JP2009093858A - Manufacturing method of positive electrode material for lithium secondary battery, and positive electrode material for lithium secondary battery using it - Google Patents

Manufacturing method of positive electrode material for lithium secondary battery, and positive electrode material for lithium secondary battery using it Download PDF

Info

Publication number
JP2009093858A
JP2009093858A JP2007261741A JP2007261741A JP2009093858A JP 2009093858 A JP2009093858 A JP 2009093858A JP 2007261741 A JP2007261741 A JP 2007261741A JP 2007261741 A JP2007261741 A JP 2007261741A JP 2009093858 A JP2009093858 A JP 2009093858A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium secondary
electrode material
secondary battery
sieving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007261741A
Other languages
Japanese (ja)
Inventor
Shinji Arimoto
真司 有元
Hidekazu Hiratsuka
秀和 平塚
Takahiro Okuyama
高弘 奥山
Takahiro Sakamoto
隆宏 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007261741A priority Critical patent/JP2009093858A/en
Publication of JP2009093858A publication Critical patent/JP2009093858A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode material, for a lithium secondary battery, capable of restraining generation of stripes on a positive electrode plate and fall of battery voltage. <P>SOLUTION: Powder of the positive electrode material for a lithium secondary battery obtained by mixing, baking and pulverizing raw materials is made to pass a sieving device for detecting that a sieving net is broken, by comparing it with a reference value preset by AE signals obtained from an acoustic emission sensor mounted on a sieving device main body carrying out selection of powder by the particle size with the sieving net. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウム二次電池用正極材料の製造方法およびそれを用いたリチウム二次電池用正極材料に関し、特に粉体の粒子径による選別のためのふるい分け装置に関する。   The present invention relates to a method for producing a positive electrode material for a lithium secondary battery and a positive electrode material for a lithium secondary battery using the same, and more particularly to a sieving apparatus for sorting based on the particle diameter of a powder.

リチウム二次電池用正極材料は、一般的に原材料であるリチウム化合物とニッケル、マンガン、コバルトなどの酸化物や水酸化物などの化合物を粉体で混合し、混合粉を容器に入れ、700〜1100℃で焼成する。焼成後、焼結した材料を粉砕機で粉砕し、粉体にするが、粉砕においては、一部に粒子径の大きな粒子が残ってしまう。   A positive electrode material for a lithium secondary battery is generally prepared by mixing a lithium compound, which is a raw material, and a compound such as an oxide or hydroxide, such as nickel, manganese, cobalt, and the like, and placing the mixed powder in a container. Bake at 1100 ° C. After firing, the sintered material is pulverized with a pulverizer to form a powder. In the pulverization, particles having a large particle diameter remain in part.

この大きな粒子は、正極板作製の塗着工程において塗着面にスジを発生させる原因となる。また、大きな粒子は、製造装置や原材料から混入した金属系の異物であることが多く、正極板に混入すると、電池の充放電時に溶出し、負極板表面に析出、堆積し、最終的には正負極が短絡し、電圧降下が発生する。   These large particles cause streaks on the coated surface in the coating process for producing the positive electrode plate. In addition, large particles are often metallic foreign matter mixed from manufacturing equipment and raw materials, and when mixed into the positive electrode plate, it elutes during charge / discharge of the battery, deposits and deposits on the negative electrode plate surface, and finally The positive and negative electrodes are short-circuited, causing a voltage drop.

そのため、粉砕後の材料を粒子径による選別を行うため網を使用したふるい分け装置に通過させ大きな粒子を取り除く必要がある。   For this reason, it is necessary to remove the large particles by passing the pulverized material through a sieving apparatus using a net in order to sort by the particle size.

しかしながら、前記ふるい分け装置の網は摩耗などにより破れることがあり、粒子径の大きな粒子が混入する可能性があるため、網の破れを検出する方法が必要とされていた。従来、ふるい分け装置等の網の破れを検出する方法としては、以下示すような種々の方法が用いられてきた。   However, since the screen of the sieving device may be broken due to wear or the like, and particles having a large particle size may be mixed in, a method for detecting the breakage of the screen is required. Conventionally, various methods as described below have been used as methods for detecting breakage of a network such as a screening device.

第1の方法として、人間が、目視等により、ふるい分け機の稼働中に、網の上を流れる粉体の状態を監視する方法がある。   As a first method, there is a method in which a human visually monitors the state of powder flowing on a net while the sieving machine is in operation.

第2の方法として、人間が、ふるい分け装置の停止中に目視により網を検査する方法がある。   As a second method, there is a method in which a human visually inspects the net while the sieving device is stopped.

第3の方法として、人間が、一定時間毎に網下の粉体を基準とするふるいに通し、通らない粉体等があれば、網が破れたと判断する方法がある。   As a third method, there is a method in which a human passes through a screen based on the powder under the net at regular intervals and determines that the net is broken if there is powder that does not pass through.

第1の方法は、人手を要すること、人間が目視することにより見落としが生ずるために確実性に欠けること等の欠点がある。   The first method is disadvantageous in that it requires manpower and lack of certainty because it is overlooked by human eyes.

第2の方法は、運転中の検出が不可能である欠点がある。   The second method has a drawback that it cannot be detected during operation.

第3の方法は、人手を要すること、人間が目視することにより見落としが生ずるために確実性に欠ける欠点がある。   The third method is disadvantageous in that it requires manpower and lacks certainty because it is overlooked by human eyes.

これらの課題を解決するために、例えば特許文献1においては、網を通過した岩石、鉱石、その他の物品を、撮影装置を用いて撮影し、その撮影装置からの画像信号を画像処理装置に送り、この画像処理装置にて個々の岩石、鉱石、その他の物品の寸法を計測し、かく得られた計測値と予め設定しておいた設定値とを演算装置により比較し、設定値よりも計測値が大きいときに、網が破れたとして警報出力を発するとしている。   In order to solve these problems, for example, in Patent Document 1, rocks, ores, and other articles that have passed through a net are photographed using a photographing device, and an image signal from the photographing device is sent to the image processing device. Measure the size of individual rocks, ores, and other articles with this image processing device, compare the measured values obtained in this way with preset values using an arithmetic unit, and measure from the set values. When the value is large, an alarm output is issued because the net is broken.

また、特許文献2においては、所定大きさの網目のふるいにより粉粒体をふるい分けするふるい分け装置がふるい分けした後のふるいを通過した粉粒体の一部を導入する粉粒体導入工程と、このふるい分け装置が使用しているふるいと同じ大きさの網目を有した試験用ふるいにより、導入した粉粒体をふるい分けるふるい分け工程と、このふるい分け工程でふるい分けられて試験用ふるいを通過した通過粉粒体の重量を計量する第1計量工程と、ふるい分け後の試験用ふるいを反転し、試験用ふるいに残留していた残留粉粒体の重量を計量する第2計量工程を持ち、第1計量工程で計量された計量値と、第2計量工程で計量された計量値との割合からふるい分け装置のふるいの網破れを自動的に判別するとしている。
特開平5−172525号公報 特開平9−1076号公報
Moreover, in patent document 2, the granular material introduction | transduction process which introduce | transduces a part of granular material which passed the sieve after the sieving apparatus which sifts a granular material with the sieve of the mesh | network of a predetermined | prescribed magnitude | size, and this The sieving step of sieving the introduced granular material by the test sieve having the same size mesh as the sieve used by the sieving device, and the passing particles passed through the test sieve by sieving in this sieving step The first measuring step has a first measuring step for measuring the weight of the body, and a second measuring step for measuring the weight of the residual granular material remaining on the test sieve by inverting the sieve for testing after sieving. The screen breakage of the sieving device is automatically determined from the ratio between the measured value measured in step 2 and the measured value measured in the second measuring step.
JP-A-5-172525 Japanese Patent Laid-Open No. 9-1076

しかしながら、特許文献1に示されるような従来の方法では、比較的粒の大きな岩石や鉱石のようなものには使用できるが、撮影装置の分解能、粒子が重なりあってしまうなどの理由により、粉体のような粒子の小さなものでは使用できないという課題を有していた。   However, in the conventional method as shown in Patent Document 1, it can be used for rocks and ores with relatively large grains, but due to the resolution of the photographing device and the overlapping of particles, There was a problem that small particles such as the body could not be used.

また、特許文献2に示されるような従来の方法では、試験ふるいの網の破れを確認するために、装置を停止する必要が発生すること、また、検出装置が複雑になるという課題を有していた。   Moreover, in the conventional method as shown in Patent Document 2, there is a problem that it is necessary to stop the apparatus in order to confirm the breaking of the screen of the test sieve, and the detection apparatus becomes complicated. It was.

本発明は、従来のふるい分け装置等の網の破れを検出する前述の各方法における欠点を解消し、目視では確認が困難な小さな網破れを、即時的に検出することが可能なふるい分け装置を通過させることにより、粒子径の大きな粒子を確実に除去されるリチウム二次電池用正極材料の製造方法およびそれを用いたリチウム二次電池用正極材料を提供することを目的とする。   The present invention eliminates the drawbacks of the above-described methods for detecting breakage of a net, such as a conventional sieving apparatus, and passes through a sieving apparatus that can immediately detect small breakage that is difficult to visually confirm. It is an object of the present invention to provide a method for producing a positive electrode material for a lithium secondary battery that reliably removes particles having a large particle diameter, and a positive electrode material for a lithium secondary battery using the same.

前記従来の課題を解決するために、本発明のリチウム二次電池用正極材料の製造方法におけるふるい分け装置には以下の網破れ検出方法を備え、網が正常な場合のみ選別することにより確実に粒子径の大きな粒子を除去することが可能になる。   In order to solve the above-mentioned conventional problems, the sieving apparatus in the method for producing a positive electrode material for a lithium secondary battery according to the present invention is equipped with the following network breakage detection method, and the particles are reliably separated by sorting only when the net is normal. It becomes possible to remove particles having a large diameter.

ふるいの網により粉体の粒子径による選別を行うふるい分け装置本体に、アコースティックエミッション(AE)センサーを取り付け、それから得られるAE信号があらかじめ設定した基準値と比較することにより、前記網が破れたことを検出するものであり、AEセンサーから得られるAE信号を作業時に監視し、平常時と網破れ時のレベルの違いを利用することにより、網破れを検出するというものである。   An acoustic emission (AE) sensor is attached to the main body of the sieving device that performs selection based on the particle size of the powder using a sieve mesh, and the mesh is broken by comparing the AE signal obtained therefrom with a preset reference value. The AE signal obtained from the AE sensor is monitored at the time of working, and the network breakage is detected by utilizing the difference in level between the normal time and the network breakage.

本発明に使用したふるい分け装置において、前記網が金属製網であると、網が破れた時に、網の破断部分同士が接触することにより発生するAE信号が大きくなり、網の破れの検出が行いやすくなるため、好ましい。   In the sieving apparatus used in the present invention, if the net is a metal net, when the net is broken, an AE signal generated by contact between the broken parts of the net increases, and the net breakage is detected. Since it becomes easy, it is preferable.

また、このふるい分け装置本体が振動式ふるい分け機構を具備しているものも好ましい。つまり振動式のふるい分けを行うことにより、網が破れた時に、網の破断部分同士の接触頻度が高くなり、網の破れの検出が行いやすくなるため、好ましい。   In addition, it is preferable that the sieving device main body has a vibration sieving mechanism. That is, it is preferable to perform vibration-type sieving because when the net is broken, the frequency of contact between the broken parts of the net increases, and it becomes easy to detect the breaking of the net.

この場合、振動式ふるい分け機構が超音波振動式ふるい分け機構である、つまりこの振動式ふるい分けが超音波によるものであると、接触頻度がさらに高くなるため、より好ま
しい。
In this case, it is more preferable that the vibration sieving mechanism is an ultrasonic vibration sieving mechanism, that is, the vibration sieving mechanism is based on ultrasonic waves because the contact frequency is further increased.

さらに、本発明に使用したふるい分け装置は、ふるいの網により粉体の粒子径による選別を行うふるい分け装置本体と、前記ふるいわけ装置本体に取り付けられたアコースティックエミッションセンサーと、内部にAE信号の基準値を記録したメモリーを具備し、前記アコースティックエミッションセンサーが発信するAE信号を受信し、前記AE信号があらかじめ設定した基準値と比較することにより、前記網が破れたこと判断する演算装置とからなるものであるのが好ましい。   Further, the sieving device used in the present invention includes a sieving device main body that performs screening based on the particle size of the powder using a sieving screen, an acoustic emission sensor attached to the sieving device main body, and a reference value of the AE signal therein. Comprising an arithmetic unit that receives a AE signal transmitted from the acoustic emission sensor and determines that the network is broken by comparing the AE signal with a preset reference value. Is preferred.

本発明のリチウム二次電池用正極材料の製造方法を用いることによって、確実に粒子径の大きな粒子を除去できるため、正極板塗着面のスジや電池充放電時の電圧降下の発生が減少し、また、即時的に網破れを検出できるため正極材料のふるい分けが時間当たりの処理量を落とすことなく可能になる。   By using the method for producing a positive electrode material for a lithium secondary battery according to the present invention, particles having a large particle diameter can be reliably removed, so that the occurrence of streaks on the positive electrode plate coating surface and voltage drop during battery charge / discharge is reduced. Moreover, since network breakage can be detected immediately, sieving of the positive electrode material becomes possible without reducing the throughput per hour.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

以下、本発明を、実施例に基づいて説明する。   Hereinafter, the present invention will be described based on examples.

図1に、本実施例で作製した円筒型電池の縦断面図を示す。   FIG. 1 shows a longitudinal sectional view of a cylindrical battery produced in this example.

図1の非水電解質二次電池は、ステンレス鋼製の電池ケース1とその電池ケース1内に収容された極板群を含む。極板群は正極5と負極6とポリエチレン製のセパレータ7とからなり、正極5と負極6がセパレータ7を介して渦巻状に捲回されている。その極板群の上部および下部には上部絶縁板8aおよび下部絶縁板8bが配置されている。電池ケース1の開口端部をガスケット3を介して封口板2をかしめつけることにより、封口されている。   The nonaqueous electrolyte secondary battery in FIG. 1 includes a battery case 1 made of stainless steel and an electrode plate group housed in the battery case 1. The electrode plate group includes a positive electrode 5, a negative electrode 6, and a polyethylene separator 7, and the positive electrode 5 and the negative electrode 6 are wound in a spiral shape via the separator 7. An upper insulating plate 8a and a lower insulating plate 8b are disposed above and below the electrode plate group. The battery case 1 is sealed by caulking the opening plate 2 with a sealing plate 2 through a gasket 3.

また、正極5にはアルミニウム製の正極リード5aの一端がとりつけられており、その正極リード5aの他端が、正極端子を兼ねる封口板2に接続されている。負極6にはニッケル製の負極リード6aの一端が取り付けられており、その負極リード6aの他端は、負極端子を兼ねる電池ケース1に接続されている。   One end of an aluminum positive electrode lead 5a is attached to the positive electrode 5, and the other end of the positive electrode lead 5a is connected to a sealing plate 2 that also serves as a positive electrode terminal. One end of a negative electrode lead 6a made of nickel is attached to the negative electrode 6, and the other end of the negative electrode lead 6a is connected to the battery case 1 that also serves as a negative electrode terminal.

(実施例1)
(1)正極活物質の作製
ニッケルコバルトマンガンをモル比で1:1:1含む金属水酸化物と炭酸リチウムを金属元素とリチウム元素のモル比で1:1.01となるように混合したのち、950度で8時間、大気中で焼成しニッケルコバルトマンガン酸リチウムを得た。焼成して得たリチウム二次電池用正極材料を粉砕機で粉砕を行った。
Example 1
(1) Preparation of positive electrode active material After mixing a metal hydroxide containing nickel cobalt manganese at a molar ratio of 1: 1: 1 and lithium carbonate so that the molar ratio of the metal element to the lithium element is 1: 1.01. And calcined in the atmosphere at 950 degrees for 8 hours to obtain lithium nickel cobalt manganate. The positive electrode material for a lithium secondary battery obtained by firing was pulverized with a pulverizer.

本発明の効果を顕著に示すため、粉砕したリチウム二次電池用正極材料100重量部の中に、金属異物を仮想した平均粒径が300μmの鉄粉を約0.1重量部混入したものを、ふるい分け装置に通し、ふるい分けを行った。   In order to show the effect of the present invention remarkably, about 0.1 part by weight of iron powder having an average particle diameter of 300 μm assuming a metal foreign substance is mixed in 100 parts by weight of the pulverized cathode material for a lithium secondary battery. The sieving was performed through a sieving device.

図2に本実施例で使用したふるい分け装置の模式図を示す。   FIG. 2 shows a schematic diagram of the sieving apparatus used in this example.

まず、ふるい分け装置本体201の枠の中に目開きが50μmのステンレス製網202が取り付けられており、この網202上に粉体を供給し振動を与える。粉体中の大きな粒
子は網202を通過できないためふるい上材料として、網202の目より小さな粉体の粒子は網202を通過しふるい下材料となる。ふるい上材料はふるい材料排出口203から、ふるい下材料はふるい下材料排出口204から排出される。
アコースティックエミッション(AE)センサー205は、ふるい分け装置本体201に密着して取り付けられている。また、AEを解析する演算装置206は、AEセンサー205とケーブルで接続されている。図2を用いて、本実施例における網破れ検出方法を さらに詳細に説明する。
First, a stainless steel net 202 having an opening of 50 μm is attached in the frame of the sieving device main body 201, and powder is supplied onto the net 202 to give vibration. Since the large particles in the powder cannot pass through the mesh 202, the powder particles smaller than the mesh of the mesh 202 pass through the mesh 202 and become the lower material. The upper sieve material is discharged from the sieve material discharge port 203, and the lower sieve material is discharged from the lower sieve material discharge port 204.
The acoustic emission (AE) sensor 205 is attached in close contact with the screening apparatus main body 201. The arithmetic device 206 for analyzing AE is connected to the AE sensor 205 by a cable. The network breakage detection method in the present embodiment will be described in more detail with reference to FIG.

粉体をふるい分け装置本体201の網202の上に粉砕により得られたリチウム二次電池用正極材料の粉体を供給する。網202の目より小さな粒子は網202の目を通過しふるい下材料となりふるい下材料排出口204から排出される。網202の目より大きな粒子は網の目を通過できず、ふるい上材料排出口203から排出される。網202が破れていない正常な状態においては、粉体と網202の接触により発生するAE信号を網202およびふるいの枠を通じてAEセンサー205で検出することができる。網202破れが発生した異常な状態においては、粉体と網202の接触により発生AE信号に加えて破れた網202の破断部分どうしが接触することにより発生するAE信号も検出することができる。AEセンサー205で検出されたAE信号は、ケーブルを通して、AEを解析する演算装置206に伝えられる。   The powder of the positive electrode material for a lithium secondary battery obtained by pulverization is supplied onto the net 202 of the sieving device main body 201. Particles that are smaller than the meshes of the mesh 202 pass through the meshes of the mesh 202 and become a sieved material, and are discharged from the sieved material discharge port 204. Particles larger than the mesh of the mesh 202 cannot pass through the mesh of the mesh, and are discharged from the sieve upper material discharge port 203. In a normal state in which the mesh 202 is not broken, an AE signal generated by the contact between the powder and the mesh 202 can be detected by the AE sensor 205 through the mesh 202 and the screen frame. In an abnormal state in which the mesh 202 is broken, it is possible to detect an AE signal generated when the broken portions of the mesh 202 contact with each other in addition to the generated AE signal due to the contact between the powder and the mesh 202. The AE signal detected by the AE sensor 205 is transmitted to the arithmetic unit 206 that analyzes the AE through the cable.

演算装置206でAE信号を解析することにより、RMS値のデータを得ることができる。RMS値は、ルートミーンスクエア(Root Mean Square)のことであり、ここでは分析の結果、得られた電圧の二乗平均の平方根を示す。AEセンサー205から得られる振動が大きくなるほどRMS値は大きくなる。   The RMS value data can be obtained by analyzing the AE signal by the arithmetic unit 206. The RMS value is a root mean square, and here shows the square root of the root mean square of the voltage obtained as a result of analysis. The RMS value increases as the vibration obtained from the AE sensor 205 increases.

図3は、AEを解析する演算装置206でAE信号を解析した結果得られた時間に対するRMS値を示したものである。網202の破れていない正常な状態においては、RMS値は0Vに近い値で推移していることがわかる。網破れ発生時間301を過ぎるとRMS値は5.5V付近に増大している。これは網202破れが発生し、網202の破断部分どうしが接触することによりRMS値が増大したと考えられる。あらかじめ基準値302を正常時と異常時の間に設定することにより網202破れを検出することが可能となる。
ふるい分け終了後、ふるい網を確認したところ、目視では検出が困難と思われる約500μmの穴が確認できた。
FIG. 3 shows the RMS value with respect to time obtained as a result of analyzing the AE signal by the arithmetic unit 206 for analyzing AE. It can be seen that in a normal state in which the network 202 is not broken, the RMS value changes at a value close to 0V. After the network breakage occurrence time 301, the RMS value increases to around 5.5V. This is thought to be because the mesh 202 was broken and the RMS value was increased due to the contact between the broken portions of the mesh 202. By setting the reference value 302 between the normal time and the abnormal time in advance, it is possible to detect the network 202 breakage.
After sieving, when the sieve net was confirmed, a hole of about 500 μm, which would be difficult to detect visually, could be confirmed.

網破れ発生時間301より前にふるい下材料として排出口204から排出されたリチウム二次電池用正極材料を用い正極板の作製を行った。   A positive electrode plate was prepared using the positive electrode material for a lithium secondary battery discharged from the discharge port 204 as a lower sieve material before the net break occurrence time 301.

(2)正極板の作製
100重量部の上記リチウム二次電池用正極材料に、導電剤として4重量部のアセチレンブラックと、N−メチルピロリドン(NMP)の溶剤に結着剤として5重量部のポリフッ化ビニリデン(PVDF)を溶解した溶液とを混合し、正極合剤を含むペーストを得た。このペーストを、集電体となる厚さ15μmのアルミニウム箔の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、正極板を得た。
(2) Preparation of positive electrode plate 100 parts by weight of the positive electrode material for a lithium secondary battery, 4 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of a binder of N-methylpyrrolidone (NMP) as a binder. A paste containing a positive electrode mixture was obtained by mixing with a solution in which polyvinylidene fluoride (PVDF) was dissolved. This paste was applied on both sides of a 15 μm thick aluminum foil serving as a current collector, dried, rolled, and cut into a predetermined size to obtain a positive electrode plate.

(3)負極板の作製
人造黒鉛粉末75重量部に、導電剤であるアセチレンブラック20重量部と、結着剤のポリフッ化ビニリデン樹脂5重量部とを混合し、これらを脱水N−メチル−2−ピロリドンに分散させてスラリー状の負極合剤を調製した。この負極合剤を銅箔からなる負極集電体上の両面に塗布し、乾燥後、圧延し、所定寸法に裁断して、負極板を得た。
(3) Production of Negative Electrode Plate 75 parts by weight of artificial graphite powder was mixed with 20 parts by weight of acetylene black as a conductive agent and 5 parts by weight of polyvinylidene fluoride resin as a binder, and these were mixed with dehydrated N-methyl-2 -A slurry-like negative electrode mixture was prepared by dispersing in pyrrolidone. This negative electrode mixture was applied to both surfaces of a negative electrode current collector made of copper foil, dried, rolled, and cut into predetermined dimensions to obtain a negative electrode plate.

(4)非水電解液の調製
エチレンカーボネートとエチルメチルカーボネートとの体積比1:3の混合溶媒に1重量% のビニレンカーボネートを添加し、1.0mol/Lの濃度でLiPF6を溶解し、非水電解液を得た。
(4) Preparation of non-aqueous electrolyte solution 1% by weight of vinylene carbonate was added to a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3, and LiPF6 was dissolved at a concentration of 1.0 mol / L. A water electrolyte was obtained.

(5)円筒型電池の作製
まず、所定の正極5と負極6のそれぞれの集電体に、それぞれアルミニウム製正極リード5aおよびニッケル製負極リード6aを取り付けた後、セパレータ7を介して捲回し、極板群を構成した。極板群の上部と下部に絶縁板8aおよび8bを配し、負極リード6aを電池ケース1に溶接すると共に、正極リード5aを内圧作動型の安全弁を有する封口板2に溶接して、電池ケース1の内部に収納した。その後、電池ケース1の内部に非水電解液を減圧方式により注入した。最後に、電池ケース1の開口端部をガスケット3を介して封口板2にかしめることにより電池Aを完成させた。得られた円筒型電池の電池容量は2400mAhであった。
(5) Production of Cylindrical Battery First, the aluminum positive electrode lead 5a and the nickel negative electrode lead 6a were attached to the current collectors of the predetermined positive electrode 5 and negative electrode 6, respectively, and then wound through the separator 7, An electrode plate group was constructed. Insulating plates 8a and 8b are arranged on the upper and lower parts of the electrode plate group, the negative electrode lead 6a is welded to the battery case 1, and the positive electrode lead 5a is welded to the sealing plate 2 having an internal pressure actuated safety valve. 1 was stored inside. Thereafter, a non-aqueous electrolyte was injected into the battery case 1 by a reduced pressure method. Finally, the battery A was completed by caulking the opening end of the battery case 1 to the sealing plate 2 via the gasket 3. The battery capacity of the obtained cylindrical battery was 2400 mAh.

(比較例1)
網破れ発生時間301より後にふるい下材料として排出口204から排出されたリチウム二次電池用正極材料を用いたこと以外、電池Aと同様にして作製した電池を電池Bとした。
(Comparative Example 1)
A battery produced in the same manner as battery A was designated as battery B, except that the positive electrode material for a lithium secondary battery discharged from the discharge port 204 was used as the sieving material after the net breakage occurrence time 301.

(6)評価
以上のようにして得られた正極板および電池について、正極板表面のスジの有無を調査すると共に、電池の電圧降下量を調査した。
まず、極板表面のスジ発生の調査について説明する。正極板の表裏を目視で観察し、少しでもスジのあるものはスジ発生と判断し、正極板100枚中のスジ発生正極板の枚数をスジ発生数とした。
(6) Evaluation About the positive electrode plate and battery obtained as described above, the presence or absence of streaks on the surface of the positive electrode plate was examined, and the voltage drop amount of the battery was investigated.
First, the investigation of streaks on the electrode plate surface will be described. The front and back surfaces of the positive electrode plate were visually observed, and those having even a slight streak were judged to be streaks, and the number of streaked positive electrode plates in 100 positive electrode plates was defined as the number of streaks.

次に、電池の電圧降下量の調査について説明する。得られた電池を4.10Vまで定電流(100mA)で充電した電池を、充電終了後24時間経過した時点で電圧測定を行った。その後室温で7日間放置後に再度電圧を測定しその電圧差を電圧降下量とした。   Next, the investigation of the battery voltage drop will be described. The battery obtained by charging the obtained battery with a constant current (100 mA) up to 4.10 V was subjected to voltage measurement when 24 hours had elapsed after completion of charging. Thereafter, the voltage was measured again after standing at room temperature for 7 days, and the voltage difference was taken as the voltage drop.

リチウム二次電池用正極材料に鉄粉を混入しなかった場合の電圧降下量は0.003V程度であったため、電圧降下量が0.01V以上の物を電圧異常と判断し、電池100個中の電圧降下量0.01V以上の電池の個数を電圧異常発生数とした。   When the iron powder was not mixed in the positive electrode material for the lithium secondary battery, the voltage drop amount was about 0.003V. Therefore, it was determined that a voltage drop amount of 0.01V or more was a voltage abnormality, and 100 batteries were The number of batteries having a voltage drop of 0.01 V or more was defined as the number of voltage abnormalities.

表1に実施例1および比較例1のスジ発生数および電圧以上発生数を示す。   Table 1 shows the number of streaks and the number of occurrences above the voltage in Example 1 and Comparative Example 1.

Figure 2009093858
Figure 2009093858

表1より、実施例1の正極材料を使用することにより、スジ発生、電圧降下の発生を抑制できることがわかる。これは、破れていないふるい網を使用することにより、ふるい網の目開き50μmより大きな異物や金属異物をふるい網で除去できているため、正極板に
塗布する際にスジが発生せず、また、電池内においても金属異物の溶出による電圧降下が発生しにくいと推察される。
From Table 1, it can be seen that the use of the positive electrode material of Example 1 can suppress the generation of streaks and voltage drop. This is because, by using an unbroken sieve mesh, foreign particles larger than 50 μm or metal foreign matter can be removed with a sieve mesh, so that no streaks are generated when applied to the positive electrode plate. The voltage drop due to the elution of metallic foreign matter is less likely to occur in the battery.

また、この検出方法を用いたふるい分け装置を用いることにより、網破れをふるいの運転中に確実にかつ瞬時に検出することが可能となるため、ふるい網破れの目視確認のためふるい分け装置を停止する必要がなく、正極材料のふるい分けが時間当たりの処理量を落とすことなく可能になる。   In addition, by using a sieving device using this detection method, it is possible to reliably and instantaneously detect screen breakage during the operation of the screen, so the sieving device is stopped for visual confirmation of sieving screen breakage. This eliminates the need for sieving of the positive electrode material without reducing the throughput per hour.

本実施例においては、リチウム二次電池用正極材料としてニッケルコバルトマンガン酸リチウムを使用したが、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等のリチウム含有複合酸化物をはじめとする正極材料で効果を得ることができる。   In this example, nickel cobalt lithium manganate was used as the positive electrode material for the lithium secondary battery, but it was effective for positive electrode materials including lithium-containing composite oxides such as lithium cobaltate, lithium nickelate, and lithium manganate. Can be obtained.

本実施例においては、網破れの検出にAE信号を解析したRMS値を使用したが、同時に得られる振幅を示すAMPのデータを使用することもできる。   In this embodiment, the RMS value obtained by analyzing the AE signal is used for detection of network breakage. However, AMP data indicating the amplitude obtained at the same time can also be used.

本実施例において使用した網202に関しては、プラスチック製などの従来公知の材料が使えるが、網202を金属製にすることで、網が破れた時、網の破断部分同士の接触により発生するAE信号が大きくなるため、網破れの検出が行いやすくなる点で好ましい。   Conventionally known materials such as plastic can be used for the mesh 202 used in the present embodiment, but when the mesh 202 is made of metal, the AE generated by contact between the broken portions of the mesh. Since the signal becomes large, it is preferable in that it is easy to detect a network break.

本実施例において使用したふるい分け装置本体201に振動式ふるい分け機構を用いることで、網が破れた時、網の破断部分同士の接触頻度が高くなるため、網破れの検出が行いやすくなる点で好ましい。   By using a vibration screening mechanism for the sieving device main body 201 used in the present embodiment, when the net is broken, the contact frequency between the broken parts of the net is increased, which is preferable in that it is easy to detect the net break. .

また振動式として超音波振動式を用いることで、接触頻度がさらに高くなるため、網破れの検出がさらに容易になる点で、さらに好ましい。   Further, the use of the ultrasonic vibration type as the vibration type is more preferable in that the contact frequency is further increased, so that the detection of network breakage is further facilitated.

本実施例においては、AEセンサー205を網202の上に設置したふるい枠に密着させているが、AE信号が検出できる場所に密着していればどの部分でも良い。   In this embodiment, the AE sensor 205 is in close contact with a sieve frame installed on the net 202, but any portion may be used as long as it is in close contact with a place where an AE signal can be detected.

AEセンサーを205密着させる場所としては、たとえば、網202、網202の下に設置したふるい枠などがあげられる。   Examples of the place where the AE sensor 205 is brought into close contact include the net 202 and a sieve frame installed under the net 202.

また、本実施例においては、AEセンサー205を網202の上に設置したふるい枠に垂直に密着させているが、AE信号を検出できる場所であれば、密着させる方向はどの方向でも良い。   In this embodiment, the AE sensor 205 is vertically attached to the sieve frame installed on the net 202. However, any direction may be used as long as the AE signal can be detected.

なお、本実施例では円筒型の電池を用いたが、角型などの形状の異なる電池を用いても同様の効果が得られる。   In this embodiment, a cylindrical battery is used, but the same effect can be obtained by using a battery having a different shape such as a square.

本発明の非水電解質二次電池は、正極板塗着面のスジ発生抑制および電池電圧降下抑制効果に優れている。したがってこの製造方法で作製した正極材料を用いることで、歩留りの向上、廃棄ロスの削減等の効果があり有用である。また、安全性にも優れているためポータブル電源用として有用である。   The non-aqueous electrolyte secondary battery of the present invention is excellent in suppressing the generation of streaks on the positive electrode plate coating surface and the battery voltage drop. Therefore, by using the positive electrode material produced by this manufacturing method, there are effects such as improvement of yield and reduction of waste loss, which are useful. Moreover, since it is excellent in safety, it is useful for a portable power source.

本発明の実施例にかかる円筒型の非水電解質二次電池の縦断面図1 is a longitudinal sectional view of a cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention. 本発明の一実施の形態のふるい分け装置の模式図Schematic diagram of the sieving device of one embodiment of the present invention 本発明の一実施の形態での時間に対するRMS値の関係を示した図The figure which showed the relationship of the RMS value with respect to time in one embodiment of this invention

符号の説明Explanation of symbols

1 電池ケース
2 封口板
3 ガスケット
5 正極
5a 正極リード
6 負極
6a 負極リード
7 セパレータ
8a 上部絶縁板
8b 下部絶縁板
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Gasket 5 Positive electrode 5a Positive electrode lead 6 Negative electrode 6a Negative electrode lead 7 Separator 8a Upper insulating plate 8b Lower insulating plate

Claims (5)

原料を混合、焼成、粉砕して得られた粉体を、ふるい分け装置のふるいの網により前記粉体の粒子径による選別を行う工程を少なくとも具備したリチウム二次電池用正極材料の製造方法であって、
前記ふるい分け装置は、ふるい分け装置本体に取り付けたアコースティックエミッションセンサーから得られるアコースティックエミッション信号が、あらかじめ設定した基準値と比較することにより、前記網が破れたことを検出する機能を持つふるい分け装置であり、前記網が正常な場合のみ選別を行うことを特徴とするリチウム二次電池用正極材料の製造方法。
A method for producing a positive electrode material for a lithium secondary battery comprising at least a step of sorting powders obtained by mixing, firing, and pulverizing raw materials according to the particle diameter of the powders using a screen of a sieving device. And
The sieving device is a sieving device having a function of detecting that the net is broken by comparing an acoustic emission signal obtained from an acoustic emission sensor attached to the sieving device body with a preset reference value, A method for producing a positive electrode material for a lithium secondary battery, wherein the screening is performed only when the mesh is normal.
前記網が金属製網であることを特徴とする請求項1記載のリチウム二次電池用正極材料の製造方法。   The method for producing a positive electrode material for a lithium secondary battery according to claim 1, wherein the net is a metal net. 前記ふるい分け装置本体が振動式ふるい分け機構を具備しているものであることを特徴とする請求項1または2に記載のリチウム二次電池用正極材料の製造方法。   The method for producing a positive electrode material for a lithium secondary battery according to claim 1 or 2, wherein the sieving device main body includes a vibrating sieving mechanism. 前記振動式ふるい分け機構が超音波振動式ふるい分け機構であることを特徴とする請求項3に記載のリチウム二次電池用正極材料の製造方法。   4. The method for producing a positive electrode material for a lithium secondary battery according to claim 3, wherein the vibration sieving mechanism is an ultrasonic vibration sieving mechanism. 請求項1から4のいづれかに記載のリチウム二次電池用正極材料の製造方法を用いたリチウム二次電池用正極材料。

The positive electrode material for lithium secondary batteries using the manufacturing method of the positive electrode material for lithium secondary batteries in any one of Claim 1 to 4.

JP2007261741A 2007-10-05 2007-10-05 Manufacturing method of positive electrode material for lithium secondary battery, and positive electrode material for lithium secondary battery using it Withdrawn JP2009093858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261741A JP2009093858A (en) 2007-10-05 2007-10-05 Manufacturing method of positive electrode material for lithium secondary battery, and positive electrode material for lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261741A JP2009093858A (en) 2007-10-05 2007-10-05 Manufacturing method of positive electrode material for lithium secondary battery, and positive electrode material for lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JP2009093858A true JP2009093858A (en) 2009-04-30

Family

ID=40665654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261741A Withdrawn JP2009093858A (en) 2007-10-05 2007-10-05 Manufacturing method of positive electrode material for lithium secondary battery, and positive electrode material for lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JP2009093858A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964534A (en) * 2017-04-13 2017-07-21 池州西恩新材料科技有限公司 A kind of cylinder screening machine, from tertiary cathode waste material separation of tertiary positive powder system and method
CN108187401A (en) * 2017-12-16 2018-06-22 江西正拓新能源科技股份有限公司 System is made by mixing in a kind of lithium ion material
CN108579976A (en) * 2018-04-13 2018-09-28 青海黄河上游水电开发有限责任公司光伏产业技术分公司 The method for sieving of screening plant and photovoltaic module crushed mixture
CN111889364A (en) * 2020-08-03 2020-11-06 安徽工业大学 Layered drawable high-precision frequency modulation vibrating screen machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964534A (en) * 2017-04-13 2017-07-21 池州西恩新材料科技有限公司 A kind of cylinder screening machine, from tertiary cathode waste material separation of tertiary positive powder system and method
CN106964534B (en) * 2017-04-13 2024-02-20 池州西恩新材料科技有限公司 System and method for separating ternary positive electrode powder from ternary positive electrode waste
CN108187401A (en) * 2017-12-16 2018-06-22 江西正拓新能源科技股份有限公司 System is made by mixing in a kind of lithium ion material
CN108579976A (en) * 2018-04-13 2018-09-28 青海黄河上游水电开发有限责任公司光伏产业技术分公司 The method for sieving of screening plant and photovoltaic module crushed mixture
CN108579976B (en) * 2018-04-13 2023-10-27 青海黄河上游水电开发有限责任公司光伏产业技术分公司 Screening device and screening method of crushed mixture of photovoltaic module
CN111889364A (en) * 2020-08-03 2020-11-06 安徽工业大学 Layered drawable high-precision frequency modulation vibrating screen machine

Similar Documents

Publication Publication Date Title
JP5043777B2 (en) Non-aqueous electrolyte secondary battery charging method
EP1328028A2 (en) A cathode active material for a lithium secondary battery and a manufacturing method therefor and a lithium secondary battery using said active material and a setup module of said lithium secondary battery using said cathode active material
US20120226455A1 (en) Anomalously Charged State Detection Device and Test Method for Lithium Secondary Cell
KR100433593B1 (en) Active material for anode of secondary cell and method for production thereof and non-aqueous electrolyte secondary cell, and recycled electronic functional material and method for recycling electronic functional material
JP5844709B2 (en) Positive electrode active material for lithium ion battery and lithium ion battery
KR20140039264A (en) Nonaqueous electrolyte secondary battery
JP2009093858A (en) Manufacturing method of positive electrode material for lithium secondary battery, and positive electrode material for lithium secondary battery using it
JP2015219971A (en) Method for manufacturing secondary cell
CN104993168A (en) High-capacity 9-V rechargeable lithium battery and manufacturing method
US20220285678A1 (en) Nonaqueous electrolyte secondary battery
CN101329286B (en) Method for evaluating electrochemical performance of laminar structure lithium cobalt oxide
JP2010033786A (en) Evaluation method and manufacturing method of positive electrode active material for lithium secondary battery
JP4703524B2 (en) Method for producing positive electrode active material for secondary battery and method for producing non-aqueous electrolyte secondary battery
KR100526225B1 (en) Positive electrode active material for secondary cell and nonaqueous electrolyte secondary cell using the same, and method for analysis of positive electrode active material for secondary cell
JP2001291516A (en) Graphite particle for negative electrode of nonaqueous secondary battery
CN110411826B (en) Method for testing macroscopic strength of conductive material and application
JP2003157911A (en) Battery voltage measuring device and battery voltage measuring method, and manufacturing method of battery
JP3927085B2 (en) Method for analyzing positive electrode active material for secondary battery
JPWO2017138116A1 (en) Lithium ion battery and manufacturing method thereof
JP4736380B2 (en) Secondary battery and secondary battery aging treatment method
JP2014179201A (en) Electrochemical cell
EP4350805A2 (en) Cathode for lithium secondary battery and lithium secondary battery including the same
KR20200050697A (en) A Battery cell inspection device capable of continuously performing thickness and insulation voltage measurement
JPH06168724A (en) Nonaquous electrolyte secondary battery
CN115295982B (en) Storage battery with sulfur removal maintenance function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101013

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120806