JP2010033786A - Evaluation method and manufacturing method of positive electrode active material for lithium secondary battery - Google Patents

Evaluation method and manufacturing method of positive electrode active material for lithium secondary battery Download PDF

Info

Publication number
JP2010033786A
JP2010033786A JP2008192871A JP2008192871A JP2010033786A JP 2010033786 A JP2010033786 A JP 2010033786A JP 2008192871 A JP2008192871 A JP 2008192871A JP 2008192871 A JP2008192871 A JP 2008192871A JP 2010033786 A JP2010033786 A JP 2010033786A
Authority
JP
Japan
Prior art keywords
magnet
transition metal
positive electrode
metal oxide
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008192871A
Other languages
Japanese (ja)
Other versions
JP5351457B2 (en
Inventor
Shinya Kagei
慎也 蔭井
Hiromi Hata
祥巳 畑
Keisuke Miyanohara
啓佑 宮之原
Kenji Sasaki
健志 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2008192871A priority Critical patent/JP5351457B2/en
Publication of JP2010033786A publication Critical patent/JP2010033786A/en
Application granted granted Critical
Publication of JP5351457B2 publication Critical patent/JP5351457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel evaluation method of a positive electrode active material for a lithium secondary battery capable of precisely evaluating easiness to perform micro short circuit (voltage drop). <P>SOLUTION: Ion-exchange water is added to lithium transition metal oxide powder to make up slurries, into which a magnet of 50 mT to 200 mT is inputted and stirred, and then, an iron volume adhered to the magnet is detected to select lithium transition metal oxide powder of which an iron volume per mass satisfies 0 ppb<iron volume<75 ppb. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウム二次電池、特に電気自動車やハイブリッド電気自動車に搭載するリチウム二次電池用の正極活物質の評価方法及び製造方法に関する。   The present invention relates to a method for evaluating and manufacturing a positive electrode active material for a lithium secondary battery, particularly a lithium secondary battery mounted in an electric vehicle or a hybrid electric vehicle.

リチウム二次電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器などの電源として用いられており、最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池にも利用されている。   Lithium secondary batteries have features such as high energy density and long life, so they are used as power sources for home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones. Recently, it is also used for large batteries mounted on electric vehicles (EV) and hybrid electric vehicles (HEV).

リチウム二次電池は、充電時には正極からリチウムがイオンとして溶け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、その高いエネルギー密度は正極活物質の電位に起因することが知られている。   A lithium secondary battery is a secondary battery with a structure in which lithium is melted as ions from the positive electrode during charging, moves to the negative electrode and is stored, and reversely, lithium ions return from the negative electrode to the positive electrode during discharging. It is known to be caused by the potential of the positive electrode active material.

リチウム二次電池の正極活物質としては、スピネル構造をもつリチウムマンガン酸化物(LiMn24)のほか、層構造をもつLiCoO2、LiNiO2などのリチウム遷移金属酸化物が知られている。例えばLiCoO2は、充放電容量が大きく、リチウムイオン吸蔵脱蔵の拡散性に優れているため、現在、市販されているリチウム二次電池の大半は、正極活物質として4Vの高電圧を有するLiCoO2が用いられている。しかし、Coが極めて高価であるため、LiCoO2の代替材料となり得る、層構造を有するリチウム遷移金属酸化物の開発が進められている。 Known positive electrode active materials for lithium secondary batteries include lithium manganese oxide (LiMn 2 O 4 ) having a spinel structure, and lithium transition metal oxides such as LiCoO 2 and LiNiO 2 having a layer structure. For example, since LiCoO 2 has a large charge / discharge capacity and excellent diffusibility for occluding and desorbing lithium ions, most of the commercially available lithium secondary batteries are LiCoO having a high voltage of 4 V as a positive electrode active material. 2 is used. However, since Co is extremely expensive, development of a lithium transition metal oxide having a layer structure that can be used as a substitute material for LiCoO 2 is underway.

この種のリチウム遷移金属酸化物は、リチウム化合物やコバルト化合物等の原料化合物を乾式若しくは湿式で混合し、これを焼成し、解砕、粉砕乃至分級して得るのが一般的であり、このようにして得たリチウム遷移金属酸化物を正極活物質として導電剤および結着剤とともに溶媒に懸濁させてスラリー化し、このスラリーを集電体上に塗布するようにして正極が作製される。   This type of lithium transition metal oxide is generally obtained by mixing a raw material compound such as a lithium compound or a cobalt compound in a dry or wet manner, firing it, crushing, crushing or classifying it. The lithium transition metal oxide obtained as described above is suspended as a positive electrode active material in a solvent together with a conductive agent and a binder to form a slurry, and this slurry is applied onto a current collector to produce a positive electrode.

この種のリチウム二次電池においては、出力維持並びに安全性確保の観点から、微小短絡の生じ難いリチウム二次電池の開発が求められている。リチウム二次電池における微小短絡が生じる原因の一つとして、活物質の原料や活物質の製造工程で混入してくる鉄(Fe)やSUSなどの金属異物の存在が指摘されている。そのため、従来から、リチウム二次電池用正極活物質の製造方法に関しては、これらの金属異物が混入するのを防ぐための製造方法がいくつか提案されている。   In this type of lithium secondary battery, from the viewpoint of maintaining output and ensuring safety, development of a lithium secondary battery that is unlikely to cause a micro short circuit is required. As one of the causes of micro short-circuits in lithium secondary batteries, the presence of metallic foreign substances such as iron (Fe) and SUS mixed in the raw material of the active material and the manufacturing process of the active material has been pointed out. Therefore, conventionally, several manufacturing methods for preventing the contamination of these metallic foreign substances have been proposed for the manufacturing method of the positive electrode active material for a lithium secondary battery.

例えば、特許文献1には、炭酸リチウムと酸化コバルトを精秤し混合してなる原料粉にバインダーを加えて混合しつつ造粒し、ついで酸素含有雰囲気下で前記造粒物を焼成した後、該焼成物を粉砕してリチウムコバルト複酸化物からなる非水系電解質二次電池用正極活物質を製造するに際して、前記焼成物の粉砕を超硬合金製のピンおよび表面硬化されたステンレス鋼製の円盤より構成されるピンミルを用いて行うことを特徴とする非水系電解質二次電池用正極活物質の製造方法が開示されている。   For example, Patent Document 1 discloses granulating while adding a binder to a raw material powder obtained by accurately weighing and mixing lithium carbonate and cobalt oxide, and then firing the granulated product in an oxygen-containing atmosphere. When the fired product is pulverized to produce a positive electrode active material for a non-aqueous electrolyte secondary battery made of a lithium cobalt complex oxide, the baked product is pulverized into a cemented carbide pin and a surface-hardened stainless steel. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery is disclosed, which is performed using a pin mill composed of a disk.

特許文献2には、リチウム二次電池正極材料の作製方法として、Mn、AlOOH及びLiOH・HOに純水を加えてスラリーを調製し、このスラリーを攪拌しながら循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分の平均粒子径が0.3μmになるまで粉砕し、スラリー配管中に磁石を設置することにより(磁場の強さ:2000ガウス、磁場の通過回数:3回、磁場の通過速度:0.3m/sec)、原料中の磁性金属系不純物を磁選により除去し、その後、湿式粉砕した後、スプレードライヤーを用いて噴霧乾燥を行い、乾燥された造粒粒子を900℃で10時間焼成し、得られた焼成物を1℃/minで徐冷した後目開き20μmの篩で篩って正極材料を得る作製方法が記載されている。 In Patent Document 2, as a method for producing a positive electrode material for a lithium secondary battery, pure water is added to Mn 2 O 3 , AlOOH and LiOH · H 2 O to prepare a slurry, and a circulating medium stirring is performed while stirring the slurry. By pulverizing until the average particle size of the solid content in the slurry becomes 0.3 μm using a mold wet pulverizer, and installing a magnet in the slurry pipe (magnetic field strength: 2000 gauss, number of times the magnetic field passes : 3 times, passing speed of magnetic field: 0.3 m / sec), magnetic metal impurities in the raw material are removed by magnetic separation, then wet pulverized, then spray dried using a spray dryer, and dried A production method is described in which the particles are baked at 900 ° C. for 10 hours, the obtained fired product is slowly cooled at 1 ° C./min, and then sieved with a sieve having an opening of 20 μm to obtain a positive electrode material.

特許文献3には、リチウム遷移金属複合酸化物の塊状の焼成物を衝撃式微粉砕機によって衝撃粉砕処理を行って、平均粒子径5〜25μmのリチウム遷移金属複合酸化物粉体を得た後、該リチウム遷移金属複合酸化物粉体を、空気分級機を用いて、低粒子径成分を除く分級点を0.6×Dμm以下のいずれかの値、高粒子径成分を除く分級点を1.2×Dμm以上のいずれかの値に設定して分級処理を行い、前記低粒子径成分および高粒子径成分を除去した平均粒子径が5〜25μmのリチウム遷移金属複合酸化物粉体からなる正極活物質を得ることを特徴とするリチウムイオン二次電池用正極活物質の製造方法が開示されている。   In Patent Document 3, after the impact pulverization treatment was performed on the bulk fired product of the lithium transition metal composite oxide by an impact pulverizer to obtain a lithium transition metal composite oxide powder having an average particle size of 5 to 25 μm, For the lithium transition metal composite oxide powder, using an air classifier, the classification point excluding the low particle diameter component is any value of 0.6 × D μm or less, and the classification point excluding the high particle diameter component is 1. A positive electrode comprising a lithium-transition metal composite oxide powder having an average particle size of 5 to 25 μm, which is subjected to classification treatment by setting to any value of 2 × D μm or more and from which the low particle size component and high particle size component are removed A method for producing a positive electrode active material for a lithium ion secondary battery characterized by obtaining an active material is disclosed.

特許文献4には、リチウム二次電池用活物質用原料を、焼成してLiの電気化学的な脱離及び挿入が可能な材料としての、層状の結晶構造を有するLixMO2(MはMn、Fe、Co及びNiから成る群から選択される少なくとも1種の金属で更にMg及び/又はAlを含んでいても良く、0.95<x<1.05である)を含んで成るリチウム二次電池用活物質を製造する方法において、初期原料の鉄品位を制御して、得られるリチウム二次電池用活物質中の金属性の鉄を臭素−メタノール溶液で抽出し測定して、これにより得られる金属性の鉄の品位を4ppm未満とすることを特徴とするリチウム二次電池用活物質の製造方法が開示されている。 Patent Document 4 discloses Li x MO 2 (M is a layered crystal structure) as a material capable of electrochemical desorption and insertion of Li by firing a raw material for an active material for a lithium secondary battery. At least one metal selected from the group consisting of Mn, Fe, Co, and Ni, which may further contain Mg and / or Al (0.95 <x <1.05). In the method for producing an active material, the iron quality of the initial raw material is controlled, the metallic iron in the resulting active material for a lithium secondary battery is extracted and measured with a bromine-methanol solution, and the resulting metal Disclosed is a method for producing an active material for a lithium secondary battery, characterized in that the quality of the functional iron is less than 4 ppm.

特開2000−58054号公報の請求項1Claim 1 of JP 2000-58054 A 特開2004−311297号公報の実施例[0122]−[0123]Examples [0122]-[0123] of Japanese Patent Application Laid-Open No. 2004-311297 特開2008−108574号公報の請求項1Claim 1 of JP-A-2008-108574 特許3620744号公報の請求項1Claim 1 of Japanese Patent No. 3620744

電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載されるリチウム二次電池は、一つの車体に多数の電池が連結されて搭載されるため、その中の一つが短絡すると全体が機能しなくなるおそれがあるため、特に微小短絡の可能性を排除することが求められる。
また、電気自動車(EV)やハイブリッド電気自動車(HEV)は、夏場の炎天下に長時間放置されることが想定されるため、仮にそのようにしてリチウム二次電池が充電状態のまま長時間高温状態に放置されると、リチウム二次電池は短絡(電圧降下)し易くなるため、電気自動車(EV)やハイブリッド電気自動車(HEV)に搭載するリチウム二次電池用の正極活物質の開発に当たっては、充電状態のまま長時間高温に維持された状態でも短絡(電圧降下)し難いことが求められる。
A lithium secondary battery mounted on an electric vehicle (EV), a hybrid electric vehicle (HEV), etc. is mounted with a large number of batteries connected to one vehicle body. Since there is a possibility of disappearing, it is particularly required to eliminate the possibility of a micro short circuit.
Moreover, since it is assumed that an electric vehicle (EV) and a hybrid electric vehicle (HEV) are left for a long time under the hot weather in summer, the lithium secondary battery is temporarily charged in a high temperature state for a long time while being charged. If the battery is left unattended, the lithium secondary battery is likely to be short-circuited (voltage drop). Therefore, in developing a positive electrode active material for a lithium secondary battery mounted on an electric vehicle (EV) or a hybrid electric vehicle (HEV), It is required that short-circuiting (voltage drop) is difficult even when the battery is kept charged for a long time in a charged state.

ところで、電気自動車(EV)やハイブリッド電気自動車(HEV)に搭載されるリチウム二次電池の正極活物質に関し、本出願人は既に、未だ非公開の特許文献(PCT/JP2008/051702)において、磁石に磁着する磁着物濃度とリチウム二次電池の微小短絡(電圧降下)との関係に着目し、リチウム遷移金属酸化物粉体に液体を加えてスラリー化し、このスラリーに450−600mTの磁石を投入して攪拌し、当該磁石に付着した磁着物濃度を検出し、リチウム遷移金属酸化物粉体の質量当たりの磁着物濃度を基準として、正極活物質の電圧降下特性を評価する方法を開示している。   By the way, regarding a positive electrode active material of a lithium secondary battery mounted on an electric vehicle (EV) or a hybrid electric vehicle (HEV), the present applicant has already disclosed a magnet in a patent document (PCT / JP2008 / 051702) that has not been disclosed yet. Paying attention to the relationship between the concentration of magnetic deposits magnetized on the electrode and the minute short circuit (voltage drop) of the lithium secondary battery, a liquid is added to the lithium transition metal oxide powder to form a slurry, and a 450-600 mT magnet is added to this slurry. Disclosed is a method for evaluating the voltage drop characteristics of the positive electrode active material on the basis of the magnetic substance concentration per mass of the lithium transition metal oxide powder by detecting the concentration of the magnetic substance adhering to the magnet. ing.

本発明は、さらに研究を進めて得られた知見に基づき、リチウム二次電池に用いる正極活物質、特に電気自動車(EV)やハイブリッド電気自動車(HEV)のリチウム二次電池に用いる正極活物質に関し、前記の評価方法では判別が難しかった場合でも、正確に短絡のし易さを評価することができ、特に充電状態のまま長時間高温に維持された状態での短絡(電圧降下)し易さを正確に評価することができる新たなリチウム二次電池用正極活物質の評価方法及びかかる評価方法を用いた新たなリチウム二次電池用正極活物質の製造方法を提供せんとするものである。   The present invention relates to a positive electrode active material used for a lithium secondary battery, particularly a positive electrode active material used for a lithium secondary battery of an electric vehicle (EV) or a hybrid electric vehicle (HEV), based on knowledge obtained through further research. Even if it is difficult to discriminate with the above-mentioned evaluation method, it is possible to accurately evaluate the ease of short-circuiting, and in particular, it is easy to short-circuit (voltage drop) in a state where it is kept at a high temperature for a long time in a charged state. It is intended to provide a new method for evaluating a positive electrode active material for a lithium secondary battery, and a new method for producing a positive electrode active material for a lithium secondary battery using such an evaluation method.

本発明は、リチウム遷移金属酸化物粉体に液体を加えてスラリー化し、このスラリーに50mT〜200mTの磁石を投入して攪拌し、当該磁石に付着した鉄量を検出し、リチウム遷移金属酸化物粉体の質量当たりの鉄量が0ppb<鉄量<75ppbであるリチウム遷移金属酸化物粉体を選別することを特徴とするリチウム二次電池用正極活物質の評価方法、並びにかかる評価方法によってリチウム遷移金属酸化物粉体を選別することを特徴とするリチウム二次電池用正極活物質の製造方法を提案するものである。   In the present invention, a liquid is added to a lithium transition metal oxide powder to form a slurry, and a 50 mT to 200 mT magnet is added to the slurry and stirred, and the amount of iron adhering to the magnet is detected. A method for evaluating a positive electrode active material for a lithium secondary battery, wherein the amount of iron per mass of the powder is 0 ppb <iron amount <75 ppb, and a lithium active material for the lithium secondary battery. The present invention proposes a method for producing a positive electrode active material for a lithium secondary battery, characterized by selecting a transition metal oxide powder.

本発明の評価方法によれば、リチウム二次電池に用いる正極活物質、特に電気自動車(EV)やハイブリッド電気自動車(HEV)のリチウム二次電池に用いる正極活物質に関し、微小短絡(電圧降下)のし易さ、特に充電状態のまま長時間高温に維持された状態での短絡(電圧降下)し易さを正確に評価することができる。   According to the evaluation method of the present invention, a positive active material used for a lithium secondary battery, particularly a positive active material used for a lithium secondary battery of an electric vehicle (EV) or a hybrid electric vehicle (HEV), a micro short circuit (voltage drop). It is possible to accurately evaluate the easiness of short-circuiting (voltage drop) in the state of being kept in a high temperature for a long time while being charged.

本発明では、50mT〜200mTの磁石を使用して鉄量を検出するようにしたことにより、リチウム二次電池に用いる正極活物質、特に電気自動車(EV)やハイブリッド電気自動車(HEV)のリチウム二次電池に用いる正極活物質に関し、微小短絡(電圧降下)のし易さ、特に充電状態のまま長時間高温に維持された状態での短絡(電圧降下)し易さを正確に評価できるようになり、その結果、微小短絡(電圧降下)を生じ難く、特に充電状態のまま長時間高温に維持された状態での短絡(電圧降下)を防止できるリチウム二次電池用正極活物質を提供することができるようになった。
このように微小短絡(電圧降下)のし易さ、特に充電状態のまま長時間高温に維持された状態での短絡(電圧降下)し易さを正確に評価できる理由としては、鉄量の検出に用いる磁石の強度を弱めると、通常は検出される鉄量が減少して評価精度が低下するようにも思われるが、本発明の場合には磁石の強度を適切な範囲に弱めたことにより、微小短絡(電圧降下)に影響する鉄、すなわち磁力の強い鉄の検出精度が高まり、その結果、微小短絡(電圧降下)のし易さ、特に充電状態のまま長時間高温に維持された状態での短絡(電圧降下)し易さを正確に評価できるようになったものと考えることができる。
In the present invention, the amount of iron is detected using a magnet of 50 mT to 200 mT, so that the positive electrode active material used for the lithium secondary battery, particularly lithium secondary battery of an electric vehicle (EV) or a hybrid electric vehicle (HEV). With regard to the positive electrode active material used in secondary batteries, it is possible to accurately evaluate the ease of short-circuiting (voltage drop), especially the ease of short-circuiting (voltage drop) in the state of being charged and maintained at a high temperature for a long time. As a result, it is possible to provide a positive electrode active material for a lithium secondary battery that is unlikely to cause a minute short circuit (voltage drop) and that can prevent a short circuit (voltage drop) in a state of being maintained at a high temperature for a long time in a charged state. Can now.
The reason why it is possible to accurately evaluate the ease of short-circuiting (voltage drop), especially the ease of short-circuiting (voltage drop) in a state of being kept charged for a long time in a charged state, is the detection of the amount of iron When the strength of the magnet used in the above is weakened, it seems that the evaluation accuracy is usually lowered due to a decrease in the amount of iron detected, but in the case of the present invention, the strength of the magnet is reduced to an appropriate range. , Detection accuracy of iron that influences micro short circuit (voltage drop), that is, iron with strong magnetic force, is improved, and as a result, it is easy to perform micro short circuit (voltage drop), especially in a state where it is kept at a high temperature for a long time in a charged state It can be considered that the ease of short-circuiting (voltage drop) can be accurately evaluated.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態について説明するが、本発明が下記実施形態に限定されるものではない。   Hereinafter, although embodiment of this invention is described, this invention is not limited to the following embodiment.

本発明の実施形態の一例としてのリチウム二次電池用正極活物質の製造方法は、製造或いは入手したリチウム遷移金属酸化物粉体に含まれる特定の鉄量を特定の方法で検出し、当該鉄量を基準としてリチウム遷移金属酸化物粉体を評価・選別することを特徴とする方法である。   The method for producing a positive electrode active material for a lithium secondary battery as an example of an embodiment of the present invention detects a specific amount of iron contained in a lithium transition metal oxide powder produced or obtained by a specific method, and the iron It is a method characterized by evaluating and selecting lithium transition metal oxide powder based on the amount.

(リチウム遷移金属酸化物粉体)
評価・選別の対象としてのリチウム遷移金属酸化物粉体は、リチウム二次電池の正極活物質として使用可能なものであれば、組成及び粒度を限定するものではない。例えば、スピネル型のリチウム遷移金属酸化物、すなわち一般式(1)Li1+xMe 2-x4-δ(Meは遷移元素、或いは典型元素、或いはこれらの組み合わせ)で表されるリチウム遷移金属酸化物、及び、層構造のリチウム遷移金属酸化物、すなわち一般式(2)Li1+xMe 1-x2-δ(Meは遷移元素、或いは典型元素、或いはこれらの組み合わせ)で表されるリチウム遷移金属酸化物からなる粉体(以下「本Li遷移金属酸化物粉体」という)を好ましく例示することができる。
(Lithium transition metal oxide powder)
The lithium transition metal oxide powder as an object of evaluation / selection is not limited in composition and particle size as long as it can be used as a positive electrode active material of a lithium secondary battery. For example, a spinel-type lithium transition metal oxide, that is, a lithium transition represented by the general formula (1) Li 1 + x Me 2−x O 4−δ (Me is a transition element, a typical element, or a combination thereof) Metal oxide and layered lithium transition metal oxide, that is, represented by the general formula (2) Li 1 + x Me 1-x O 2-δ (Me is a transition element, a typical element, or a combination thereof) Preferred examples thereof include powders made of lithium transition metal oxide (hereinafter referred to as “the present Li transition metal oxide powder”).

但し、LiCoO2などのような反磁性を備えた特殊な物質については、他のリチウム遷移金属酸化物と同様の基準では評価できないため、これらは対象から除くものとする。 However, special substances having diamagnetism such as LiCoO 2 cannot be evaluated based on the same criteria as other lithium transition metal oxides, so these are excluded from the target.

一般式(1)及び(2)において「Me元素」は、遷移元素、或いは典型元素、或いはこれらの組み合わせである。例えばMn、Co及びNiのいずれかの元素或いはこれらのうちの2以上の組み合わせからなる元素を例示することができ、中でも、Mn、Co及び
Niの3元素を全て含んでいる場合を好ましく例示することができる。
Mn、Co及びNiのいずれかの元素或いはこれらのうちの2以上の組み合わせからなる元素のほかに、これらの置換元素として遷移元素、或いは典型元素、或いはこれらの組み合わせを含む組成であってもよい。
また、酸素の原子比は多少の不定比性(例えば「4−δ」又は「2−δ」で示す)を有してもよいし、酸素の一部がフッ素で置換されていてもよい。
In the general formulas (1) and (2), “Me element” is a transition element, a typical element, or a combination thereof. For example, any element of Mn, Co and Ni, or an element composed of a combination of two or more of these elements can be exemplified, and among them, a case where all three elements of Mn, Co and Ni are included is preferably exemplified. be able to.
In addition to any element of Mn, Co and Ni, or an element composed of a combination of two or more of these elements, a transition element, a typical element, or a combination thereof may be used as a substitution element thereof. .
Further, the atomic ratio of oxygen may have some non-stoichiometry (for example, represented by “4-δ” or “2-δ”), or a part of oxygen may be substituted with fluorine.

(鉄量の測定及び評価)
リチウム遷移金属酸化物粉体に液体を加えてスラリー化し、このスラリーに50mT〜200mTの磁石を投入して攪拌し、当該磁石に付着した鉄量を検出し、リチウム遷移金属酸化物の質量当たりの鉄量が所定の範囲であるかどうかを基準として、リチウム遷移金属酸化物粉体を評価及び選別することにより、本Li遷移金属酸化物粉体を得ることができる。
(Measurement and evaluation of iron content)
A liquid is added to the lithium transition metal oxide powder to make a slurry, and a 50 mT to 200 mT magnet is put into the slurry and stirred, and the amount of iron adhering to the magnet is detected. The present Li transition metal oxide powder can be obtained by evaluating and sorting the lithium transition metal oxide powder on the basis of whether the amount of iron is within a predetermined range.

リチウム遷移金属酸化物粉体を加えてスラリー化する液体は、リチウム遷移金属酸化物粉体を分散させることができる液体であればよく、好ましくはイオン交換水を挙げることができる。   The liquid to be slurried by adding the lithium transition metal oxide powder may be any liquid that can disperse the lithium transition metal oxide powder, and preferably includes ion-exchanged water.

この際、スラリーにおけるリチウム遷移金属酸化物粉体の量は、リチウム遷移金属酸化物粉体をスラリー中に十分に分散させることができ、リチウム遷移金属酸化物粉体を磁石に十分に接触させることができるという観点から、10g/L〜1500g/L、特に50g/L〜1500g/L、中でも特に100g/L〜300g/Lとするのが好ましい。   At this time, the amount of the lithium transition metal oxide powder in the slurry is such that the lithium transition metal oxide powder can be sufficiently dispersed in the slurry and the lithium transition metal oxide powder is in sufficient contact with the magnet. From the viewpoint of being able to be produced, it is preferably 10 g / L to 1500 g / L, particularly 50 g / L to 1500 g / L, and particularly preferably 100 g / L to 300 g / L.

使用する磁石の強度は、50mT〜200mTであることが重要である。前述したように、450−600mTの磁石を使用して磁着物量を検出した場合に正確に評価することが難しかった場合でも、50mT〜200mTの磁石を使用して鉄量を検出することにより、微小短絡(電圧降下)に影響する磁力の強い鉄を選択的に検出できるようになり、その結果、微小短絡(電圧降下)のし易さ、特に充電状態のまま長時間高温に維持された状態での短絡(電圧降下)し易さを正確に評価できるようになった。
また、50mT〜200mTの中でも、用途、例えばセパレータの厚さなどによって、100mT〜150mTの範囲の磁石、特に120mT〜140mTの磁石を選択して使用するのがより一層好ましい。
It is important that the strength of the magnet used is 50 mT to 200 mT. As described above, even when it is difficult to accurately evaluate the amount of magnetic deposits using a magnet of 450-600 mT, by detecting the amount of iron using a magnet of 50 mT to 200 mT, Iron that has a strong magnetic force that affects a micro short circuit (voltage drop) can be selectively detected. As a result, it is easy to make a micro short circuit (voltage drop), especially in a state where it is kept at a high temperature for a long time in a charged state. It is now possible to accurately evaluate the ease of short-circuiting (voltage drop).
Further, among 50 mT to 200 mT, it is more preferable to select and use a magnet in the range of 100 mT to 150 mT, particularly a magnet in the range of 120 mT to 140 mT, depending on the application, for example, the thickness of the separator.

リチウム遷移金属酸化物粉体と磁石の量的な関係については、磁石の総表面積に対してリチウム遷移金属酸化物粉体が0.3g/cm2以上となるように、特に1〜15g/cm2となるように、中でも特に2〜8g/cm2となるように、その中でも特に2〜3g/cm2となるように両者の量を調整するのが好ましい。 Regarding the quantitative relationship between the lithium transition metal oxide powder and the magnet, the lithium transition metal oxide powder is particularly 1 to 15 g / cm 2 so that the lithium transition metal oxide powder is 0.3 g / cm 2 or more with respect to the total surface area of the magnet. as will be 2, among others as a 2 to 8 g / cm 2, preferably to adjust the amount of both so that in particular 2 to 3 g / cm 2 among them.

攪拌の程度と時間については、24時間以内でそれ以上磁石に付着する鉄量が増えない程度に攪拌するのが好ましい。   As for the degree and time of stirring, it is preferable to stir so that the amount of iron attached to the magnet does not increase any more within 24 hours.

磁石に付着した鉄量は、JIS G 1258:1999を参酌して、磁石に付着した鉄を酸溶解して鉄量を定量すればよい。   The amount of iron adhering to the magnet may be determined by taking JIS G 1258: 1999 into account and dissolving the iron adhering to the magnet with an acid.

評価基準、言い換えれば選別基準としては、リチウム遷移金属酸化物の質量当たりの鉄量が0ppb<鉄量<75ppbであるか否か、好ましくは1ppb<鉄量≦35ppbであるか否か、より好ましくは2ppb<鉄量≦25ppbであるか否か、その中でも好ましくは5ppb<鉄量≦25ppbであるか否かを基準として、所定の範囲内にあるものを選別すればよい。   As an evaluation criterion, in other words, as a selection criterion, the amount of iron per mass of the lithium transition metal oxide is 0 ppb <the amount of iron <75 ppb, preferably 1 ppb <the amount of iron ≦ 35 ppb, more preferably May be selected based on whether or not 2 ppb <iron content ≦ 25 ppb, preferably 5 ppb <iron content ≦ 25 ppb.

(特性・用途)
本Li遷移金属酸化物粉体は、必要に応じて解砕・分級した後、リチウム2次電池、
特に電気自動車(EV)やハイブリッド電気自動車(HEV)に搭載されるリチウム二次電池用の正極活物質として有効に利用することができる。
(Characteristics / Applications)
The Li transition metal oxide powder is crushed and classified as necessary, and then a lithium secondary battery,
In particular, it can be effectively used as a positive electrode active material for a lithium secondary battery mounted on an electric vehicle (EV) or a hybrid electric vehicle (HEV).

例えば、正極活物質としての本Li遷移金属酸化物粉体と、カーボンブラック等からなる導電材と、結着剤とを混合して正極合剤を製造することができる。そしてそのような正極合剤を正極に用い、例えば負極にはリチウムまたはカーボン等のリチウムを吸蔵・脱蔵できる材料を用い、非水系電解質には六フッ化リン酸リチウム(LiPF)等のリチウム塩をエチレンカーボネート−ジメチルカーボネート等の混合溶媒に溶解したものを用いてリチウム2次電池を構成することができる。但し、このような構成の電池に限定する意味ではない。 For example, a positive electrode mixture can be produced by mixing the present Li transition metal oxide powder as a positive electrode active material, a conductive material made of carbon black or the like, and a binder. Such a positive electrode mixture is used for the positive electrode, for example, a material that can store and desorb lithium such as lithium or carbon is used for the negative electrode, and lithium such as lithium hexafluorophosphate (LiPF 6 ) is used for the non-aqueous electrolyte. A lithium secondary battery can be formed by using a salt dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate. However, the present invention is not limited to the battery having such a configuration.

<用語の説明>
「ハイブリッド自動車」とは、電気モータと内燃エンジンという2つの動力源を併用した自動車であり、通常のハイブリッド自動車に比べて電流値が大きなプラグインハイブリッド自動車を包含するものである。
電気自動車(EV)やハイブリッド電気自動車(HEV)に搭載される電池は、ビデオカメラやノート型パソコン、携帯電話機などの民生品用電池のように充放電深度の限界域間で充放電される電池とは異なり、主に充放電深度の中心領域(SOC(;State Of Charge)=20〜80%)で充放電されることが多いため、電気自動車(EV)やハイブリッド電気自動車(HEV)に搭載されるリチウム二次電池用の正極活物質の開発に当たっては、充放電深度の中心領域(SOC(;State Of Charge)=20〜80%)で充放電された場合の特性を検討するのが好ましい。
<Explanation of terms>
A “hybrid vehicle” is a vehicle that uses a combination of two power sources, an electric motor and an internal combustion engine, and includes a plug-in hybrid vehicle that has a larger current value than a normal hybrid vehicle.
Batteries mounted on electric vehicles (EV) and hybrid electric vehicles (HEV) are charged / discharged between the limits of charge / discharge depth, such as batteries for consumer products such as video cameras, notebook computers, and mobile phones. In contrast, it is often charged and discharged mainly in the central area of the charge / discharge depth (SOC (State Of Charge) = 20 to 80%), so it is installed in electric vehicles (EV) and hybrid electric vehicles (HEV). In the development of a positive electrode active material for a lithium secondary battery, it is preferable to study characteristics when charging / discharging in the central region (SOC (State Of Charge) = 20 to 80%) of the charging / discharging depth. .

なお、本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含する。また、その際のX及びYは、四捨五入を考慮した数値である。
また、「X以上」或いは「Y以下」(X,Yは任意の数字)と表現する場合、特にことわらない限り、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意を包含する。また、その際のX及びYは、四捨五入を考慮した数値である。
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” and “ Is less than Y. Further, X and Y at that time are numerical values considering rounding.
Further, when expressed as “X or more” or “Y or less” (X and Y are arbitrary numbers), it means “preferably larger than X” or “preferably smaller than Y” unless otherwise specified. To do. Further, X and Y at that time are numerical values considering rounding.

次に、実施例に基づいて本発明について更に説明するが、本発明が以下に示す実施例に限定されるものではない。   Next, although this invention is further demonstrated based on an Example, this invention is not limited to the Example shown below.

<鉄量の測定1>
サンプル(粉体)をスラリー化すると共に、テトラフルオロエチレンで被覆された磁石をスラリーに投入して鉄を磁石に付着させた後、JIS G 1258:1999を参酌して、磁石に付着した鉄を酸溶解して鉄量を定量した。次に詳細に説明する。
なお、磁石に付着した鉄は微量であるため、磁石ごと酸性溶液に浸漬させて鉄を酸溶解させる必要がある。そこで、磁石には、テトラフルオロエチレンで被覆された磁石(50mT〜200mT、円筒形、直径2cm、長さ5cm、表面積37.7cm2)を用い、測定前に各磁石の強度を測定した。磁石の強度は、KANETEC社製TESLA METER 型式TM−601を用いて測定した。
<Measurement of iron content 1>
A sample (powder) is made into a slurry, and a magnet coated with tetrafluoroethylene is put into the slurry and iron is attached to the magnet. Then, in accordance with JIS G 1258: 1999, the iron attached to the magnet is removed. The amount of iron was determined by acid dissolution. Next, this will be described in detail.
In addition, since the iron adhering to the magnet is very small, it is necessary to immerse the magnet together in an acidic solution to dissolve the iron with an acid. Therefore, a magnet coated with tetrafluoroethylene (50 mT to 200 mT, cylindrical shape, diameter 2 cm, length 5 cm, surface area 37.7 cm 2 ) was used as the magnet, and the strength of each magnet was measured before measurement. The strength of the magnet was measured using a TESLA METER model TM-601 manufactured by KANETEC.

1000ccのポリプロピレン製ポット内に、リチウム遷移金属酸化物粉体(サンプル)100gとイオン交換水500ccとを入れてスラリー化すると共に、このスラリーに前記磁石(100mT〜150mT)1個を投入し、ボールミル回転架台に載せて、回転数60rpmで30分間回転させた。
次に、磁石を取り出し、300mLトールビーカーに入れてイオン交換水に浸し、超音波洗浄機(型式US-205 株式会社エスエヌディ製)を使用して2周波方式(28kHz/38kHzの同時発振)で3分間洗浄し、次いで磁石を浸しているイオン交換水を交換し、このようにイオン交換水の交換と超音波での洗浄を8回繰り返すことによって磁石に付着している微粉を除去した。
In a 1000 cc polypropylene pot, 100 g of lithium transition metal oxide powder (sample) and 500 cc of ion exchange water are put into a slurry, and one magnet (100 mT to 150 mT) is put into this slurry, and a ball mill is added. The sample was placed on a rotating gantry and rotated at 60 rpm for 30 minutes.
Next, the magnet is taken out, placed in a 300 mL tall beaker, immersed in ion-exchanged water, and 3 by a two-frequency method (simultaneous oscillation of 28 kHz / 38 kHz) using an ultrasonic cleaner (model US-205, manufactured by SND Corporation). The ion-exchanged water immersed in the magnet was then exchanged, and the fine particles adhering to the magnet were removed by repeating the exchange of ion-exchanged water and washing with ultrasonic waves 8 times in this way.

次に、磁石を取り出して100mLのメスシリンダーに入れ、磁石が完全に水没する量の王水(濃塩酸と濃硝酸とを3:1の体積比で混合した液体)に浸し、王水中で80℃×30分間加温して鉄を溶解させた。次いで、王水から磁石を取り出し、鉄が溶解している王水をイオン交換水で希釈し、希釈した王水をICPで分析し、Fe量を定量し、サンプル重量当りの鉄量を算出した。   Next, the magnet is taken out and placed in a 100 mL graduated cylinder, immersed in aqua regia (a liquid in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a volume ratio of 3: 1) so that the magnet can be completely submerged, and the aqua regia is 80 The iron was dissolved by heating at 30 ° C. for 30 minutes. Next, the magnet was taken out from the aqua regia, the aqua regia in which iron was dissolved was diluted with ion-exchanged water, the diluted aqua regia was analyzed by ICP, the amount of Fe was quantified, and the amount of iron per sample weight was calculated. .

得られたサンプル重量当りの鉄量に基づき、次の基準でリチウム遷移金属酸化物粉体を評価し選別した。
0ppb <鉄量<35ppb:◎(好ましく採用可能)
35ppb≦鉄量<75ppb:○(採用可能)
75ppb≦鉄量 :×(採用不可)
Based on the amount of iron per sample weight obtained, lithium transition metal oxide powders were evaluated and selected according to the following criteria.
0 ppb <iron amount <35 ppb: ◎ (preferably applicable)
35 ppb ≤ iron content <75 ppb: ○ (adoptable)
75 ppb ≤ iron amount: × (not applicable)

<鉄量の測定2>
実施例及び比較例で得られたサンプル(粉体)をスラリー化すると共に、テトラフルオロエチレンで被覆された磁石をスラリーに投入して鉄を磁石に付着させた後、JIS G 1258:1999を参酌して、磁石に付着した鉄を酸溶解して鉄を定量する方法を採用して行った。次に詳細に説明する。
なお、磁石に付着した鉄は微量であるため、磁石ごと酸性溶液に浸漬させて鉄を酸溶解させる必要がある。そこで、磁石には、テトラフルオロエチレンで被覆された磁石を用い、測定前に各磁石の強度を測定した。磁石の強度は、KANETEC社製TESLA METER 型式TM−601を用いて測定した。
<Measurement of iron content 2>
Samples (powder) obtained in Examples and Comparative Examples were slurried, and a magnet coated with tetrafluoroethylene was put into the slurry to attach iron to the magnet, and then JIS G 1258: 1999 was referred to. Then, a method of quantifying iron by dissolving the iron adhering to the magnet with an acid was employed. Next, this will be described in detail.
In addition, since the iron adhering to the magnet is very small, it is necessary to immerse the magnet together in an acidic solution to dissolve the iron with an acid. Therefore, a magnet coated with tetrafluoroethylene was used as the magnet, and the strength of each magnet was measured before the measurement. The strength of the magnet was measured using a TESLA METER model TM-601 manufactured by KANETEC.

1000ccのポリプロピレン製ポットにリチウム遷移金属酸化物粉体(サンプル)を100g入れ、イオン交換水500ccとテトラフルオロエチレンで被覆された450-600mTの磁石とを入れて、ボールミル回転架台にのせ、予め調整した回転数60rpmで30分間回転させた。次に、磁石を取り出し、100mLビーカーに入れてイオン交換水に浸して超音波洗浄機(型式US-205 株式会社エスエヌディ製)で出力切替2周波の設定にて3分間洗浄し、磁石に付着した余分な粉を除去した。磁石を浸しているイオン交換水の交換と超音波での洗浄を8回繰り返した。その後、磁石を取り出し、50mLのメスシリンダーに入れ、磁石が完全に水没する量の王水(濃塩酸と濃硝酸とを3:1の体積比で混合した液体)に浸し、王水中で80℃で30分間加温して鉄を溶解させた。王水から磁石を取り出し、鉄が溶解している王水をイオン交換水で希釈した。希釈した王水をICPで分析し、Fe量を定量し、サンプル重量当りの鉄量を算出した。   Put 100g of lithium transition metal oxide powder (sample) in a 1000cc polypropylene pot, put 500cc of ion exchange water and 450-600mT magnet covered with tetrafluoroethylene, put on a ball mill rotating base, and adjust in advance Rotation was performed for 30 minutes at 60 rpm. Next, the magnet was taken out, placed in a 100 mL beaker, immersed in ion-exchanged water, washed with an ultrasonic cleaner (model US-205, manufactured by SND Co., Ltd.) for 3 minutes at an output switching frequency setting, and adhered to the magnet. Excess powder was removed. The exchange of ion-exchanged water soaking the magnet and washing with ultrasonic waves were repeated 8 times. Then, the magnet is taken out and placed in a 50 mL graduated cylinder, immersed in aqua regia (a liquid in which concentrated hydrochloric acid and concentrated nitric acid are mixed at a volume ratio of 3: 1) so that the magnet is completely submerged, and is 80 ° C. in aqua regia. For 30 minutes to dissolve the iron. The magnet was taken out from the aqua regia, and the aqua regia in which iron was dissolved was diluted with ion exchange water. The diluted aqua regia was analyzed by ICP, the amount of Fe was quantified, and the amount of iron per sample weight was calculated.

<電池評価>
HEVで実際に電池が使用される充放電深度(SOC=20〜80%)を考慮し、次のような電池評価を行った。
<Battery evaluation>
Considering the charge / discharge depth (SOC = 20 to 80%) at which the battery is actually used in HEV, the following battery evaluation was performed.

(サンプル1〜5について)
正極活物質としてのリチウム遷移金属酸化物粉体(サンプル)8.80gと、導電材としてのアセチレンブラック(電気化学工業社製)0.60gと、N−メチル−2−ピロリドン(NMP)中にポリフッ化ビニリデン(PVDF、キシダ化学社製)を12wt%溶解した溶液5.00gと、N−メチル−2−ピロリドン(NMP)5mLとを混合し、遊星式撹拌・脱泡装置(クラボウ製 マゼルスターKK‐50S)を用いて混練しペースト状の正極合剤とした。
このペースト状の正極合剤を、集電体であるアルミニウム箔上に、クリアランスを250μmに調整したアプリケーターを用いて塗布し、120℃で一昼夜真空乾燥させ、16mmφのポンチで打ち抜いて4t/cm2の圧力でプレス圧密し、正極板とした。
(About samples 1 to 5)
In 8.80 g of lithium transition metal oxide powder (sample) as the positive electrode active material, 0.60 g of acetylene black (manufactured by Denki Kagaku Kogyo) as the conductive material, and N-methyl-2-pyrrolidone (NMP) 5.00 g of a solution in which 12 wt% of polyvinylidene fluoride (PVDF, manufactured by Kishida Chemical Co., Ltd.) is dissolved and 5 mL of N-methyl-2-pyrrolidone (NMP) are mixed, and a planetary stirring and defoaming device (Mazerustar KK manufactured by Kurabo Industries) -50S) to obtain a paste-like positive electrode mixture.
This paste-like positive electrode mixture was applied onto an aluminum foil as a current collector using an applicator having a clearance adjusted to 250 μm, vacuum-dried at 120 ° C. overnight, punched out with a 16 mmφ punch, and 4 t / cm 2. A positive electrode plate was obtained by press-consolidating at a pressure of

電池作製に際しては、電池作製直前に、この正極を120℃で120分間真空乾燥させて付着水分を除去して電池に組み込んだ。
また、予め16mmφのアルミ箔の重さを求めておき、正極板の重さから該アルミ箔の重さを差し引き、塗布した正極合剤の重さを求めた。また、正極活物質、アセチレンブラック及びPVDFの混合割合から正極活物質の含有量を求めた。
In producing the battery, immediately before producing the battery, the positive electrode was vacuum-dried at 120 ° C. for 120 minutes to remove the adhering moisture and incorporated in the battery.
In addition, the weight of an aluminum foil having a diameter of 16 mmφ was obtained in advance, the weight of the aluminum foil was subtracted from the weight of the positive electrode plate, and the weight of the applied positive electrode mixture was obtained. Further, the content of the positive electrode active material was determined from the mixing ratio of the positive electrode active material, acetylene black and PVDF.

(サンプル6〜7について)
正極活物質としてのリチウム遷移金属酸化物粉体(サンプル)8.00gと、導電材としてのアセチレンブラック(電気化学工業社製)1.00gと、N−メチル−2−ピロリドン(NMP)中にポリフッ化ビニリデン(PVDF、キシダ化学社製)を12wt%溶解した溶液8.30gと、N−メチル−2−ピロリドン(NMP)5mLとを混合し、遊星式撹拌・脱泡装置(クラボウ製 マゼルスターKK‐50S)を用いて混練しペースト状の正極合剤とした。
このペースト状の正極合剤を、集電体であるアルミニウム箔上に、クリアランスを350μmに調整したアプリケーターを用いて塗布し、120℃で一昼夜真空乾燥させ、14mmφのポンチで打ち抜いて4t/cm2の圧力でプレス圧密し、正極板とした。
(About Samples 6-7)
In 8.00 g of lithium transition metal oxide powder (sample) as a positive electrode active material, 1.00 g of acetylene black (manufactured by Denki Kagaku Kogyo) as a conductive material, and N-methyl-2-pyrrolidone (NMP) 8.30 g of a solution containing 12 wt% of polyvinylidene fluoride (PVDF, manufactured by Kishida Chemical Co., Ltd.) and 5 mL of N-methyl-2-pyrrolidone (NMP) are mixed, and a planetary stirring and deaerator (Mazerustar KK manufactured by Kurabo Industries Co., Ltd.) is mixed. -50S) to obtain a paste-like positive electrode mixture.
This paste-like positive electrode mixture was applied onto an aluminum foil as a current collector using an applicator with a clearance adjusted to 350 μm, vacuum-dried at 120 ° C. overnight, punched out with a 14 mmφ punch, and 4 t / cm 2. A positive electrode plate was obtained by press-consolidating at a pressure of

電池作製に際しては、電池作製直前に、この正極を120℃で120分間真空乾燥させて付着水分を除去して電池に組み込んだ。
また、予め14mmφのアルミ箔の重さを求めておき、正極板の重さから該アルミ箔の重さを差し引き、塗布した正極合剤の重さを求めた。また、正極活物質、アセチレンブラック及びPVDFの混合割合から正極活物質の含有量を求めた。
In producing the battery, immediately before producing the battery, the positive electrode was vacuum-dried at 120 ° C. for 120 minutes to remove the adhering moisture and incorporated in the battery.
Further, the weight of an aluminum foil having a diameter of 14 mmφ was obtained in advance, the weight of the aluminum foil was subtracted from the weight of the positive electrode plate, and the weight of the applied positive electrode mixture was obtained. Further, the content of the positive electrode active material was determined from the mixing ratio of the positive electrode active material, acetylene black and PVDF.

(サンプル1〜7について)
負極として、Φ20mm×厚さ1.0mmの金属Liを用いて、図1の電気化学評価用セル「TOMCELL(登録商標)」を作製した。
すなわち、図1に示すように耐有機電解液性のステンレス鋼製の下ボディ1の内側中央に、前記正極板3を配置した。この正極板3の上面には、電解液を含浸させたポリプロピレン製セパレータ(「セルガード2400」)4を配置し、テフロンスペーサー5(「テフロン」は米国DUPONT社の登録商標)によりセパレータ4を固定した。さらに、セパレータ4の上面には、その下方に上記負極6を配置し、負極端子を兼ねたスペーサー7を配置し、その上に上ボディ2を被せてネジで締め付け、電池を密閉し、電気化学評価用セルを作製した。
電解液は、ECとDMCを3:7の体積割合で混合したものを溶媒とし、これに溶質としてLiPF6を1mol/L溶解させたものを用いた。
(About samples 1-7)
The electrochemical evaluation cell “TOMCELL (registered trademark)” in FIG. 1 was produced using metal Li having a diameter of 20 mm and a thickness of 1.0 mm as the negative electrode.
That is, as shown in FIG. 1, the positive electrode plate 3 was arranged in the center of the inside of the lower body 1 made of organic electrolyte resistant stainless steel. On the upper surface of the positive electrode plate 3, a polypropylene separator (“Celguard 2400”) 4 impregnated with an electrolytic solution is disposed, and the separator 4 is fixed by a Teflon spacer 5 (“Teflon” is a registered trademark of DUPONT USA). . Further, on the upper surface of the separator 4, the negative electrode 6 is disposed below, the spacer 7 also serving as a negative electrode terminal is disposed, the upper body 2 is placed on the upper surface, the screws are tightened, the battery is sealed, and the electrochemical An evaluation cell was produced.
As the electrolytic solution, a mixture of EC and DMC in a volume ratio of 3: 7 was used as a solvent, and a solution obtained by dissolving 1 mol / L of LiPF 6 as a solute was used.

(電圧降下確認試験)
上記の如く作製した電気化学評価用セル「TOMCELL(登録商標)」を使用して、電圧降下確認試験を実施した。
(Voltage drop confirmation test)
Using the electrochemical evaluation cell “TOMCELL (registered trademark)” produced as described above, a voltage drop confirmation test was performed.

25℃において、電極電位が3.0〜4.3Vの範囲で充放電を2回繰り返した。次に、2サイクル目の放電容量に対して80%まで充電を行い(SOC=80%)、装置から取り外した後、電位を測定した。そして、このような充電状態の電池を65℃の恒温槽に入れて30日間保存した。その後、30日後の電位を測定し、電位降下が200mV以上のものを「不良」、電位降下が200mV未満のものを「良」と判断し、100個中の不良率を求めた。   At 25 ° C., charging / discharging was repeated twice in the range of electrode potential of 3.0 to 4.3V. Next, the battery was charged up to 80% of the discharge capacity at the second cycle (SOC = 80%), removed from the apparatus, and then the potential was measured. And the battery of such a charge state was put into a 65 degreeC thermostat, and was preserve | saved for 30 days. Thereafter, the potential after 30 days was measured, and those having a potential drop of 200 mV or more were judged as “defective”, and those having a potential drop of less than 200 mV were judged as “good”, and the failure rate in 100 pieces was determined.

<サンプル1−5>
炭酸リチウム18.15(g)、電解二酸化マンガン81.85(g)となるように秤量し、これらを混合して混合原料を得た。得られた混合原料を、焼成容器(アルミナ製のルツボ大きさ=縦*横*高さ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm3であった。
そして、静置式電気炉を用いて、常温から焼成設定温度まで昇温速度=150℃/hrで昇温し、焼成温度(保持温度)750℃で20時間保持し、その後、保持温度から600℃まで降温速度=20℃/hrで降温させ、その後は常温まで自然冷却させた。なお、保持時間内の温度ばらつきは740℃〜760℃の範囲内で制御した。
このように焼成して得られた焼成粉を乳鉢で解砕し、目開き75μmの篩で分級し、篩下の粉体を、さらに磁選器(マグネテックジャパン株式会社製、MODEL:SGC-010232)に1kg/minの速度で投入し、磁着物の除去を行ってサンプルを得た。なお、磁選の回数は表1記載の回数を繰り返し行なった。
<Sample 1-5>
Lithium carbonate 18.15 (g) and electrolytic manganese dioxide 81.85 (g) were weighed and mixed to obtain a mixed raw material. The obtained mixed raw material is placed in a firing container (alumina crucible size = vertical * horizontal * height = 10 * 10 * 5 (cm)) and the ratio of open area to filling height (open area cm 2 / The filling was performed such that the filling height cm) was 100. The raw material apparent density at this time was 1.1 g / cm 3 .
Then, using a static electric furnace, the temperature was raised from room temperature to the firing set temperature at a heating rate = 150 ° C./hr, held at a firing temperature (holding temperature) of 750 ° C. for 20 hours, and then from the holding temperature to 600 ° C. The temperature was decreased at a rate of temperature decrease of 20 ° C./hr until it was naturally cooled to room temperature. The temperature variation within the holding time was controlled within the range of 740 ° C to 760 ° C.
The fired powder obtained by firing in this way is crushed in a mortar, classified with a sieve having an opening of 75 μm, and the powder under the sieve is further separated by a magnetic separator (Magnetec Japan, MODEL: SGC-010232 ) At a rate of 1 kg / min, and the magnetic deposit was removed to obtain a sample. The number of magnetic separations was repeated as shown in Table 1.

<サンプル6−7>
平均粒径(D50)8μmの炭酸リチウムと、平均粒径(D50)22μmの電解二酸化マンガンと、平均粒径(D50)25μmの水酸化ニッケルと、平均粒径(D50)14μmのオキシ水酸化コバルトとを、モル比でLi:Mn:Ni:Co=1.07:0.31:0.31:0.31となるように秤量し、水を加えて混合攪拌して固形分濃度50wt%のスラリーを調製した。
得られたスラリー(原料粉20kg)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の6wt%添加し、湿式粉砕機で1300rpm、29分間粉砕して平均粒径(D50)を0.7μmとした。
得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製OC‐16)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数21000rpm、スラリー供給量24kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行なった。
得られた造粒粉を、静置式電気炉を用いて、大気中975℃で20時間焼成した。焼成して得られた焼成粉を目開き75μmの篩で分級し、篩下の粉体を分級機構付衝突式粉砕機(ホソカワミクロン製カウンタージェットミル「100AFG/50ATP」)を用いて、分級ローター回転数:14900rpm、粉砕空気圧力:0.6MPa、粉砕ノズルφ:2.5×3本使用、粉体供給量:4.5kg/hの条件で粉砕を行い、リチウム遷移金属酸化物粉体を得た。
このようにして得られたリチウム遷移金属酸化物粉体を磁選器(マグネテックジャパン株式会社製、MODEL:SGC-010232)に1kg/minの速度で投入し、磁着物の除去を行ってサンプルを得た。
なお、磁選の回数は表1記載の回数を繰り返し行なった。
<Sample 6-7>
Lithium carbonate with an average particle size (D50) of 8 μm, electrolytic manganese dioxide with an average particle size (D50) of 22 μm, nickel hydroxide with an average particle size (D50) of 25 μm, and cobalt oxyhydroxide with an average particle size (D50) of 14 μm In a molar ratio of Li: Mn: Ni: Co = 1.07: 0.31: 0.31: 0.31, water was added, mixed and stirred, and the solid content concentration was 50 wt%. A slurry was prepared.
To the resulting slurry (20 kg of raw material powder), 6 wt% of a polycarboxylic acid ammonium salt (SN Dispersant 5468 manufactured by San Nopco Co., Ltd.) as a dispersant was added, and pulverized with a wet pulverizer at 1300 rpm for 29 minutes. The average particle size (D50) was 0.7 μm.
The obtained pulverized slurry was granulated and dried using a thermal spray dryer (spray dryer, OC-16 manufactured by Okawahara Chemical Co., Ltd.). At this time, a rotating disk was used for spraying, and granulation drying was performed by adjusting the temperature so that the rotation speed was 21,000 rpm, the slurry supply amount was 24 kg / hr, and the outlet temperature of the drying tower was 100 ° C.
The obtained granulated powder was baked at 975 ° C. for 20 hours in the air using a stationary electric furnace. The fired powder obtained by firing is classified with a sieve having an opening of 75 μm, and the powder under the sieve is rotated by a classification rotor using a collision type pulverizer with a classification mechanism (Counterjet mill “100AFG / 50ATP” manufactured by Hosokawa Micron). Number: 14900 rpm, pulverization air pressure: 0.6 MPa, pulverization nozzle φ: 2.5 × 3 used, powder supply: 4.5 kg / h, pulverization to obtain lithium transition metal oxide powder It was.
The lithium transition metal oxide powder thus obtained was put into a magnetic separator (Magnec Tech Japan Co., Ltd., MODEL: SGC-010232) at a rate of 1 kg / min, and the magnetic deposit was removed to prepare a sample. Obtained.
The number of magnetic separations was repeated as shown in Table 1.

Figure 2010033786
Figure 2010033786

(考察)
450−600mTの磁石を使用して磁石に磁着した鉄量を検出して評価した場合(鉄量の測定2)に比べ、50mT〜200mTの磁石を使用して磁石に磁着した鉄量を検出して評価した場合(鉄量の測定1)の方が、微小短絡(電圧降下)のし易さ、特に充電状態のまま長時間高温に維持された状態での短絡(電圧降下)し易さを正確に評価できることが分かった。特にサンプル2と3を比較すると、鉄量の測定2ではサンプル2の方が鉄量が少なく検出されているが、鉄量の測定1では鉄量が多く検出されて電圧降下の不良率とも合致した結果であった。
このような理由としては、鉄量の検出に用いる磁石の強度を弱めると、通常は検出される鉄量が減少して評価精度が低下するようにも思われるが、本発明の場合には磁石の強度を適切な範囲に弱めたことにより、微小短絡(電圧降下)に影響する鉄、すなわち磁力の強い鉄の検出精度が高まることとなり、その結果、微小短絡(電圧降下)のし易さ、特に充電状態のまま長時間高温に維持された状態での短絡(電圧降下)し易さを正確に評価できるようになったものと考えることができる。
(Discussion)
Compared to the case of detecting and evaluating the amount of iron magnetized on a magnet using a 450-600 mT magnet (Iron amount measurement 2), the amount of iron magnetized on the magnet using a magnet of 50 mT to 200 mT When it is detected and evaluated (Iron amount measurement 1), it is easier to make a short circuit (voltage drop), especially when it is kept charged for a long time at a high temperature (voltage drop). It was found that the accuracy can be accurately evaluated. In particular, comparing Samples 2 and 3, in Sample 2, the amount of iron in Sample 2 was detected to be less, but in Sample 1, the amount of iron was detected to be high and matched the defective rate of voltage drop. Was the result.
The reason for this seems to be that if the strength of the magnet used to detect the amount of iron is weakened, the amount of iron detected is usually reduced and the evaluation accuracy is lowered. By reducing the strength of the iron to an appropriate range, the detection accuracy of iron that affects micro short-circuit (voltage drop), that is, iron with strong magnetic force, will be increased. As a result, the ease of micro short-circuit (voltage drop), In particular, it can be considered that the ease of short-circuiting (voltage drop) in a state of being kept at a high temperature for a long time while being charged can be accurately evaluated.

なお、鉄量を測定するのに今回使用した磁石の強度は、表の値では130〜140mTの範囲となっているが、磁石の強度は安定していないため、100〜150mTの範囲の磁石であると言うことができる。そして、これまでの試験経験からすると、50mT〜200mTの磁石を使用すれば、本試験で使用した100〜150mTの範囲の磁石と同様の効果が得られると考えられる。   In addition, although the strength of the magnet used this time for measuring the amount of iron is in the range of 130 to 140 mT according to the values in the table, the strength of the magnet is not stable, so the magnet in the range of 100 to 150 mT is used. I can say that there is. From the experience of the tests so far, it is considered that the same effect as the magnets in the range of 100 to 150 mT used in this test can be obtained if a magnet of 50 mT to 200 mT is used.

サンプルの電池評価のために作製した電気化学評価用セルの構成を示した図である。It is the figure which showed the structure of the cell for electrochemical evaluation produced for the battery evaluation of the sample.

Claims (5)

リチウム遷移金属酸化物粉体に液体を加えてスラリー化し、このスラリーに50mT〜200mTの磁石を投入して攪拌し、当該磁石に付着した鉄量を検出し、リチウム遷移金属酸化物粉体の質量当たりの鉄量が0ppb<鉄量<75ppbであるリチウム遷移金属酸化物粉体を選別することを特徴とするリチウム二次電池用正極活物質の評価方法。   A liquid is added to the lithium transition metal oxide powder to make a slurry, and a 50 mT to 200 mT magnet is put into the slurry and stirred, and the amount of iron adhering to the magnet is detected, and the mass of the lithium transition metal oxide powder. A method for evaluating a positive electrode active material for a lithium secondary battery, wherein a lithium transition metal oxide powder having an iron content of 0 ppb <iron content <75 ppb is selected. リチウム遷移金属酸化物粉体に液体を加えてスラリー化し、このスラリーに50mT〜200mTの磁石を投入して攪拌し、当該磁石に付着した鉄量を検出し、リチウム遷移金属酸化物粉体の質量当たりの鉄量が1ppb<鉄量≦35ppbであるリチウム遷移金属酸化物粉体を選別することを特徴とするリチウム二次電池用正極活物質の評価方法。   A liquid is added to the lithium transition metal oxide powder to make a slurry, and a 50 mT to 200 mT magnet is put into the slurry and stirred, and the amount of iron adhering to the magnet is detected, and the mass of the lithium transition metal oxide powder. A method for evaluating a positive electrode active material for a lithium secondary battery, wherein a lithium transition metal oxide powder having an iron content of 1 ppb <iron content ≦ 35 ppb is selected. リチウム遷移金属酸化物粉体に液体を加えてスラリー化し、このスラリーに50mT〜200mTの磁石を投入して攪拌し、当該磁石に付着した鉄量を検出し、リチウム遷移金属酸化物粉体の質量当たりの鉄量が2ppb<鉄量≦25ppbであるリチウム遷移金属酸化物粉体を選別することを特徴とするリチウム二次電池用正極活物質の評価方法。   A liquid is added to the lithium transition metal oxide powder to make a slurry, and a 50 mT to 200 mT magnet is put into the slurry and stirred, and the amount of iron adhering to the magnet is detected, and the mass of the lithium transition metal oxide powder. A method for evaluating a positive electrode active material for a lithium secondary battery, wherein a lithium transition metal oxide powder having an iron content of 2 ppb <iron content ≦ 25 ppb is selected. リチウム遷移金属酸化物粉体に液体を加えてスラリー化し、このスラリーに50mT〜200mTの磁石を投入して攪拌し、当該磁石に付着した鉄量を検出し、リチウム遷移金属酸化物粉体の質量当たりの鉄量が5ppb<鉄量≦25ppbであるリチウム遷移金属酸化物粉体を選別することを特徴とするリチウム二次電池用正極活物質の評価方法。   A liquid is added to the lithium transition metal oxide powder to make a slurry, and a 50 mT to 200 mT magnet is put into the slurry and stirred, and the amount of iron adhering to the magnet is detected, and the mass of the lithium transition metal oxide powder. A method for evaluating a positive electrode active material for a lithium secondary battery, wherein a lithium transition metal oxide powder having an iron content of 5 ppb <iron content ≦ 25 ppb is selected. 請求項1〜4の何れかに記載の評価方法によりリチウム遷移金属酸化物粉体を選別することを特徴とするリチウム二次電池用正極活物質の製造方法。
A method for producing a positive electrode active material for a lithium secondary battery, wherein the lithium transition metal oxide powder is selected by the evaluation method according to claim 1.
JP2008192871A 2008-07-25 2008-07-25 Evaluation method and manufacturing method of positive electrode active material for lithium secondary battery Active JP5351457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192871A JP5351457B2 (en) 2008-07-25 2008-07-25 Evaluation method and manufacturing method of positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192871A JP5351457B2 (en) 2008-07-25 2008-07-25 Evaluation method and manufacturing method of positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010033786A true JP2010033786A (en) 2010-02-12
JP5351457B2 JP5351457B2 (en) 2013-11-27

Family

ID=41738029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192871A Active JP5351457B2 (en) 2008-07-25 2008-07-25 Evaluation method and manufacturing method of positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5351457B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118117A1 (en) * 2011-03-02 2012-09-07 三井金属鉱業株式会社 Spinel-type lithium manganese-based composite oxide
EP2609999A1 (en) 2011-12-26 2013-07-03 Jtekt Corporation Mixing and dispersing device
EP2609997A1 (en) 2011-12-26 2013-07-03 Jtekt Corporation Mixing and dispersing device
EP2609998A1 (en) 2011-12-26 2013-07-03 Jtekt Corporation Dispersing device
CN109314229A (en) * 2016-06-07 2019-02-05 住友金属矿山株式会社 The manufacturing method of lithium compound, the manufacturing method of the lithium compound and non-aqueous electrolyte secondary battery positive active material
EP3778493A4 (en) * 2018-03-28 2021-06-02 Sumitomo Metal Mining Co., Ltd. Lithium-nickel composite oxide, and method for producing lithium-nickel composite oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358952A (en) * 2001-05-30 2002-12-13 Sony Corp Non-aqueous electrolyte battery and its manufacturing method, and evaluation method of positive electrode
JP2003123742A (en) * 2001-10-11 2003-04-25 Mitsubishi Chemicals Corp Method of manufacturing electrode plate for nonaqueous electrolyte secondary battery
JP2004107095A (en) * 2001-10-11 2004-04-08 Mitsubishi Chemicals Corp Method for manufacturing lithium transition metal compound oxide
JP2005015282A (en) * 2003-06-26 2005-01-20 Mitsubishi Chemicals Corp Method of producing coprecipitated product, and method of producing substitutional lithium transition metal multiple oxide
JP2008108574A (en) * 2006-10-25 2008-05-08 Nippon Chem Ind Co Ltd Positive electrode active material for lithium-ion secondary battery, and its manufacturing method
WO2008091028A1 (en) * 2007-01-26 2008-07-31 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358952A (en) * 2001-05-30 2002-12-13 Sony Corp Non-aqueous electrolyte battery and its manufacturing method, and evaluation method of positive electrode
JP2003123742A (en) * 2001-10-11 2003-04-25 Mitsubishi Chemicals Corp Method of manufacturing electrode plate for nonaqueous electrolyte secondary battery
JP2004107095A (en) * 2001-10-11 2004-04-08 Mitsubishi Chemicals Corp Method for manufacturing lithium transition metal compound oxide
JP2005015282A (en) * 2003-06-26 2005-01-20 Mitsubishi Chemicals Corp Method of producing coprecipitated product, and method of producing substitutional lithium transition metal multiple oxide
JP2008108574A (en) * 2006-10-25 2008-05-08 Nippon Chem Ind Co Ltd Positive electrode active material for lithium-ion secondary battery, and its manufacturing method
WO2008091028A1 (en) * 2007-01-26 2008-07-31 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463880B1 (en) 2011-03-02 2014-11-20 미쓰이 긴조꾸 고교 가부시키가이샤 Spinel-type lithium manganese-based composite oxide
GB2503138B (en) * 2011-03-02 2019-05-01 Mitsui Mining & Smelting Co Spinel-type lithium manganese-based composite oxide
US9437873B2 (en) 2011-03-02 2016-09-06 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium manganese-based composite oxide
WO2012118117A1 (en) * 2011-03-02 2012-09-07 三井金属鉱業株式会社 Spinel-type lithium manganese-based composite oxide
CN103339062A (en) * 2011-03-02 2013-10-02 三井金属矿业株式会社 Spinel-type lithium manganese-based composite oxide
JP5308581B2 (en) * 2011-03-02 2013-10-09 三井金属鉱業株式会社 Spinel type lithium manganese composite oxide
GB2503138A (en) * 2011-03-02 2013-12-18 Mitsui Mining & Smelting Co Spinel-type lithium manganese-based composite oxide
EP2609998A1 (en) 2011-12-26 2013-07-03 Jtekt Corporation Dispersing device
EP2609997A1 (en) 2011-12-26 2013-07-03 Jtekt Corporation Mixing and dispersing device
EP2609999A1 (en) 2011-12-26 2013-07-03 Jtekt Corporation Mixing and dispersing device
CN109314229A (en) * 2016-06-07 2019-02-05 住友金属矿山株式会社 The manufacturing method of lithium compound, the manufacturing method of the lithium compound and non-aqueous electrolyte secondary battery positive active material
EP3467909A4 (en) * 2016-06-07 2019-11-20 Sumitomo Metal Mining Co., Ltd. Lithium compound, production method for lithium compound, and production method for positive electrode active material for use in non-aqueous secondary battery
CN109314229B (en) * 2016-06-07 2022-03-01 住友金属矿山株式会社 Lithium compound, method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
EP3778493A4 (en) * 2018-03-28 2021-06-02 Sumitomo Metal Mining Co., Ltd. Lithium-nickel composite oxide, and method for producing lithium-nickel composite oxide
US11430991B2 (en) 2018-03-28 2022-08-30 Sumitomo Metal Mining Co., Ltd. Lithium-nickel composite oxide and method of producing lithium-nickel composite oxide

Also Published As

Publication number Publication date
JP5351457B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP4213768B2 (en) Lithium transition metal oxide with layer structure
JP5756625B2 (en) Method for producing positive electrode active material for lithium battery
JP6091461B2 (en) Spinel type lithium manganese transition metal oxide
JP5204913B1 (en) Lithium metal composite oxide with layer structure
JP5308581B2 (en) Spinel type lithium manganese composite oxide
JP5953269B2 (en) Method for producing positive electrode active material for lithium secondary battery
CN109728262B (en) Lithium ion battery anode material and preparation method and application thereof
JP4939670B2 (en) Spinel type lithium transition metal oxide and cathode active material for lithium battery
JP5351457B2 (en) Evaluation method and manufacturing method of positive electrode active material for lithium secondary battery
WO2014010730A1 (en) Lithium metal complex oxide
JP6178037B1 (en) Spinel-type lithium nickel manganese-containing composite oxide
JP2010030808A (en) Lithium transition metal oxide having layer structure
JP2004311297A (en) Powdered lithium secondary battery positive electrode material, lithium secondary battery positive electrode, and lithium secondary battery
JP5951518B2 (en) Method for producing lithium metal composite oxide having layer structure
JP2010033785A (en) Lithium transition metal oxide powder
JP6546582B2 (en) Method for producing lithium metal composite oxide having layered crystal structure
JP2016026998A (en) Production method of lithium metal complex oxide having layer structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5351457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250