JP2009098560A - Laser scanning optical device - Google Patents

Laser scanning optical device Download PDF

Info

Publication number
JP2009098560A
JP2009098560A JP2007272300A JP2007272300A JP2009098560A JP 2009098560 A JP2009098560 A JP 2009098560A JP 2007272300 A JP2007272300 A JP 2007272300A JP 2007272300 A JP2007272300 A JP 2007272300A JP 2009098560 A JP2009098560 A JP 2009098560A
Authority
JP
Japan
Prior art keywords
scanning optical
laser scanning
phase angle
optical device
semiconductor lasers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007272300A
Other languages
Japanese (ja)
Other versions
JP5029281B2 (en
Inventor
Naoki Tajima
直樹 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2007272300A priority Critical patent/JP5029281B2/en
Publication of JP2009098560A publication Critical patent/JP2009098560A/en
Application granted granted Critical
Publication of JP5029281B2 publication Critical patent/JP5029281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser scanning optical device, which can correct a relative difference of light quantity for each beam by a simple structure, in multi-beam drawing of an image using at least two semiconductor lasers, while easing the effect of droop characteristic, and consequently suppress image deterioration. <P>SOLUTION: The laser scanning optical device includes a light source part 2A composed of two semiconductor lasers 3a and 3b, 1/2 wavelength plates 4a and 4b, a beam splitter 5, and a collimator lens 6. The 1/2 wavelength plates 4a and 4b correct transmittances of beams α and β to be uniformed, respectively, by adjusting their rotating angles (azimuth angles). The beam splitter 5 has a polarizing film at a joint surface 5a, and transmits/reflects only a predetermined linear polarized light. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザ走査光学装置、特に、電子写真方式の複写機やプリンタなどの画像形成装置にプリントヘッドとして搭載されるレーザ走査光学装置に関する。   The present invention relates to a laser scanning optical device, and more particularly to a laser scanning optical device mounted as a print head in an image forming apparatus such as an electrophotographic copying machine or printer.

近年、複写機やプリンタにおいては、半導体レーザを光源として使用し、描画の高速高精細化の要求に基づいて、感光体上を複数のビームで副走査方向に所定の間隔で走査するマルチビーム方式が主流になっている。   In recent years, in copiers and printers, a multi-beam system that uses a semiconductor laser as a light source and scans the photoreceptor with multiple beams at predetermined intervals in the sub-scanning direction based on the demand for high-speed and high-definition drawing Has become mainstream.

マルチビーム方式では、まず、それぞれの半導体レーザから射出されたビームを合成素子にてほぼ同じ方向に合成しており、主に半導体レーザの放射角のばらつきに起因する結合効率差を調整することが必要となる。さらに、半導体レーザではドループ特性を有し、画質劣化の要因となっている。ドループ特性とは、半導体レーザは温度の上昇で光量が低下する傾向にあり、定電流で点灯駆動すると、駆動時間の経過に伴って自己の発熱で光量が若干低下することをいう。ドループ特性による画像劣化は、マルチビーム方式においてシングルビーム方式よりも顕著に現れる。   In the multi-beam method, first, the beams emitted from the respective semiconductor lasers are synthesized in almost the same direction by the synthesis element, and the coupling efficiency difference mainly caused by the variation in the radiation angle of the semiconductor lasers can be adjusted. Necessary. Furthermore, the semiconductor laser has a droop characteristic, which is a cause of image quality degradation. The droop characteristic means that the amount of light of a semiconductor laser tends to decrease as the temperature rises, and when it is driven to light at a constant current, the amount of light decreases slightly due to its own heat generation as the driving time elapses. Image degradation due to droop characteristics appears more significantly in the multi-beam method than in the single-beam method.

半導体レーザの個体差によるビーム光量の相対差を補正することに関しては、特許文献1に、二つの半導体レーザから射出されたビームのそれぞれ又は片方のみに透過率調整素子を配置することが記載されている。しかし、透過率調整素子をそれぞれの半導体レーザに対して設置することは、光源部の限られたスペースでは困難である。また、一方のビームのみに透過率調整素子を設けると、他方のビームよりも感光体上での光量が低下し、両者の感光体上での光量を揃えるとなると一方の半導体レーザの出力をかなり高めなければならず、実際的ではない。また、特許文献1ではドループ特性による画像劣化の防止対策までも言及することはない。
特開2004−45840号公報
With regard to correcting the relative difference in the amount of beam light due to individual differences between semiconductor lasers, Patent Document 1 describes that a transmittance adjusting element is arranged only on one or only one of the beams emitted from two semiconductor lasers. Yes. However, it is difficult to install the transmittance adjusting element for each semiconductor laser in a limited space of the light source unit. Also, if a transmittance adjusting element is provided for only one beam, the amount of light on the photoconductor is lower than that of the other beam. It must be raised and is not practical. Further, Patent Document 1 does not mention any measures for preventing image degradation due to droop characteristics.
JP 2004-45840 A

そこで、本発明の目的は、少なくとも二つの半導体レーザを用いたマルチビームで画像を描画する場合に、各ビームの光量相対差を簡単な構成で補正でき、かつ、ドループ特性の影響を緩和可能であり、ひいては画像劣化を抑えることのできるレーザ走査光学装置を提供することにある。   Therefore, an object of the present invention is to correct the relative light quantity difference of each beam with a simple configuration and to reduce the influence of droop characteristics when drawing an image with multi-beams using at least two semiconductor lasers. In other words, it is an object of the present invention to provide a laser scanning optical device that can suppress image deterioration.

以上の目的を達成するため、本発明は、
少なくとも二つの半導体レーザから射出されたビームを、合成素子にてほぼ同じ方向に合成するとともに、集光素子にて集光し、被走査面上を一方向に走査するレーザ走査光学装置において、
前記半導体レーザと前記合成素子との間に、ビームの透過率を調整するための1/2波長板を配置し、
前記合成素子はその接合面に偏光膜を有していること、
を特徴とする。
In order to achieve the above object, the present invention provides:
In a laser scanning optical device that combines beams emitted from at least two semiconductor lasers in substantially the same direction by a combining element, condenses the light by a condensing element, and scans the surface to be scanned in one direction.
A half-wave plate for adjusting the transmittance of the beam is disposed between the semiconductor laser and the combining element,
The composite element has a polarizing film on its bonding surface;
It is characterized by.

本発明に係るレーザ走査光学装置においては、半導体レーザと合成素子との間に、1/2波長板を配置することにより、少なくとも二つの半導体レーザから射出されたそれぞれのビームの偏光方向を互いにほぼ90°回転した直線偏光にされ、接合面に偏光膜を施した合成素子を透過した後の透過率をそれぞれ調整することができる。1/2波長板を光軸を中心として回転させることで各ビームの透過率を変更でき、結合効率差による半導体レーザの出力のばらつきを補正することができる。また、結合効率の絶対値を変更することも可能であり、光量の絶対値を高めることでドループ特性の影響を緩和できる。なお、半導体レーザは発光源が一つであっても複数であってもよい。   In the laser scanning optical device according to the present invention, by arranging a half-wave plate between the semiconductor laser and the synthesis element, the polarization directions of the respective beams emitted from at least two semiconductor lasers can be substantially equal to each other. The transmittance after the linearly polarized light rotated by 90 ° is transmitted through the combined element having the polarizing film on the bonding surface can be adjusted. The transmittance of each beam can be changed by rotating the half-wave plate about the optical axis, and variations in the output of the semiconductor laser due to the coupling efficiency difference can be corrected. In addition, the absolute value of the coupling efficiency can be changed, and the influence of the droop characteristic can be reduced by increasing the absolute value of the light amount. The semiconductor laser may have one or more light sources.

本発明に係るレーザ走査光学装置において、1/2波長板の一つは位相角がほぼ45°で、いま一つは位相角がほぼ0°に設定され、いずれか一方の1/2波長板が回転調整可能であってもよい。それぞれの1/2波長板をその位相角が透過率の高い状態に初期設定しておくことで、調整の範囲が広くなる。この場合、回転しないように設定された他方の1/2波長板は所定の回転角度に設定しておけば、調整時間が短縮される。   In the laser scanning optical apparatus according to the present invention, one of the half-wave plates has a phase angle of about 45 °, and the other has a phase angle of about 0 °. May be adjustable in rotation. The range of adjustment is widened by setting each half-wave plate to a state where the phase angle is high in transmittance. In this case, if the other half-wave plate set so as not to rotate is set to a predetermined rotation angle, the adjustment time is shortened.

また、1/2波長板の一つは位相角がほぼ45°で、いま一つは位相角がほぼ0°に設定され、双方の1/2波長板が回転調整可能であってもよい。あるいは、1/2波長板の一つは位相角がほぼ45°に、いま一つは位相角がほぼ0°に初期設定されており、いずれか一方を初期設定角度から所定角度に回転させた後に固定し、他方を回転調整するようにしてもよい。これらにより、透過率を高く保って結合効率差を調整することができる。   Further, one of the half-wave plates may have a phase angle of about 45 °, and another one may have a phase angle of about 0 °, and both half-wave plates may be adjustable. Alternatively, one of the half-wave plates is initially set to a phase angle of approximately 45 °, and the other one is initially set to a phase angle of approximately 0 °, and either one is rotated from the initial set angle to a predetermined angle. It may be fixed later and the other may be adjusted for rotation. Accordingly, the coupling efficiency difference can be adjusted while keeping the transmittance high.

前記1/2波長板は外周がほぼ円形をなすホルダに固定されており、該ホルダは光軸に対して回転可能に設定されていることが好ましい。また、合成素子から射出されるビームは、楕円形状の長軸方向がほぼ一致していることが好ましい。   It is preferable that the half-wave plate is fixed to a holder having a substantially circular outer periphery, and the holder is set to be rotatable with respect to the optical axis. Further, it is preferable that the beams emitted from the synthesis element have substantially the same elliptical major axis direction.

2×N個(但し、Nは整数)の半導体レーザを備えるとともに2個の半導体レーザごとに一つの合成素子を備え、さらに、該合成素子から射出したビームを接合面に偏光膜を有していない第2の合成素子にてほぼ同じ方向に合成するように構成してもよい。4以上の複数の発光源からのビームの透過率をそれぞれ調整することができる。   2 × N (where N is an integer) semiconductor lasers, one combining element for each of the two semiconductor lasers, and a polarizing film on the bonding surface for the beam emitted from the combining element You may comprise so that it may synthesize | combine in the substantially same direction with the 2nd synthetic | combination element which does not exist. It is possible to adjust the transmittances of beams from four or more light emitting sources.

また、NDフィルタが合成素子よりもビーム進行方向の下流側に配置されていてもよい。NDフィルタを設けることで半導体レーザをより高出力で使用でき、ドループ特性の影響をより緩和できる。このNDフィルタと合成素子との間にビーム強度測定用センサが着脱される保持部を備えていてもよい。NDフィルタで光量が減少する前にビーム強度を測定でき、測定誤差の影響を抑えることができる。また、測定用センサの保持部を設けることで、測定作業性が向上する。   Further, the ND filter may be arranged downstream of the combining element in the beam traveling direction. By providing the ND filter, the semiconductor laser can be used at a higher output, and the influence of the droop characteristic can be further alleviated. A holding unit to which a beam intensity measuring sensor is attached and detached may be provided between the ND filter and the combining element. The beam intensity can be measured before the amount of light is reduced by the ND filter, and the influence of measurement errors can be suppressed. Moreover, the measurement workability is improved by providing a holding portion for the measurement sensor.

以下、本発明に係るレーザ走査光学装置の実施例について、添付図面を参照して説明する。   Embodiments of a laser scanning optical apparatus according to the present invention will be described below with reference to the accompanying drawings.

(第1実施例、図1〜図7参照)
図1に第1実施例であるレーザ走査光学装置1の概略構成を示す。この装置1は、光源部2Aと、所定の速度で回転駆動されるポリゴンミラー10と、fθ機能などを有する走査レンズ11,12と、水平同期センサ14と、該センサ14にビームを集光させる集光レンズ15とで構成され、ハウジング20に収容されている。
(Refer 1st Example and FIGS. 1-7)
FIG. 1 shows a schematic configuration of a laser scanning optical apparatus 1 according to the first embodiment. The apparatus 1 includes a light source unit 2A, a polygon mirror 10 that is rotationally driven at a predetermined speed, scanning lenses 11 and 12 having an fθ function, a horizontal synchronization sensor 14, and a beam condensed on the sensor 14. The condenser lens 15 is housed in the housing 20.

光源部2Aは、図2に示すように、一つの発光源を備えた半導体レーザ3a,3bと、半導体レーザ3a,3bから射出されたビームα,βの偏光方向を変える1/2波長板4a,4bと、ビームα,βを同じ方向に合成するとともにビームα,βの楕円形状の長軸方向を揃える合成素子(具体的には、プリズムからなるビームスプリッタ)5と、合成されたビームα,βを集光するコリメータレンズ6と、図1に示されているアパーチャ7と、面倒れ補正用のシリンドリカルレンズ8とで構成されている。   As shown in FIG. 2, the light source unit 2A includes semiconductor lasers 3a and 3b having a single light source, and a half-wave plate 4a that changes the polarization directions of the beams α and β emitted from the semiconductor lasers 3a and 3b. , 4b and the beams α, β in the same direction, and a synthesizing element (specifically, a beam splitter made of a prism) 5 that aligns the major axis directions of the elliptical shapes of the beams α, β, and the combined beam α , Β is composed of a collimator lens 6, an aperture 7 shown in FIG. 1, and a cylindrical lens 8 for surface tilt correction.

半導体レーザ3aから放射されたビームαは、ビームスプリッタ5を透過し、半導体レーザ3bから放射されたビームβはビームスプリッタ5の接合面5aで反射され、それぞれ進行方向を同じくするように合成され、コリメータレンズ6にて平行光とされる。1/2波長板4a,4bの作用については後に詳述する。その後、ビームα,βはシリンドリカルレンズ8によって副走査方向zにほぼ平行に集光され、ポリゴンミラー10に導かれる。   The beam α emitted from the semiconductor laser 3a is transmitted through the beam splitter 5, and the beam β emitted from the semiconductor laser 3b is reflected by the joint surface 5a of the beam splitter 5, and is synthesized so as to have the same traveling direction. The collimator lens 6 generates parallel light. The operation of the half-wave plates 4a and 4b will be described in detail later. Thereafter, the beams α and β are condensed almost parallel to the sub-scanning direction z by the cylindrical lens 8 and guided to the polygon mirror 10.

ビームα,βはポリゴンミラー10の回転に基づいて主走査方向yに等角速度で偏向され、走査レンズ11,12を透過することで必要な収差を補正され、感光体ドラム25上で結像する。感光体ドラム25上で各ビームα,βは主走査方向yに走査される。なお、ビームα,βは図1及び図2では同一光軸上に合成されたように作図されているが、実際には副走査方向zに所定の間隔で分離しており、1走査で2ラインの画像を描画する。さらには、個々の半導体レーザの発光源が複数の場合は、1走査で複数倍のラインを描画することになる。   The beams α and β are deflected at a constant angular velocity in the main scanning direction y based on the rotation of the polygon mirror 10, and necessary aberrations are corrected by passing through the scanning lenses 11 and 12, thereby forming an image on the photosensitive drum 25. . The beams α and β are scanned on the photosensitive drum 25 in the main scanning direction y. 1 and 2, the beams α and β are drawn as if they were synthesized on the same optical axis, but in reality they are separated at a predetermined interval in the sub-scanning direction z, and 2 in one scan. Draw a line image. Furthermore, when there are a plurality of light emitting sources of individual semiconductor lasers, a plurality of lines are drawn in one scan.

ここで、1/2波長板4a,4bの作用(ビームα,βの合成)について詳述する。図4に示すように、半導体レーザ3aから射出されたビームαは位相角をほぼ0°に設定した1/2波長板4aを透過し、偏光方向を変えることなくビームスプリッタ5に入射する。半導体レーザ3bから射出されたビームβは位相角をほぼ45°に設定した1/2波長板4bを透過し、偏光方向を90°回転されたビームβ’としてビームスプリッタ5に入射する。   Here, the action (combination of the beams α and β) of the half-wave plates 4a and 4b will be described in detail. As shown in FIG. 4, the beam α emitted from the semiconductor laser 3a passes through the half-wave plate 4a having a phase angle set to approximately 0 °, and enters the beam splitter 5 without changing the polarization direction. The beam β emitted from the semiconductor laser 3b passes through the half-wave plate 4b whose phase angle is set to approximately 45 °, and enters the beam splitter 5 as a beam β ′ whose polarization direction is rotated by 90 °.

ビームスプリッタ5において、各ビームα,β’は同一方向に、かつ、楕円形状の長軸を揃えた状態に合成される。ビームスプリッタ5の接合面5aには偏光膜が施されており、所定の偏光方向のビームのみしか透過及び反射しないようになっている。   In the beam splitter 5, the beams α and β ′ are synthesized in the same direction and in a state where the major axes of the elliptical shapes are aligned. A polarizing film is applied to the joint surface 5a of the beam splitter 5, and only a beam having a predetermined polarization direction is transmitted and reflected.

図5(A),(B)はビームスプリッタ5でのビームの透過/反射状態を示している。図5(A)は接合面5aの背面側から入射するビームを示し、点線で示す横振動のビームはほぼ100%透過する。しかし、実線で示す縦振動のビームは1%以下しか透過しない。ビームが横振動から縦振動に徐々に振動角度が変化すると、その振動角度の変化に応じて透過率がほぼ100%からほぼ0%に変化することになる。   5A and 5B show beam transmission / reflection states at the beam splitter 5. FIG. 5A shows a beam incident from the back side of the joint surface 5a, and a beam of lateral vibration indicated by a dotted line is transmitted through almost 100%. However, the longitudinal vibration beam indicated by the solid line transmits only 1% or less. When the vibration angle of the beam gradually changes from the horizontal vibration to the vertical vibration, the transmittance changes from approximately 100% to approximately 0% in accordance with the change in the vibration angle.

図5(B)は接合面5aに向かって入射するビームを示し、実線で示す縦振動のビームはほぼ100%反射する。しかし、点線で示す横振動のビームは1%以下しか反射しない。ビームが縦振動から横振動に徐々に振動角度が変化すると、その振動角度の変化に応じて透過率がほぼ100%からほぼ0%に変化することになる。   FIG. 5B shows a beam incident toward the bonding surface 5a, and a longitudinal vibration beam indicated by a solid line reflects almost 100%. However, the transverse vibration beam indicated by the dotted line reflects only 1% or less. When the vibration angle of the beam gradually changes from longitudinal vibration to lateral vibration, the transmittance changes from approximately 100% to approximately 0% in accordance with the change in the vibration angle.

次に、1/2波長板4a,4bの位相角について説明する。図4に示すように、半導体レーザ3aは横振動のビームαを射出する。1/2波長板4aは位相角が0°に設定されており、1/2波長板4aに入射したビームαは光量がほぼ低下することなく、横振動のままビームスプリッタ5に向かって射出される。半導体レーザ3bは横振動のビームβを射出する。1/2波長板4bは位相角が45°に設定されており、1/2波長板4bに入射したビームβは光量がほぼ低下することなく、縦振動に変化して(ビームβ’)ビームスプリッタ5に向かって射出される。   Next, the phase angle of the half-wave plates 4a and 4b will be described. As shown in FIG. 4, the semiconductor laser 3a emits a beam α of lateral vibration. The half-wave plate 4a has a phase angle set to 0 °, and the beam α incident on the half-wave plate 4a is emitted toward the beam splitter 5 with a lateral vibration without substantially reducing the amount of light. The The semiconductor laser 3b emits a transverse vibration beam β. The half-wave plate 4b is set to a phase angle of 45 °, and the beam β incident on the half-wave plate 4b changes to longitudinal vibration (beam β ′) with almost no decrease in the amount of light. It is emitted toward the splitter 5.

図6に、1/2波長板4a,4bの回転角度(位相角)とビーム透過率との関係を示している。横振動の透過ビームは1/2波長板4aの位相角が0°から増加していくに伴って透過率が低下していく。縦振動の反射ビームは1/2波長板4bの位相角が45°から減少していくに伴って透過率が減少していく。半導体レーザ3a,3bの光量にばらつきのない理想状態の場合、透過するビームαに関しては1/2波長板4aを位相角0°に設定し、反射するビームβに関しては1/2波長板4bを位相角45°に設定すると、ビームα,βは光量差のない状態で、かつ、それぞれ最大光量(透過率はほぼ100%)を確保できる。   FIG. 6 shows the relationship between the rotation angle (phase angle) of the half-wave plates 4a and 4b and the beam transmittance. The transmittance of the transversely transmitted beam decreases as the phase angle of the half-wave plate 4a increases from 0 °. The transmittance of the longitudinal vibration reflected beam decreases as the phase angle of the half-wave plate 4b decreases from 45 °. In an ideal state where there is no variation in the light amounts of the semiconductor lasers 3a and 3b, the half-wave plate 4a is set to a phase angle of 0 ° for the transmitted beam α, and the half-wave plate 4b is set for the reflected beam β. When the phase angle is set to 45 °, the beams α and β are in a state where there is no difference in light amount, and the maximum light amount (transmittance is almost 100%) can be secured.

図7に、半導体レーザ3a,3bに光量差(30%)が生じている場合の調整例を示している。この場合、透過するビームαに関しては1/2波長板4aを位相角16°に設定し、反射するビームβに関しては1/2波長板4bを位相角45°に設定すると、ビームα,βは光量差のない状態に調整される。このとき、光量の大きい半導体レーザ3aのビームαがビームスプリッタ5を透過した後の透過率はほぼ70%である。また、この場合、半導体レーザ3a,3bの出力を高めてそれぞれの光量を増大させることで、光量差がなくなるとともにドループ特性の影響を緩和することができる。   FIG. 7 shows an adjustment example in the case where there is a light amount difference (30%) in the semiconductor lasers 3a and 3b. In this case, if the half-wave plate 4a is set to a phase angle of 16 ° for the transmitted beam α and the half-wave plate 4b is set to a phase angle of 45 ° for the reflected beam β, the beams α and β are It is adjusted so that there is no difference in light quantity. At this time, the transmittance after the beam α of the semiconductor laser 3a having a large amount of light passes through the beam splitter 5 is approximately 70%. Further, in this case, by increasing the outputs of the semiconductor lasers 3a and 3b to increase the respective light amounts, the light amount difference can be eliminated and the influence of the droop characteristic can be reduced.

1/2波長板4a,4bは、図3に示すように、ホルダ41に保持された状態でハウジング20の凹部21に光軸を中心として回転自在にセットされている。この1/2波長板4a,4bは、ホルダ41の側部に設けたブラケット42に取り付けた調整ねじ43が座部22に当接することで回転角度が0°又は45°の初期値に設定されている。光源部2A単体で、あるいは、光源部2Aを組み込んだレーザ走査光学装置1として完成した状態で、ビームα,βの強度を測定し、光強度が均等となるように、調整ねじ43を回転させて1/2波長板4a,4bの回転角度を調整し、光量の相対差を補正する。   As shown in FIG. 3, the half-wave plates 4 a and 4 b are rotatably set around the optical axis in the recess 21 of the housing 20 while being held by the holder 41. The half-wave plates 4 a and 4 b are set to an initial value of 0 ° or 45 ° when the adjusting screw 43 attached to the bracket 42 provided on the side portion of the holder 41 contacts the seat portion 22. ing. In the state where the light source unit 2A alone or the laser scanning optical device 1 incorporating the light source unit 2A is completed, the intensities of the beams α and β are measured, and the adjusting screw 43 is rotated so that the light intensities are uniform. Then, the rotation angle of the half-wave plates 4a and 4b is adjusted to correct the relative difference in light quantity.

1/2波長板の一つは位相角がほぼ45°で、いま一つは位相角がほぼ0°に設定され、いずれか一方の1/2波長板が回転調整可能であってもよい。即ち、透過側又は反射側いずれか一方の半導体レーザの出力(光量)が予め判別できていれば、1/2波長板の一つは位相角をほぼ45°に設定し、いま一つは位相角をほぼ0°に設定し、出力の大きいほうの半導体レーザに対して設けた1/2波長板を透過率が小さくなるように回転調整すればよい。それぞれの1/2波長板をその位相角が透過率の高い状態に初期設定しておくことで、調整の範囲が広くなる。   One of the half-wave plates may have a phase angle of about 45 °, and the other one may have a phase angle of about 0 °, and one of the half-wave plates may be rotationally adjustable. That is, if the output (light quantity) of either the transmission side or the reflection side of the semiconductor laser can be discriminated in advance, one of the half-wave plates sets the phase angle to approximately 45 °, and the other one is the phase. The angle may be set to approximately 0 °, and the half-wave plate provided for the semiconductor laser having the larger output may be rotationally adjusted so as to reduce the transmittance. The range of adjustment is widened by setting each half-wave plate to a state where the phase angle is high in transmittance.

また、回転しないように設定された1/2波長板は所定の回転角度に設定してもよい。即ち、二つの半導体レーザの出力(光量)のばらつきが予め判別されていない場合は、透過側又は反射側いずれか一方の1/2波長板をビームスプリッタ5を透過した後の透過率が低下する方向に想定されるばらつき量に相当する角度だけ回転位置を固定しておき、他方の1/2波長板にて両者の光量差が解消するように回転調整する。回転位置を固定する側が光量の小さい半導体レーザであれば、ビームスプリッタ5を透過した後の光量低下は倍になるが、調整工数が低下する。   The half-wave plate set so as not to rotate may be set to a predetermined rotation angle. That is, when the variation in the output (light quantity) of the two semiconductor lasers has not been determined in advance, the transmittance after passing through the beam splitter 5 through either the transmission-side or reflection-side half-wave plate decreases. The rotation position is fixed by an angle corresponding to the amount of variation assumed in the direction, and the other half-wave plate is rotated and adjusted so that the light quantity difference between the two is eliminated. If the side that fixes the rotational position is a semiconductor laser with a small amount of light, the reduction in the amount of light after passing through the beam splitter 5 is doubled, but the adjustment man-hours are reduced.

また、1/2波長板の一つは位相角がほぼ45°で、いま一つは位相角がほぼ0°に設定され、双方の1/2波長板が回転調整可能であってもよい。即ち、二つの半導体レーザの出力(光量)のばらつきが予め判別されていない場合で、半導体レーザを走査光学装置1に組み付けた後に以下に説明するビーム強度測定用センサ91で光量のばらつきを測定する場合、透過側の1/2波長板を位相角0°に、反射側の1/2波長板を位相角45°に初期設定し、双方の1/2波長板を回転調整してもよい。   Further, one of the half-wave plates may have a phase angle of about 45 °, and another one may have a phase angle of about 0 °, and both half-wave plates may be adjustable. That is, when variations in the outputs (light amounts) of the two semiconductor lasers are not determined in advance, the variation in the light amounts is measured by a beam intensity measuring sensor 91 described below after the semiconductor lasers are assembled to the scanning optical device 1. In this case, the transmission-side half-wave plate may be initially set to a phase angle of 0 ° and the reflection-side half-wave plate may be initially set to a phase angle of 45 °, and both half-wave plates may be rotationally adjusted.

あるいは、1/2波長板の一つは位相角がほぼ45°に、いま一つは位相角がほぼ0°に初期設定されており、いずれか一方を初期設定角度から所定角度に回転させた後に固定し、他方を回転調整するようにしてもよい。半導体レーザのドループ特性による影響をできるだけ解消するには、半導体レーザを高出力で使用することが好ましい。この場合は、ビームスプリッタ5を透過した後の透過率が小さくなるように1/2波長板の位相角を調整し、二つの半導体レーザの結合効率差による出力のばらつきの解消と、絶対光量の双方を調整すればよい。具体的には、ビーム強度測定用センサ91で光量のばらつきを測定した後、ビーム強度の小さい半導体レーザの1/2波長板を所望の光量になるように回転調整して固定し、いま一つの半導体レーザのビーム強度が先に調整された半導体レーザのビーム強度と同じになるように1/2波長板を回転調整して固定する。その後、絶対光量を高く設定する。   Alternatively, one of the half-wave plates is initially set to a phase angle of approximately 45 °, and the other one is initially set to a phase angle of approximately 0 °, and either one is rotated from the initial set angle to a predetermined angle. It may be fixed later and the other may be adjusted for rotation. In order to eliminate the influence of the droop characteristic of the semiconductor laser as much as possible, it is preferable to use the semiconductor laser at a high output. In this case, the phase angle of the half-wave plate is adjusted so that the transmittance after passing through the beam splitter 5 is reduced, the output variation due to the coupling efficiency difference between the two semiconductor lasers is eliminated, and the absolute light quantity is reduced. What is necessary is just to adjust both. Specifically, after measuring the variation in the amount of light with the beam intensity measuring sensor 91, the half-wave plate of the semiconductor laser having a small beam intensity is rotated and fixed so as to obtain a desired amount of light. The half-wave plate is rotationally adjusted and fixed so that the beam intensity of the semiconductor laser becomes the same as the beam intensity of the previously adjusted semiconductor laser. Thereafter, the absolute light quantity is set high.

(第2実施例、図8及び図9参照)
図8に第2実施例であるレーザ走査光学装置の光源部2Bを示す。この光源部2Bは、NDフィルタ9をビームスプリッタ5のビーム進行方向xの下流側に配置したものである。具体的には、NDフィルタ9はアパーチャ7の下流側に配置されている。レーザ走査光学装置としての他の構成は図1に示した前記第1実施例と同様である。
(Refer to the second embodiment, FIGS. 8 and 9)
FIG. 8 shows a light source unit 2B of the laser scanning optical apparatus according to the second embodiment. In the light source unit 2B, the ND filter 9 is arranged on the downstream side of the beam traveling direction x of the beam splitter 5. Specifically, the ND filter 9 is disposed on the downstream side of the aperture 7. Other configurations of the laser scanning optical device are the same as those of the first embodiment shown in FIG.

NDフィルタ9は、よく知られているように、選択吸収をせずに入射光の成分を変えることなく、透過光量を減少させる機能を有する。このようなNDフィルタ9を設けることで半導体レーザ3a,3bをより高出力で使用でき、ドループ特性の影響をより緩和できる。   As is well known, the ND filter 9 has a function of reducing the amount of transmitted light without changing the component of incident light without performing selective absorption. By providing such an ND filter 9, the semiconductor lasers 3a and 3b can be used with higher output, and the influence of the droop characteristic can be further alleviated.

そして、ビームα,βの強度を測定する際、ビーム強度測定用センサ91(図9参照)は、NDフィルタ9とアパーチャ7との間に装着される。このセンサ91のホルダ92を着脱自在な保持部23がハウジング20の一部に設けられており、該保持部23はNDフィルタ9とアパーチャ7との間に設置されている。NDフィルタ9を設けた場合、NDフィルタ9で光量が減少する前にビーム強度を測定することで、測定誤差の影響を抑えることができる。また、測定用センサ91の保持部23をハウジング20に設けることで、測定作業性が向上する。   When measuring the intensity of the beams α and β, the beam intensity measuring sensor 91 (see FIG. 9) is mounted between the ND filter 9 and the aperture 7. A holder 23 detachably attaching the holder 92 of the sensor 91 is provided in a part of the housing 20, and the holder 23 is installed between the ND filter 9 and the aperture 7. When the ND filter 9 is provided, the influence of the measurement error can be suppressed by measuring the beam intensity before the light amount is reduced by the ND filter 9. Further, by providing the housing 20 with the holding portion 23 of the measurement sensor 91, the measurement workability is improved.

なお、ビームα、βの強度を測定するセンサを半導体レーザ3a,3bのレーザビーム出射部直後に設けてもよい。この場合も、センサの保持部をハウジングに設けてもよい。   A sensor for measuring the intensity of the beams α and β may be provided immediately after the laser beam emitting portions of the semiconductor lasers 3a and 3b. In this case, the sensor holding portion may be provided in the housing.

(第3実施例、図10参照)
図10に第3実施例であるレーザ走査光学装置の光源部2Cを示す。この光源部2Cは、コリメータレンズ6a,6bを半導体レーザ3a,3bの直後に配置したもので、他の構成は図1に示した前記第1実施例と同様である。
(Refer to the third embodiment, FIG. 10)
FIG. 10 shows a light source unit 2C of the laser scanning optical apparatus according to the third embodiment. The light source section 2C is configured by disposing collimator lenses 6a and 6b immediately after the semiconductor lasers 3a and 3b, and the other configuration is the same as that of the first embodiment shown in FIG.

(第4実施例、図11参照)
図11に第4実施例であるレーザ走査光学装置の光源部2Dを示す。この光源部2Dは、二つの半導体レーザ3a,3bやビームスプリッタ5、コリメータレンズ6を含む前述の光源ブロックに加えて、二つの半導体レーザ3c,3d、1/2波長板4c,4dやビームスプリッタ5、コリメータレンズ6を含む光源ブロックを設けたものである。さらに、各コリメータレンズ6の下流側に、接合面に偏光膜を有していないビームスプリッタ50が配置されている。
(Refer to the fourth embodiment, FIG. 11)
FIG. 11 shows a light source unit 2D of a laser scanning optical apparatus according to the fourth embodiment. The light source unit 2D includes two semiconductor lasers 3c and 3d, half-wave plates 4c and 4d, and a beam splitter in addition to the light source block including the two semiconductor lasers 3a and 3b, the beam splitter 5, and the collimator lens 6. 5. A light source block including a collimator lens 6 is provided. Furthermore, a beam splitter 50 having no polarizing film on the cementing surface is disposed downstream of each collimator lens 6.

各光源ブロックの構成は図1に示した前記第1実施例と同様である。各半導体レーザ3a〜3dから射出された計4本のビームは、ビームスプリッタ50によって同一方向に合成され、副走査方向に所定の間隔を保持して感光体ドラム上を照射し、1走査で4本のラインを描画する。   The configuration of each light source block is the same as that of the first embodiment shown in FIG. A total of four beams emitted from each of the semiconductor lasers 3a to 3d are synthesized in the same direction by the beam splitter 50, irradiated on the photosensitive drum while maintaining a predetermined interval in the sub-scanning direction, and 4 in one scanning. Draw a book line.

なお、本第4実施例にあっては、2×N個(但し、Nは整数)の半導体レーザを備えたマルチビームで描画するレーザ走査光学装置として構成することができる。   In the fourth embodiment, it can be configured as a laser scanning optical apparatus for drawing with multi-beams provided with 2 × N (where N is an integer) semiconductor lasers.

(他の実施例)
なお、本発明に係るレーザ走査光学装置は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更できる。
(Other examples)
The laser scanning optical device according to the present invention is not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.

例えば、本レーザ走査光学装置が搭載される画像形成装置は任意であり、モノクロ画像形成装置であっても、カラー画像形成装置であってもよく、プリンタ、複写機、ファクシミリ、それらの複合機のいずれであってもよい。また、ポリゴンミラーより下流側の光学系の構成も任意であることは勿論である。   For example, the image forming apparatus on which the laser scanning optical device is mounted is arbitrary, and may be a monochrome image forming apparatus or a color image forming apparatus, and may be a printer, a copier, a facsimile machine, or a complex machine thereof. Either may be sufficient. Of course, the configuration of the optical system downstream of the polygon mirror is also arbitrary.

本発明に係るレーザ走査光学装置の第1実施例を示す平面図である。It is a top view which shows 1st Example of the laser scanning optical apparatus based on this invention. 前記第1実施例の光源部を示す斜視図である。It is a perspective view which shows the light source part of the said 1st Example. 1/2波長板の取付け状態を示す立面図である。It is an elevation view which shows the attachment state of a half-wave plate. 1/2波長板及びビーム合成素子の作用を説明する斜視図である。It is a perspective view explaining the effect | action of a 1/2 wavelength plate and a beam synthesizing element. ビーム合成素子でのビームの透過/反射状態を示す斜視図である。It is a perspective view which shows the permeation | transmission / reflection state of the beam in a beam synthetic | combination element. 1/2波長板の位相角に対するビーム透過率の変化を示すグラフである。It is a graph which shows the change of the beam transmittance with respect to the phase angle of a half-wave plate. 図6と同じグラフであり、調整例を示している。It is the same graph as FIG. 6, and the example of adjustment is shown. 本発明に係るレーザ走査光学装置の第2実施例の光源部を示す平面図である。It is a top view which shows the light source part of 2nd Example of the laser scanning optical apparatus based on this invention. 前記第2実施例における測定用センサとその保持部を示す斜視図である。It is a perspective view which shows the sensor for a measurement in the said 2nd Example, and its holding | maintenance part. 本発明に係るレーザ走査光学装置の第3実施例の光源部を示す斜視図である。It is a perspective view which shows the light source part of 3rd Example of the laser scanning optical apparatus based on this invention. 本発明に係るレーザ走査光学装置の第4実施例の光源部を示す平面図である。It is a top view which shows the light source part of 4th Example of the laser scanning optical apparatus based on this invention.

符号の説明Explanation of symbols

1…レーザ走査光学装置
2A,2B,2C,2D…光源部
3a,3b,3c,3d…半導体レーザ
4a,4b,4c,4d…1/2波長板
5,50…ビームスプリッタ
5a…接合面
6,6a,6b…コリメータレンズ
9…NDフィルタ
20…ハウジング
23…保持部
41…ホルダ
91…ビーム強度測定用センサ
α,β,β’…ビーム
DESCRIPTION OF SYMBOLS 1 ... Laser scanning optical apparatus 2A, 2B, 2C, 2D ... Light source part 3a, 3b, 3c, 3d ... Semiconductor laser 4a, 4b, 4c, 4d ... 1/2 wavelength plate 5,50 ... Beam splitter 5a ... Joint surface 6 6a, 6b ... Collimator lens 9 ... ND filter 20 ... Housing 23 ... Holding part 41 ... Holder 91 ... Sensor for measuring beam intensity α, β, β '... Beam

Claims (10)

少なくとも二つの半導体レーザから射出されたビームを、合成素子にてほぼ同じ方向に合成するとともに、集光素子にて集光し、被走査面上を一方向に走査するレーザ走査光学装置において、
前記半導体レーザと前記合成素子との間に、ビームの透過率を調整するための1/2波長板を配置し、
前記合成素子はその接合面に偏光膜を有していること、
を特徴とするレーザ走査光学装置。
In a laser scanning optical device that combines beams emitted from at least two semiconductor lasers in substantially the same direction by a combining element, condenses the light by a condensing element, and scans the surface to be scanned in one direction.
A half-wave plate for adjusting the transmittance of the beam is disposed between the semiconductor laser and the combining element,
The composite element has a polarizing film on its bonding surface;
A laser scanning optical device.
前記1/2波長板の一つは位相角がほぼ45°で、いま一つは位相角がほぼ0°に設定され、いずれか一方の1/2波長板が回転調整可能であること、を特徴とする請求項1に記載のレーザ走査光学装置。   One of the half-wave plates has a phase angle of about 45 °, and the other one has a phase angle of about 0 °, and either one of the half-wave plates can be rotated. The laser scanning optical apparatus according to claim 1, wherein 回転しないように設定された他方の1/2波長板は所定の回転角度に設定されていることを特徴とする請求項2に記載のレーザ走査光学装置。   3. The laser scanning optical apparatus according to claim 2, wherein the other half-wave plate set so as not to rotate is set at a predetermined rotation angle. 前記1/2波長板の一つは位相角がほぼ45°で、いま一つは位相角がほぼ0°に設定され、双方の1/2波長板が回転調整可能であること、を特徴とする請求項1に記載のレーザ走査光学装置。   One of the half-wave plates has a phase angle of about 45 °, and the other one has a phase angle set to about 0 °, and both half-wave plates can be rotationally adjusted. The laser scanning optical apparatus according to claim 1. 前記1/2波長板の一つは位相角がほぼ45°に、いま一つは位相角がほぼ0°に初期設定されており、いずれか一方を初期設定角度から所定角度に回転させた後に固定し、他方を回転調整すること、を特徴とする請求項1に記載のレーザ走査光学装置。   One of the half-wave plates is initially set to a phase angle of approximately 45 °, and the other one is initially set to a phase angle of approximately 0 °, and after either one is rotated from the initial set angle to a predetermined angle, The laser scanning optical device according to claim 1, wherein the laser scanning optical device is fixed and the other is rotationally adjusted. 前記1/2波長板は外周がほぼ円形をなすホルダに固定されており、該ホルダは光軸に対して回転可能に設定されていること、を特徴とする請求項1ないし請求項5のいずれかに記載のレーザ走査光学装置。   6. The half wave plate is fixed to a holder having a substantially circular outer periphery, and the holder is set to be rotatable with respect to the optical axis. A laser scanning optical device according to claim 1. 前記合成素子から射出されるビームは、楕円形状の長軸方向がほぼ一致していること、を特徴とする請求項1ないし請求項6のいずれかに記載のレーザ走査光学装置。   7. The laser scanning optical apparatus according to claim 1, wherein the beam emitted from the combining element has an elliptical long axis direction substantially coincident. 2×N個(但し、Nは整数)の半導体レーザを備えるとともに2個の半導体レーザごとに一つの前記合成素子を備え、さらに、該合成素子から射出したビームを接合面に偏光膜を有していない第2の合成素子にてほぼ同じ方向に合成すること、を特徴とする請求項1ないし請求項7のいずれかに記載のレーザ走査光学装置。   2 × N (where N is an integer) semiconductor lasers, one synthesis element for each of the two semiconductor lasers, and a polarizing film on the bonding surface for the beam emitted from the synthesis element 8. The laser scanning optical apparatus according to claim 1, wherein the second combining elements are combined in substantially the same direction. NDフィルタが前記合成素子よりもビーム進行方向の下流側に配置されていることを特徴とする請求項1ないし請求項8のいずれかに記載のレーザ走査光学装置。   9. The laser scanning optical apparatus according to claim 1, wherein an ND filter is disposed downstream of the combining element in a beam traveling direction. 前記合成素子と前記NDフィルタとの間にビーム強度測定用センサが着脱される保持部を備えていることを特徴とする請求項9に記載のレーザ走査光学装置。   The laser scanning optical apparatus according to claim 9, further comprising a holding unit to which a beam intensity measuring sensor is attached and detached between the combining element and the ND filter.
JP2007272300A 2007-10-19 2007-10-19 Laser scanning optical device Expired - Fee Related JP5029281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007272300A JP5029281B2 (en) 2007-10-19 2007-10-19 Laser scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272300A JP5029281B2 (en) 2007-10-19 2007-10-19 Laser scanning optical device

Publications (2)

Publication Number Publication Date
JP2009098560A true JP2009098560A (en) 2009-05-07
JP5029281B2 JP5029281B2 (en) 2012-09-19

Family

ID=40701596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272300A Expired - Fee Related JP5029281B2 (en) 2007-10-19 2007-10-19 Laser scanning optical device

Country Status (1)

Country Link
JP (1) JP5029281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682250A (en) * 2018-08-02 2018-10-19 周万夫 Convex lens light supply apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228613A (en) * 1988-04-12 1990-01-30 Fuji Photo Film Co Ltd Semiconductor laser beam source unit
JPH0485510A (en) * 1990-07-30 1992-03-18 Hitachi Ltd Laser light scanner
JPH11352428A (en) * 1998-04-10 1999-12-24 Ricoh Co Ltd Beam multiplexer, multi-beam light source device, and multi-beam scanning device
JP2001004940A (en) * 1999-04-21 2001-01-12 Fuji Photo Film Co Ltd Light beam scanner and its correcting method
JP2004013021A (en) * 2002-06-10 2004-01-15 Ricoh Co Ltd Light source device, light source module, optical scanner, and image forming device
JP2004184527A (en) * 2002-11-29 2004-07-02 Ricoh Co Ltd Optical scanning device and image forming device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228613A (en) * 1988-04-12 1990-01-30 Fuji Photo Film Co Ltd Semiconductor laser beam source unit
JPH0485510A (en) * 1990-07-30 1992-03-18 Hitachi Ltd Laser light scanner
JPH11352428A (en) * 1998-04-10 1999-12-24 Ricoh Co Ltd Beam multiplexer, multi-beam light source device, and multi-beam scanning device
JP2001004940A (en) * 1999-04-21 2001-01-12 Fuji Photo Film Co Ltd Light beam scanner and its correcting method
JP2004013021A (en) * 2002-06-10 2004-01-15 Ricoh Co Ltd Light source device, light source module, optical scanner, and image forming device
JP2004184527A (en) * 2002-11-29 2004-07-02 Ricoh Co Ltd Optical scanning device and image forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682250A (en) * 2018-08-02 2018-10-19 周万夫 Convex lens light supply apparatus

Also Published As

Publication number Publication date
JP5029281B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5034053B2 (en) Optical scanning apparatus and image forming apparatus
JP2007147826A (en) Optical writing device, optical writing method, image forming apparatus and image forming method
JP3902933B2 (en) Multi-beam optical scanning optical system and image forming apparatus using the same
US5805199A (en) Multi-beam write optical system
JP4136616B2 (en) Multi-beam scanning optical apparatus and image forming apparatus using the same
JP5029281B2 (en) Laser scanning optical device
JP2006301482A (en) Image forming apparatus
JP2006189505A (en) Inner drum exposure apparatus
JP3463054B2 (en) Multi-beam scanner
JP2001194603A (en) Multi-beam optical scanner
JP4915854B2 (en) Optical scanning apparatus and image forming apparatus
JP2005164997A (en) Optical scanner and method of detecting synchronization used for the same
JP5012367B2 (en) Laser scanning optical device
JP2005156943A (en) Optical scanner
JP2007156248A (en) Optical scanner
JP2007140263A (en) Multi-beam scanning optical device and image forming apparatus using same
JP2006323278A (en) Optical scanner
JP2006091377A (en) Inner drum exposure system
JPH0980332A (en) Image forming device
JP5939822B2 (en) Optical scanning apparatus and image forming apparatus
JP2007188092A (en) Multi-beam scanner, multibeam scanning method, light source unit, and image forming apparatus
JP2003149576A (en) Optical scanning unit and image forming device equipped therewith
JP2005528636A (en) Double polygon laser print head for color printer
JP5610127B2 (en) Optical scanning apparatus and image forming apparatus
JP2003107380A (en) Multi-beam light source unit, multi-beam scanning optical device and image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees