JP2009096849A - Biodegradable resin composition - Google Patents

Biodegradable resin composition Download PDF

Info

Publication number
JP2009096849A
JP2009096849A JP2007267934A JP2007267934A JP2009096849A JP 2009096849 A JP2009096849 A JP 2009096849A JP 2007267934 A JP2007267934 A JP 2007267934A JP 2007267934 A JP2007267934 A JP 2007267934A JP 2009096849 A JP2009096849 A JP 2009096849A
Authority
JP
Japan
Prior art keywords
copolymer
hydroxybutyrate
resin composition
biodegradable resin
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007267934A
Other languages
Japanese (ja)
Other versions
JP5207274B2 (en
Inventor
Yoshio Inoue
義夫 井上
Koichiro Tajima
宏一郎 田島
Taizo Aoyama
泰三 青山
Nobuo Nakamura
信雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Tokyo Institute of Technology NUC
Original Assignee
Kaneka Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp, Tokyo Institute of Technology NUC filed Critical Kaneka Corp
Priority to JP2007267934A priority Critical patent/JP5207274B2/en
Publication of JP2009096849A publication Critical patent/JP2009096849A/en
Application granted granted Critical
Publication of JP5207274B2 publication Critical patent/JP5207274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable resin composition having high crystallinity, while using a polyhydroxyalkanoate (PHA) copolymer having a very slow crystallization rate as a main body, and suitably usable in molding applications. <P>SOLUTION: The biodegradable resin composition containing at least one kind of the PHA copolymers as the main body further comprises a poly(3-hydroxybutyrate) polymer and a nucleating agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、結晶性が高く、成形用途において好適に使用可能な生分解性樹脂組成物に関する。   The present invention relates to a biodegradable resin composition that has high crystallinity and can be suitably used in molding applications.

地球温暖化防止、循環型社会の構築に貢献する新たな資源として、植物等の生物由来の樹脂であるバイオマスが注目されている。バイオマスを燃焼すると、石油由来の樹脂と同様に二酸化炭素(CO)が発生するが、植物は、成長過程で光合成によりCOを吸収しており、ライフサイクル全体でみると大気中のCOを増加させず、収支はゼロであると考えられる。このように、COの増減に影響を与えない性質のことをカーボンニュートラルと呼んでいる。このカーボンニュートラルという思想が近年普及し、様々な植物由来樹脂が開発されている。これらのうち溶融成形が可能な植物由来樹脂として、例えば、でんぷん、グルコース、ポリ3−ヒドロキシアルカノエート、ポリ乳酸などの脂肪族系ポリステルが知られている。 As a new resource that contributes to the prevention of global warming and the establishment of a recycling-oriented society, biomass, which is a resin derived from organisms such as plants, has attracted attention. When biomass is burned, carbon dioxide (CO 2 ) is generated in the same manner as petroleum-derived resins, but plants absorb CO 2 by photosynthesis during the growth process, and CO 2 in the atmosphere is seen in the entire life cycle. The balance is considered to be zero. Such a property that does not affect the increase or decrease in CO 2 is called carbon neutral. In recent years, the idea of carbon neutral has spread and various plant-derived resins have been developed. Among these, aliphatic polyesters such as starch, glucose, poly-3-hydroxyalkanoate, and polylactic acid are known as plant-derived resins that can be melt-molded.

脂肪族系ポリエステルのうちポリ3−ヒドロキシアルカノエートは微生物から培養できるバイオポリマーとして、溶融成形可能な植物由来樹脂の中でも高く期待されている。なかでもPHBH共重合体:ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体は良好な機械的物性を有しているものであり、溶融成形材料としての今後の展開が特に期待されている植物由来樹脂である。しかしながら、PHBH共重合体には産業用の成形材料として用いるには結晶化速度が著しく遅いという問題があった。   Among aliphatic polyesters, poly-3-hydroxyalkanoate is highly expected as a biopolymer that can be cultivated from microorganisms among plant-derived resins that can be melt-molded. Among them, PHBH copolymer: poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer has good mechanical properties and is used as a melt molding material. Is a plant-derived resin that is expected to be developed in the future. However, the PHBH copolymer has a problem that the crystallization rate is extremely slow for use as an industrial molding material.

一般に、造核剤を添加すると結晶性重合体の結晶化が促進され得ると考えられており、適切な造核剤を添加することによって、核生成密度、及び晶析速度を向上させることができる。ポリ3−ヒドロキシアルカノエートの1種であるPHB重合体:ポリ(3−ヒドロキシブチレート)重合体の結晶化に関しては、タルク、窒化ホウ素、サッカリン等数多くの種類の造核剤が有効に作用することが知られている(非特許文献1及び2を参照)。   In general, it is believed that the addition of a nucleating agent can accelerate the crystallization of a crystalline polymer, and the addition of an appropriate nucleating agent can improve the nucleation density and the crystallization rate. . PHB polymer, a kind of poly-3-hydroxyalkanoate: Numerous types of nucleating agents such as talc, boron nitride, saccharin and the like are effective for crystallization of poly (3-hydroxybutyrate) polymer. It is known (see Non-Patent Documents 1 and 2).

しかしながら、PHBH共重合体等のポリ3−ヒドロキシアルカノエート共重合体(以下PHA共重合体ともいう)の結晶化を促進する方法については知られていない。   However, there is no known method for promoting crystallization of a poly-3-hydroxyalkanoate copolymer (hereinafter also referred to as a PHA copolymer) such as a PHBH copolymer.

なお、特許文献1では、ポリヒドロキシアルカノエート(PHA−X)に、PHA−Xよりも融点が高いポリヒドロキシアルカノエート(PHA−Y)を添加し、PHA−Yの融点以下で成形加工することで、融け残った結晶を核剤として利用する方法が示されているが、成形加工温度に制約があり実用的な成形加工方法ではない。
米国特許第5,693,389号明細書 R.E.Withey,J.N.Hay,Polymer,1999,40,5147-5152 Y.He,Y.Inoue,Biomacromolecules,2003,4,1865−1867
In Patent Document 1, polyhydroxyalkanoate (PHA-Y) having a melting point higher than that of PHA-X is added to polyhydroxyalkanoate (PHA-X), and molding is performed at a temperature lower than the melting point of PHA-Y. However, although a method of using the unmelted crystal as a nucleating agent is shown, there is a limitation on the molding processing temperature, which is not a practical molding processing method.
US Pat. No. 5,693,389 R. E. Withey, J .; N. Hay, Polymer, 1999, 40, 5147-5152 Y. He, Y. Inoue, Biomacromolecules, 2003, 4, 1865-1867

本発明者らがPHBH共重合体等のPHA共重合体の結晶化を促進する方法について検討したところ、PHBH共重合体等のPHA共重合体、特に3HH単位の含量が比較的高いPHBH共重合体に対しては、上述した造核剤が有効に機能しない、すなわち造核剤を添加しても結晶化が促進されないことが判明した。   The present inventors examined a method for promoting crystallization of a PHA copolymer such as a PHBH copolymer. As a result, a PHA copolymer such as a PHBH copolymer, particularly a PHBH copolymer having a relatively high content of 3HH units, was studied. For coalescence, it has been found that the nucleating agent described above does not function effectively, that is, the addition of the nucleating agent does not promote crystallization.

本発明は、上記現状に鑑み、結晶化速度が著しく遅いPHA共重合体を主体としながらも結晶性が高く、成形用途において好適に使用可能な生分解性樹脂組成物を提供することを目的とする。   The present invention has been made in view of the above situation, and an object thereof is to provide a biodegradable resin composition which is mainly composed of a PHA copolymer having a remarkably low crystallization rate and has high crystallinity and can be suitably used in molding applications. To do.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、PHA共重合体に対して、造核剤とともにPHB重合体を配合することによって、PHA共重合体の結晶化を促進できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors promoted crystallization of the PHA copolymer by blending the PHA copolymer with the nucleating agent together with the PHB polymer. The present inventors have found that this can be done and have completed the present invention.

すなわち本発明は、少なくとも1種のポリヒドロキシアルカノエート共重合体を主体とする生分解性樹脂組成物であって、さらに、ポリ(3−ヒドロキシブチレート)重合体と、造核剤とを含有することを特徴とする生分解性樹脂組成物に関する。   That is, the present invention is a biodegradable resin composition mainly comprising at least one polyhydroxyalkanoate copolymer, and further contains a poly (3-hydroxybutyrate) polymer and a nucleating agent. The present invention relates to a biodegradable resin composition.

好ましくは、ポリヒドロキシアルカノエート共重合体として、ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体またはポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシバレレート)]共重合体を含有する。   Preferably, the polyhydroxyalkanoate copolymer is a poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer or poly [(3-hydroxybutyrate) -co- ( 3-hydroxyvalerate)] copolymer.

好ましくは、生分解性樹脂組成物が、ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体を主体とする。   Preferably, the biodegradable resin composition is mainly composed of a poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer.

好ましくは、前記ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体100重量部に対して、前記ポリ(3−ヒドロキシブチレート)重合体を1〜30重量部、及び前記造核剤を0.1〜10重量部含有する。   Preferably, the poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer is used in an amount of 1 to 30 with respect to 100 parts by weight of the poly (3-hydroxybutyrate) copolymer. 0.1 to 10 parts by weight of the nucleating agent and parts by weight.

好ましくは、前記ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体において3−ヒドロキシヘキサノエート単位の含量が5〜25モル%である。   Preferably, the poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer has a content of 3-hydroxyhexanoate units of 5 to 25 mol%.

好ましくは、前記造核剤が、タルク、窒化ホウ素、及びサッカリンからなる群より選択される少なくとも1種である。   Preferably, the nucleating agent is at least one selected from the group consisting of talc, boron nitride, and saccharin.

また、本発明は、上述した生分解性樹脂組成物を用いて、ポリ(3−ヒドロキシブチレート)重合体の融点以上の温度で成形加工することを特徴とする生分解性樹脂組成物成形体の製造方法にも関する。   In addition, the present invention provides a biodegradable resin composition molded article that is molded using the above-described biodegradable resin composition at a temperature not lower than the melting point of the poly (3-hydroxybutyrate) polymer. It also relates to the manufacturing method.

さらに、本発明は、上述した生分解性樹脂組成物を、ポリ(3−ヒドロキシブチレート)重合体の融点以上の温度で成形加工することを特徴とする加工方法にも関する。   Furthermore, the present invention relates to a processing method characterized by molding the above-described biodegradable resin composition at a temperature equal to or higher than the melting point of the poly (3-hydroxybutyrate) polymer.

本発明によれば、結晶化速度が著しく遅いPHA共重合体を主体としながらも結晶性が高く、溶融成形用途において好適に使用可能な生分解性樹脂組成物を提供することができる。   According to the present invention, it is possible to provide a biodegradable resin composition which is mainly composed of a PHA copolymer having a remarkably low crystallization rate and has high crystallinity and can be suitably used in melt molding applications.

以下に本発明を詳述する。   The present invention is described in detail below.

本発明の生分解性樹脂組成物は、少なくとも1種のポリヒドロキシアルカノエート共重合体を主体とするものである。ここで「主体とする」とは、組成物を構成する総生分解性樹脂成分のうち50重量%以上、好ましくは60重量%以上を、少なくとも1種のポリヒドロキシアルカノエート共重合体が占めていることを意味する。   The biodegradable resin composition of the present invention is mainly composed of at least one polyhydroxyalkanoate copolymer. Here, “mainly” means that at least one polyhydroxyalkanoate copolymer accounts for 50% by weight or more, preferably 60% by weight or more of the total biodegradable resin component constituting the composition. Means that

ポリヒドロキシアルカノエート共重合体とは、[−CHR−CH−CO−O−](ここに、RはC2n+1で表されるアルキル基で、n=1〜15の整数である。)で示される2種以上の繰り返し単位からなる共重合体をいう。この共重合体は嫌気性下で分解する性質を有しており、耐湿性に優れるとともに、高分子量化が可能である。 The polyhydroxyalkanoate copolymer is [—CHR—CH 2 —CO—O—] (where R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 to 15. ) Is a copolymer composed of two or more types of repeating units. This copolymer has the property of decomposing under anaerobic conditions, has excellent moisture resistance, and can have a high molecular weight.

当該共重合体の代表例としては、例えば、ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体、ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシバレレート)]共重合体、[(3−ヒドロキシブチレート)−co−(3−ヒドロキシオクタノエート)]共重合体、[(3−ヒドロキシブチレート)−co−(3−ヒドロキシデカノエート)]共重合体等が挙げられる。この中でも、[(3−ヒドロキシブチレート)−(3−ヒドロキシヘキサノエート)]共重合体、ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシバレレート)]共重合体が好ましく、さらに、[(3−ヒドロキシブチレート)−(3−ヒドロキシヘキサノエート)]共重合体が特に好ましい。   Representative examples of the copolymer include, for example, poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer, poly [(3-hydroxybutyrate) -co- ( 3-hydroxyvalerate)] copolymer, [(3-hydroxybutyrate) -co- (3-hydroxyoctanoate)] copolymer, [(3-hydroxybutyrate) -co- (3-hydroxy Decanoate)] copolymer and the like. Among these, [(3-hydroxybutyrate)-(3-hydroxyhexanoate)] copolymer and poly [(3-hydroxybutyrate) -co- (3-hydroxyvalerate)] copolymer are preferable. Furthermore, a [(3-hydroxybutyrate)-(3-hydroxyhexanoate)] copolymer is particularly preferred.

ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体(以下「PHBH共重合体)ともいう)とは、3−ヒドロキシブチレート及び3−ヒドロキシヘキサノエートを主成分とする共重合体のことをいう。ここで「主成分とする」とは、共重合体を構成する総モノマー単位のうち50モル%以上、好ましくは60モル%以上を、3−ヒドロキシブチレート及び3−ヒドロキシヘキサノエートが占めていることを意味する。当該共重合体は、これを構成するモノマー単位が3−ヒドロキシブチレート及び3−ヒドロキシヘキサノエートのみからなるものであってもよいし、これらを主成分とするものである限り、他のモノマー単位を含むものであってもよい。   The poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer (hereinafter also referred to as “PHBH copolymer”) means 3-hydroxybutyrate and 3-hydroxyhexanoate. As used herein, “main component” means 50 mol% or more, preferably 60 mol% or more of the total monomer units constituting the copolymer. It means that hydroxybutyrate and 3-hydroxyhexanoate are occupied. The copolymer may be composed of only 3-hydroxybutyrate and 3-hydroxyhexanoate as a monomer unit constituting the copolymer, or other monomers as long as these are the main components. It may contain a unit.

他のモノマー単位としては特に限定されないが、例えば、3−ヒドロキシブチレート及び3−ヒドロキシヘキサノエート以外のヒドロキシカルボン酸由来単位、多価カルボン酸由来単位、多価アルコール由来単位、ラクトン由来単位等が挙げられる。具体的には、グリコール酸、4−ヒドロキシ酪酸、4−ヒドロキシヘキサン酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸、ヒドロキシ安息香酸等のヒドロキシカルボン酸類;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、フマル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、5−ナトリウムスルホイソフタル酸、5−テトラブチルホスホニウムスルホイソフタル酸等の多価カルボン酸類;エチレングリコール、プロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ−ル、デカンジオール、1,4−シクロヘキサンジメタノ−ル、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ビスフェノ−ルA、ビスフェノールにエチレンオキシドを付加反応させた芳香族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の多価アルコール類;グリコリド、ε−カプロラクトングリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等のラクトン類等が挙げられる。これら他のモノマー単位としては1種類のみを用いてもよいし、2種類以上を併用してもよい。   Although it does not specifically limit as another monomer unit, For example, units derived from hydroxycarboxylic acid other than 3-hydroxybutyrate and 3-hydroxyhexanoate, a unit derived from a polycarboxylic acid, a unit derived from a polyhydric alcohol, a unit derived from a lactone, etc. Is mentioned. Specifically, hydroxycarboxylic acids such as glycolic acid, 4-hydroxybutyric acid, 4-hydroxyhexanoic acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, hydroxybenzoic acid; oxalic acid, malon Acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, fumaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid Acids, polycarboxylic acids such as 5-tetrabutylphosphonium sulfoisophthalic acid; ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethyl Norol, Neopentyl glycol, Glycerin, Trimethylolpropane, Pentaerythritol, Bisphenol A, Aromatic polyhydric alcohol in which ethylene oxide is added to bisphenol, Diethylene glycol, Triethylene glycol, Polyethylene glycol, Polypropylene glycol, Polytetra Polyhydric alcohols such as methylene glycol; lactones such as glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, δ-valerolactone, etc. It is done. As these other monomer units, only one type may be used, or two or more types may be used in combination.

PHBH共重合体の重合形式としては特に限定されず、ランダム共重合、交互共重合、ブロック共重合等のいずれの共重合形式であってもよいが、得られる共重合体の物性を制御しやすいことから、ランダム共重合が好ましい。   The polymerization format of the PHBH copolymer is not particularly limited, and may be any copolymerization format such as random copolymerization, alternating copolymerization, block copolymerization, etc., but it is easy to control the physical properties of the obtained copolymer. Therefore, random copolymerization is preferable.

PHBH共重合体のモノマー単位の構成比としては特に限定されず、例えば、3−ヒドロキシブチレート単位/3−ヒドロキシヘキサノエート単位=99/1〜70/30(mol/mol)であることが好ましいが、良好な機械的物性を示しながらも本発明における結晶化促進という効果がより顕著に発揮されることから、3−ヒドロキシブチレート単位/3−ヒドロキシヘキサノエート単位=95/5〜75/25(mol/mol)であることがより好ましい。   The constitutional ratio of the monomer units of the PHBH copolymer is not particularly limited. For example, 3-hydroxybutyrate unit / 3-hydroxyhexanoate unit = 99/1 to 70/30 (mol / mol). Although preferable, since the effect of promoting crystallization in the present invention is more significantly exhibited while exhibiting good mechanical properties, 3-hydroxybutyrate unit / 3-hydroxyhexanoate unit = 95/5 to 75 / 25 (mol / mol) is more preferable.

PHBH共重合体の分子量としては特に限定されないが、数平均分子量で3万〜250万であることが好ましく、5万〜200万であることがより好ましく、10万〜150万であることが更に好ましい。PHBH共重合体の数平均分子量が3万未満では、強度などの機械的特性が不十分である場合があり、300万を超えると、成形性が劣る場合がある。なお、PHBH共重合体の重量平均分子量の測定方法は特に限定されないが、一例としては、クロロホルムを移動相として、システムとして、ウオーターズ(Waters)社製GPCシステムを用い、カラムに、昭和電工(株)製Shodex K−804(ポリスチレンゲル)を用いることにより、ポリスチレン換算での分子量として求めることができる。   The molecular weight of the PHBH copolymer is not particularly limited, but the number average molecular weight is preferably 30,000 to 2,500,000, more preferably 50,000 to 2,000,000, and further preferably 100,000 to 1,500,000. preferable. If the number average molecular weight of the PHBH copolymer is less than 30,000, mechanical properties such as strength may be insufficient, and if it exceeds 3 million, moldability may be inferior. In addition, although the measuring method of the weight average molecular weight of PHBH copolymer is not specifically limited, As an example, chloroform is used as a mobile phase, Waters GPC system is used as a system, Showa Denko Co., Ltd. ) By using Shodex K-804 (polystyrene gel), the molecular weight in terms of polystyrene can be obtained.

PHBH共重合体の製造方法としては、既知の重合方法を用いることができるが、好ましくは、グルコースや植物油脂等を原料として微生物の体内に産生させる方法が挙げられる。   As a method for producing the PHBH copolymer, a known polymerization method can be used. Preferably, a method of producing glucose, vegetable oil or the like as a raw material in the body of the microorganism can be mentioned.

ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシバレレート)]共重合体(以下「PHBV共重合体」ともいう)とは、3−ヒドロキシブチレート及び3−ヒドロキシバレレートを主成分とする共重合体のことをいう。ここで「主成分とする」とは、共重合体を構成する総モノマー単位のうち50モル%以上、好ましくは60モル%以上を、3−ヒドロキシブチレート及び3−ヒドロキシバレレートが占めていることを意味する。当該共重合体は、これを構成するモノマー単位が3−ヒドロキシブチレート及び3−ヒドロキシバレレートのみからなるものであってもよいし、これらを主成分とするものである限り、他のモノマー単位を含むものであってもよい。他のモノマー単位としては、PHBH共重合体に関して上述したものが挙げられる。PHBV共重合体の分子量は特に限定されず、PHBH共重合体の分子量と同程度であってよい。PHBV共重合体の製造方法についても、既知の重合方法を用いることができ、グルコースや植物油脂等を原料として微生物の体内に産生させる方法が好ましい。 本発明の生分解性樹脂組成物は、PHA共重合体を主体としつつ、PHA共重合体の結晶化を促進し、溶融成形用途での使用を容易にするために、ポリ(3−ヒドロキシブチレート)重合体(以下「PHB重合体」ともいう)と、造核剤とを含有する。後述するように、一般的に造核剤として知られている物質をPHA共重合体に添加しただけでは、PHA共重合体の結晶化促進を達成することはできない。ところが、造核剤により結晶化促進が達成され得る生分解性樹脂であるPHB重合体とともに、造核剤をPHA共重合体に添加すると、PHA共重合体の結晶性が明らかに改善される。   Poly [(3-hydroxybutyrate) -co- (3-hydroxyvalerate)] copolymer (hereinafter also referred to as “PHBV copolymer”) is mainly composed of 3-hydroxybutyrate and 3-hydroxyvalerate. It refers to a copolymer as a component. Here, “main component” means that 50% by mole or more, preferably 60% by mole or more of the total monomer units constituting the copolymer is occupied by 3-hydroxybutyrate and 3-hydroxyvalerate. Means that. In the copolymer, the monomer units constituting the copolymer may be composed only of 3-hydroxybutyrate and 3-hydroxyvalerate, or other monomer units as long as they are mainly composed of these units. May be included. Other monomer units include those described above for the PHBH copolymer. The molecular weight of the PHBV copolymer is not particularly limited, and may be approximately the same as the molecular weight of the PHBH copolymer. Regarding the method for producing the PHBV copolymer, a known polymerization method can be used, and a method in which glucose, vegetable oil or the like is used as a raw material to produce it in the body of the microorganism is preferable. The biodegradable resin composition of the present invention comprises a poly (3-hydroxybutyrate) in order to promote crystallization of a PHA copolymer and facilitate its use in melt molding, while mainly comprising a PHA copolymer. Rate) polymer (hereinafter also referred to as “PHB polymer”) and a nucleating agent. As will be described later, crystallization promotion of the PHA copolymer cannot be achieved only by adding a substance generally known as a nucleating agent to the PHA copolymer. However, when the nucleating agent is added to the PHA copolymer together with the PHB polymer which is a biodegradable resin that can be accelerated in crystallization by the nucleating agent, the crystallinity of the PHA copolymer is clearly improved.

PHB重合体は、実質的に3−ヒドロキシブチレート単位のみからなる重合体である。PHB重合体の分子量は特に限定されず、PHBH共重合体の分子量と同程度であってよい。PHB重合体の製造方法についても、既知の重合方法を用いることができるが、グルコースや植物油脂等を原料として微生物の体内に産生させる方法が好ましい。   The PHB polymer is a polymer substantially consisting of only 3-hydroxybutyrate units. The molecular weight of the PHB polymer is not particularly limited, and may be approximately the same as the molecular weight of the PHBH copolymer. A known polymerization method can also be used as a method for producing a PHB polymer, but a method of producing glucose, vegetable oil or the like as a raw material in the body of a microorganism is preferable.

造核剤としては、重合体に対して添加することによってその結晶性を改善する物質として知られているものを使用することができる。例えば、高級脂肪酸アミド、尿素誘導体、ソルビトール系化合物、窒化ホウ素、高級脂肪酸塩、芳香族脂肪酸塩、タルク、サッカリン等が挙げられ、これらは少なくとも1種類用いることができる。なかでも、本発明における結晶化促進効果に優れているので、タルク、窒化ホウ素、サッカリンが好ましい。   As the nucleating agent, those known as substances that improve the crystallinity by adding to the polymer can be used. Examples include higher fatty acid amides, urea derivatives, sorbitol compounds, boron nitride, higher fatty acid salts, aromatic fatty acid salts, talc, saccharin, and the like, and at least one of them can be used. Of these, talc, boron nitride, and saccharin are preferred because they are excellent in the crystallization promoting effect in the present invention.

本発明の生分解性樹脂組成物においては本発明の効果が達成される限りにおいて、各成分の配合量は特に限定されない。しかしながら、具体的には、PHA共重合体100重量部に対して、PHB重合体の配合量が1〜30重量部、造核剤の配合量が0.1〜10重量部であることが好ましい。より好ましくはPHB重合体の配合量が1〜20重量部、造核剤の配合量が0.5〜5重量部である。   In the biodegradable resin composition of the present invention, the blending amount of each component is not particularly limited as long as the effects of the present invention are achieved. However, specifically, the blending amount of the PHB polymer is preferably 1 to 30 parts by weight and the blending amount of the nucleating agent is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the PHA copolymer. . More preferably, the blending amount of the PHB polymer is 1 to 20 parts by weight, and the blending amount of the nucleating agent is 0.5 to 5 parts by weight.

PHB重合体の配合量が1重量部未満であったり造核剤の配合量が0.1重量部未満であると、核剤としての効果が低くなり成形性が低下する傾向がある。一方、PHB重合体の配合量が30重量部を超えたり造核剤の配合量が10重量部を超えると、含有量に見合うだけの効果が期待できず、実際的でないばかりか、不経済である。   When the blending amount of the PHB polymer is less than 1 part by weight or the blending amount of the nucleating agent is less than 0.1 part by weight, the effect as a nucleating agent tends to be low and the moldability tends to be lowered. On the other hand, when the blending amount of the PHB polymer exceeds 30 parts by weight or the blending amount of the nucleating agent exceeds 10 parts by weight, the effect corresponding to the content cannot be expected, which is not practical and uneconomical. is there.

本発明の生分解性樹脂組成物には必要に応じて次のような添加剤を配合してもよい。添加剤としては、安定剤、滑剤、難燃剤、顔料、無機フィラー、有機フィラー、離型剤、帯電防止剤、紫外線吸収剤、酸化防止剤、抗菌抗カビ剤、可塑剤等が挙げられる。これらの添加剤は、組成物が使用される用途等に応じて適宜最適なものを選択すればよい。   You may mix | blend the following additives with the biodegradable resin composition of this invention as needed. Examples of the additives include stabilizers, lubricants, flame retardants, pigments, inorganic fillers, organic fillers, mold release agents, antistatic agents, ultraviolet absorbers, antioxidants, antibacterial and antifungal agents, and plasticizers. What is necessary is just to select an optimal thing suitably for these additives according to the use etc. in which a composition is used.

本発明の生分解性樹脂組成物を成形するにあたっては、各成分を直接成形加工機に投入することにより行ってもよいが、ハンドリング、混練の均一性等の観点から、一旦ペレット化した後に成形加工を行ってもよい。ペレット化するには、例えば、バンバリーミキサー、ロールミル、ニーダー、単軸又は多軸の押出機等の公知の装置を用い、適当な温度で加熱しながら機械的に混練することで、ペレット状に賦形することができる。その混練時の温度は、使用する重合体の溶融温度等に応じて調整すればよく、例えば100〜200℃程度でよいが、PHB重合体と造核剤の併用による結晶化促進の効果をより効率よく発揮するために、当該組成物に含まれているPHB重合体の融点以上の温度とすることが好ましい。成形加工するにあたっては、押出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形、発泡成形、射出成形、インジェクションブロー等の任意の成形加工法を採用することができる。   In molding the biodegradable resin composition of the present invention, each component may be directly put into a molding machine, but from the viewpoint of handling, uniformity of kneading, etc., it is molded after being pelletized once. Processing may be performed. For pelletization, for example, a known apparatus such as a Banbury mixer, a roll mill, a kneader, a single-screw or multi-screw extruder is used, and the mixture is mechanically kneaded while heating at an appropriate temperature to be pelletized. Can be shaped. The temperature at the time of kneading may be adjusted according to the melting temperature of the polymer to be used, and may be about 100 to 200 ° C., for example, but the effect of promoting crystallization by the combined use of the PHB polymer and the nucleating agent is further improved. In order to exhibit efficiently, it is preferable to set it as the temperature more than melting | fusing point of the PHB polymer contained in the said composition. In the molding process, any molding process method such as extrusion molding, compression molding, blow molding, calendar molding, vacuum molding, foam molding, injection molding, injection blow, or the like can be employed.

本発明の生分解性樹脂組成物の具体的な用途としては、例えば、食品容器、シート類、ボトル、透明板、フィルム、延伸フィルム、包装材、レジ袋、緩衝材、農業用マルチフィルム、魚網、食器、ごみ袋等が挙げられる。   Specific uses of the biodegradable resin composition of the present invention include, for example, food containers, sheets, bottles, transparent plates, films, stretched films, packaging materials, plastic bags, cushioning materials, agricultural multi-films, and fish nets. , Tableware, garbage bags, etc.

以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
1.P(3HB−co−3HH)
3HH単位の含量が18モル%である微生物産生P(3HB−co−3HH)を原料として用いた。この重合体はコモノマー単位の組成分布が極めて広いものであったので、常温でクロロホルム/n−ヘプタン混合溶媒を用いて分別を行った。この分別によって得た3HH単位の含量が21モル%である分画(Mn=1.15x10、Mw/Mn=1.42)を以下で使用した。
2.P(3HB)
微生物産生P(3HB)として、Mn=1.55x10、Mw/Mn=2.56のものを精製して使用した。
3.窒化ホウ素
ナカライテスク社から入手した窒化ホウ素の微粉末を使用した。
4.3HH単位の含量測定法
原料、及び分別後のP(3HB−co−3HH)における3HH単位の含量を測定するにあたっては、600MHzのH NMRスペクトルを、CDCl溶液中30℃で、ブルカー社のAVANCE600分光計で測定した。
5.重合体の分子量測定法
各重合体の数平均分子量(Mn)、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)は、TSK GEL G2000Hxl及びGMHxlカラム(東ソー社製)を含むTosoh HPLC−8020ゲルパーミエーションクロマトグラフィーを用いて測定した。溶出液としてはクロロホルムを流速1.0mL・min−1で使用した。GPC溶出曲線を作成する際には標準物質として、分子量分布が狭いポリスチレンを使用した。
実施例1
窒化ホウ素の微粉末を超音波処理によってクロロホルムに分散し、その後重合体を溶解することによって、P(3HB−co−3HH)を88重量%、P(3HB)を10重量%、そして窒化ホウ素を2重量%含むクロロホルム溶液を調製し、これから溶液流延法によってフィルムを作製した。得られたフィルムを室温、真空下で1週間乾燥して残留溶媒を除去した後、下記評価に使用した。
比較例1
実施例1記載の方法に準じてP(3HB−co−3HH)のみからなるフィルムを得た。
比較例2
実施例1記載の方法に準じて、P(3HB−co−3HH)98重量%と窒化ホウ素2重量%とからなるフィルムを得た。
比較例3
実施例1記載の方法に準じて、P(3HB−co−3HH)90重量%とP(3HB)10重量%とからなるフィルムを得た。
参考例1
実施例1記載の方法に準じてP(3HB)のみからなるフィルムを得た。
参考例2
実施例1記載の方法に準じて、P(3HB)98重量%と窒化ホウ素2重量%とからなるフィルムを得た。
(評価方法)
以上で得た各フィルムをサンプルとし、パージガスとして窒素を用いた示差走査熱量測定法(DSC:Pyris Diamond、パーキンエルマー社)によって非等温結晶化調査を行った。非等温結晶化にあたって、まずサンプルを190℃で3分間かけて融解し熱履歴を破壊した後、走査速度を2.5℃/minとして190℃から−40℃までサンプルを冷却(冷却走査)して結晶化の挙動を観察した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
1. P (3HB-co-3HH)
Microorganism-produced P (3HB-co-3HH) having a 3HH unit content of 18 mol% was used as a raw material. Since this polymer had a very wide comonomer unit composition distribution, it was fractionated at room temperature using a chloroform / n-heptane mixed solvent. A fraction (Mn = 1.15 × 10 5 , Mw / Mn = 1.42) having a content of 3HH units obtained by this fractionation of 21 mol% was used below.
2. P (3HB)
As the microbial production P (3HB), one having Mn = 1.55 × 10 5 and Mw / Mn = 2.56 was purified and used.
3. Boron nitride Fine powder of boron nitride obtained from Nacalai Tesque was used.
4.3 Content measurement method of 3HH unit In measuring the content of 3HH unit in the raw material and P (3HB-co-3HH) after fractionation, a 1 H NMR spectrum of 600 MHz was measured at 30 ° C. in a CDCl 3 solution at Bruker. Measured with a company AVANCE 600 spectrometer.
5). Polymer molecular weight measurement method The number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of each polymer were measured using Tosoh HPLC- containing TSK GEL G2000Hxl and GMHxl columns (manufactured by Tosoh Corporation). Measurements were made using 8020 gel permeation chromatography. As eluent, chloroform was used at a flow rate of 1.0 mL · min −1 . When preparing a GPC elution curve, polystyrene having a narrow molecular weight distribution was used as a standard substance.
Example 1
A fine powder of boron nitride is dispersed in chloroform by sonication, and then the polymer is dissolved to obtain 88% by weight of P (3HB-co-3HH), 10% by weight of P (3HB), and boron nitride. A chloroform solution containing 2% by weight was prepared, and a film was produced therefrom by a solution casting method. The obtained film was dried at room temperature under vacuum for 1 week to remove the residual solvent, and then used for the following evaluation.
Comparative Example 1
A film consisting only of P (3HB-co-3HH) was obtained according to the method described in Example 1.
Comparative Example 2
In accordance with the method described in Example 1, a film composed of 98% by weight of P (3HB-co-3HH) and 2% by weight of boron nitride was obtained.
Comparative Example 3
According to the method described in Example 1, a film composed of 90% by weight of P (3HB-co-3HH) and 10% by weight of P (3HB) was obtained.
Reference example 1
A film consisting only of P (3HB) was obtained according to the method described in Example 1.
Reference example 2
In accordance with the method described in Example 1, a film composed of 98% by weight of P (3HB) and 2% by weight of boron nitride was obtained.
(Evaluation methods)
Each film obtained above was used as a sample, and a non-isothermal crystallization investigation was performed by a differential scanning calorimetry method (DSC: Pyris Diamond, Perkin Elmer) using nitrogen as a purge gas. In non-isothermal crystallization, the sample is first melted at 190 ° C. over 3 minutes to destroy the thermal history, and then the sample is cooled (cooling scan) from 190 ° C. to −40 ° C. at a scanning speed of 2.5 ° C./min. The crystallization behavior was observed.

冷却後サンプルを−40℃で3分間保持した。最後に走査速度を10℃/minとして−40℃から200℃までサンプルを加熱(加熱走査)して、低温晶析及び融解の挙動を観察した。融点とは前記の−40℃から200℃まで加熱したときの融解ピーク温度で示される。融解ピーク温度が複数存在する場合は高温側の温度を融点とする。   After cooling, the sample was held at −40 ° C. for 3 minutes. Finally, the sample was heated (heating scan) from −40 ° C. to 200 ° C. at a scanning speed of 10 ° C./min, and the behavior of low-temperature crystallization and melting was observed. The melting point is indicated by the melting peak temperature when heated from −40 ° C. to 200 ° C. When there are a plurality of melting peak temperatures, the temperature on the higher temperature side is taken as the melting point.

結果を図1及び図2に示す。   The results are shown in FIGS.

図1は、190℃での融解状態から冷却して得たDSC冷却曲線を示している。参考例1及び参考例2では結晶化ピークが、それぞれ113.6℃と118.1℃にある。参考例1と比較すると、参考例2では結晶化温度がより高温側にあり、結晶化の温度範囲はより狭い。このことから、窒化ホウ素がP(3HB)に対して良好な造核剤であることが確認された。   FIG. 1 shows a DSC cooling curve obtained by cooling from a molten state at 190 ° C. In Reference Example 1 and Reference Example 2, the crystallization peaks are at 113.6 ° C. and 118.1 ° C., respectively. Compared to Reference Example 1, Reference Example 2 has a higher crystallization temperature and a narrower crystallization temperature range. This confirmed that boron nitride is a good nucleating agent for P (3HB).

P(3HB−co−3HH)単独である比較例1ではDSC冷却走査中に結晶化しなかった。さらに、窒化ホウ素を共存させた比較例2においても、発熱ピークはまったく検出されなかった。このことより、窒化ホウ素がP(3HB−co−3HH)に対しては有効な造核剤でないことが分かる。さらには、P(3HB−co−3HH)とP(3HB)の2成分系である比較例3においても、発熱ピークはまったく検出されなかったことから、この系ではP(3HB)は結晶化しないことが分かる。   In Comparative Example 1 where P (3HB-co-3HH) alone was not crystallized during the DSC cooling scan. Further, no exothermic peak was detected at all in Comparative Example 2 in which boron nitride coexists. This shows that boron nitride is not an effective nucleating agent for P (3HB-co-3HH). Furthermore, in Comparative Example 3, which is a binary system of P (3HB-co-3HH) and P (3HB), no exothermic peak was detected, so P (3HB) does not crystallize in this system. I understand that.

しかしながら、P(3HB−co−3HH)とP(3HB)と窒化ホウ素の3成分系である実施例1では、115.4℃と98.9℃に2つの発熱ピークが観察された。発熱温度115.4℃は参考例1及び参考例2における発熱温度と非常に近いので、このピークは3成分系中でP(3HB)が結晶化したことによるものであることが分かる。よって98.9℃でのピークは、3成分系中でP(3HB−co−3HH)が結晶化していることを示す。   However, in Example 1, which is a ternary system of P (3HB-co-3HH), P (3HB), and boron nitride, two exothermic peaks were observed at 115.4 ° C. and 98.9 ° C. Since the exothermic temperature 115.4 ° C. is very close to the exothermic temperatures in Reference Example 1 and Reference Example 2, it can be seen that this peak is due to the crystallization of P (3HB) in the ternary system. Therefore, the peak at 98.9 ° C. indicates that P (3HB-co-3HH) is crystallized in the ternary system.

図2は、−40℃でのガラス状態から走査して得たDSC加熱曲線を示している。参考例1及び参考例2では融点のピークがそれぞれ170.9℃と172.7℃にある。実施例1では融点がいくつかあって、約169.4℃にある最も高いピークは、参考例1及び参考例2における融点のピークと対応している。よって、実施例1で80〜95℃にある広範な吸熱ピークは、P(3HB−co−3HH)が融解したことによるものである。   FIG. 2 shows a DSC heating curve obtained by scanning from a glass state at −40 ° C. In Reference Example 1 and Reference Example 2, the melting point peaks are at 170.9 ° C. and 172.7 ° C., respectively. In Example 1, there are several melting points, and the highest peak at about 169.4 ° C. corresponds to the melting point peaks in Reference Example 1 and Reference Example 2. Thus, the broad endothermic peak at 80-95 ° C. in Example 1 is due to the melting of P (3HB-co-3HH).

比較例1〜3と実施例1ではガラス転移点が−7.0〜−6.5℃の範囲にあるが、比較例1及び2では発熱(冷却晶析)ピークは検出されなかった。このことからも、窒化ホウ素がP(3HB−co−3HH)に対しては有効な造核剤ではないことが明らかである。   In Comparative Examples 1 to 3 and Example 1, the glass transition point is in the range of −7.0 to −6.5 ° C., but in Comparative Examples 1 and 2, no exothermic (cooling crystallization) peak was detected. This also reveals that boron nitride is not an effective nucleating agent for P (3HB-co-3HH).

比較例3では約80〜90℃で発熱(冷却晶析)ピークが、約170℃で吸熱(溶融)ピークが検出された。加熱走査における発熱エンタルピーと吸熱エンタルピーの絶対値はほぼ同等であり、このことから、P(3HB−co−3HH)とP(3HB)の二成分系ではP(3HB)成分がDCS加熱走査では結晶化するが、冷却走査においては結晶化しないことが分かる。参考例1、参考例2、及び実施例1では、加熱走査において発熱(冷却晶析)ピークが検出されなかったことから、DSC冷却走査において結晶化がほとんど完了していることが分かる。   In Comparative Example 3, an exothermic (cooling crystallization) peak was detected at about 80 to 90 ° C, and an endothermic (melting) peak was detected at about 170 ° C. The absolute values of the exothermic enthalpy and endothermic enthalpy in the heating scan are almost the same. Therefore, in the binary system of P (3HB-co-3HH) and P (3HB), the P (3HB) component is crystallized in the DCS heating scan. It can be seen that it is not crystallized in the cooling scan. In Reference Example 1, Reference Example 2 and Example 1, no exothermic (cooling crystallization) peak was detected in the heating scan, indicating that crystallization was almost complete in the DSC cooling scan.

以上の結果から、P(3HB−co−3HH)とP(3HB)と窒化ホウ素の三成分系では、窒化ホウ素がP(3HB)の結晶化を選択的に加速し、系中で生じたP(3HB)の結晶がP(3HB−co−3HH)の急速な結晶化を後押ししていることが分かる。   From the above results, in the ternary system of P (3HB-co-3HH), P (3HB), and boron nitride, boron nitride selectively accelerated crystallization of P (3HB), and P generated in the system It can be seen that the crystals of (3HB) boost the rapid crystallization of P (3HB-co-3HH).

190℃での融解状態から冷却して得たDSC冷却曲線DSC cooling curve obtained by cooling from the molten state at 190 ° C −40℃でのガラス状態から走査して得たDSC加熱曲線DSC heating curve obtained by scanning from a glass state at −40 ° C.

Claims (8)

少なくとも1種のポリヒドロキシアルカノエート共重合体を主体とする生分解性樹脂組成物であって、
さらに、ポリ(3−ヒドロキシブチレート)重合体と、
造核剤とを含有することを特徴とする生分解性樹脂組成物。
A biodegradable resin composition mainly comprising at least one polyhydroxyalkanoate copolymer,
A poly (3-hydroxybutyrate) polymer;
A biodegradable resin composition comprising a nucleating agent.
ポリヒドロキシアルカノエート共重合体として、ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体またはポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシバレレート)]共重合体を含有することを特徴とする請求項1に記載の生分解性樹脂組成物。   As polyhydroxyalkanoate copolymer, poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer or poly [(3-hydroxybutyrate) -co- (3-hydroxy The biodegradable resin composition according to claim 1, further comprising a copolymer. 生分解性樹脂組成物が、ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体を主体とすることを特徴とする請求項1又は2に記載の生分解性樹脂組成物。   3. The biodegradable resin composition mainly comprising a poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer. Degradable resin composition. 前記ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体100重量部に対して、前記ポリ(3−ヒドロキシブチレート)重合体を1〜30重量部、及び前記造核剤を0.1〜10重量部含有することを特徴とする請求項3に記載の生分解性樹脂組成物。   1 to 30 parts by weight of the poly (3-hydroxybutyrate) polymer with respect to 100 parts by weight of the poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer, The biodegradable resin composition according to claim 3, further comprising 0.1 to 10 parts by weight of the nucleating agent. 前記ポリ[(3−ヒドロキシブチレート)−co−(3−ヒドロキシヘキサノエート)]共重合体において3−ヒドロキシヘキサノエート単位の含量が5〜25モル%であることを特徴とする請求項2〜4のいずれかに記載の生分解性樹脂組成物。   The poly [(3-hydroxybutyrate) -co- (3-hydroxyhexanoate)] copolymer has a content of 3-hydroxyhexanoate units of 5 to 25 mol%. The biodegradable resin composition in any one of 2-4. 前記造核剤が、タルク、窒化ホウ素、及びサッカリンからなる群より選択される少なくとも1種であることを特徴とする請求項1〜5のいずれかに記載の生分解性樹脂組成物。   The biodegradable resin composition according to any one of claims 1 to 5, wherein the nucleating agent is at least one selected from the group consisting of talc, boron nitride, and saccharin. 請求項1〜6のいずれかに記載の生分解性樹脂組成物を用いて、ポリ(3−ヒドロキシブチレート)重合体の融点以上の温度で成形加工することを特徴とする生分解性樹脂組成物成形体の製造方法。   A biodegradable resin composition, wherein the biodegradable resin composition according to any one of claims 1 to 6 is molded at a temperature equal to or higher than a melting point of a poly (3-hydroxybutyrate) polymer. A method for producing a molded article. 請求項1〜6のいずれかに記載の生分解性樹脂組成物を、ポリ(3−ヒドロキシブチレート)重合体の融点以上の温度で成形加工することを特徴とする加工方法。   A processing method comprising molding the biodegradable resin composition according to any one of claims 1 to 6 at a temperature equal to or higher than a melting point of a poly (3-hydroxybutyrate) polymer.
JP2007267934A 2007-10-15 2007-10-15 Biodegradable resin composition Active JP5207274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267934A JP5207274B2 (en) 2007-10-15 2007-10-15 Biodegradable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267934A JP5207274B2 (en) 2007-10-15 2007-10-15 Biodegradable resin composition

Publications (2)

Publication Number Publication Date
JP2009096849A true JP2009096849A (en) 2009-05-07
JP5207274B2 JP5207274B2 (en) 2013-06-12

Family

ID=40700166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267934A Active JP5207274B2 (en) 2007-10-15 2007-10-15 Biodegradable resin composition

Country Status (1)

Country Link
JP (1) JP5207274B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143978A (en) * 2008-12-16 2010-07-01 Ricoh Co Ltd Resin composition and molded product using the same
JP2011069855A (en) * 2009-09-24 2011-04-07 Konica Minolta Business Technologies Inc Toner product for electrostatic latent image development and image forming method
JP2014227543A (en) * 2013-05-27 2014-12-08 独立行政法人理化学研究所 Polyester resin composition, method for manufacturing the same, and molding formed from the resin composition
US9309380B2 (en) 2011-03-17 2016-04-12 Adeka Corporation Glass fiber sizing agent and glass fiber-reinforced crystalline resin composition
US9340660B2 (en) 2011-09-30 2016-05-17 Nissan Chemical Industries, Ltd. Poly(3-hydroxyalkanoate) resin composition
WO2021010327A1 (en) * 2019-07-16 2021-01-21 株式会社カネカ Method for manufacturing melt-processing composition
CN115023469A (en) * 2020-01-29 2022-09-06 株式会社钟化 Biodegradable polyester solution and use thereof
CN115698399A (en) * 2020-06-02 2023-02-03 三菱瓦斯化学株式会社 Method for producing polymer molded article
JP7473551B2 (en) 2019-07-16 2024-04-23 株式会社カネカ Method for producing a melt-processable composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264305A (en) * 1993-03-09 1994-09-20 Unitika Ltd Biodegradable fiber and its production
JPH08503500A (en) * 1992-11-06 1996-04-16 ゼネカ・リミテッド polyester
JP2004161802A (en) * 2002-11-08 2004-06-10 Kanegafuchi Chem Ind Co Ltd Biodegradable polyester resin composition and method for producing the same
JP2005501927A (en) * 2001-04-20 2005-01-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Processing of polyhydroxyalkanoates using nucleating agents and plasticizers
JP2006525380A (en) * 2003-05-08 2006-11-09 ザ プロクター アンド ギャンブル カンパニー Molded or extruded articles comprising a polyhydroxyalkanoate copolymer composition having a short annealing cycle time
WO2007049694A1 (en) * 2005-10-26 2007-05-03 Kaneka Corporation Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503500A (en) * 1992-11-06 1996-04-16 ゼネカ・リミテッド polyester
JPH06264305A (en) * 1993-03-09 1994-09-20 Unitika Ltd Biodegradable fiber and its production
JP2005501927A (en) * 2001-04-20 2005-01-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Processing of polyhydroxyalkanoates using nucleating agents and plasticizers
JP2004161802A (en) * 2002-11-08 2004-06-10 Kanegafuchi Chem Ind Co Ltd Biodegradable polyester resin composition and method for producing the same
JP2006525380A (en) * 2003-05-08 2006-11-09 ザ プロクター アンド ギャンブル カンパニー Molded or extruded articles comprising a polyhydroxyalkanoate copolymer composition having a short annealing cycle time
WO2007049694A1 (en) * 2005-10-26 2007-05-03 Kaneka Corporation Expanded polyhydroxyalkanoate resin bead, molded object thereof, and process for producing the expanded resin bead

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143978A (en) * 2008-12-16 2010-07-01 Ricoh Co Ltd Resin composition and molded product using the same
JP2011069855A (en) * 2009-09-24 2011-04-07 Konica Minolta Business Technologies Inc Toner product for electrostatic latent image development and image forming method
US9309380B2 (en) 2011-03-17 2016-04-12 Adeka Corporation Glass fiber sizing agent and glass fiber-reinforced crystalline resin composition
EP2687494B1 (en) * 2011-03-17 2016-12-14 Adeka Corporation Glass fiber sizing agent and glass fiber-reinforced crystalline resin composition
US9340660B2 (en) 2011-09-30 2016-05-17 Nissan Chemical Industries, Ltd. Poly(3-hydroxyalkanoate) resin composition
JP2014227543A (en) * 2013-05-27 2014-12-08 独立行政法人理化学研究所 Polyester resin composition, method for manufacturing the same, and molding formed from the resin composition
WO2021010327A1 (en) * 2019-07-16 2021-01-21 株式会社カネカ Method for manufacturing melt-processing composition
JP7473551B2 (en) 2019-07-16 2024-04-23 株式会社カネカ Method for producing a melt-processable composition
CN115023469A (en) * 2020-01-29 2022-09-06 株式会社钟化 Biodegradable polyester solution and use thereof
CN115698399A (en) * 2020-06-02 2023-02-03 三菱瓦斯化学株式会社 Method for producing polymer molded article

Also Published As

Publication number Publication date
JP5207274B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5207274B2 (en) Biodegradable resin composition
JP5157035B2 (en) POLYLACTIC ACID RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE
JP5867084B2 (en) Polylactic acid film
US8304500B2 (en) Polyglycolic acid resin particle composition and process for production thereof
TW200823245A (en) Polycarbonate resin composition comprising plant-derived component
JP2009030068A (en) Crystalline polyglycolic acid, polyglycolic acid composition and methods for production of both
JP4042206B2 (en) Film and sheet comprising polylactic acid composition
JP2006307071A (en) Preparing process of polylactic acid
KR20140059778A (en) Film
JP5250178B2 (en) Stereocomplex polylactic acid, process for producing the same, composition and molded article
JP2008239645A (en) Polylactic acid-based resin composition, method for producing the same and molded article
Li et al. Synthesis, crystallization and hydrolysis of aromatic–aliphatic copolyester: poly (trimethylene terephthalate)-co-poly (l-lactic acid)
JPWO2008120821A1 (en) Polylactic acid composition
JP6119608B2 (en) Process for producing block copolymer
JP4306258B2 (en) Resin composition and molded article comprising the same
JP2011094030A (en) Polylactic acid resin composition, method for producing polylactic acid resin composition, molded article, table-top holder for cellular phone, internal chassis component for cellular phone, case for electronic equipment, and internal component for electronic equipment
JP2011518246A (en) Poly (hydroxyalkanoic acid) compositions reinforced with ethylene alkyl acrylate
JP4326832B2 (en) Method for producing biodegradable polyester resin composition
JP2009062532A (en) Thermally molded product and composition containing poly (hydroxyalkanoic acid) and polyoxymethylene
EP3604402A1 (en) Method for producing biodegradable polyester film
JP2008248022A (en) Polylactic acid composition
JP2008248176A (en) Method for producing stereocomplex polylactic acid
US8182734B1 (en) Thermoformed articles and compositions of poly(hydroxyalkanoic acid) and polyoxymethylene
JP2006089587A (en) Resin composition for lactic acid-based resin and its utilization
JP2004352873A (en) Polylactic acid resin composition, molded article and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5207274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250