JP2007274798A - Permanent-magnet rotating electric machine - Google Patents

Permanent-magnet rotating electric machine Download PDF

Info

Publication number
JP2007274798A
JP2007274798A JP2006096376A JP2006096376A JP2007274798A JP 2007274798 A JP2007274798 A JP 2007274798A JP 2006096376 A JP2006096376 A JP 2006096376A JP 2006096376 A JP2006096376 A JP 2006096376A JP 2007274798 A JP2007274798 A JP 2007274798A
Authority
JP
Japan
Prior art keywords
magnet
magnetic pole
type rotating
permanent magnet
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006096376A
Other languages
Japanese (ja)
Other versions
JP5259927B2 (en
Inventor
Yutaka Matsunobu
豊 松延
Takashi Yasuhara
隆 安原
Tokuaki Hino
徳昭 日野
Fumio Tajima
文男 田島
Masaji Kitamura
正司 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006096376A priority Critical patent/JP5259927B2/en
Publication of JP2007274798A publication Critical patent/JP2007274798A/en
Application granted granted Critical
Publication of JP5259927B2 publication Critical patent/JP5259927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent-magnet rotating electric machine that can satisfy output torque while reducing cogging torque and a torque ripple. <P>SOLUTION: The problem cam be solved such that: permanent magnets are arranged in multiple layers in the circumferential direction, a non-magnetic region is adjacent to at least the outside of the radial direction of each magnet that is positioned outside a magnet pole, the non-magnetic region is adjacent to at least the inside of the radial direction of each magnet that is positioned inside the magnetic pole, and each magnet positioned inside the magnetic pole is smaller in width and larger in thickness than each magnet positioned outside the magnet pole. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、永久磁石を回転子鉄心の周方向に間隔を置いて多層に埋め込んだ回転子と、分布巻きコイルを有する固定子鉄心とを備えた永久磁石式回転電機に関する。   The present invention relates to a permanent magnet type rotating electrical machine including a rotor in which permanent magnets are embedded in multiple layers at intervals in the circumferential direction of a rotor core, and a stator core having distributed winding coils.

電動車両、特に、電気自動車(EV)やハイブリット自動車(HEV)の駆動等に用いる電動機としては、小形軽量,高効率であることが望まれる。近年、高性能磁石材の開発によって、電動車両(特に、EVやHEV)の駆動用モータは、誘導電動機やリラクタンスモータよりも小型軽量,高効率にできる点に着目して永久磁石電動機が主流となっている。   As an electric motor used for driving an electric vehicle, in particular, an electric vehicle (EV) or a hybrid vehicle (HEV), it is desired that the electric motor be small and light and highly efficient. With the development of high-performance magnet materials in recent years, permanent magnet motors have become the mainstream, focusing on the fact that drive motors for electric vehicles (especially EVs and HEVs) can be made smaller, lighter and more efficient than induction motors and reluctance motors. It has become.

永久磁石電動機では、大電流を流さなくても大きな磁束量が発生でき、特に低速時で、高トルクの領域において、その特徴を発揮することができる。   In the permanent magnet motor, a large amount of magnetic flux can be generated without passing a large current, and the characteristics can be exhibited particularly in a high torque region at a low speed.

電動車両、特にEVやHEV駆動等に用いる電動機の特徴的な回転子構造は、鉄損発生,高電圧発生対策,永久磁石の保持等を考慮して積層珪素鋼板の中に永久磁石を埋め込む埋め込み型の永久磁石式回転電機が主流になりつつある。   The characteristic rotor structure of an electric vehicle, particularly an electric motor used for EV or HEV drive, etc. is embedded with a permanent magnet embedded in a laminated silicon steel sheet in consideration of iron loss generation, high voltage generation countermeasures, permanent magnet retention, etc. Permanent magnet type rotating electric machines of the type are becoming mainstream.

その反面、電動機の振動あるいは騒音の素となるトルクリップル及びコギングトルクが大きいといった問題がある。   On the other hand, there is a problem that torque ripple and cogging torque, which are sources of vibration or noise of the motor, are large.

特許文献1にはこの種トルクリップル及びコギングトルクを、回転子鉄心にV字状にして埋込んで設けた一対の永久磁石の外側に非磁路端部設け、周方向に隣り合う非磁路形成部の近接する一対の非磁路端部を、その周方向に隣り合う一対の非磁路端部に対して異なる形状に形成することにより低減することが記載されている。   In Patent Document 1, this kind of torque ripple and cogging torque is provided on the outer side of a pair of permanent magnets embedded in a rotor core in a V shape, and nonmagnetic paths adjacent to each other in the circumferential direction are provided. It is described that the pair of non-magnetic path end portions adjacent to each other in the formation portion are reduced by forming them in different shapes with respect to the pair of non-magnetic path end portions adjacent in the circumferential direction.

特開2005−312102号公報JP-A-2005-312102 特許第3172506号公報Japanese Patent No. 3172506

しかしながら、特許文献1ではトルクリップル及びコギングトルクの低減効果はあるものの、出力トルクに関しては考慮されていない。   However, although Patent Document 1 has an effect of reducing torque ripple and cogging torque, output torque is not considered.

本発明は、コギングトルク及びトルクリプルを低減した上で出力トルクも満足できる永久磁石式回転電機を提供する。   The present invention provides a permanent magnet type rotating electrical machine that can reduce the cogging torque and the torque ripple and satisfy the output torque.

ここに、本発明は、周方向に等間隔で、かつ軸心方向に向かって延びる複数の歯部に固定子巻き線を巻装した固定子鉄心と、この固定子に回転空隙をもって対向し、周方向に極性が交互に着磁された複数の永久磁石を埋設して磁極部を形成した回転子鉄心とを有する永久磁石式回転電機において、永久磁石は周方向に多層に配置され、磁極の外側に位置するそれぞれの磁石は少なくとも径方向外側に非磁性領域を隣接し、磁極の内側に位置するそれぞれの磁石は少なくとも径方向内側に非磁性領域を隣接し、磁極の内側に位置するそれぞれの磁石は磁極の外側に位置するそれぞれの磁石より幅を狭くし、厚さを厚くすることを特徴とする。   Here, the present invention is a stator core in which a stator winding is wound around a plurality of tooth portions extending in the circumferential direction at equal intervals in the circumferential direction, and opposed to the stator with a rotation gap, In a permanent magnet type rotating electrical machine having a rotor core in which a magnetic pole portion is formed by embedding a plurality of permanent magnets whose polarities are alternately magnetized in the circumferential direction, the permanent magnets are arranged in multiple layers in the circumferential direction. Each of the magnets located outside is adjacent to at least the radially outer side of the nonmagnetic region, and each of the magnets located inside the magnetic pole is adjacent to at least the radially inner side of the nonmagnetic region and located inside the magnetic pole. The magnet is characterized in that it is narrower and thicker than each magnet positioned outside the magnetic pole.

本発明において、磁極の外側に位置するそれぞれの磁石の径方向外側に非磁性領域を形成することが好ましい。   In the present invention, it is preferable to form a nonmagnetic region on the radially outer side of each magnet located outside the magnetic pole.

本発明において、磁極の外側に位置するそれぞれの磁石の径方向両側に非磁性領域を形成することが好ましい。   In the present invention, it is preferable to form nonmagnetic regions on both sides in the radial direction of each magnet located outside the magnetic pole.

本発明において、磁極の外側に位置するそれぞれの磁石の径方向両側に非磁性領域を形成し、磁極の内側に位置するそれぞれの磁石の径方向両側に非磁性領域を形成することが好ましい。   In the present invention, it is preferable to form nonmagnetic regions on both sides in the radial direction of each magnet positioned outside the magnetic pole, and to form nonmagnetic regions on both sides in the radial direction of each magnet positioned inside the magnetic pole.

本発明において、磁極の内,外側に位置するそれぞれの磁石を、非磁性領域を介してV字状に配置することが好ましい。   In this invention, it is preferable to arrange | position each magnet located inside and outside a magnetic pole in V shape via a nonmagnetic area | region.

本発明において、磁極の内,外側に位置するそれぞれの磁石を、非磁性領域を介してU字状に配置することが好ましい。   In this invention, it is preferable to arrange | position each magnet located inside and outside a magnetic pole in U shape via a nonmagnetic area | region.

本発明において、非磁性領域は、回転子鉄心を貫通する空孔であることが好ましい。   In the present invention, the nonmagnetic region is preferably a hole penetrating the rotor core.

本発明によれば、コギングトルク及びトルクリプルを低減した上で出力トルクも満足できる永久磁石式回転電機を提供できる。   According to the present invention, it is possible to provide a permanent magnet type rotating electrical machine that can satisfy the output torque while reducing the cogging torque and the torque ripple.

また、本発明によれば、低トルクリプルの永久磁石式回転電機得ることができ、低振動で低騒音の電動車両を得ることができる。   Further, according to the present invention, it is possible to obtain a permanent magnet type rotating electric machine with low torque ripple, and it is possible to obtain an electric vehicle with low vibration and low noise.

以下、図1〜図3及び図6を用いて、本発明の第1の実施形態による永久磁石式回転電機の構成について説明する。ここでは、一例として、回転電機は、固定子として分布巻の巻線構造で、回転子の極数は8極の永久磁石電動機の例で説明する。最初に、図1及び図2を用いて、本実施形態による永久磁石式回転電機の全体構成について説明する。   Hereinafter, the configuration of the permanent magnet type rotating electrical machine according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3 and FIG. 6. Here, as an example, a rotating electrical machine will be described as an example of a permanent magnet motor having a distributed winding structure as a stator and an 8-pole rotor pole. First, the overall configuration of the permanent magnet type rotating electrical machine according to the present embodiment will be described with reference to FIGS. 1 and 2.

なお、図面に用いられる符号で同一のものは同一部分を示し、同一機能を有すものとする。   The same reference numerals used in the drawings indicate the same parts and have the same functions.

図1,図2に示すように、永久磁石式回転電機1は、固定子2と、回転子3と、エンドブラケット4A,4Bとを備えている。前記固定子2は、磁性鋼板を積層して形成した固定子鉄心4と、固定子巻線5とを備えている。前記回転子3は、前記固定子鉄心同様磁性鋼板を積層して形成した回転子鉄心6と、その鉄心の回転中心に貫通して固着されたシャフト7とを備えている。また、前記回転子3は、シャフト7を介して、前記エンドブラケット4A,4Bに装着したベアリング8A,8Bにて回転可能に保持されている。   As shown in FIGS. 1 and 2, the permanent magnet type rotating electrical machine 1 includes a stator 2, a rotor 3, and end brackets 4A and 4B. The stator 2 includes a stator core 4 formed by laminating magnetic steel plates and a stator winding 5. The rotor 3 includes a rotor core 6 formed by laminating magnetic steel plates like the stator core, and a shaft 7 that penetrates and is fixed to the rotation center of the core. The rotor 3 is rotatably held by bearings 8A and 8B attached to the end brackets 4A and 4B via a shaft 7.

なお、固定子鉄心4の外周は放熱性を考慮して開放型になっているが、用途に応じては密閉型にして強制冷却するのもよい。   In addition, although the outer periphery of the stator core 4 is an open type in consideration of heat dissipation, it may be forcedly cooled by using a hermetic type depending on the application.

前記回転子3のシャフト7上には、回転子3の位置を検出する磁極位置検出器PSと、位置検出器Eとが備えられている。この磁極位置検出器PS,位置検出器Eによって検出された回転子位置に応じて固定子巻線5に3相の電流を加えることによって回転磁界を発生させる。この回転磁界と回転子3に装着された永久磁石9,10,11,12の間に発生する磁気的な吸引,反発力を発生させて、連続的な回転力を発生させるものである。ここで、電流の位相を適切に選択することによって低速大トルク領域では永久磁石9,10,11,12によるトルクと、補助突極61によるリラクタンストルクとの合成トルクが最大になるように制御される。   A magnetic pole position detector PS for detecting the position of the rotor 3 and a position detector E are provided on the shaft 7 of the rotor 3. A rotating magnetic field is generated by applying a three-phase current to the stator winding 5 in accordance with the rotor position detected by the magnetic pole position detector PS and the position detector E. Magnetic attraction and repulsive force generated between the rotating magnetic field and the permanent magnets 9, 10, 11, and 12 attached to the rotor 3 are generated to generate continuous rotating force. Here, by appropriately selecting the phase of the current, control is performed so that the combined torque of the torque by the permanent magnets 9, 10, 11, and 12 and the reluctance torque by the auxiliary salient pole 61 is maximized in the low speed and large torque region. The

一方、前記永久磁石の誘起電圧がモータの端子電圧(バッテリ電圧)以上となる高速領域では、電流のベクトルを進ませることによって永久磁石9,10,11,12の中心に固定子巻線電流による回転磁界が減磁力となって作用するように、弱め界磁制御する。これによって、効果的に永久磁石9,10,11,12の磁束を減少させることで、回転電機の鉄損を低減させて高効率の運転を可能にする。   On the other hand, in the high-speed region where the induced voltage of the permanent magnet is equal to or higher than the motor terminal voltage (battery voltage), the current vector is advanced so that the permanent magnet 9, 10, 11, 12 is centered by the stator winding current. Weak field control is performed so that the rotating magnetic field acts as a demagnetizing force. This effectively reduces the magnetic flux of the permanent magnets 9, 10, 11, and 12, thereby reducing the iron loss of the rotating electrical machine and enabling highly efficient operation.

次に、図2に示すように、固定子鉄心4は、円環状のヨーク部41と、鉄心歯部42とからなる。この鉄心歯部42を形成することによって、隣接する鉄心歯部42間には固定子巻線5を収納するスロット43を形成することになる。ここで、前記固定子巻線5には、一般の3相(U相,V相,W相)の分布巻の巻線が巻回されている。なお、前記鉄心歯部42の数は48個であり、スロット43の数も48個である。一相辺りの固定子歯部
(突極)42の数は、16個である。
Next, as shown in FIG. 2, the stator core 4 includes an annular yoke portion 41 and an iron core tooth portion 42. By forming the iron core tooth portion 42, a slot 43 for accommodating the stator winding 5 is formed between the adjacent iron core tooth portions 42. Here, the stator winding 5 is wound with a general three-phase (U-phase, V-phase, W-phase) distributed winding. The number of the iron core teeth 42 is 48, and the number of the slots 43 is 48. The number of stator tooth portions (saliency poles) 42 per phase is sixteen.

前記回転子鉄心6は、図2,図3から分かるように周方向に等間隔で、かつV字状で周方向に多層に配置される前記永久磁石9,10,11,12の挿入孔9A,10A,11A,12Aを有している。回転子3の極数は、8極であり、前記挿入孔9A,10Aは一磁極あたり4個で32個備えている。例えば、4個の挿入孔9A,10Aに挿入された永久磁石9,10は、同極となり、これにより一極を構成する。例えば、永久磁石9,10の極性をS極とすると、これに対して周方向に隣接する永久磁石11,12の極性はN極となっており、周方向に交互の極性となっている。前期挿入孔9A,10A,11A,12Aは、回転子鉄心6の半径方向に対して、線対称にとなるように配置されていて、対向する外側の挿入孔9A,11A及び内側の挿入孔10A,12Aはそれぞれ外周面に向かってV字状に40度の開口角を持って配置されている。したがって、一磁極当たり4個の永久磁石9,10が配置されることになるため、一磁極当たりの磁束密度を高くできる。   As shown in FIGS. 2 and 3, the rotor core 6 has insertion holes 9A for the permanent magnets 9, 10, 11, and 12 arranged at equal intervals in the circumferential direction and in a V shape in multiple layers in the circumferential direction. , 10A, 11A, 12A. The number of poles of the rotor 3 is 8 and the insertion holes 9A and 10A are provided with 4 pieces per pole and 32 pieces. For example, the permanent magnets 9 and 10 inserted into the four insertion holes 9A and 10A have the same polarity, thereby constituting one pole. For example, when the polarities of the permanent magnets 9 and 10 are S poles, the polarities of the permanent magnets 11 and 12 adjacent in the circumferential direction are N poles, and the polarities are alternating in the circumferential direction. The first insertion holes 9A, 10A, 11A, and 12A are arranged so as to be line-symmetric with respect to the radial direction of the rotor core 6, and are opposed to the outer insertion holes 9A and 11A and the inner insertion holes 10A. 12A are arranged in a V shape with an opening angle of 40 degrees toward the outer peripheral surface. Therefore, since four permanent magnets 9 and 10 are disposed per magnetic pole, the magnetic flux density per magnetic pole can be increased.

さらに、前記磁石の挿入孔9A,10A,11A,12Aは、永久磁石9,10の外周部にそれぞれ磁極片62,63,64,65を形成することになり、永久磁石9,10,11,12が発生する磁束を回転子3と固定子2の間にある回転空隙を介して固定子2側に流れて磁気回路を形成する。   Further, the magnet insertion holes 9A, 10A, 11A, and 12A form magnetic pole pieces 62, 63, 64, and 65 on the outer peripheral portions of the permanent magnets 9 and 10, respectively. A magnetic circuit is formed by causing the magnetic flux generated by the magnetic flux 12 to flow toward the stator 2 through a rotation gap between the rotor 3 and the stator 2.

ここで、前記永久磁石9,10,11,12の形状及びその配置について述べる。   Here, the shape and arrangement of the permanent magnets 9, 10, 11, 12 will be described.

前述したとおり磁極毎に周方向に等間隔に配置される永久磁石9,10,11,12は回転子鉄心6を軸方向に貫通して、多層V字状に形成されたそれぞれの挿入孔9A,10A,11A,12Aに挿入され接着剤等により固着されている。   As described above, the permanent magnets 9, 10, 11, and 12 arranged at equal intervals in the circumferential direction for each magnetic pole penetrate the rotor core 6 in the axial direction, and each insertion hole 9A is formed in a multilayer V shape. , 10A, 11A, 12A and fixed by an adhesive or the like.

ここで一極を構成する永久磁石の配置構造は、図3を用いて説明するならば、磁極中心に対して線対称で、かつV字状に配置された2層構造の永久磁石の外側磁石9は、ほぼ
80度の開角度で、回転子鉄心6の外周部周囲に位置している。そして該磁石の半径方向両端及び磁石の内側先端間には漏洩磁束を阻止するための磁気空間9b,9c,9dを形成している。なお、上記空間9b,9cは他の空間9d1,0dと共に通常積層鋼板をパンチングプレスで打ち抜くため磁石挿入孔9Aの形成と同時に行い、磁石が周方向及び半径方向に移動できないような寸法形状にしてしっくり納められている。
Here, the arrangement structure of the permanent magnets constituting one pole will be described with reference to FIG. 3. The outer magnets of the two-layer structure permanent magnets arranged in a line-shape and V-shape with respect to the magnetic pole center. 9 is an opening angle of approximately 80 degrees and is located around the outer periphery of the rotor core 6. Magnetic spaces 9b, 9c, and 9d for preventing leakage magnetic flux are formed between both ends of the magnet in the radial direction and the inner end of the magnet. The above-mentioned spaces 9b and 9c are formed with the other spaces 9d1 and 0d together with the formation of the magnet insertion hole 9A in order to punch out a laminated steel sheet with a punching press, and are dimensioned so that the magnet cannot move in the circumferential direction and the radial direction. It fits perfectly.

次に内側に位置する永久磁石10は、前記磁石同様に対を成して内側磁石10を形成していて、前記外側磁石と平行に配置されている。その磁石は周方向から見て予め台形状に打ち抜いた磁石挿入孔10Aに装着されている。従って断面四角状の磁石を装着した状態では前記磁石同様に半径方向両端に磁気空間10b,10cが形成される。10dは磁極の中心で回転子鉄心6の外周部に形成される磁気空間で有効磁束の漏洩を阻止するものである。   Next, the permanent magnets 10 located on the inner side are paired like the magnets to form the inner magnets 10 and are arranged in parallel with the outer magnets. The magnet is mounted in a magnet insertion hole 10A previously punched into a trapezoidal shape when viewed from the circumferential direction. Therefore, in a state where a magnet having a square cross section is mounted, magnetic spaces 10b and 10c are formed at both ends in the radial direction as in the case of the magnet. 10d is a magnetic space formed in the outer periphery of the rotor core 6 at the center of the magnetic pole to prevent leakage of effective magnetic flux.

前記内側磁石は、電動機の回転トルクを向上させるために設けたものであるが、磁石電動機特有の問題である弱め界磁時に流れるd軸電流が流れ、内側磁石に減磁作用が働くことを考慮しなければならない。従って、本構造では減磁作用の影響が少ない外側磁石より起磁力の大きな磁石を用いている。   The inner magnet is provided to improve the rotational torque of the electric motor, but it takes into account that the d-axis current that flows during field weakening, which is a problem specific to the magnet electric motor, flows and the demagnetizing action acts on the inner magnet. Must. Therefore, in this structure, a magnet having a larger magnetomotive force than that of the outer magnet that is less affected by the demagnetizing action is used.

具体的一実施例では、外側磁石9の周方向厚さが4mmで有るのに対し、内側磁石10の周方向厚さは5.5mm としてある。磁石厚さは減磁力に比例しているため、内側磁石10は外側磁石9よりも1.375倍 、減磁に対して強い構成と言える。このような構成をとることによって、弱め界磁時に流れるd軸電流によって内側磁石10に減磁作用が働いてもその内側磁石10の減磁体力が外側磁石9に対して1.375倍 と大きく、減磁に対して強いモータとする事が出来る。   In a specific embodiment, the outer magnet 9 has a circumferential thickness of 4 mm, whereas the inner magnet 10 has a circumferential thickness of 5.5 mm. Since the magnet thickness is proportional to the demagnetizing force, it can be said that the inner magnet 10 is 1.375 times stronger than the outer magnet 9 and is strong against demagnetization. By adopting such a configuration, the demagnetizing force of the inner magnet 10 is 1.375 times larger than that of the outer magnet 9 even if the demagnetizing action is exerted on the inner magnet 10 due to the d-axis current that flows during field weakening. The motor can be strong against demagnetization.

この状況は図6に示した出力トルク特性図から見ても明らかである。すなわち、図6は本願の先行技術として上げた単層磁石の構成を従来技術とした場合の出力特性比較図で、図3に示した範囲(電気回転角0〜180度)を示している。特に内側磁石10を設けたことにより電気回転角60〜120度の範囲での出力向上が顕著である。   This situation is also apparent from the output torque characteristic diagram shown in FIG. That is, FIG. 6 is a comparison diagram of output characteristics when the configuration of the single-layer magnet raised as the prior art of the present application is the conventional technology, and shows the range shown in FIG. 3 (electric rotation angle 0 to 180 degrees). In particular, by providing the inner magnet 10, the output improvement in the range of electrical rotation angles of 60 to 120 degrees is remarkable.

また、現状の体格のまま、内側磁石10を外側磁石9に並設すれば外側磁石9を内側磁石10よりも0.73倍薄くする事が出来るのでその分磁石量を低減できる利点がある。   Further, if the inner magnet 10 is arranged in parallel with the outer magnet 9 with the current physique, the outer magnet 9 can be made 0.73 times thinner than the inner magnet 10, so there is an advantage that the amount of magnets can be reduced accordingly.

図4は他の実施例を示すもので、内側磁石11を台形の磁石挿入打ち抜き孔11Aに合わせて埋設したもので、前記実施例に加えて内側磁石11を増量できるので一段と出力を向上させることができる。ここで用いられる磁石は一般に金型を用いて成形されるのが一般的であるため、その形状は任意で、自由で有り生産性を損ねることはない。   FIG. 4 shows another embodiment, in which the inner magnet 11 is embedded in accordance with the trapezoidal magnet insertion punching hole 11A, and the inner magnet 11 can be increased in addition to the embodiment, so that the output is further improved. Can do. Since the magnet used here is generally formed using a mold, its shape is arbitrary, and it is free and does not impair productivity.

図5は更に他の実施例を示すもので、内側磁石12の磁石挿入打ち抜き孔12Aの角を曲面Rとし、その形状に合わせて内側磁石12を埋設したもので、前記同様出力の増加が図れる。また、回転子の回転時に角部に集中して生じる磁石の遠心応力を角部自身の曲面Rに沿って分散させることが出来、高速回転時の遠心応力集中を簡単に避けることが出来る。   FIG. 5 shows still another embodiment, in which the corner of the magnet insertion punching hole 12A of the inner magnet 12 is a curved surface R, and the inner magnet 12 is embedded in accordance with the shape, so that the output can be increased in the same manner as described above. . Further, the centrifugal stress of the magnet that is concentrated on the corner when the rotor rotates can be dispersed along the curved surface R of the corner itself, so that the centrifugal stress concentration at the time of high-speed rotation can be easily avoided.

このような構成をとることによって10000rpm 以上の高速回転が可能となり、一方上記で述べた本発明の性能的特徴は同時に得られる効果がある。   By adopting such a configuration, it is possible to rotate at a high speed of 10,000 rpm or more, while the performance characteristics of the present invention described above are obtained at the same time.

なお、上記実施例では,いずれもV字状で2層構造に磁石を配置したものを示したが,必要に応じて2層以上にすることも容易である。また、U字状の配列でも同等の効果が得られる。   In the above-described embodiments, the V-shaped magnets are arranged in a two-layer structure. However, it is easy to make two or more layers as necessary. Also, the same effect can be obtained with a U-shaped arrangement.

本発明の第1実施形態による永久磁石式回転電機の要部縦断側面図である。It is a principal part vertical side view of the permanent-magnet-type rotary electric machine by 1st Embodiment of this invention. 図1におけるA−A矢視断面図である。It is AA arrow sectional drawing in FIG. 図2における一部拡大断面図である。It is a partially expanded sectional view in FIG. 本発明の第2実施形態による永久磁石式回転電機の要部横断正面図である。It is a principal part cross-sectional front view of the permanent magnet type rotary electric machine by 2nd Embodiment of this invention. 本発明の第3実施形態による永久磁石式回転電機の要部横断正面図である。It is a principal part crossing front view of the permanent-magnet-type rotary electric machine by 3rd Embodiment of this invention. 図1の永久磁石式回転電機の出力トルク特性図である。FIG. 2 is an output torque characteristic diagram of the permanent magnet type rotating electric machine of FIG. 1.

符号の説明Explanation of symbols

3…回転子、4…固定子鉄心、5…固定子巻線、6…回転子鉄心、9,10,11,
12…永久磁石、9A,10A,11A,12A…磁石の挿入孔、9b,9c,10b,10c…非磁性領域、9d,10d…磁気空隙、61…補助突極。

3 ... Rotor, 4 ... Stator core, 5 ... Stator winding, 6 ... Rotor core, 9, 10, 11,
DESCRIPTION OF SYMBOLS 12 ... Permanent magnet, 9A, 10A, 11A, 12A ... Magnet insertion hole, 9b, 9c, 10b, 10c ... Nonmagnetic area | region, 9d, 10d ... Magnetic space | gap, 61 ... Auxiliary salient pole.

Claims (7)

周方向に等間隔で、かつ軸心方向に向かって延びる複数の歯部に固定子巻線を巻装した固定子鉄心と、
該固定子鉄心に回転空隙をもって対向し、周方向に極性が交互に着磁された複数の永久磁石を埋設して磁極部を形成した回転子鉄心とを有し、
前記永久磁石は周方向に多層に配置され、
磁極の外側に位置するそれぞれの磁石は少なくとも径方向外側に非磁性領域を隣接し、
磁極の内側に位置するそれぞれの磁石は少なくとも径方向内側に非磁性領域を隣接し、
前記磁極の内側に位置するそれぞれの磁石は前記磁極の外側に位置するそれぞれの磁石より幅を狭くし、厚さを厚くしていることを特徴とする永久磁石式回転電機。
A stator core in which a stator winding is wound around a plurality of teeth extending at equal intervals in the circumferential direction and in the axial direction;
A rotor core that is opposed to the stator core with a rotation gap and has a magnetic pole portion formed by embedding a plurality of permanent magnets whose polarities are alternately magnetized in the circumferential direction,
The permanent magnets are arranged in multiple layers in the circumferential direction,
Each magnet located outside the magnetic pole is adjacent to a nonmagnetic region at least radially outward,
Each magnet located inside the magnetic pole is adjacent to a nonmagnetic region at least radially inward,
A permanent magnet type rotating electrical machine characterized in that each magnet located inside the magnetic pole is narrower and thicker than each magnet located outside the magnetic pole.
請求項1に記載の永久磁石式回転電機において、
磁極の外側に位置するそれぞれの磁石はその径方向外側に非磁性領域を形成していることを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to claim 1,
A permanent magnet type rotating electrical machine characterized in that each magnet located outside a magnetic pole has a nonmagnetic region formed outside in the radial direction.
請求項1に記載の永久磁石式回転電機において、
磁極の外側に位置するそれぞれの磁石はその径方向両側に非磁性領域を形成していることを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to claim 1,
A permanent magnet type rotating electric machine characterized in that each magnet located outside a magnetic pole has a non-magnetic region on both radial sides thereof.
請求項1に記載の永久磁石式回転電機において、
磁極の外側に位置するそれぞれの磁石はその径方向両側に非磁性領域を形成し、磁極の内側に位置するそれぞれの磁石も径方向両側に非磁性領域を形成していることを特徴とした永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to claim 1,
Each magnet located outside the magnetic pole has a non-magnetic region on both sides in the radial direction, and each magnet located inside the magnetic pole also has a non-magnetic region on both sides in the radial direction. Magnet rotating electric machine.
請求項1乃至4のいずれかに記載の永久磁石式回転電機において、
磁極の内,外側に位置するそれぞれの磁石は非磁性領域を介してV字状に配置されていることを特徴とした永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to any one of claims 1 to 4,
A permanent magnet type rotating electrical machine characterized in that each magnet located on the outside of the magnetic pole is arranged in a V shape through a non-magnetic region.
請求項1乃至4のいずれかに記載の永久磁石式回転電機において、
磁極の内,外側に位置するそれぞれの磁石は非磁性領域を介してU字状に配置されていることを特徴とした永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to any one of claims 1 to 4,
A permanent magnet type rotating electrical machine characterized in that each magnet located on the outside of the magnetic pole is arranged in a U shape through a non-magnetic region.
請求項1乃至6のいずれかに記載の永久磁石式回転電機において、
非磁性領域は回転子鉄心を貫通する空孔であることを特徴とした永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to any one of claims 1 to 6,
A permanent magnet type rotating electrical machine, wherein the non-magnetic region is a hole penetrating the rotor core.
JP2006096376A 2006-03-31 2006-03-31 Permanent magnet rotating electric machine Active JP5259927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096376A JP5259927B2 (en) 2006-03-31 2006-03-31 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096376A JP5259927B2 (en) 2006-03-31 2006-03-31 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2007274798A true JP2007274798A (en) 2007-10-18
JP5259927B2 JP5259927B2 (en) 2013-08-07

Family

ID=38677016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096376A Active JP5259927B2 (en) 2006-03-31 2006-03-31 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP5259927B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154676A (en) * 2008-12-25 2010-07-08 Toshiba Carrier Corp Permanent magnet motor and hermetic compressor
DE102010010434A1 (en) * 2010-02-26 2011-09-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor for electric machine i.e. permanent magnet-excited electric machine, has pair of V-shaped recesses provided in such manner that curved outer contours of loaf magnets runs parallel to external periphery of rotor body
CN102223040A (en) * 2010-04-14 2011-10-19 富士电机株式会社 Permanent magnet type rotating motor
JP2012161207A (en) * 2011-02-02 2012-08-23 Toshiba Corp Permanent magnet type rotary electrical machinery
JP2012161227A (en) * 2011-02-03 2012-08-23 Toyota Motor Corp Rotor for rotary electric machine
WO2012141085A1 (en) * 2011-04-15 2012-10-18 三菱重工業株式会社 Electric motor and electric compressor using same
WO2017190090A1 (en) * 2016-04-28 2017-11-02 Faraday&Future Inc. Ipm machine with specialized rotor for automotive electric vehicles
EP3261220A1 (en) * 2016-06-23 2017-12-27 Volvo Car Corporation Electric machine
JP2018046703A (en) * 2016-09-16 2018-03-22 富士電機株式会社 Permanent magnet rotary electric machine and manufacturing method thereof
JP2018082540A (en) * 2016-11-15 2018-05-24 トヨタ自動車株式会社 Rotary electric machine
US11855490B2 (en) 2021-04-01 2023-12-26 Mitsubishi Electric Corporation Rotary electric machine
JP7410703B2 (en) 2018-12-17 2024-01-10 ヴァレオ ジーメンス エーアオトモーティヴェ ゲルマニー ゲーエムベーハー Rotor seat, rotor, electrical equipment, and rotor manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737354B1 (en) 2019-02-07 2020-08-05 株式会社明電舎 Rotor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061280A (en) * 2001-08-10 2003-02-28 Yamaha Motor Co Ltd Rotor for motor
JP2005198487A (en) * 2003-12-30 2005-07-21 Hyundai Motor Co Ltd Rotor structure of multilayer embedded permanent-magnet motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061280A (en) * 2001-08-10 2003-02-28 Yamaha Motor Co Ltd Rotor for motor
JP2005198487A (en) * 2003-12-30 2005-07-21 Hyundai Motor Co Ltd Rotor structure of multilayer embedded permanent-magnet motor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154676A (en) * 2008-12-25 2010-07-08 Toshiba Carrier Corp Permanent magnet motor and hermetic compressor
DE102010010434A1 (en) * 2010-02-26 2011-09-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor for electric machine i.e. permanent magnet-excited electric machine, has pair of V-shaped recesses provided in such manner that curved outer contours of loaf magnets runs parallel to external periphery of rotor body
CN102223040A (en) * 2010-04-14 2011-10-19 富士电机株式会社 Permanent magnet type rotating motor
JP2011223836A (en) * 2010-04-14 2011-11-04 Fuji Electric Co Ltd Permanent magnet type revolving armature
US8994240B2 (en) 2011-02-02 2015-03-31 Kabushiki Kaisha Toshiba Permanent magnet type rotating electrical machine
JP2012161207A (en) * 2011-02-02 2012-08-23 Toshiba Corp Permanent magnet type rotary electrical machinery
US9231445B2 (en) 2011-02-03 2016-01-05 Toyota Jidosha Kabushiki Kaisha Rotor for the electric machine
CN103339831A (en) * 2011-02-03 2013-10-02 丰田自动车株式会社 Rotor for electric machine
JP2012161227A (en) * 2011-02-03 2012-08-23 Toyota Motor Corp Rotor for rotary electric machine
CN103404001A (en) * 2011-04-15 2013-11-20 三菱重工汽车空调系统株式会社 Electric motor and electric compressor using same
WO2012141085A1 (en) * 2011-04-15 2012-10-18 三菱重工業株式会社 Electric motor and electric compressor using same
US9369012B2 (en) 2011-04-15 2016-06-14 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Electric motor and electric compressor using the same
WO2017190090A1 (en) * 2016-04-28 2017-11-02 Faraday&Future Inc. Ipm machine with specialized rotor for automotive electric vehicles
EP3261220A1 (en) * 2016-06-23 2017-12-27 Volvo Car Corporation Electric machine
CN107546887A (en) * 2016-06-23 2018-01-05 沃尔沃汽车公司 Motor
US10270324B2 (en) 2016-06-23 2019-04-23 Volvo Car Corporation Electric machine
CN107546887B (en) * 2016-06-23 2020-11-17 沃尔沃汽车公司 Electric machine
JP2018046703A (en) * 2016-09-16 2018-03-22 富士電機株式会社 Permanent magnet rotary electric machine and manufacturing method thereof
JP2018082540A (en) * 2016-11-15 2018-05-24 トヨタ自動車株式会社 Rotary electric machine
US10530205B2 (en) 2016-11-15 2020-01-07 Toyota Jidosha Kabushiki Kaisha Rotary electric machine
JP7410703B2 (en) 2018-12-17 2024-01-10 ヴァレオ ジーメンス エーアオトモーティヴェ ゲルマニー ゲーエムベーハー Rotor seat, rotor, electrical equipment, and rotor manufacturing method
US11855490B2 (en) 2021-04-01 2023-12-26 Mitsubishi Electric Corporation Rotary electric machine

Also Published As

Publication number Publication date
JP5259927B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5259927B2 (en) Permanent magnet rotating electric machine
JP6161793B2 (en) Permanent magnet type rotating electrical machine and manufacturing method thereof
US10020698B2 (en) Multi-gap type rotary electric machine including inner and outer stators and a rotor with inner and outer magnets
JP4640422B2 (en) Landel rotor type motor
US9407116B2 (en) Multi-gap rotary machine with dual stator and one rotor with dual permanent magnets and salient poles with dimensions and ratios for torque maximization
JP2008206308A (en) Permanent-magnet rotating electric machine
JP7076188B2 (en) Variable magnetic force motor
JP7293371B2 (en) Rotor of rotary electric machine
JP2009131070A (en) Magnet type synchronous machine
US11837919B2 (en) Rotary electric machine
WO2016060232A1 (en) Double stator-type rotary machine
JP2000333389A (en) Permanent magnet motor
JP2001095182A (en) Permanent magent electric motor
JP2014147254A (en) Rotor of permanent magnet dynamo-electric machine, and permanent magnet dynamo-electric machine
JP2001333553A (en) Permanent magnet motor
JPH1189133A (en) Permanent magnet type motor
JP2006081377A (en) Rotor of rotary electric machine
JP2003088019A (en) Permanent-magnet motor
JP2000316241A (en) Motor with embedded permanent magnet
JP2000245087A (en) Permanent magnet motor
JP2001086673A (en) Permanent magnet motor
JP3832540B2 (en) Permanent magnet motor
JP2006081338A (en) Rotor of rotary electric machine
JP4080273B2 (en) Permanent magnet embedded motor
JPH11136892A (en) Permanent magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5259927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250