   The present invention may have a configuration having a pipe for supplying the solid content of the sludge after heat treatment separated from the liquid to an anaerobic treatment apparatus.

本発明は、液分と分離された熱処理後の汚泥の固形分を濃縮する濃縮機を有し、かつ濃縮により生じた液分を温度調節用の蒸発器を経て嫌気性処理装置に供給する配管を有するように構成してもよい。   The present invention has a concentrator for concentrating the solid content of sludge after heat treatment separated from the liquid component, and a pipe for supplying the liquid component resulting from the concentration to the anaerobic treatment device through an evaporator for temperature control You may comprise so that it may have.

本発明では、反応器における熱処理は、60℃〜374℃の間の加熱処理または加熱加圧処理であればよい。   In the present invention, the heat treatment in the reactor may be a heat treatment or a heat pressure treatment between 60 ° C. and 374 ° C.

本発明によれば、構造が簡素で、汚泥の付着による熱交換効率の低下や流路の目詰まり、さらには故障が生じ難く、汚泥を効果的に熱処理することができる。   According to the present invention, the structure is simple, the heat exchange efficiency is reduced due to the adhesion of sludge, the flow path is clogged, and the failure is not easily caused, and the sludge can be effectively heat treated.

以下、本発明による汚泥処理システムの一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a sludge treatment system according to the present invention will be described in detail with reference to the drawings.

図1はこの実施の形態の構成を示すブロック図である。図1に示す汚泥処理システムは、処理対象の有機物を多く含む汚泥11を濃縮する濃縮機12、濃縮された汚泥の予熱装置13、予熱された汚泥を所定の圧力下で加熱して熱処理する反応器14を有する。   FIG. 1 is a block diagram showing the configuration of this embodiment. The sludge treatment system shown in FIG. 1 is a concentrator 12 that concentrates sludge 11 that contains a large amount of organic matter to be treated, a preheater 13 for concentrated sludge, and a reaction that heats and heats the preheated sludge under a predetermined pressure. A container 14.

予熱装置13は、例えば、特開2007−21300号公報で示すように、共通の容器内の上部に直接熱交換器部15を配置し、下部に蒸発器部16配置してこれらを一体化し、下部の蒸発器部16で発生した高温蒸気を、上部の直接熱交換器部15に導入された汚泥に直接接触させ加温して予熱するものである。   For example, as shown in Japanese Patent Application Laid-Open No. 2007-21300, the preheating device 13 arranges the heat exchanger unit 15 directly in the upper part of the common container and arranges the evaporator unit 16 in the lower part to integrate them, The high temperature steam generated in the lower evaporator section 16 is brought into direct contact with the sludge introduced into the upper direct heat exchanger section 15 to heat and preheat.

この直接熱交換器部15の入口部は、濃縮機12と移送ポンプ18を介して連結し、出口部は移送ポンプ19を介して反応器14と連結している。すなわち、直接熱交換器部15は、反応器14への汚泥の供給路上に連結されている。また、蒸発器部16の入口部は、移送弁20を介して反応器14の熱処理後汚泥排出部と連結し、出口部は後続の嫌気性処理装置22に到る配管と連結している。すなわち、蒸発器部16は、反応器14からの熱処理後の汚泥の排出路上に連結されている。   The inlet of the direct heat exchanger 15 is connected to the concentrator 12 via a transfer pump 18, and the outlet is connected to the reactor 14 via a transfer pump 19. That is, the direct heat exchanger section 15 is connected to the sludge supply path to the reactor 14. Further, the inlet portion of the evaporator section 16 is connected to the post-heat treatment sludge discharge section of the reactor 14 via the transfer valve 20, and the outlet section is connected to a pipe leading to the subsequent anaerobic treatment device 22. That is, the evaporator section 16 is connected to the sludge discharge path after the heat treatment from the reactor 14.

予熱装置13に対しては加圧用のコンプレッサ24及びレリーフ弁25(設定圧以上になると開く機構の圧力調整弁)が設けられており、予熱装置13の内部圧力(直接熱交換器部15及び蒸発器部16に共通の内部圧力)は、反応器14内より低い圧力に保持されている。したがって、予熱装置13の直接熱交換器部15に導入された熱処理前の汚泥は、前記排出路から蒸発器部16に導入された熱処理後の汚泥から生じる蒸気により直接的に加熱される。   The preheating device 13 is provided with a pressurizing compressor 24 and a relief valve 25 (a pressure adjusting valve with a mechanism that opens when the pressure exceeds a set pressure), and the internal pressure of the preheating device 13 (direct heat exchanger section 15 and evaporation). The internal pressure common to the reactor section 16) is maintained at a lower pressure than in the reactor 14. Therefore, the sludge before heat treatment introduced into the direct heat exchanger section 15 of the preheating device 13 is directly heated by the steam generated from the sludge after heat treatment introduced into the evaporator section 16 from the discharge path.

反応器14は、予熱装置13から導入された予熱後の汚泥を所定の圧力下で加熱して熱処理し、液状化させるものである。そのために、この反応器14には、加熱源設備であるボイラ27から生じた高温蒸気が昇圧設備28により所定圧力に昇圧されて供給され、汚泥を加熱加圧する。この他、加熱用としてヒータ23が設けられている。ボイラ27の燃料には、嫌気性処理装置(以下、消化槽として説明する)22から、その消化反応により生じるメタンを含むバイオガス(消化ガス)を用いるとよい。この場合、バイオガスは脱硫装置29により脱硫してボイラ27に供給し燃焼させる。   The reactor 14 heats and heat-treats the sludge after preheating introduced from the preheating device 13 under a predetermined pressure, and liquefies it. For this purpose, the reactor 14 is supplied with high-temperature steam generated from the boiler 27, which is a heating source equipment, by being pressurized to a predetermined pressure by the pressure raising equipment 28, and heats and pressurizes sludge. In addition, a heater 23 is provided for heating. As the fuel for the boiler 27, biogas (digestion gas) containing methane generated by the digestion reaction from an anaerobic treatment device (hereinafter described as a digestion tank) 22 may be used. In this case, the biogas is desulfurized by the desulfurizer 29 and supplied to the boiler 27 for combustion.

消化槽22は、投入された汚泥を嫌気性菌の働きによりバイオガスに転換するもので、予熱装置13を経て排出される排出汚泥を導入すべく、その入口部は、蒸発器部16の出口部と移送弁30、温度調整装置としての蒸発器31、移送ポンプ32を介して連結している。上記温度調整装置としての蒸発器31は、予熱装置13を経て排出される排出汚泥を嫌気性処理に適した温度に調整するもので、予熱装置13より低い内部圧力に設定され、この予熱装置13を経て排出された高温の汚泥を導入し、予熱装置13との内部圧力差により蒸気を発生させて汚泥温度を適正温度まで低下させる。発生した蒸気は圧力調整弁33を介して真空ポンプ34により導出し、所内熱源などに利用すればよい。   The digestion tank 22 converts the introduced sludge into biogas by the action of anaerobic bacteria, and its inlet is at the outlet of the evaporator section 16 in order to introduce the discharged sludge discharged through the preheating device 13. And a transfer valve 30, an evaporator 31 as a temperature adjusting device, and a transfer pump 32. The evaporator 31 serving as the temperature adjusting device adjusts the discharged sludge discharged through the preheating device 13 to a temperature suitable for anaerobic treatment, and is set to an internal pressure lower than that of the preheating device 13. The high-temperature sludge discharged after passing through is introduced, and steam is generated by the internal pressure difference with the preheating device 13 to lower the sludge temperature to an appropriate temperature. The generated steam may be led out by the vacuum pump 34 via the pressure regulating valve 33 and used as a heat source in the station.

なお、消化槽22に投入された汚泥の、バイオガスに転換された残りの固形分は、脱水機35により脱水された後に、焼却または埋立処理される。   The remaining solid content of the sludge introduced into the digestion tank 22 and converted into biogas is dehydrated by the dehydrator 35 and then incinerated or landfilled.

上記構成において、汚泥11は予熱装置13の直接熱交換器部15を通って、熱処理用の反応器14に導入される。熱処理後の汚泥は、予熱装置13の蒸発器部16に導入され、この蒸発器部16を通った汚泥は後続の消化槽22に導入される。消化槽22で発生したメタンガスを多く含むガス成分はガス配管により脱硫設備29を通った後にボイラ27に供給され、燃焼される。消化槽22で処理された汚泥の残りの固形分は脱水処理後廃棄される。   In the above configuration, the sludge 11 is introduced into the heat treatment reactor 14 through the direct heat exchanger section 15 of the preheating device 13. The sludge after the heat treatment is introduced into the evaporator section 16 of the preheating device 13, and the sludge that has passed through the evaporator section 16 is introduced into the subsequent digestion tank 22. A gas component containing a large amount of methane gas generated in the digestion tank 22 is supplied to the boiler 27 after passing through the desulfurization equipment 29 through the gas pipe and burned. The remaining solid content of the sludge treated in the digestion tank 22 is discarded after dehydration.

以下、詳細に説明する。汚泥11(温度20℃とする)は、先ず、濃縮機12により含水率97%以下に濃縮される。この濃縮汚泥は、移送ポンプ18により、予熱装置13の上部に構成された直接熱交換器部15に導入される。一方、この直接熱交換器部15と下部に一体構成された蒸発器部16には、反応器14から、後述する熱処理により高温高圧となった熱処理後の汚泥が導入される。   Details will be described below. Sludge 11 (temperature 20 ° C.) is first concentrated to a moisture content of 97% or less by the concentrator 12. This concentrated sludge is introduced by the transfer pump 18 into the direct heat exchanger section 15 formed at the top of the preheating device 13. On the other hand, the sludge after the heat treatment that has become a high temperature and a high pressure by the heat treatment described later is introduced from the reactor 14 into the evaporator portion 16 that is integrated with the direct heat exchanger portion 15 and the lower portion.

ここで、予熱装置13の一体型容器の内部圧力は、コンプレッサ24及びレリーフ弁25により202kPaに設定されている。すなわち、レリーフ弁25は設定圧以上になると開く機構の弁であるので、その設定圧を202kPaとすることにより、容易に内部圧力を調整できる。この内部圧力は、反応器14の内部圧力より低く設定されている。周知のように、飽和蒸気圧と水温との間には図8で示すような関係がある。このため、蒸発器部16に導入された高温(220℃とする)で、蒸発器部16の内部圧力より高圧の熱処理後の汚泥は、周囲圧力の低下により120℃になるまで蒸気を発生させながら減温する。この蒸発熱を、上部の直接熱交換器部15において熱処理前の汚泥に直接接触させる。このことにより、熱処理前の汚泥は20℃から(120−α)℃(αは、熱損失分で1〜5℃程度)まで加温され、予熱される。   Here, the internal pressure of the integrated container of the preheating device 13 is set to 202 kPa by the compressor 24 and the relief valve 25. That is, the relief valve 25 is a valve that opens when the pressure exceeds the set pressure. Therefore, the internal pressure can be easily adjusted by setting the set pressure to 202 kPa. This internal pressure is set lower than the internal pressure of the reactor 14. As is well known, there is a relationship as shown in FIG. 8 between the saturated vapor pressure and the water temperature. For this reason, the sludge after heat treatment at a high temperature (220 ° C.) introduced into the evaporator section 16 and having a pressure higher than the internal pressure of the evaporator section 16 generates steam until the ambient pressure reaches 120 ° C. due to a decrease in the ambient pressure. Reduce the temperature. This heat of evaporation is brought into direct contact with the sludge before heat treatment in the upper direct heat exchanger section 15. By this, the sludge before heat processing is heated from 20 degreeC to (120- (alpha)) degreeC ((alpha) is about 1-5 degreeC by a heat loss part), and is preheated.

予熱装置13で予熱された汚泥は、移送ポンプ19により、反応器14に導入される。反応器14にはボイラ27より得られる高温蒸気が昇圧器28により昇圧され、供給されている。また、その他の熱源としてヒータ29で加温することにより、反応器14内は220℃,2.3MPaまで昇温昇圧される。このような高温高圧環境下での加圧熱水処理(以下、水熱処理と呼ぶ)により、高分子の固形性有機物は低分子化され、液状化する。例えば、下水処理場の生物反応槽からの引抜汚泥である余剰汚泥を対象とした場合、水熱処理により汚泥の固形分の70〜80%が液分へと変換する。   The sludge preheated by the preheating device 13 is introduced into the reactor 14 by the transfer pump 19. High-temperature steam obtained from the boiler 27 is boosted by a booster 28 and supplied to the reactor 14. Further, by heating with the heater 29 as another heat source, the temperature in the reactor 14 is increased to 220 ° C. and 2.3 MPa. By such pressurized hot water treatment (hereinafter referred to as hydrothermal treatment) in a high-temperature and high-pressure environment, the polymer solid organic material is reduced in molecular weight and liquefied. For example, when surplus sludge, which is drawn sludge from a biological reaction tank in a sewage treatment plant, is targeted, 70 to 80% of the solid content of the sludge is converted into liquid by hydrothermal treatment.

このように熱処理後の液状化した220℃の高温汚泥は、反応器14と予熱装置13との内部圧力差により、移送弁20を開操作することにより移送され、蒸発器部16に導入される。蒸発器部16に導入された汚泥は、2.3MPaから202kPaまで減圧されることにより気化し、熱を奪われて、前述のように220℃から120℃まで減温される。この減温分は高温蒸気となり、前述のように、直接熱交換器部15において熱処理前の汚泥と直接接触して汚泥を(120−α)℃まで加温し、予熱する。   The liquefied high-temperature sludge at 220 ° C. after the heat treatment is transferred by opening the transfer valve 20 due to the internal pressure difference between the reactor 14 and the preheating device 13 and introduced into the evaporator section 16. . The sludge introduced into the evaporator section 16 is vaporized by being depressurized from 2.3 MPa to 202 kPa, deprived of heat, and reduced in temperature from 220 ° C. to 120 ° C. as described above. This temperature reduction becomes high-temperature steam and, as described above, directly contacts the sludge before heat treatment in the direct heat exchanger section 15 to heat the sludge to (120-α) ° C. and preheat it.

蒸発器部16で120℃まで減温された汚泥は、蒸発器部16と、その排出側に連結された別の蒸発器31との圧力差により、移送弁30を開操作することにより蒸発器31に導入される。蒸発器31は、真空ポンプ34と圧力調整弁33により74kPaまで減圧しておく。このため、蒸発器31に導入された120℃の汚泥は、上記圧力差により、後続する消化槽22での嫌気性処理に好適な温度40℃まで減温される。   The sludge whose temperature has been reduced to 120 ° C. in the evaporator section 16 is opened by opening the transfer valve 30 due to a pressure difference between the evaporator section 16 and another evaporator 31 connected to the discharge side thereof. 31. The evaporator 31 is depressurized to 74 kPa by the vacuum pump 34 and the pressure adjustment valve 33. For this reason, the 120 degreeC sludge introduced into the evaporator 31 is temperature-reduced to 40 degreeC suitable for the anaerobic process in the subsequent digestion tank 22 by the said pressure difference.

この40℃に減温された汚泥は、移送ポンプ32により蒸発器31から移送され、消化槽32に投入される。そして、消化槽32において嫌気性菌の働きによりバイオガスに転換される。このようにして消化槽32で発生したメタンを60%以上含むバイオガスは脱硫設備29で硫化水素が除去された後、ボイラ27で燃やされる。ボイラ27で発生した蒸気の少なくとも一部は、前述のように汚泥の熱処理の加温に利用される。もちろん、他の熱源として利用することもできる。なお、バイオガスに転換された後の残りの固形分は脱水機35により脱水された後に、焼却または埋立処理される。   The sludge whose temperature has been reduced to 40 ° C. is transferred from the evaporator 31 by the transfer pump 32 and is put into the digestion tank 32. And it is converted into biogas by the action of anaerobic bacteria in the digestion tank 32. The biogas containing 60% or more of methane generated in the digestion tank 32 in this way is burned in the boiler 27 after the hydrogen sulfide is removed by the desulfurization equipment 29. At least a part of the steam generated in the boiler 27 is used for heating of the sludge heat treatment as described above. Of course, it can also be used as another heat source. The remaining solid content after being converted into biogas is dehydrated by the dehydrator 35 and then incinerated or landfilled.

このように、熱処理後の汚泥が気化する際の蒸気と熱処理前の汚泥とを、伝熱面を介さず直接接触させるため、従来の熱処理前の汚泥と熱処理後の汚泥を伝熱面を介して熱交換する熱交換器に比べ、高い熱交換効率を得られろ。この場合、外部から供給する熱量としては、反応器14において汚泥を、(120−α)℃から220℃までの100℃上昇させるのに必要な熱量のみでよく、200℃分の加温が可能である。また、構造が簡単で故障の生じにくい熱交換装置とすることが可能である。   In this way, the steam when the sludge after heat treatment vaporizes and the sludge before heat treatment are brought into direct contact without going through the heat transfer surface, so that the conventional sludge before heat treatment and the sludge after heat treatment are passed through the heat transfer surface. Compared to heat exchangers that exchange heat, high heat exchange efficiency can be obtained. In this case, as the amount of heat supplied from the outside, only the amount of heat necessary for raising the sludge to 100 ° C. from (120−α) ° C. to 220 ° C. in the reactor 14 can be used. It is. In addition, it is possible to provide a heat exchange device that has a simple structure and is less likely to fail.

また、熱処理により、汚泥が低分子化され微生物に利用されやすい成分になっているため、熱処理しない場合に比べ、メタンガスの発生量を増加させることができる。また、低分子化されていることから、分解速度が速くなるため、消化日数(消化槽の滞留時間)も従来の1/3程度まで削減できる。すなわち、従来の消化槽の約1/3の容積で処理が可能となる。また、220℃の熱処理により、汚泥が脱水されやすくなっており、かつ固形分が液分に分解されていることにより、発生汚泥量は熱処理しない場合に比べ70〜80%削減され、廃棄汚泥の発生量を大幅に削減することができる。   Further, since the sludge is reduced in molecular weight by heat treatment and becomes a component that can be easily used by microorganisms, the amount of methane gas generated can be increased as compared with the case where heat treatment is not performed. In addition, since the molecular weight is reduced, the decomposition rate is increased, so that the number of days of digestion (digestion tank residence time) can be reduced to about 1/3 of the conventional one. That is, processing can be performed with a volume of about 1/3 that of a conventional digester. In addition, the heat treatment at 220 ° C. makes it easier for the sludge to be dehydrated and the solid content is decomposed into a liquid component, so that the amount of generated sludge is reduced by 70 to 80% compared to the case without heat treatment, The amount generated can be greatly reduced.

なお、各部の汚泥温度は上記実施の形態に限定されるものではなく、熱処理後の汚泥から発生する気化熱によって、熱処理前の汚泥が加温されるものであればよい。すなわち、亜臨界状態である374℃以下の温度範囲であれば、どのような温度を対象としたものであってもよい。   In addition, the sludge temperature of each part is not limited to the said embodiment, What is necessary is just the sludge before heat processing heated by the vaporization heat which generate | occur | produces from the sludge after heat processing. That is, any temperature may be used as long as it is in a subcritical state temperature range of 374 ° C. or lower.

また、反応器14に対し水熱処理用の蒸気を昇圧器28から直接吹き込むのではなく、直接熱交換器部15から反応器14への配管中(移送ポンプ19の下流側)に蒸気を吹き込んで、移送途中の汚泥を加温する構成であってもよい。   Also, steam for hydrothermal treatment is not directly blown into the reactor 14 from the booster 28, but steam is blown directly into the piping from the heat exchanger section 15 to the reactor 14 (downstream of the transfer pump 19). The structure which heats the sludge in the middle of transfer may be sufficient.

さらに、反応器14に対する熱源としては、消化ガスをボイラ27により燃焼した際の蒸気に限らず、バイオガスにより発電機を稼動した場合に生じる排熱、例えば、ガスタービンの排気などであってもよく、また、脱水後の汚泥を焼却処理する場合にはその焼却炉のガスを使うものであっても良い。   Further, the heat source for the reactor 14 is not limited to the steam generated when the digested gas is burned by the boiler 27, but may be exhaust heat generated when the generator is operated by biogas, for example, exhaust of a gas turbine. In addition, when the dewatered sludge is incinerated, the gas from the incinerator may be used.

次に、図2で示す実施の形態を説明する。   Next, the embodiment shown in FIG. 2 will be described.

この実施の形態では、図1の実施の形態に比べ、予熱装置13における内部圧力調整部分が異なっている。すなわち、図1のように予熱装置13における内部圧力の調整をコンプレッサ24及びレリーフ弁25によって調節するのではなく、図2で示すように、圧力調整弁37を設け、これを開放することにより、予熱装置13における内部圧力を大気圧とした。このため、蒸発器部16では、反応器14から導入される熱処理後の汚泥を、大気圧に基く100℃まで減温し、その際に生じる蒸気を直接熱交換器部15において熱処理前の汚泥に直接接触させ、(100−α)℃に加温し予熱する。   In this embodiment, the internal pressure adjustment portion in the preheating device 13 is different from the embodiment of FIG. That is, instead of adjusting the internal pressure in the preheating device 13 as shown in FIG. 1 by the compressor 24 and the relief valve 25, as shown in FIG. 2, a pressure adjusting valve 37 is provided and opened. The internal pressure in the preheating device 13 was atmospheric pressure. For this reason, in the evaporator section 16, the heat-treated sludge introduced from the reactor 14 is reduced to 100 ° C. based on the atmospheric pressure, and the steam generated at that time is directly heated in the heat exchanger section 15 before the heat treatment. Directly heated to (100-α) ° C. and preheated.

予熱装置13で予熱された汚泥は、移送ポンプ19により、反応器14に導入される。反応器14に導入された汚泥は、高温高圧環境下で水熱処理され、高分子の固形性有機物は低分子化され、180℃の液状化した汚泥となる。このように熱処理により液状化した180℃の高温汚泥は、反応器14と予熱装置13との内部圧力差により、蒸発器部16に導入されて気化し、熱を奪われて、前述のように大気圧に基く100℃まで減温される。この減温分は高温蒸気となり、前述のように、直接熱交換器部15において熱処理前の汚泥と直接接触して(100−α)℃まで加温し、予熱する。   The sludge preheated by the preheating device 13 is introduced into the reactor 14 by the transfer pump 19. The sludge introduced into the reactor 14 is hydrothermally treated in a high-temperature and high-pressure environment, and the high-molecular solid organic matter is reduced in molecular weight to become liquefied sludge at 180 ° C. The 180 ° C. high-temperature sludge liquefied by the heat treatment in this way is introduced into the evaporator section 16 due to the internal pressure difference between the reactor 14 and the preheating device 13, vaporized, and deprived of heat as described above. The temperature is reduced to 100 ° C. based on atmospheric pressure. This temperature reduction becomes high-temperature steam and, as described above, directly contacts the sludge before heat treatment in the direct heat exchanger section 15 and warms it to (100-α) ° C. to preheat it.

この100℃まで減温された汚泥は、蒸発器部16の排出側に連結された蒸発器31に導入され、圧力差により、後続する消化槽22での嫌気性処理に好適な温度40℃まで減温される。これ以後の動作は、図1で示した実施の形態と同じであり説明は省略する。   The sludge reduced to 100 ° C. is introduced into the evaporator 31 connected to the discharge side of the evaporator section 16, and is heated to a temperature of 40 ° C. suitable for anaerobic treatment in the subsequent digestion tank 22 due to the pressure difference. Reduced temperature. The subsequent operation is the same as that of the embodiment shown in FIG.

このように、図2で示した構成とすることにより、余分の機器が不要となり、より故障の少ないシステムとすることができる。   As described above, the configuration shown in FIG. 2 eliminates the need for an extra device and can provide a system with fewer failures.

なお、消化槽22での嫌気性処理に好適な温度40℃への減温は、真空ポンプ34を使って減圧することにより、減温するものとしているが、別途冷却器を設けて、減温するものであってもよいし、より低温の水との熱交換によってもよい。   Note that the temperature reduction to 40 ° C. suitable for anaerobic treatment in the digestion tank 22 is to reduce the temperature by reducing the pressure using the vacuum pump 34, but the temperature is reduced by providing a separate cooler. It may also be one that performs heat exchange with cooler water.

次に、図3で示す実施の形態を説明する。   Next, the embodiment shown in FIG. 3 will be described.

この実施の形態では、図1の実施の形態に比べ、反応器14から、熱処理された汚泥の固形分を取り出すようにした構成が異なる。すなわち、反応器14の底部には熱処理された汚泥の固形分がたまるので、その底部に引き抜き弁38を有する固形分引き抜き装置39を連結し、反応器14に固液分離機能を持たせている。固液分離され、固形分引き抜き装置39により反応器14から引き抜かれた熱処理後汚泥の固形分は、移送ポンプ40を有する配管により消化槽22に供給される。また、固液分離された熱処理後汚泥の液分は、予熱装置13の蒸発器部16に排出管路を通して供給される。すなわち、図3の構成は、反応器14の下方から固形分を引き抜く機構38,39を備え、液分は予熱装置13の蒸発器部16に導入する構成である。   This embodiment is different from the embodiment shown in FIG. 1 in that the solid content of the heat-treated sludge is taken out from the reactor 14. That is, since the solid content of the heat-treated sludge is accumulated at the bottom of the reactor 14, a solid content extraction device 39 having an extraction valve 38 is connected to the bottom of the reactor 14 so that the reactor 14 has a solid-liquid separation function. . The solid content of the post-heat treatment sludge that has been solid-liquid separated and extracted from the reactor 14 by the solid content extracting device 39 is supplied to the digestion tank 22 through a pipe having a transfer pump 40. Further, the liquid component of the sludge after heat treatment separated from the solid and the liquid is supplied to the evaporator section 16 of the preheating device 13 through the discharge pipe. That is, the configuration of FIG. 3 is provided with mechanisms 38 and 39 for extracting the solid content from below the reactor 14, and the liquid content is introduced into the evaporator section 16 of the preheating device 13.

ここで、熱処理後の汚泥の固液分離は、反応器14の底部に連結した引き抜き弁38により間欠的に固体分を引抜くことにより行われる。熱処理汚泥の沈降性は良好であり、固体分は下方に沈降する。反応器14の上澄み部分である液分は予熱装置13の蒸発器部16に導入される。この蒸発器部16を含む予熱装置13の容器内の圧力は202kPaに調整しておく。このことにより、熱処理後汚泥の液分は120℃まで減温される。   Here, the solid-liquid separation of the sludge after the heat treatment is performed by intermittently withdrawing the solid content by a withdrawal valve 38 connected to the bottom of the reactor 14. The settleability of heat-treated sludge is good, and the solid content settles downward. The liquid component that is the supernatant of the reactor 14 is introduced into the evaporator section 16 of the preheating device 13. The pressure in the container of the preheating device 13 including the evaporator unit 16 is adjusted to 202 kPa. As a result, the liquid content of the sludge after heat treatment is reduced to 120 ° C.

予熱装置13の蒸発器部16に導入された熱処理後汚泥の液分は、固液分離により減少した固形分の体積分(減った体積をβ:0.2〜0.3とする)だけ、蒸発器部16で減圧する際の温度上昇分の蒸気量が少なくなり、熱処理前汚泥に対する直接熱交換器部15での予熱量は低下する。このため、その分、図1の実施の形態の場合と比べて直接熱交換器部15から流出する汚泥の温度上昇は小さくなる。すなわち、直接熱交換器部15から流出する汚泥の温度は(120−α)×(1−β)℃となる。このため、反応器14に外部から供給する必要熱量は大きくなる。しかし、反応器14から予熱装置13の蒸発器部16を含む排出流路の目詰まりは少なくなり、安定したシステムとすることが可能となる。   The liquid content of the sludge after heat treatment introduced into the evaporator section 16 of the preheating device 13 is only the volume of the solid content reduced by solid-liquid separation (the reduced volume is β: 0.2 to 0.3), The amount of steam for the temperature rise when the pressure is reduced in the evaporator section 16 is reduced, and the amount of preheating in the direct heat exchanger section 15 with respect to the sludge before heat treatment is reduced. For this reason, the temperature rise of the sludge which flows out directly from the heat exchanger part 15 becomes small compared with the case of embodiment of FIG. That is, the temperature of the sludge flowing out from the direct heat exchanger section 15 is (120−α) × (1−β) ° C. For this reason, the amount of heat required to be supplied to the reactor 14 from the outside increases. However, clogging of the discharge flow path from the reactor 14 to the evaporator section 16 of the preheating device 13 is reduced, and a stable system can be obtained.

予熱装置13の蒸発器部16から流出する液分は蒸発器31に導入され、40℃付近に減温された後、消化槽22に投入される。固液分離により反応器14から引き抜かれた固体分は、40℃付近に減温された液分とともに、前述のように消化槽22に投入される。その他の作用は図1の実施の形態と同様であり説明は省略する。   The liquid component flowing out from the evaporator section 16 of the preheating device 13 is introduced into the evaporator 31, reduced in temperature to around 40 ° C., and then introduced into the digestion tank 22. The solid content extracted from the reactor 14 by the solid-liquid separation is charged into the digestion tank 22 as described above together with the liquid temperature reduced to around 40 ° C. Other operations are the same as those of the embodiment of FIG.

この実施の形態によれば、熱処理後の溶液が気化する際の蒸気を、熱処理前の汚泥に、伝熱面を介さずに直接接触させるため、従来型の熱交換器より高い熱交換効率を得られ、約100℃上昇させるのに必要な熱量のみで200℃分の加温が可能である。また、予熱のために蒸発器部16を通して排出される熱処理後汚泥の液分は、固形分があらかじめ除去されているため移送管や移送弁等の流路のつまりが少ないシステム構成とすることができる。   According to this embodiment, since the vapor when the solution after the heat treatment is vaporized is brought into direct contact with the sludge before the heat treatment without using the heat transfer surface, the heat exchange efficiency is higher than that of the conventional heat exchanger. Thus, heating can be performed for 200 ° C. with only the amount of heat necessary to raise the temperature by about 100 ° C. In addition, since the solid content of the sludge after heat treatment discharged through the evaporator section 16 for preheating is removed in advance, a system configuration with less clogging of flow paths such as transfer pipes and transfer valves may be adopted. it can.

なお、固液分離は重力沈降のみで可能であり、新たな装置(膜、遠心濃縮)、高分子凝集剤などの薬品を投入しないため、安価なコストで実現可能である。もちろん、固液分離は遠心分離、膜分離により行うものであってもよい。ただし、膜分離に利用する膜は金属膜のような高温耐性のある膜でなくてはならない。また、固液分離した固形分は、消化槽22に投入することに限らず、その一部を再度熱処理するために、前段に設置した濃縮機12の後段に返送してもよい。また、消化槽22で処理せずそのまま脱水処理してもよい。   Solid-liquid separation can be achieved only by gravity sedimentation, and since a new apparatus (membrane, centrifugal concentration) and chemicals such as a polymer flocculant are not added, it can be realized at low cost. Of course, solid-liquid separation may be performed by centrifugation or membrane separation. However, the membrane used for membrane separation must be a high temperature resistant membrane such as a metal membrane. Further, the solid content separated by solid-liquid is not limited to being charged into the digestion tank 22, and may be returned to the subsequent stage of the concentrator 12 installed in the previous stage in order to heat-treat a part thereof. Further, dehydration may be performed as it is without being processed in the digestion tank 22.

次に、図4に示す実施の形態を説明する。   Next, the embodiment shown in FIG. 4 will be described.

この実施の形態では、直接熱交換器部15と蒸発器部16とを一体構成した予熱装置13を多段(図の例では3段)に設置したものである。すなわち、複数の予熱装置(3台の予熱装置13A,13B,13Cとする)は、それらの直接熱交換器部15A,15B,15Cが、濃縮機12の出口部から反応器14の入口部に到る汚泥の供給路上に直列に連結され、また、それらの蒸発器部16A,16B,16Cが、反応器14の出口部から蒸発器31の入口部に到る熱処理後汚泥の排出路上に複数段直列に連結されている。   In this embodiment, the preheating device 13 in which the direct heat exchanger section 15 and the evaporator section 16 are integrally configured is installed in multiple stages (three stages in the example in the figure). That is, in the plurality of preheating devices (three preheating devices 13A, 13B, and 13C), their direct heat exchanger portions 15A, 15B, and 15C are connected from the outlet portion of the concentrator 12 to the inlet portion of the reactor 14. The evaporator sections 16A, 16B, and 16C are connected in series on the incoming sludge supply path, and the plurality of evaporator sections 16A, 16B, and 16C are disposed on the post-heat treatment sludge discharge path from the outlet section of the reactor 14 to the inlet section of the evaporator 31. They are connected in series.

また、これら複数の予熱装置13A,13B,13Cの内部圧力は、反応器14から見て下流方向になるに従って(図示右側から左側に行くにしたがって)順次低く設定した。すなわち、反応器14から見て最も下流側の予熱装置13A(以下、第1の予熱装置とし、右側に向って順次第2、第3の予熱装置とする)が最も内部圧力が低くなるように圧力調整する。例えば、第1の予熱装置13Aの内部圧力は、圧力調整弁42及び蒸発機31と共通の真空ポンプ34により19.9kPaに制御する。第2の予熱装置13Bの内部圧力は、圧力調整弁37による大気開放により100kPaに制御する。第3の予熱装置13Cの内部圧力は、コンプレッサ24及びレリーフ弁25により360kPaに制御する。これらの圧力制御により、反応器14から供給され、各予熱装置13A,13B、13Cから流出する蒸発後の汚泥温度をそれぞれ、60℃、100℃、140℃にコントロールできる。   Further, the internal pressures of the plurality of preheating devices 13A, 13B, and 13C were sequentially set to be lower in the downstream direction as viewed from the reactor 14 (from the right side to the left side in the figure). That is, the most downstream preheating device 13A as viewed from the reactor 14 (hereinafter referred to as the first preheating device, and the second and third preheating devices in order toward the right side) has the lowest internal pressure. Adjust the pressure. For example, the internal pressure of the first preheating device 13 </ b> A is controlled to 19.9 kPa by a vacuum pump 3 4 that is common to the pressure regulating valve 42 and the evaporator 31. The internal pressure of the second preheating device 13 </ b> B is controlled to 100 kPa by opening the atmosphere with the pressure regulating valve 37. The internal pressure of the third preheating device 13C is controlled to 360 kPa by the compressor 24 and the relief valve 25. With these pressure controls, the sludge temperatures after evaporation supplied from the reactor 14 and flowing out from the preheating devices 13A, 13B, and 13C can be controlled to 60 ° C, 100 ° C, and 140 ° C, respectively.

上記構成において、汚泥11(温度20℃とする)は、濃縮機12により含水率97%以下に濃縮され、大気圧以下に減圧されている第1の予熱装置13Aとの圧力差により移送弁41を介して直接熱交換器部15Aに導入される。この直接熱交換器部15Aに導入された熱処理前の汚泥は、後述するように下部の蒸発器部16Aで発生した蒸気により加熱され、20℃から(60−α1)℃(α1は、第1の予熱装置13Aの熱損失分)まで予熱される。   In the above configuration, the sludge 11 (with a temperature of 20 ° C.) is concentrated to a moisture content of 97% or less by the concentrator 12 and is transferred to the transfer valve 41 by a pressure difference with the first preheating device 13A that is depressurized to the atmospheric pressure or less. Is introduced directly into the heat exchanger section 15A. The sludge before heat treatment introduced into the direct heat exchanger section 15A is heated by steam generated in the lower evaporator section 16A as will be described later, and from 20 ° C. to (60−α1) ° C. (α1 is the first Is preheated up to the heat loss of the preheating device 13A).

第1の予熱装置13Aで予熱された熱処理前の汚泥は第1の移送ポンプ19Aにより、第2の予熱装置13Bの直接熱交換器部15Bに導入され、後述するように下部の蒸発器部16Bで発生した蒸気により加熱され、(100−α1−α2)℃(α2は、第2の予熱装置13Bの熱損失分)まで予熱される。   The sludge before heat treatment preheated by the first preheating device 13A is introduced into the direct heat exchanger portion 15B of the second preheating device 13B by the first transfer pump 19A and, as will be described later, the lower evaporator portion 16B. And is preheated to (100−α1−α2) ° C. (α2 is a heat loss of the second preheating device 13B).

同様に、第2の予熱装置13Bで予熱された熱処理前の汚泥は第2の移送ポンプ19Bにより、第3の予熱装置13Cの直接熱交換器部15Cに導入され、後述するように下部の蒸発器部16Cで発生した蒸気により加熱され、(140−α1−α2−α3≒136)℃(α3は、第3の予熱装置13Cの熱損失分)まで予熱される。   Similarly, the sludge before heat treatment preheated by the second preheating device 13B is introduced into the direct heat exchanger section 15C of the third preheating device 13C by the second transfer pump 19B and is evaporated at the lower portion as will be described later. Heated by the steam generated in the vessel section 16C, preheated to (140−α1−α2−α3≈136) ° C. (α3 is a heat loss of the third preheating device 13C).

さらに、第3の予熱装置13Cで予熱された熱処理前の汚泥は第3の移送ポンプ19Cにより反応器14内に導入される。反応器14には、後続の消化槽22から発生したバイオガスを、脱硫装置29及びシロキサン除去装置42を介して燃料とする発電設備43からの高温排熱が、昇圧器28により1MPa付近まで昇圧され、加えられている。また、その他の熱源としてヒータ29で加熱する。反応器14は、これらにより、導入された汚泥を180℃に昇温させ水熱処理することができる。この水熱処理により、高分子の固形性有機物は低分子化され、液状化する。例えば、下水処理場の余剰汚泥を対象とした場合、水熱処理により汚泥の固形分の40〜50%が液分へと変換する。   Further, the sludge before heat treatment preheated by the third preheating device 13C is introduced into the reactor 14 by the third transfer pump 19C. In the reactor 14, high-temperature exhaust heat from the power generation equipment 43 using the biogas generated from the subsequent digestion tank 22 as fuel via the desulfurization device 29 and the siloxane removal device 42 is boosted to about 1 MPa by the booster 28. Has been added. Moreover, it heats with the heater 29 as another heat source. Thus, the reactor 14 can hydrothermally heat the introduced sludge by raising the temperature to 180 ° C. By this hydrothermal treatment, the polymer solid organic material is reduced in molecular weight and liquefied. For example, when surplus sludge in a sewage treatment plant is targeted, 40 to 50% of the solid content of the sludge is converted into liquid by hydrothermal treatment.

このように熱処理後の液状化した180℃の高温汚泥は、反応器14と第3の予熱装置13Cとの内部圧力差により、移送弁20Cを開操作することにより移送され、蒸発器部16Cに導入される。蒸発器部16Cに導入された汚泥は、1MPaから360kPaまで減圧されることにより気化し、熱を奪われて、前述のように140℃まで減温される。この減温分は高温蒸気となり、前述のように、直接熱交換器部15Cにおいて熱処理前の汚泥と直接接触して(140−α1−α2−α3≒136)℃まで加温し、予熱する。   The liquefied 180 ° C. high-temperature sludge after the heat treatment is transferred by opening the transfer valve 20C due to the internal pressure difference between the reactor 14 and the third preheating device 13C, and is transferred to the evaporator section 16C. be introduced. The sludge introduced into the evaporator section 16C is vaporized by being depressurized from 1 MPa to 360 kPa, deprived of heat, and reduced in temperature to 140 ° C. as described above. This reduced temperature becomes high-temperature steam and, as described above, directly contacts the sludge before heat treatment in the direct heat exchanger section 15C, warms it to (140−α1−α2−α3≈136) ° C., and preheats.

140℃まで減温された汚泥は、第3の予熱装置13Cと第2の予熱装置13Bとの内部圧力差により、移送弁20Bを開操作することにより移送され、蒸発器部16Bに導入される。蒸発器部16Bに導入された汚泥は、360kPaから100kPaまで減圧されることにより気化し、熱を奪われて、前述のように100℃まで減温される。この減温分は高温蒸気となり、前述のように、直接熱交換器部15Bにおいて熱処理前の汚泥と直接接触して(100−α1−α2)℃まで加温し、予熱する。   The sludge whose temperature has been reduced to 140 ° C. is transferred by opening the transfer valve 20B due to an internal pressure difference between the third preheating device 13C and the second preheating device 13B, and is introduced into the evaporator section 16B. . The sludge introduced into the evaporator section 16B is vaporized by being depressurized from 360 kPa to 100 kPa, deprived of heat, and reduced in temperature to 100 ° C. as described above. This temperature reduction becomes high-temperature steam, and as described above, directly contacts the sludge before heat treatment in the direct heat exchanger section 15B, warms up to (100-α1-α2) ° C., and preheats.

100℃まで減温された汚泥は、第2の予熱装置13Bと第1の予熱装置13Aとの内部圧力差により、移送弁20Aを開操作することにより移送され、蒸発器部16Aに導入される。蒸発器部16Aに導入された汚泥は、100kPaから19.9kPaまで減圧されることにより気化し、前述のように60℃まで減温される。この減温分は高温蒸気となり、前述のように、直接熱交換器部15Bにおいて熱処理前の汚泥と直接接触して(60−α1)℃まで加温し、予熱する。   The sludge whose temperature has been reduced to 100 ° C. is transferred by opening the transfer valve 20A due to an internal pressure difference between the second preheating device 13B and the first preheating device 13A, and is introduced into the evaporator section 16A. . The sludge introduced into the evaporator section 16A is vaporized by being depressurized from 100 kPa to 19.9 kPa, and the temperature is reduced to 60 ° C. as described above. This temperature reduction becomes high-temperature steam and, as described above, directly contacts the sludge before heat treatment in the direct heat exchanger section 15B, warms it to (60-α1) ° C., and preheats it.

60℃まで減温された汚泥は、蒸発器部16Aと、その排出側に連結された別の蒸発器31との圧力差により、移送弁30を開操作することにより蒸発器31に導入され、後続する消化槽22での嫌気性処理に好適な温度40℃まで減温される。以後の動作は、前述の各実施の形態と同様であり、説明は省略する。   The sludge reduced in temperature to 60 ° C. is introduced into the evaporator 31 by opening the transfer valve 30 due to the pressure difference between the evaporator section 16A and another evaporator 31 connected to the discharge side thereof, The temperature is reduced to a temperature of 40 ° C. suitable for anaerobic treatment in the subsequent digester 22. Subsequent operations are the same as those in the above-described embodiments, and a description thereof will be omitted.

この実施の形態では、複数の予熱装置13A,13B,13Cの直接熱交換器部15A,15B,15Cを直列につなぐ構成とすることにより、熱処理前の汚泥を約136℃まで予熱できるので、反応器14では、180℃に昇温させる44℃分の熱を外部から投入するのみでよい。このような180℃までの昇温した熱処理による可溶化率は、220℃まで温度を上げる場合よりも低いが、後段の消化槽22での処理による最終的な可溶化率(汚泥の減容化率)は、80%以上の減容化が期待できる。また、温度をあげた際に問題となる色度に関しても、220℃まで昇温する場合に比べると良好となる。   In this embodiment, the sludge before heat treatment can be preheated to about 136 ° C. by connecting the direct heat exchanger portions 15A, 15B, and 15C of the plurality of preheating devices 13A, 13B, and 13C in series. In the vessel 14, it is only necessary to input heat for 44 ° C. to raise the temperature to 180 ° C. from the outside. Although the solubilization rate by the heat treatment heated up to 180 ° C. is lower than that when the temperature is increased to 220 ° C., the final solubilization rate (reduction of sludge volume) by the treatment in the digester 22 at the latter stage is performed. The rate can be expected to be 80% or more. Further, the chromaticity which becomes a problem when the temperature is raised is also better than the case where the temperature is raised to 220 ° C.

また、各予熱装置13A,13B,13Cの圧力調整は、100℃以下の温度を得る第1の予熱装置13Aに関しては、蒸発器1と共用の1台の真空ポンプ34で減圧すればよく、100℃の温度を得る第2の予熱装置13Bに関しては大気圧に解放することで圧力調整するので、圧力調整用ポンプの初期投資が安い。   Moreover, the pressure adjustment of each preheating apparatus 13A, 13B, 13C should just depressurize with the one vacuum pump 34 shared with the evaporator 1 regarding the 1st preheating apparatus 13A which obtains the temperature of 100 degrees C or less, 100 With respect to the second preheating device 13B that obtains the temperature of ° C., the pressure is adjusted by releasing it to the atmospheric pressure, so the initial investment of the pressure adjusting pump is low.

なお、予熱装置13の連結台数は3段に限らず、2段以上であれば、何段としてもよい。ある程度の段数までは多段にすればするほど、外部からの投入エネルギーは小さくてすみ、システム全体としての熱回収率は向上する。しかし、容器やポンプ、バルブなどが複数必要となり、より複雑な構成となってしまうので、両者がバランスした台数を選択することが望ましい。   Note that the number of connected preheating devices 13 is not limited to three, and may be any number as long as it is two or more. As the number of stages increases to a certain level, the input energy from the outside becomes smaller and the heat recovery rate of the entire system improves. However, since a plurality of containers, pumps, valves, and the like are required and the configuration becomes more complicated, it is desirable to select a balanced number of both.

また、熱処理後汚泥を、60℃から消化槽22での処理に適する40℃へ減温する手段については、蒸発器31を真空ポンプ34により減圧するものに限らず、別途冷却器により冷却するものであってもよい。また、熱処理前の20℃の汚泥と熱処理後汚泥とを、伝熱面を介した通常の熱交換方法により、熱交換するものであってもよい。   Further, the means for reducing the temperature of the sludge after heat treatment from 60 ° C. to 40 ° C. suitable for treatment in the digestion tank 22 is not limited to the one in which the evaporator 31 is depressurized by the vacuum pump 34, but is cooled by a separate cooler. It may be. Further, heat exchange between the 20 ° C. sludge before heat treatment and the sludge after heat treatment may be performed by a normal heat exchange method via a heat transfer surface.

次に、図5に示す実施の形態を説明する。   Next, the embodiment shown in FIG. 5 will be described.

この実施の形態は、図4の実施の形態と同様に、複数(この場合も3台とする)の予熱装置13A,13B,13Cが直列に連結された構成であるが、ある特定の予熱装置(図の例では2段目の予熱装置13B)において、熱処理前の汚泥を一気に昇温するように構成している。そのために、任意の2つの予熱装置間(この場合は13A,13B間)の熱処理後汚泥の排出路上に蒸発器45を設置し、この蒸発器45で生成される蒸気と発電設備43から生じる排熱が、2段目の予熱装置13Bの直接熱交換器部15Bに吹き込まれるように配管を接続した構成となっている。   This embodiment has a configuration in which a plurality (three in this case) of preheating devices 13A, 13B, and 13C are connected in series as in the embodiment of FIG. (In the example shown in the figure, the second stage preheating device 13B) is configured to raise the temperature of sludge before heat treatment at once. For this purpose, an evaporator 45 is installed on the sludge discharge path after heat treatment between any two preheating devices (in this case, between 13A and 13B), and the steam generated by the evaporator 45 and the exhaust generated from the power generation equipment 43 are disposed. The piping is connected so that heat is blown into the direct heat exchanger section 15B of the second stage preheating device 13B.

ここで、蒸発器45の内部圧力は、反応器14から見て上流側となる予熱装置13Bから、自己を含め下流側の予熱装置13Aに向かって順次低くなるように設定されている。そして、上流側蒸発器部16Bから導入された熱処理後汚泥から、上流側との圧力差によって生じる蒸気を、上述のように予熱装置13Bの直接熱交換器部15Bに供給するための配管を設けている。   Here, the internal pressure of the evaporator 45 is set so as to decrease sequentially from the preheating device 13B on the upstream side when viewed from the reactor 14 toward the preheating device 13A on the downstream side including itself. And the pipe | tube for supplying the vapor | steam produced by the pressure difference with an upstream from the post-heat-treatment sludge introduced from the upstream evaporator part 16B to the direct heat exchanger part 15B of the preheating apparatus 13B as mentioned above is provided. ing.

ここで、第1、第2、第3の予熱装置13A、13B、13C、及び予熱装置13A、13B間に設置された蒸発器45との内部圧力は次のように設定されている。例えば、第1の予熱装置13Aは、真空ポンプ34と圧力調整弁42により内部圧力を19.9kPaに、蒸発器45の内部圧力は大気開放により100kPaに、第2、第3の予熱装置13B、13Cの内部圧力は、共通のコンプレッサ24と、異なる圧力に設定されたレリーフ弁25、46により、圧力を360kPa、1MPa付近にそれぞれ制御している。このことにより、熱処理後の汚泥の温度を、それぞれ、60℃、100℃、140℃、180℃にコントロールできる。   Here, the internal pressure with the evaporator 45 installed between the 1st, 2nd, 3rd preheating apparatus 13A, 13B, 13C and the preheating apparatuses 13A, 13B is set as follows. For example, the first preheating device 13A has an internal pressure of 19.9 kPa by the vacuum pump 34 and the pressure regulating valve 42, an internal pressure of the evaporator 45 is 100 kPa by opening to the atmosphere, and the second and third preheating devices 13B, The internal pressure of 13C is controlled to around 360 kPa and 1 MPa by the common compressor 24 and relief valves 25 and 46 set to different pressures, respectively. By this, the temperature of the sludge after heat processing can be controlled to 60 degreeC, 100 degreeC, 140 degreeC, and 180 degreeC, respectively.

反応器14では、発電設備43からの高温排熱を昇圧器28により22MPa付近まで昇圧することにより、220℃まで昇温し、導入された汚泥を水熱処理する。   In the reactor 14, the high-temperature exhaust heat from the power generation equipment 43 is raised to around 22 MPa by the booster 28, so that the temperature is raised to 220 ° C., and the introduced sludge is hydrothermally treated.

上記構成において、濃縮機12により含水率97%以下に濃縮された20℃の汚泥11は、第1の予熱装置13Aの直接熱交換器部15Aに導入され、下部の蒸発器部16Aで発生した蒸気により加熱され、20℃から(60−α1)℃(α1は、第1の予熱装置13Aの熱損失分)まで予熱される。   In the above configuration, the 20 ° C. sludge 11 concentrated to a water content of 97% or less by the concentrator 12 is introduced into the direct heat exchanger section 15A of the first preheating device 13A and generated in the lower evaporator section 16A. It is heated by steam and preheated from 20 ° C. to (60−α1) ° C. (α1 is the heat loss of the first preheating device 13A).

第1の予熱装置13Aで予熱された熱処理前の汚泥は第2の予熱装置13Bの直接熱交換器部15Bに導入される。この直接熱交換器部15Bには、前述のように発電設備43から生じる排熱、蒸発器45で生じる蒸気が注入され、かつ下部の蒸発器部16Bで発生した蒸気が、それぞれ汚泥と直接接触することにより、(60−α1)℃から140℃まで一気に昇温される。   The sludge before heat treatment preheated by the first preheating device 13A is introduced into the direct heat exchanger section 15B of the second preheating device 13B. As described above, exhaust heat generated from the power generation equipment 43 and steam generated in the evaporator 45 are injected into the direct heat exchanger section 15B, and steam generated in the lower evaporator section 16B is in direct contact with sludge. As a result, the temperature is raised from (60-α1) ° C. to 140 ° C. at once.

このように第2の予熱装置13Bで140℃に予熱された熱処理前の汚泥は第3の予熱装置13Cの直接熱交換器部15Cに導入され、下部の蒸発器部16Cで発生した蒸気により加熱され、(180−α3)℃(α3は、第3の予熱装置13Cの熱損失分)まで予熱される。   Thus, the sludge before heat treatment preheated to 140 ° C. by the second preheating device 13B is introduced into the direct heat exchanger portion 15C of the third preheating device 13C and heated by the steam generated in the lower evaporator portion 16C. And is preheated to (180−α3) ° C. (α3 is the heat loss of the third preheating device 13C).

さらに、第3の予熱装置13Cで(180−α3)℃まで予熱された熱処理前の汚泥は反応器14内に導入される。反応器14内は前述のように22MPa付近まで昇圧されているので、導入された汚泥を220℃に昇温させ水熱処理する。この水熱処理により、高分子の固形性有機物は低分子化され、液状化する。   Further, the sludge before heat treatment that has been preheated to (180−α3) ° C. by the third preheater 13 </ b> C is introduced into the reactor 14. Since the pressure inside the reactor 14 is increased to around 22 MPa as described above, the introduced sludge is heated to 220 ° C. and hydrothermally treated. By this hydrothermal treatment, the polymer solid organic material is reduced in molecular weight and liquefied.

このように熱処理後の液状化した220℃の高温汚泥は、反応器14と第3の予熱装置13Cとの内部圧力差により、蒸発器部16Cに導入され、22MPaから1MPaまで減圧されることにより気化し、180℃まで減温される。この減温分は高温蒸気となり、直接熱交換器部15Cにおいて熱処理前の汚泥と直接接触して、前述のように(180−α3)℃まで加温し、予熱する。   The liquefied high-temperature sludge at 220 ° C. after the heat treatment is introduced into the evaporator section 16C due to the internal pressure difference between the reactor 14 and the third preheating device 13C, and the pressure is reduced from 22 MPa to 1 MPa. Vaporize and reduce to 180 ° C. This reduced temperature becomes high-temperature steam, directly contacts with the sludge before heat treatment in the direct heat exchanger section 15C, and is heated to (180-α3) ° C. and preheated as described above.

180℃まで減温された汚泥は、第3の予熱装置13Cと第2の予熱装置13Bとの内部圧力差により、蒸発器部16Bに導入され、1MPaから360kPaまで減圧されることにより気化し、140℃まで減温される。この減温分は高温蒸気となり、直接熱交換器部15Bにおいて、蒸発器45からの蒸気や発電設備43からの排熱と共に熱処理前の汚泥と直接接触して予熱する。   The sludge reduced to 180 ° C. is vaporized by being introduced into the evaporator section 16B due to an internal pressure difference between the third preheating device 13C and the second preheating device 13B, and depressurizing from 1 MPa to 360 kPa, The temperature is reduced to 140 ° C. This reduced temperature becomes high-temperature steam, and in the direct heat exchanger section 15B, it preheats in direct contact with the sludge before heat treatment together with the steam from the evaporator 45 and the exhaust heat from the power generation equipment 43.

140℃まで減温された汚泥は、第2の予熱装置13Bと蒸発器45の内部圧力差により、蒸発器45に導入され、360kPaから100kPaまで減圧されることにより気化し、100℃まで減温される。この減温分は高温蒸気となり、反応器14から見て上流側となる第2の直接熱交換器部15Bに吹き込まれ、上述のように、下部蒸発器部16Bからの蒸気、及び発電設備43からの排熱と共に熱処理前の汚泥と直接接触して140℃まで一気に昇温して予熱する。   The sludge whose temperature has been reduced to 140 ° C. is introduced into the evaporator 45 due to the internal pressure difference between the second preheating device 13B and the evaporator 45, and is vaporized by reducing the pressure from 360 kPa to 100 kPa. Is done. This reduced temperature becomes high-temperature steam and is blown into the second direct heat exchanger section 15B on the upstream side when viewed from the reactor 14, and as described above, the steam from the lower evaporator section 16B and the power generation equipment 43 Preheated by heating directly to 140 ° C. in direct contact with the sludge before heat treatment together with the exhaust heat from the heat treatment.

100℃まで減温された汚泥は、蒸発器45と第1の予熱装置13Aとの内部圧力差により、蒸発器部16Aに導入され、100kPaから19.9kPaまで減圧されることにより気化し、60℃まで減温される。この減温分は高温蒸気となり、直接熱交換器部15Bにおいて熱処理前の汚泥と直接接触して(60−α1)℃まで加温し、予熱する。   The sludge reduced in temperature to 100 ° C. is introduced into the evaporator section 16A due to an internal pressure difference between the evaporator 45 and the first preheating device 13A, and is vaporized by reducing the pressure from 100 kPa to 19.9 kPa. The temperature is reduced to ° C. This reduced temperature becomes high-temperature steam, directly contacts the sludge before heat treatment in the direct heat exchanger section 15B, warms to (60-α1) ° C., and preheats.

60℃まで減温された汚泥は、高温消化槽(60℃の高温菌による消化)に導入され、更に減容化される。以後の動作は、前述の各実施の形態と同様であり、説明は省略する。   The sludge whose temperature has been reduced to 60 ° C. is introduced into a high-temperature digestion tank (digestion with high-temperature bacteria at 60 ° C.) and further reduced in volume. Subsequent operations are the same as those in the above-described embodiments, and a description thereof will be omitted.

この実施の形態によれば、熱処理前の汚泥は第2の予熱装置13Bの直接熱交換器部15Bにおいて、60℃から一気に140℃まで昇温されるので、タンパク凝固の生じやすい60℃〜100℃の領域を一気に昇温することになり、タンパク凝固物による配管の閉塞、容器への付着が少ないシステムとすることができる。   According to this embodiment, the sludge before heat treatment is heated from 60 ° C. to 140 ° C. at a stretch in the direct heat exchanger section 15B of the second preheating device 13B. The temperature in the region of 0 ° C. is increased all at once, so that the system is less likely to block the piping and adhere to the container due to protein coagulum.

また、蒸発器45で発生する蒸気を第2の直接熱交換器部15Bに吹き込む構成としたことにより、蒸発器45の減圧時に生じた熱を有効利用することができる。   In addition, since the steam generated in the evaporator 45 is blown into the second direct heat exchanger section 15B, the heat generated when the evaporator 45 is depressurized can be used effectively.

さらに、後段の消化槽22を高温消化槽とすることにより、60℃の汚泥を40℃まで減温する必要がないため、40℃まで温度を減温するための設備が不要となり構成を簡素化できる。   Furthermore, since the subsequent digestion tank 22 is a high-temperature digestion tank, it is not necessary to reduce the temperature of sludge at 60 ° C. to 40 ° C. Therefore, no equipment for reducing the temperature to 40 ° C. is required and the configuration is simplified. it can.

なお、後段の消化槽22に高温消化槽を用いない場合は、60℃の汚泥を40℃まで減温する必要があるが、その場合は、図6に示すように比較的低温(20℃)の生汚泥111を、消化槽22へ供給される熱処理後の汚泥に混合させればよい。すなわち、熱処理後汚泥の温度調整装置として、予熱装置13Aの熱処理後汚泥排出部から消化槽22への管路に連結されて、この管路に流れる排出汚泥に対し熱処理されていない汚泥を混合させる装置を用いればよい。   In addition, when not using a high-temperature digester for the latter digester 22, it is necessary to reduce 60 degreeC sludge to 40 degreeC, but in that case, as shown in FIG. 6, it is comparatively low temperature (20 degreeC). The raw sludge 111 may be mixed with the heat-treated sludge supplied to the digestion tank 22. That is, as a temperature adjusting device for the heat treatment sludge, it is connected to a pipe line from the post-heat treatment sludge discharge part of the preheating device 13A to the digestion tank 22, and the sludge that has not been heat-treated is mixed with the discharged sludge flowing through this pipe line. An apparatus may be used.

ここで、熱処理対象の汚泥11を下水処理場の生物反応槽から生じる汚泥(余剰汚泥と呼ぶ)とした場合、下水処理場の生物処理前の沈殿池から生じる汚泥111を生汚泥と呼ぶ。生汚泥と余剰汚泥の発生量はほぼ1対1であり、予熱装置13Aの熱処理後汚泥排出部から流出する余剰汚泥の熱処理汚泥と濃縮後の生汚泥が配管中で混合する構成とする。   Here, when the sludge 11 to be heat treated is sludge generated from the biological reaction tank of the sewage treatment plant (referred to as surplus sludge), the sludge 111 generated from the sedimentation basin before the biological treatment of the sewage treatment plant is referred to as raw sludge. The generation amount of raw sludge and surplus sludge is approximately 1: 1, and the heat treatment sludge of surplus sludge flowing out from the sludge discharge section after heat treatment of the preheating device 13A and the raw sludge after concentration are mixed in the pipe.

図6の実施の形態において、余剰汚泥の熱処理部分に関しては、図5の実施形態と同様である。図6の実施の形態では、予熱装置13Aの熱処理後汚泥排出部から流出する60℃の熱処理後の汚泥を、熱処理を施さない20℃の生汚泥111と1対1の割合で混合することにより、消化槽22での処理に適した40℃まで減温する。すなわち、生汚泥と余剰汚泥の混合汚泥(40℃)が消化槽22に導入される。   In the embodiment of FIG. 6, the heat treatment part of the excess sludge is the same as that of the embodiment of FIG. In the embodiment of FIG. 6, by mixing the sludge after heat treatment at 60 ° C. flowing out from the sludge discharge section after heat treatment of the preheating device 13A with the raw sludge 111 at 20 ° C. not subjected to heat treatment in a one-to-one ratio. The temperature is reduced to 40 ° C. suitable for treatment in the digestion tank 22. That is, mixed sludge (40 ° C.) of raw sludge and excess sludge is introduced into the digestion tank 22.

効果は以下のとおりである。 The effects are as follows.

図6の実施の形態によれば、消化槽22での生物分解性が比較的低い余剰汚泥を熱処理し、生物分解性が比較的高い生汚泥は熱処理しないで投入することにより、生汚泥を昇温するための設備・エネルギーを必要としないので、両方の汚泥を昇温する場合に比べ経済的である。また、生物分解性の低い余剰汚泥が熱処理されていることで、消化槽22でのガス発生量の増大、消化槽容量の削減、廃棄汚泥量の減容化を達成することができる。   According to the embodiment of FIG. 6, surplus sludge having a relatively low biodegradability in the digestion tank 22 is heat-treated, and raw sludge having a relatively high biodegradability is added without heat treatment, so that the raw sludge can be increased. Because it does not require equipment and energy to heat, it is more economical than when both sludges are heated. Moreover, the surplus sludge with low biodegradability is heat-processed, Therefore The increase in the gas generation amount in the digestion tank 22, reduction of digestion tank capacity, and volume reduction of a waste sludge amount can be achieved.

また、生汚泥と余剰汚泥の混合により60℃から40℃に減温するので、余剰汚泥を60℃から40℃に減温するための特別の設備を必要とせず、下水処理場の既設設備である消化槽(40℃の中温菌による消化)を利用できる。   Moreover, since the temperature is reduced from 60 ° C to 40 ° C by mixing raw sludge and excess sludge, no special equipment is required to reduce the excess sludge from 60 ° C to 40 ° C. A digester (digestion with mesophilic bacteria at 40 ° C) can be used.

なお、対象汚泥は上記のように生汚泥と余剰汚泥の混合でなくともよく、例えば、汚泥の半分は熱処理し、半分は熱処理しないという方法をとり、熱処理した汚泥と熱処理しない汚泥の混合により、汚泥の減温を行うものであってもよい。また、混合比も1:1に限らず、どのような比で混合するものであってもよい。また、上記実施の形態では、混合を配管中で行うものとしたが、撹拌器が設置された混合槽を設け、その混合槽内で混合するものであってもよい。   The target sludge does not have to be a mixture of raw sludge and excess sludge as described above.For example, half of the sludge is heat-treated and half is not heat-treated.By mixing the heat-treated sludge and the sludge not heat-treated, The temperature of sludge may be reduced. Further, the mixing ratio is not limited to 1: 1, and any ratio may be used. Moreover, in the said embodiment, although mixing shall be performed in piping, the mixing tank in which the stirrer was installed may be provided and it may mix in the mixing tank.

図1乃至図4で示した蒸発器31から生じる蒸気は、単に外部に放出するのではなく、例えば、給湯設備の熱源として用いるよう構成するとよい。このように構成すれば、余剰の熱源を有効利用することとなり、プラント全体の省エネルギーにつながる。もちろん、給湯設備に限らず、蒸発器31から生じる蒸気や加温された汚泥が減圧される際に乗じる蒸気を冷暖房設備など、その汚泥処理プラントの付帯設備の加温・減温に利用するものであればどのようなものであってもよい。   The steam generated from the evaporator 31 shown in FIG. 1 to FIG. 4 is not simply discharged to the outside, but may be configured to be used as a heat source for hot water supply equipment, for example. If comprised in this way, an excess heat source will be used effectively and it will lead to the energy saving of the whole plant. Of course, not only hot water supply equipment, but also steam used from the evaporator 31 and steam multiplied when the heated sludge is depressurized are used for heating and reducing the temperature of ancillary equipment such as air conditioning equipment. Anything may be used.

次に、図7の実施形態を説明する。   Next, the embodiment of FIG. 7 will be described.

この実施の形態では、図3で示した固液分離を含む熱処理において、液分を高速嫌気リアクタ46により、例えば、UASB(Upflow Anearobic Sludge Blanket:上向流式嫌気性汚泥ブランケット)法による処理を行い、固体分は脱水処理を行うプロセスフローとする。   In this embodiment, in the heat treatment including solid-liquid separation shown in FIG. 3, the liquid component is processed by the high-speed anaerobic reactor 46, for example, by the UASB (Upflow Anearobic Sludge Blanket) method. The solid content is a process flow for dehydration.

上記構成において、反応器14は220℃で水熱処理を行うことによって、下水処理場の余剰汚泥であれば固形分の70〜80%は可溶化するため、固形分量は熱処理をしない場合の20〜30%となる。この水熱処理後汚泥の固形分を引抜き弁38で引き抜いて固液分離し、この固形分は、さらに濃縮機48で無薬注の濃縮後、脱水器35により脱水処理を行い、廃棄する。   In the above configuration, the reactor 14 is hydrothermally treated at 220 ° C., so that 70 to 80% of the solid content is solubilized if the excess sludge is in the sewage treatment plant. 30%. After this hydrothermal treatment, the solid content of the sludge is extracted by the extraction valve 38 and is separated into solid and liquid. The solid content is further concentrated without chemical injection by the concentrator 48, then dehydrated by the dehydrator 35 and discarded.

熱処理汚泥は沈降性が高いので、無薬注の遠心濃縮で高い濃縮性を得ることができ、固形分の含水率を低くすることができるので、更に固形分の容量を削減することができる。また、濃縮機48で生じる濃縮後の液分は蒸発器31に導入され、この蒸発器31で減温された後、リアクタ46にてUASB処理される。一方、反応器14から予熱装置13に流出する液分は、その蒸発器部16で及び蒸発器31で減温した後、汚泥の発生がほとんどないUASBプロセスで処理する。UASBプロセスではメタン生成菌が集積した粒状のグラニュールにより処理するため、一般の消化槽に比べ、短い滞留時間(容積)の処理槽で可溶化液を処理することができる。UASBの処理水は、水処理プロセス(例えば、下水処理場であれば、生物処理槽(曝気槽)の前に返送される)にて処理され、最終的には河川に放流される。   Since heat-treated sludge has a high sedimentation property, high concentration can be obtained by centrifugal concentration without chemical injection, and the moisture content of the solid content can be lowered, so that the volume of the solid content can be further reduced. Further, the concentrated liquid component generated in the concentrator 48 is introduced into the evaporator 31, and after being reduced in temperature by the evaporator 31, UASB processing is performed in the reactor 46. On the other hand, the liquid component flowing out from the reactor 14 to the preheating device 13 is treated by a UASB process in which sludge is hardly generated after the temperature is reduced in the evaporator section 16 and the evaporator 31. In the UASB process, since the treatment is performed with granular granules in which methanogens are accumulated, the solubilized liquid can be processed in a processing tank having a short residence time (volume) compared to a general digestion tank. The treated water of UASB is treated in a water treatment process (for example, if it is a sewage treatment plant, it is returned before a biological treatment tank (aeration tank)), and finally discharged into a river.

図7の実施の形態によれば、溶液分をUASB法により処理するため、通常の消化槽(滞留時間30日)に比べ、容積を1/30程度まで小さくすることができ、省スペースの汚泥処理プロセスを実現できる。また、汚泥の熱処理により、熱処理しない場合に比べ、熱処理による可溶化、沈降性向上により、廃棄汚泥の発生量を容積ベースで80〜90%削減することができる。さらに、反応器14からの汚泥を無薬注で濃縮処理することにより、薬品の使用量が少なくランニングコストが安く、無機汚泥の発生量の少ないプロセスとすることができる。   According to the embodiment of FIG. 7, since the solution is processed by the UASB method, the volume can be reduced to about 1/30 compared to a normal digestion tank (retention time 30 days), and space-saving sludge is obtained. A processing process can be realized. In addition, the amount of waste sludge generated can be reduced by 80 to 90% on a volume basis by heat treatment of sludge and by solubilization and sedimentation improvement by heat treatment, compared to the case where heat treatment is not performed. Further, by concentrating the sludge from the reactor 14 with no chemical injection, the amount of chemicals used is low, the running cost is low, and the amount of inorganic sludge generated is small.

なお、リアクタ46によるUASB処理プロセスの後段に活性炭による色度処理プロセスを設けてもよい。また、色度処理プロセスはUASB処理の前段でもよく、さらに、活性炭処理に限らず、活性炭または凝集剤(鉄系の凝集剤)またはOHラジカルまたは電気分解処理などの単独もしくは組合せによる色度処理プロセスであってもよい。また、汚泥脱水後の脱離液も合わせて、色度処理するプロセスであってもよい。これにより、熱処理をした際に問題となる色度を改善できる。   In addition, you may provide the chromaticity processing process by activated carbon in the back | latter stage of the UASB processing process by the reactor 46. FIG. In addition, the chromaticity treatment process may be performed before the UASB treatment, and is not limited to the activated carbon treatment, and the chromaticity treatment process can be performed alone or in combination such as activated carbon, a flocculant (iron-based flocculant), OH radical or electrolysis It may be. Moreover, the process of carrying out chromaticity treatment together with the desorbed liquid after sludge dehydration may be used. Thereby, the chromaticity which becomes a problem when heat-treating can be improved.

また高速の嫌気性処理プロセスのリアクタ46は、UASBプロセスに限らず、EGSB(Expanded Granular Sludge Bed)リアクタ、IC(Internal Circulation)リアクタなど、高負荷の有機物を処理できる高速リアクタであればどのような嫌気性処理プロセスであってもよい。また、反応器14からの固形分の処理は、図7のように濃縮後、脱水するのではなく、濃縮後、消化槽による嫌気性処理を実施した後に脱水処理を行うものであってもよい。   The high-speed anaerobic treatment process reactor 46 is not limited to the UASB process, but can be any high-speed reactor capable of treating high-load organic matter such as an EGSB (Expanded Granular Sludge Bed) reactor or an IC (Internal Circulation) reactor. It may be an anaerobic treatment process. In addition, the solid content from the reactor 14 may not be dehydrated after concentration as shown in FIG. 7, but may be dehydrated after concentration and after anaerobic treatment in a digestion tank. .

本発明による汚泥処理システムの一実施の形態を示すシステム構成図である。1 is a system configuration diagram showing an embodiment of a sludge treatment system according to the present invention. 本発明における予熱装置の圧力調整機構を変更した実施の形態を示すシステム構成図である。It is a system block diagram which shows embodiment which changed the pressure adjustment mechanism of the preheating apparatus in this invention. 本発明における反応器に固液分離機能を持たせた実施の形態を示すシステム構成図である。It is a system block diagram which shows embodiment which gave the solid-liquid separation function to the reactor in this invention. 本発明における予熱装置を多段に構成した実施の形態を示すシステム構成図である。It is a system configuration figure showing an embodiment which constituted a preheating device in the present invention in multiple stages. 本発明における予熱装置を多段に構成し、かつ特定の予熱装置で一気に昇温させるための構成を採用した実施の形態を示すシステム構成図である。1 is a system configuration diagram showing an embodiment in which a preheating device according to the present invention is configured in multiple stages and a configuration for raising the temperature at a stretch by a specific preheating device is adopted. FIG. 本発明における温度調節装置の他の例を示す実施の形態のシステム構成図である。It is a system configuration | structure figure of embodiment which shows the other example of the temperature control apparatus in this invention. 本発明における反応器に固液分離機能を持たせ、その液分を高速嫌気リアクタで処理する実施の形態を示すシステム構成図である。1 is a system configuration diagram showing an embodiment in which a reactor according to the present invention is provided with a solid-liquid separation function and its liquid content is processed in a high-speed anaerobic reactor. 飽和蒸気圧と水温との関係を示す特性図である。It is a characteristic view which shows the relationship between saturated vapor pressure and water temperature.

符号の説明Explanation of symbols

11 処理対象の汚泥
13 予熱装置
14 反応器
15 直接熱交換器部
16 蒸発器部
22 嫌気性処理装置(消化槽)
11 Sludge to be treated 13 Preheating device 14 Reactor 15 Direct heat exchanger part 16 Evaporator part 22 Anaerobic treatment device (digestion tank)

Claims (12)

汚泥を所定の圧力下で加熱して熱処理する反応器と、
前記反応器への汚泥の供給路上に連結された直接熱交換器部と、前記反応器からの熱処理後の汚泥の排出路上に連結された蒸発器部とを一体化し、これらの内部は前記反応器内より低い圧力に保持され、前記直接熱交換器部に導入された熱処理前の汚泥を、前記排出路により前記蒸発器部に導入された熱処理後の汚泥から生じる蒸気を直接的に接触させて加熱する予熱装置と
を備えたことを特徴とする汚泥処理システム。
A reactor for heating and treating the sludge under a predetermined pressure;
The direct heat exchanger part connected on the sludge supply path to the reactor and the evaporator part connected on the sludge discharge path after the heat treatment from the reactor are integrated, and the inside thereof is the reaction The sludge before heat treatment, which is held at a lower pressure than the inside of the vessel and introduced into the direct heat exchanger section, is directly brought into contact with the steam generated from the sludge after heat treatment introduced into the evaporator section through the discharge path. And a preheating device for heating.
前記予熱装置は、前記汚泥の供給路上及び熱処理後汚泥の排出路上に複数段直列に連結され、これら複数の予熱装置の内部圧力を、前記反応器から見て下流方向になるに従って順次低く設定したことを特徴とする請求項1に記載の汚泥処理システム。   The preheating device is connected in series in a plurality of stages on the sludge supply path and the heat treatment sludge discharge path, and the internal pressures of the plurality of preheating apparatuses are sequentially set lower as they go downstream as viewed from the reactor. The sludge treatment system according to claim 1 characterized by things. 前記予熱装置が複数段直列に連結された熱処理後汚泥の排出路上の、任意の2つの予熱装置間に設置され、内部圧力が、前記反応器から見て上流側の予熱装置から自己を含め下流側の予熱装置に向かって順次低くなるように設定され、前記上流側予熱装置から導入された熱処理後汚泥から、上流側との圧力差によって蒸気を生じさせ、かつ、この蒸気を前記上流側予熱装置の直接熱交換器部に供給するための配管を有する蒸発器を備えたことを特徴とする請求項2に記載の汚泥処理システム。   The preheater is installed between any two preheaters on the sludge discharge path after heat treatment in which a plurality of stages of the preheater are connected in series, and the internal pressure is lower than the preheater upstream from the reactor, including itself. The steam is generated from the sludge after heat treatment introduced from the upstream side preheating device by a pressure difference with the upstream side, and the steam is preheated to the upstream side preheating device. The sludge treatment system according to claim 2, further comprising an evaporator having a pipe for supplying to a direct heat exchanger part of the apparatus. 前記反応器により熱処理され、前記予熱装置の蒸発器部を経て排出される熱処理後汚泥を嫌気性処理する嫌気性処理装置を備えたことを特徴とする請求項1乃至請求項3のいずれかに記載の汚泥処理システム。   4. The apparatus according to claim 1, further comprising an anaerobic treatment device that anaerobically treats the sludge after heat treatment that is heat-treated by the reactor and discharged through the evaporator section of the preheating device. The described sludge treatment system. 前記嫌気性処理装置から発生する消化ガスを、前記反応槽に対する加熱源設備の燃料に用いることを特徴とする請求項4に記載の汚泥処理システム   The sludge treatment system according to claim 4, wherein digestion gas generated from the anaerobic treatment device is used as fuel for a heating source facility for the reaction tank. 前記予熱装置の蒸発器部を経て排出される熱処理後汚泥を嫌気性処理に適した温度に調整する温度調整装置を備えたことを特徴とする請求項4に記載の汚泥処理システム。   The sludge treatment system according to claim 4, further comprising a temperature adjusting device for adjusting the post-heat treatment sludge discharged through the evaporator section of the preheating device to a temperature suitable for anaerobic treatment. 前記温度調整装置は、前記予熱装置より低い内部圧力に設定され、この予熱装置の蒸発器部を経て排出された熱処理後の汚泥を導入し、前記予熱装置との内部圧力差により蒸気を発生させて汚泥温度を低下させる蒸発器を用いたことを特徴とする請求項6に記載の汚泥処理システム。   The temperature adjusting device is set to an internal pressure lower than that of the preheating device, introduces heat-treated sludge discharged through an evaporator section of the preheating device, and generates steam by an internal pressure difference with the preheating device. 7. The sludge treatment system according to claim 6, wherein an evaporator that lowers the sludge temperature is used. 前記温度調整装置は、前記予熱装置の熱処理後汚泥排出部から嫌気性処理装置への管路に連結されて、この管路に流れる排出汚泥に対し熱処理されていない汚泥を混合させる装置であることを特徴とする請求項6に記載の汚泥処理システム。   The temperature adjusting device is connected to a pipe line from the sludge discharge part after heat treatment of the preheating device to the anaerobic treatment apparatus, and mixes sludge that has not been heat-treated with the discharged sludge flowing through the pipe line. The sludge treatment system according to claim 6. 前記反応器は、熱処理された汚泥から、固形分が分離された液分を、前記予熱装置の蒸発器部に前記排出路を通して供給することを特徴とする請求項1乃至請求項8のいずれかに記載の汚泥処理システム。   9. The reactor according to claim 1, wherein a liquid component obtained by separating a solid content from heat-treated sludge is supplied to the evaporator section of the preheating device through the discharge path. The sludge treatment system described in 1. 液分と分離された熱処理後の汚泥の固形分を、嫌気性処理装置に供給する配管を有することを特徴とする請求項9に記載の汚泥処理システム。   The sludge treatment system according to claim 9, further comprising a pipe for supplying the solid content of the sludge after heat treatment separated from the liquid to an anaerobic treatment apparatus. 液分と分離された熱処理後の汚泥の固形分を濃縮する濃縮機を有し、かつ濃縮により生じた液分を温度調節用の蒸発器を経て嫌気性処理装置に供給する配管を有することを特徴とする請求項9に記載の汚泥処理システム。   It has a concentrator that concentrates the solid content of the sludge after heat treatment separated from the liquid component, and has a pipe that supplies the liquid component generated by the concentration to the anaerobic treatment device through an evaporator for temperature control. The sludge treatment system according to claim 9, wherein 前記反応器における熱処理は、60℃〜374℃の間の加熱処理または加熱加圧処理であることを特徴とする請求項1乃至請求項11のいずれかに記載の汚泥処理システム。   The sludge treatment system according to any one of claims 1 to 11, wherein the heat treatment in the reactor is a heat treatment or a heat pressure treatment between 60 ° C and 374 ° C.
JP2007275271A 2007-10-23 2007-10-23 Sludge treatment system Expired - Fee Related JP5150199B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007275271A JP5150199B2 (en) 2007-10-23 2007-10-23 Sludge treatment system
CN200880112720XA CN101835715B (en) 2007-10-23 2008-10-15 Sludge treating system
PCT/JP2008/002917 WO2009054107A1 (en) 2007-10-23 2008-10-15 Sludge treating system
KR1020107007627A KR101145700B1 (en) 2007-10-23 2008-10-15 Sludge treating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275271A JP5150199B2 (en) 2007-10-23 2007-10-23 Sludge treatment system

Publications (2)

Publication Number Publication Date
JP2009101293A true JP2009101293A (en) 2009-05-14
JP5150199B2 JP5150199B2 (en) 2013-02-20

Family

ID=40579217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275271A Expired - Fee Related JP5150199B2 (en) 2007-10-23 2007-10-23 Sludge treatment system

Country Status (4)

Country Link
JP (1) JP5150199B2 (en)
KR (1) KR101145700B1 (en)
CN (1) CN101835715B (en)
WO (1) WO2009054107A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098249A (en) * 2009-11-03 2011-05-19 Techno Plan:Kk Sludge solubilizing apparatus and method therefor
CN102515466A (en) * 2012-01-09 2012-06-27 广西博世科环保科技股份有限公司 Continuous thermal hydrolysis pretreatment process capable of reinforcing high temperature anaerobic fermentation of residual sludge
WO2014139951A1 (en) * 2013-03-09 2014-09-18 Veolia Water Solutions And Technologies Support Energy efficient system and process for treating sludge
JP2017051943A (en) * 2015-07-31 2017-03-16 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート System and process of sludge thermal hydrolysis having excellent energy efficiency
KR102573781B1 (en) * 2022-10-24 2023-08-31 김영구 Non-incineration eco-friendly treatment system and method for combustible waste

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102849918B (en) * 2012-10-09 2014-07-30 浙江大学 Treatment method for strengthening dewatering performance of excess activated sludge
KR101446953B1 (en) 2012-12-18 2014-10-07 고등기술연구원연구조합 Reactant recovery system and method for using same
FR3037056B1 (en) * 2015-06-05 2019-11-29 Degremont METHOD AND DEVICE FOR HYDROTHERMAL CARBONIZATION WITH OPTIMIZED MUD AND STEAM MIXTURE
FR3048966A1 (en) * 2016-03-18 2017-09-22 Veolia Water Solutions & Tech METHOD FOR OPTIMIZED TREATMENT OF MUNICIPAL OR INDUSTRIAL BIOLOGICAL SLUDGE
CN106630526B (en) * 2017-03-06 2023-05-23 东方电气集团东方锅炉股份有限公司 Sludge hydro-thermal oxidation reaction system and method with product backflow pretreatment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384698A (en) * 1986-09-27 1988-04-15 Nippon Beet Sugar Mfg Co Ltd Anaerobic treatment
JPH0347600A (en) * 1989-07-13 1991-02-28 Agency Of Ind Science & Technol Oil recovering from organic sludge
JPH0478497A (en) * 1990-07-20 1992-03-12 Kawasaki Heavy Ind Ltd Method and device for treating sludge
JP2002273493A (en) * 2001-03-23 2002-09-24 Mitsubishi Heavy Ind Ltd Organic solid treatment system
JP2004016913A (en) * 2002-06-14 2004-01-22 Toshiba Corp Sludge treatment apparatus and sludge treatment method
JP2004195459A (en) * 2004-01-19 2004-07-15 Toshiba Corp Waste treatment apparatus
JP2004237247A (en) * 2003-02-07 2004-08-26 Toshiba Corp Treatment apparatus for water-containing slurry
JP2007023214A (en) * 2005-07-20 2007-02-01 Hiroshima Univ Method and system for biomass gasification

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2343703A1 (en) * 1976-03-13 1977-10-07 Kubota Ltd SLUDGE TREATMENT PROCESS AND PLANT
CN1207223C (en) * 2001-03-19 2005-06-22 韩洪波 Sludge extruding and heat treating process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384698A (en) * 1986-09-27 1988-04-15 Nippon Beet Sugar Mfg Co Ltd Anaerobic treatment
JPH0347600A (en) * 1989-07-13 1991-02-28 Agency Of Ind Science & Technol Oil recovering from organic sludge
JPH0478497A (en) * 1990-07-20 1992-03-12 Kawasaki Heavy Ind Ltd Method and device for treating sludge
JP2002273493A (en) * 2001-03-23 2002-09-24 Mitsubishi Heavy Ind Ltd Organic solid treatment system
JP2004016913A (en) * 2002-06-14 2004-01-22 Toshiba Corp Sludge treatment apparatus and sludge treatment method
JP2004237247A (en) * 2003-02-07 2004-08-26 Toshiba Corp Treatment apparatus for water-containing slurry
JP2004195459A (en) * 2004-01-19 2004-07-15 Toshiba Corp Waste treatment apparatus
JP2007023214A (en) * 2005-07-20 2007-02-01 Hiroshima Univ Method and system for biomass gasification

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098249A (en) * 2009-11-03 2011-05-19 Techno Plan:Kk Sludge solubilizing apparatus and method therefor
CN102515466A (en) * 2012-01-09 2012-06-27 广西博世科环保科技股份有限公司 Continuous thermal hydrolysis pretreatment process capable of reinforcing high temperature anaerobic fermentation of residual sludge
WO2014139951A1 (en) * 2013-03-09 2014-09-18 Veolia Water Solutions And Technologies Support Energy efficient system and process for treating sludge
CN105073656A (en) * 2013-03-09 2015-11-18 维利亚水务解决方案及技术支持公司 Energy efficient system and process for treating sludge
JP2016514046A (en) * 2013-03-09 2016-05-19 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポートVeolia Water Solutions & Technologies Support Energy efficient systems and processes for treating sludge
US9527760B2 (en) 2013-03-09 2016-12-27 Veolia Water Solutions & Technologies Support Energy efficient system and process for treating sludge
CN105073656B (en) * 2013-03-09 2017-11-03 维利亚水务解决方案及技术支持公司 Energy conserving system and method for handling sludge
AU2014230916B2 (en) * 2013-03-09 2018-01-25 Veolia Water Solutions And Technologies Support Energy efficient system and process for treating sludge
JP2017051943A (en) * 2015-07-31 2017-03-16 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート System and process of sludge thermal hydrolysis having excellent energy efficiency
US10358357B2 (en) 2015-07-31 2019-07-23 Veolia Water Solutions & Technologies Support Energy efficient system and process for hydrolyzing sludge
KR102573781B1 (en) * 2022-10-24 2023-08-31 김영구 Non-incineration eco-friendly treatment system and method for combustible waste

Also Published As

Publication number Publication date
KR20100061523A (en) 2010-06-07
KR101145700B1 (en) 2012-05-24
WO2009054107A1 (en) 2009-04-30
JP5150199B2 (en) 2013-02-20
CN101835715A (en) 2010-09-15
CN101835715B (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5150199B2 (en) Sludge treatment system
US6632362B2 (en) Vacuum retort anaerobic digestion (VRAD) system and process
RU2504521C2 (en) Method and apparatus for thermal hydrolysis of organic material
US9751791B2 (en) Method and facility for thermal hydrolysis of organic matter having short residence times and no pumps
JP2007061710A (en) Organic sludge treatment method and apparatus
JP2004008912A (en) Method and apparatus for treating organic waste
JP2011036781A (en) Sludge digestion system
WO2021018780A1 (en) Process for anaerobic digestion of carbonaceous material
Chauzy et al. Wet air oxidation of municipal sludge: return experience of the North Brussels Waste Water Treatment Plant
JP3804507B2 (en) Biogasification method for organic waste
CA2922213C (en) System and method for treating wastewater and resulting primary and biological sludge
US20090050561A1 (en) System and method for processing wastewater
JP5441787B2 (en) Organic wastewater treatment method and treatment apparatus
JP2008036560A (en) Methane fermentation method
JP4418422B2 (en) Method for methane fermentation treatment of organic waste
US20020168288A1 (en) Heating sludge
JP2008173614A (en) Wastewater treatment method and apparatus
JP7245805B2 (en) Sewage sludge treatment method and treatment equipment
TWI812238B (en) Hydrogen and ammonia production system
JP3700845B2 (en) Organic waste heat treatment equipment
JP2004351271A (en) Method and apparatus of treating organic waste water
JP2022167163A (en) Organic waste treatment system, biogas production device and organic waste treatment method
JP3808475B2 (en) Anaerobic digestion system for organic sludge
JPS5926360B2 (en) Sludge heat treatment method
CN117623570A (en) Continuous thermal hydrolysis treatment system and process for sludge flash evaporation based on dynamic mixer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

R151 Written notification of patent or utility model registration

Ref document number: 5150199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees