JP2009095121A - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP2009095121A
JP2009095121A JP2007262567A JP2007262567A JP2009095121A JP 2009095121 A JP2009095121 A JP 2009095121A JP 2007262567 A JP2007262567 A JP 2007262567A JP 2007262567 A JP2007262567 A JP 2007262567A JP 2009095121 A JP2009095121 A JP 2009095121A
Authority
JP
Japan
Prior art keywords
salient pole
magnet
short
pole
salient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007262567A
Other languages
Japanese (ja)
Other versions
JP5089325B2 (en
Inventor
Tsutomu Michioka
力 道岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2007262567A priority Critical patent/JP5089325B2/en
Publication of JP2009095121A publication Critical patent/JP2009095121A/en
Application granted granted Critical
Publication of JP5089325B2 publication Critical patent/JP5089325B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve an output of a PM motor, and to reduce the usage of permanent magnets. <P>SOLUTION: A rotor 1 comprises: a plurality of salient poles 11 radially protruding toward radial directions orthogonal to the center of a rotating shaft; the magnets 16 embedded in the salient poles 11 and generating magnetic flux in directions almost parallel with protruding directions of the salient poles 11; a short-circuit magnetic path 12 for short-circuiting a magnetic pole of the magnet 16 embedded in one salient pole 11 and a magnetic pole of the magnet 16 embedded in the other salient pole 11 adjacent to the one salient pole 11; and a flux barrier 13 which is arranged so as to cut off the center of the rotating shaft and the short-circuit magnetic path 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回転子に永久磁石を配設した固定子電機子型同期電動モータに関する。   The present invention relates to a stator armature type synchronous electric motor in which a permanent magnet is disposed on a rotor.

近時、ハイブリッド自動車、燃料電池自動車や電気自動車等の動力源として用いられる電動モータは、回転子に永久磁石を配設した固定子電機子型のPM(Permanent Magnet)モータが主流となっている。   Recently, an electric motor used as a power source for a hybrid vehicle, a fuel cell vehicle, an electric vehicle, or the like is mainly a stator armature type PM (Permanent Magnet) motor in which a permanent magnet is disposed on a rotor. .

PMモータは、マグネットトルクに加えてリラクタンストルクをも併用して、小型軽量でありながら低速回転域から高速回転域までの広範囲に亘り効率よく出力を発生させ得る(例えば、下記特許文献を参照)。
特開2002−095194号公報 特開2007−135327号公報
The PM motor uses reluctance torque in addition to magnet torque, and can efficiently generate output over a wide range from a low-speed rotation range to a high-speed rotation range while being small and light (for example, refer to the following patent document). .
JP 2002-095194 A JP 2007-135327 A

本発明は、PMモータのさらなる出力向上及び永久磁石の使用量の低減を所期の目的とする。   The present invention is intended to further improve the output of the PM motor and reduce the amount of permanent magnets used.

本発明では、固定子巻線を有する固定子の内側に回転子を配してなる電動モータにおいて、回転子を、回転軸心に対し直交する径方向に放射状に突出した複数の突極と、各突極にそれぞれ埋め込まれ突極の突出方向と略平行な方向に磁束を発生する磁石と、一の突極に埋め込まれた磁石の磁極とその突極に隣接する他の突極に埋め込まれた磁石の磁極とを短絡する短絡磁路と、回転軸心と短絡磁路との間を遮るように設けられたフラックスバリアとを具備するものとした。   In the present invention, in the electric motor in which the rotor is arranged inside the stator having the stator winding, the rotor has a plurality of salient poles protruding radially in a radial direction perpendicular to the rotation axis, A magnet that is embedded in each salient pole and generates a magnetic flux in a direction substantially parallel to the protruding direction of the salient pole, a magnetic pole of a magnet embedded in one salient pole, and another salient pole adjacent to the salient pole. In addition, a short-circuit magnetic path that short-circuits the magnetic poles of the magnets and a flux barrier provided so as to block between the rotation axis and the short-circuit magnetic path are provided.

上記の構成により、d軸に沿った磁束を増しつつ、q軸に沿った磁束を減じることができる。従って、d軸インダクタンス>>q軸インダクタンスとなり、リラクタンストルクが増大する。結果、低速回転域での大トルク化と高速回転域での高効率化(弱め界磁電機子電流の低減)とが両立し、出力の向上を実現できる。そして、出力向上に伴い、磁石の使用量を削減することが許容され、コストダウンが可能となる。   With the above configuration, the magnetic flux along the q-axis can be reduced while increasing the magnetic flux along the d-axis. Therefore, d-axis inductance >> q-axis inductance, and reluctance torque increases. As a result, it is possible to achieve both an increase in torque in the low-speed rotation region and an increase in efficiency in the high-speed rotation region (reduction of field weakening armature current) and an improvement in output. As the output increases, it is allowed to reduce the amount of magnets used, and the cost can be reduced.

各突極にそれぞれ複数の磁石が並列的に埋め込まれており、一の突極における複数の磁石間の領域とその突極に隣接する他の突極における複数の磁石間の領域とを短絡することで両突極の先端同士を短絡している短絡磁路が存在していれば、q軸を横切りd軸に沿って流れる磁束が増加する。   A plurality of magnets are embedded in each salient pole in parallel, and a region between a plurality of magnets in one salient pole and a region between a plurality of magnets in another salient pole adjacent to the salient pole are short-circuited. Thus, if there is a short-circuit magnetic path that short-circuits the tips of both salient poles, the magnetic flux that flows across the q-axis and along the d-axis increases.

各突極における複数の磁石間にフラックスバリアが設けられていれば、d軸を横切りq軸に沿って流れる磁束が減少する。加えて、磁石自体も、その透磁率が低いことからd軸を横切る磁束の減少に寄与する。   If a flux barrier is provided between the plurality of magnets in each salient pole, the magnetic flux that flows across the d-axis and along the q-axis decreases. In addition, the magnet itself contributes to the reduction of the magnetic flux crossing the d-axis because of its low magnetic permeability.

同一の磁石のN極とS極とを繋ぐ短絡磁路を遮るためには、各磁石の回転軸心周りの周方向の側面に隣接してフラックスバリアが設けられていることが好ましい。   In order to block the short-circuit magnetic path connecting the N pole and the S pole of the same magnet, it is preferable that a flux barrier is provided adjacent to the circumferential side surface around the rotation axis of each magnet.

各磁石の径方向寸法が周方向寸法に比べて大きく設定されていれば、磁極の磁化方向即ちd軸方向に磁石が厚く、減磁に対して強くなる。このことは、磁石の使用量の低減に大いに奏効する。並びに、保磁力の小さい磁石を使用可能となることから、磁石のコストが低減する。   If the radial dimension of each magnet is set to be larger than the circumferential dimension, the magnet is thicker in the magnetization direction of the magnetic pole, that is, in the d-axis direction, and becomes stronger against demagnetization. This is very effective in reducing the amount of magnets used. In addition, since a magnet having a small coercive force can be used, the cost of the magnet is reduced.

本発明によれば、PMモータのさらなる出力向上及び永久磁石の使用量の低減を実現できる。   According to the present invention, it is possible to further improve the output of the PM motor and reduce the amount of permanent magnets used.

以下、本発明の実施の形態を、図面を参照して説明する。図1に示すように、本実施形態の電動モータは、いわゆるIPM(Interior Permanent Magnet)モータであり、固定子巻線を有する固定子2の内側に永久磁石16を埋め込んだ回転子1を配してなる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the electric motor of this embodiment is a so-called IPM (Interior Permanent Magnet) motor, in which a rotor 1 in which a permanent magnet 16 is embedded inside a stator 2 having a stator winding is arranged. It becomes.

よく知られている通り、IPMモータのトルクTは下式で表される。
T=pΨmq+p(Ld−Lq)Idq
ここで、pは極対数、Ψmは磁石16の磁束、Ldはd軸インダクタンス、Lqはq軸インダクタンス、Idはd軸電流、Iqはq軸電流である。上式の右辺の第一項がマグネットトルク、第二項がリラクタンストルクである。リラクタンストルクを増強するには、Ld>>Lqとする必要がある。そのために、本実施形態では、d軸に沿った磁束を増しつつq軸に沿った磁束を減じる措置を講じている。
As is well known, the torque T of the IPM motor is expressed by the following equation.
T = pΨ m I q + p (L d -L q) I d I q
Here, p is the number of pole pairs, Ψ m is the magnetic flux of the magnet 16, L d is a d-axis inductance, L q is a q-axis inductance, I d is a d-axis current, and I q is a q-axis current. The first term on the right side of the above formula is the magnet torque, and the second term is the reluctance torque. In order to increase the reluctance torque, L d >> L q is required. Therefore, in the present embodiment, measures are taken to increase the magnetic flux along the d axis and reduce the magnetic flux along the q axis.

本実施形態の電動モータは、回転子1の構造に特徴を有する。詳述すると、回転子1は、強磁性体、例えば積層鋼板等を鉄心10とし、回転軸心に対して直交する径方向に複数の突極11を放射状に突出させている。図示例では、90°間隔で四方に突極11を突出させている。鉄心10の回転軸心を含む中心部は、中空状をなす。   The electric motor of this embodiment is characterized by the structure of the rotor 1. More specifically, the rotor 1 has a ferromagnetic body, for example, a laminated steel plate or the like, as an iron core 10, and has a plurality of salient poles 11 protruding radially in a radial direction orthogonal to the rotation axis. In the illustrated example, salient poles 11 are projected in four directions at intervals of 90 °. The central portion including the rotation axis of the iron core 10 has a hollow shape.

各突極11には、突極11の突出方向と略平行な方向に磁束を発生する磁石16を埋め込んでいる。図示例では、各突極11にそれぞれ複数の磁石16を、突極11の中央軸即ちd軸に対称に位置している。各突極11の磁石16は、その突極11の突出方向と略平行な方向を向く。これら磁石16は、径方向寸法が周方向寸法に比べて大きい。また、周方向に隣り合う突極11の磁石16の磁極は互いに相反している。要すれば、ある突極11の磁石16がN極を外方に/S極を内方に向けているとき、隣接する突極11の磁石16はS極を外方に/N極を内方に向けている。各突極11は、磁気的に順突極となる。   Each salient pole 11 is embedded with a magnet 16 that generates a magnetic flux in a direction substantially parallel to the protruding direction of the salient pole 11. In the illustrated example, a plurality of magnets 16 are positioned on each salient pole 11 symmetrically with respect to the central axis of the salient pole 11, that is, the d axis. The magnet 16 of each salient pole 11 faces in a direction substantially parallel to the protruding direction of the salient pole 11. These magnets 16 have a larger radial dimension than a circumferential dimension. Moreover, the magnetic poles of the magnets 16 of the salient poles 11 adjacent in the circumferential direction are opposite to each other. If necessary, when a magnet 16 of one salient pole 11 has the N pole facing outward / S pole facing inward, the adjacent magnet 16 of the salient pole 11 has the S pole facing outward / N pole facing inward. I'm looking towards you. Each salient pole 11 becomes a magnetically forward salient pole.

その上で、周方向に隣り合う突極11の磁石16の相反する磁極同士を短絡するように、短絡磁路12を設けている。この短絡磁路12は、鉄心10の外周部にあって、一の突極11の磁石16の内方の磁極と、この磁石16に近い側にある他の突極11の磁石16の内方の磁極とを短絡する。   In addition, the short-circuit magnetic path 12 is provided so as to short-circuit the opposite magnetic poles of the magnets 16 of the salient poles 11 adjacent in the circumferential direction. The short-circuit magnetic path 12 is located on the outer periphery of the iron core 10, and the inner magnetic pole of the magnet 16 of one salient pole 11 and the inner side of the magnet 16 of the other salient pole 11 on the side closer to the magnet 16. Short-circuit with the magnetic pole.

さらに、鉄心10の中心部と短絡磁路との間を遮るフラックスバリア13を設けている。フラックスバリア13、15は、鉄心10に空隙を穿ち、または磁束を通しにくい材料を埋め込むことで形成する。このフラックスバリア13は、一の突極11の先端近傍、離間して対をなす磁石16間の領域を始端として短絡磁路12に並行して延伸し、その終端が隣接した他の突極11の先端近傍、やはり磁石16間の領域に達している。   Furthermore, the flux barrier 13 which interrupts | blocks between the center part of the iron core 10 and a short circuit magnetic path is provided. The flux barriers 13 and 15 are formed by making a gap in the iron core 10 or embedding a material that hardly allows magnetic flux to pass through. The flux barrier 13 extends in parallel to the short-circuit magnetic path 12 with the region between the magnets 16 that are paired apart in the vicinity of the tip of one salient pole 11 as the starting end, and the other salient pole 11 that is adjacent to the end. The region between the magnets 16 is also reached near the tip of the magnet 16.

各突極11の先端部位では、突極11の中央軸を跨いで複数のフラックスバリア13が並存している。翻って、それらフラックスバリア13に挟まれた突極11の中央軸部は、鉄心10の中心部とフラックスバリア13との間に成立した短絡磁路14を介して、他の突極11の中央軸部に短絡する。つまり、短絡磁路14を介して、一の突極11の先端と他の突極11の先端とが短絡している。   At the tip portion of each salient pole 11, a plurality of flux barriers 13 coexist across the central axis of the salient pole 11. In turn, the central shaft portion of the salient pole 11 sandwiched between the flux barriers 13 is connected to the center of the other salient pole 11 via the short-circuit magnetic path 14 established between the center portion of the iron core 10 and the flux barrier 13. Short-circuit to the shaft. That is, the tip of one salient pole 11 and the tip of another salient pole 11 are short-circuited via the short-circuit magnetic path 14.

加えて、磁石16の周方向に沿った両側面に隣接したフラックスバリア15を別途設けている。   In addition, flux barriers 15 adjacent to both side surfaces along the circumferential direction of the magnet 16 are separately provided.

上記の構成により、本実施形態の電動モータにおいて、図2に示すようにd軸に沿って流れるd軸磁束は増す。各突極11は、電機子反作用によっても増磁される。一方で、フラックスバリア13、15及び磁石16の存在により、図3に示すようにq軸に沿って流れるq軸磁束は減る。   With the above configuration, in the electric motor of this embodiment, the d-axis magnetic flux that flows along the d-axis increases as shown in FIG. Each salient pole 11 is also magnetized by an armature reaction. On the other hand, the presence of the flux barriers 13 and 15 and the magnet 16 reduces the q-axis magnetic flux flowing along the q-axis as shown in FIG.

本実施形態によれば、回転子1を、回転軸心に対し直交する径方向に放射状に突出した複数の突極11と、各突極11にそれぞれ埋め込まれ突極11の突出方向と略平行な方向に磁束を発生する磁石16と、一の突極11に埋め込まれた磁石16の磁極とその突極11に隣接する他の突極11に埋め込まれた磁石16の磁極とを短絡する短絡磁路12と、回転軸心と短絡磁路12との間を遮るように設けられたフラックスバリア13とを具備するものとしたため、突極11には磁石16が発生する磁束により磁極が形成され、これに対向する固定子巻線に電流を流すことによりトルクを発生できる。   According to this embodiment, the rotor 1 includes a plurality of salient poles 11 that radially project in a radial direction orthogonal to the rotation axis, and the salient poles 11 embedded in the salient poles 11 and substantially parallel to the projecting direction of the salient poles 11. A short circuit that short-circuits the magnet 16 that generates magnetic flux in any direction, the magnetic pole of the magnet 16 embedded in one salient pole 11, and the magnetic pole of the magnet 16 embedded in another salient pole 11 adjacent to the salient pole 11. Since the magnetic path 12 and the flux barrier 13 provided so as to block between the rotation axis and the short-circuit magnetic path 12 are provided, the salient pole 11 is formed with a magnetic pole by the magnetic flux generated by the magnet 16. Torque can be generated by passing a current through the stator windings facing this.

各突極11にそれぞれ複数の磁石16が並列的に埋め込まれており、一の突極11における複数の磁石16間の領域とその突極11に隣接する他の突極11における複数の磁石16間の領域とを短絡することで両突極11の先端同士を短絡している短絡磁路14が存在しているため、固定子巻線に突極11を励磁する電流を流すと、電機子反作用によりq軸を横切りd軸に沿って流れる磁束が増加する。   A plurality of magnets 16 are embedded in parallel in each salient pole 11, and a plurality of magnets 16 in another salient pole 11 adjacent to the region between the magnets 16 in one salient pole 11 and the salient pole 11. Since there is a short-circuit magnetic path 14 that short-circuits the tips of both salient poles 11 by short-circuiting the region between them, if a current that excites the salient poles 11 flows through the stator winding, the armature Due to the reaction, the magnetic flux flowing along the d-axis across the q-axis increases.

各突極11における複数の磁石16間にフラックスバリア13が設けられているため、d軸を横切りq軸に沿って流れる磁束が減少する。加えて、磁石16自体も、その透磁率が低いことからd軸を横切る磁束の減少に寄与する。従って、Ld>>Lqとなってリラクタンストルクが増大する。結果、低速回転域での大トルク化と高速回転域での高効率化とを両立でき、出力の向上を達成できる。そして、出力向上に伴い、磁石16の使用量の削減が可能となり、コストダウンに資する。 Since the flux barrier 13 is provided between the plurality of magnets 16 in each salient pole 11, the magnetic flux flowing along the q axis across the d axis decreases. In addition, the magnet 16 itself contributes to the reduction of the magnetic flux crossing the d-axis because of its low magnetic permeability. Accordingly, L d >> L q and the reluctance torque is increased. As a result, it is possible to achieve both large torque in the low speed rotation range and high efficiency in the high speed rotation range, and achieve an improvement in output. And with the output improvement, the usage-amount of the magnet 16 can be reduced and it contributes to cost reduction.

各磁石16の回転軸心周りの周方向の側面に隣接してフラックスバリア15が設けられているため、同一の磁石16のN極とS極とを繋ぐ短絡磁路を遮断して出力低下を回避できる。   Since the flux barrier 15 is provided adjacent to the circumferential side surface around the rotational axis of each magnet 16, the short circuit magnetic path connecting the N pole and the S pole of the same magnet 16 is interrupted to reduce the output. Can be avoided.

各磁石16の径方向寸法が周方向寸法に比べて大きく設定されているため、磁極の磁化方向即ちd軸方向に磁石16が厚く、減磁に対して強くなる。保磁力の小さい磁石16を使用可能となることから、磁石16のコストが低減する。   Since the radial dimension of each magnet 16 is set larger than the circumferential dimension, the magnet 16 is thick in the magnetization direction of the magnetic pole, that is, the d-axis direction, and is strong against demagnetization. Since the magnet 16 having a small coercive force can be used, the cost of the magnet 16 is reduced.

なお、本発明は以上に詳述した実施形態に限られるものではない。各部の具体的構成、例えば突極の対数、各突極に埋め込む磁石の個数や配置、短絡磁路及びフラックスバリアの数や形状等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The present invention is not limited to the embodiment described in detail above. The specific configuration of each part, such as the number of salient poles, the number and arrangement of magnets embedded in each salient pole, the number and shape of short-circuit magnetic paths and flux barriers, can be variously modified without departing from the spirit of the present invention. is there.

本発明の一実施形態の電動モータを示す端面図。The end view which shows the electric motor of one Embodiment of this invention. 同電動モータにおけるd軸磁束を示す図。The figure which shows the d-axis magnetic flux in the same electric motor. 同電動モータにおけるq軸磁束を示す図。The figure which shows the q-axis magnetic flux in the same electric motor.

符号の説明Explanation of symbols

1…回転子
11…突極
12、14…短絡磁路
13、15…フラックスバリア
16…磁石
2…固定子
DESCRIPTION OF SYMBOLS 1 ... Rotor 11 ... Salient pole 12, 14 ... Short circuit magnetic path 13, 15 ... Flux barrier 16 ... Magnet 2 ... Stator

Claims (5)

固定子巻線を有する固定子の内側に回転子を配してなる電動モータにおいて、
回転子が、回転軸心に対し直交する径方向に放射状に突出した複数の突極と、
各突極にそれぞれ埋め込まれ突極の突出方向と略平行な方向に磁束を発生する磁石と、
一の突極に埋め込まれた磁石の磁極とその突極に隣接する他の突極に埋め込まれた磁石の磁極とを短絡する短絡磁路と、
回転軸心と短絡磁路との間を遮るように設けられたフラックスバリアと
を具備することを特徴とする電動モータ。
In an electric motor in which a rotor is arranged inside a stator having a stator winding,
A plurality of salient poles in which the rotor projects radially in a radial direction perpendicular to the rotation axis;
A magnet that is embedded in each salient pole and generates a magnetic flux in a direction substantially parallel to the projecting direction of the salient pole;
A short-circuit magnetic path that short-circuits the magnetic pole of a magnet embedded in one salient pole and the magnetic pole of a magnet embedded in another salient pole adjacent to the salient pole;
An electric motor comprising: a flux barrier provided so as to block between a rotation axis and a short-circuit magnetic path.
各突極にそれぞれ複数の磁石が並列的に埋め込まれており、
一の突極における複数の磁石間の領域とその突極に隣接する他の突極における複数の磁石間の領域とを短絡することで両突極の先端同士を短絡している短絡磁路が存在する請求項1記載の電動モータ。
A plurality of magnets are embedded in parallel in each salient pole,
A short-circuit magnetic circuit that short-circuits the tips of both salient poles by short-circuiting the area between the plurality of magnets in one salient pole and the area between the magnets in another salient pole adjacent to the salient pole. The electric motor according to claim 1, which is present.
各突極における複数の磁石間にフラックスバリアが設けられている請求項2記載の電動モータ。 The electric motor according to claim 2, wherein a flux barrier is provided between a plurality of magnets in each salient pole. 各磁石の回転軸心周りの周方向の側面に隣接してフラックスバリアが設けられている請求項1、2または3記載の電動モータ。 4. The electric motor according to claim 1, wherein a flux barrier is provided adjacent to a circumferential side surface around the rotation axis of each magnet. 各磁石の径方向寸法が周方向寸法に比べて大きく設定されている請求項1、2、3または4記載の電動モータ。 The electric motor according to claim 1, 2, 3, or 4, wherein a radial dimension of each magnet is set larger than a circumferential dimension.
JP2007262567A 2007-10-05 2007-10-05 Electric motor Expired - Fee Related JP5089325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007262567A JP5089325B2 (en) 2007-10-05 2007-10-05 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007262567A JP5089325B2 (en) 2007-10-05 2007-10-05 Electric motor

Publications (2)

Publication Number Publication Date
JP2009095121A true JP2009095121A (en) 2009-04-30
JP5089325B2 JP5089325B2 (en) 2012-12-05

Family

ID=40666550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262567A Expired - Fee Related JP5089325B2 (en) 2007-10-05 2007-10-05 Electric motor

Country Status (1)

Country Link
JP (1) JP5089325B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273416A (en) * 2009-05-20 2010-12-02 Nissan Motor Co Ltd Rotor of embedded-magnet type synchronous motor
CN107428389A (en) * 2014-12-03 2017-12-01 丹尼尔·科希根斯 For the equipment of two-wheel car or the driver element of remodeling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157396A (en) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp Manufacturing method of rotor of rotary electric machine and rotor core
JP2002136073A (en) * 2000-10-23 2002-05-10 Fujitsu General Ltd Switched reluctance motor
JP2002359942A (en) * 2001-05-31 2002-12-13 Meidensha Corp Structure of rotor of permanent magnet type dynamo- electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157396A (en) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp Manufacturing method of rotor of rotary electric machine and rotor core
JP2002136073A (en) * 2000-10-23 2002-05-10 Fujitsu General Ltd Switched reluctance motor
JP2002359942A (en) * 2001-05-31 2002-12-13 Meidensha Corp Structure of rotor of permanent magnet type dynamo- electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273416A (en) * 2009-05-20 2010-12-02 Nissan Motor Co Ltd Rotor of embedded-magnet type synchronous motor
CN107428389A (en) * 2014-12-03 2017-12-01 丹尼尔·科希根斯 For the equipment of two-wheel car or the driver element of remodeling

Also Published As

Publication number Publication date
JP5089325B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP6007593B2 (en) Rotor, rotating electric machine provided with the same, and method of manufacturing rotor
US9252634B2 (en) Synchronous motor
JP4640422B2 (en) Landel rotor type motor
US9692265B2 (en) Variable magnetic flux-type rotary electric machine
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JP4619585B2 (en) Reluctance type rotating electrical machine
JP2006314152A (en) Permanent-magnet motor
JP7076188B2 (en) Variable magnetic force motor
JP2008289300A (en) Permanent-magnet rotary electric machine
JP2007274798A (en) Permanent-magnet rotating electric machine
JP2009131070A (en) Magnet type synchronous machine
JP2012029524A (en) Permanent-magnet rotating machine
JP5198178B2 (en) Permanent magnet type rotating electric machine and permanent magnet motor drive system
JP2019154232A (en) Rotor and dynamo-electric machine
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP4574297B2 (en) Rotating electrical machine rotor
JP2010279215A (en) Rotor of embedded magnet type synchronous motor
JP2013132124A (en) Core for field element
WO2013065275A1 (en) Rotor for motor and motor provided with same
JP3704881B2 (en) Synchronous rotating machine with permanent magnet and driving method thereof
JP2008283806A (en) Buried-magnet motor
JP2017055560A (en) Permanent magnet type rotary electric machine
JP5089325B2 (en) Electric motor
JP2011097783A (en) Rotor of rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees