JP2009092080A - Variable tooth-number geared continuously variable speed transmission - Google Patents

Variable tooth-number geared continuously variable speed transmission Download PDF

Info

Publication number
JP2009092080A
JP2009092080A JP2007237241A JP2007237241A JP2009092080A JP 2009092080 A JP2009092080 A JP 2009092080A JP 2007237241 A JP2007237241 A JP 2007237241A JP 2007237241 A JP2007237241 A JP 2007237241A JP 2009092080 A JP2009092080 A JP 2009092080A
Authority
JP
Japan
Prior art keywords
gear
tooth
conical
teeth
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007237241A
Other languages
Japanese (ja)
Other versions
JP4186196B1 (en
Inventor
Akihisa Matsuzono
明久 松園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007237241A priority Critical patent/JP4186196B1/en
Application granted granted Critical
Publication of JP4186196B1 publication Critical patent/JP4186196B1/en
Publication of JP2009092080A publication Critical patent/JP2009092080A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Structure Of Transmissions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device which reduces a power transmission loss, and can continuously perform the acceleration/deceleration control of an input/output ratio having a simple structure and lower manufacturing cost in a variable power transmission device, and to solve the problems that the variable power transmission device of a conical type or a disk type is required to convert from a friction transmission method into a gear transmission method which is a reliable power transmission means, an amount corresponding to a surplus is absorbed when it is not an intejer, and also the gear engaged with the opposite gear is continuously smoothly moved when gear-changed. <P>SOLUTION: A method solved by a stepless topological pattern structure having a V-shaped continuous tooth groove on a conical and a disk surface, and a round tooth groove for rounding the tooth number surplus is invented in order to take measures to cope with the situation. Thus, one embodiment contemplates application for the continuously variable gear device having the lower transmission loss, the simple structure, and easy manufacturing by combining the gears of this device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、従来の円錐型や円盤型の可変速動力伝達装置を摩擦伝動方式から、動力伝達が確実な歯車伝動方式への変革を実現するための機構に関するものである。The present invention relates to a mechanism for realizing a change from a friction transmission system to a gear transmission system with reliable power transmission in a conventional conical or disk type variable speed power transmission device.

円錐型無段変速装置に関する従来技術では円錐ローラによる無段変速機構があり、このような摩擦伝動方式による動力伝達ロスを解決するため、歯数を変化させて確実に動力伝達を目指す手段として、歯車式無段階(連続)動力伝達構造に関するものがある(特許文献1参照)。In the prior art related to the conical type continuously variable transmission, there is a continuously variable transmission mechanism using a conical roller, and in order to solve the power transmission loss due to such a friction transmission system, as a means of aiming for power transmission by changing the number of teeth, There is a gear type stepless (continuous) power transmission structure (see Patent Document 1).

特許公開2000−240738 可変歯数歯車変速機Patent Publication 2000-240738 Variable Gear Number Gear Transmission

前記特許文献1上で述べられている通り、‘SURIBACHIパターン’(図9右上)では「一つ歯抜けが生じたり、各セクター内では、歯並びと進行方向が直角からずれる歯があるため、速度変化が生じる」問題の他に、円盤の表面に対し歯形が連続的に切られていないため噛み合う相手の歯車がスム−スに移動できず引っかかり最悪、歯車が破損する可能性がある。また整数とならない中間径での歯数余りを解消するため一部で歯の山を削除して遊びを確保するとしているが、これが余りを更に大きくして回転ムラ増加の可能性も新たに生じる。更に円盤の表面に切られている噛み合わせを近似した歯形の方向が一方向であるため速度のズレが補正されない等、問題が多い。As described in Patent Document 1, in the “SURIBACHI pattern” (upper right of FIG. 9), “one tooth missing occurs, or there is a tooth in which the tooth arrangement and the traveling direction are deviated from each other at right angles in each sector. In addition to the problem that “change occurs”, the tooth shape is not continuously cut with respect to the surface of the disk, and therefore, the gears of the mating gears cannot move smoothly and get caught, and the gears may be damaged. In addition, in order to eliminate the remainder of the number of teeth with an intermediate diameter that does not become an integer, some tooth crests are deleted to ensure play, but this further enlarges the remainder and newly increases the possibility of uneven rotation. . Furthermore, there are many problems such as speed deviation being not corrected because the direction of the tooth profile that approximates the mesh cut on the surface of the disk is one direction.

歯車の歯数は整数値でなければならないため、このように連続的な無段階変速装置を実現することが困難であった。しかし円錐・円盤の径サイズ変化は連続的であるので、この特性を活かし、整数とならない歯数余り相当分を吸収し且つ、噛み合う相手の歯車の移動をスムースにして変速を容易に制御することができれば、簡単で確実な歯車伝動式無段階変速装置の実現が可能であり、これが本発明の課題である。Since the number of teeth of the gear must be an integer value, it has been difficult to realize such a continuous continuously variable transmission. However, since the change in diameter and size of the cone / disk is continuous, this feature is used to absorb the remainder corresponding to the number of teeth that do not become an integer, and to smoothly control the shifting by moving the gears of the mating counterpart smoothly. If possible, it is possible to realize a simple and reliable gear transmission type continuously variable transmission, and this is the subject of the present invention.

先ず歯車の円ピッチ幅(歯溝の幅+歯厚)を固定して、円錐(円盤も含む)形状の異なる径サイズ変化に対応した歯形(図6)の位相を揃え且つ、変速(ギアチェンジ)操作が容易なV字型連続歯溝パターン(図6−604を基本形とする図6−611〜617)による歯車の噛み合わせ機能を実現。First, the gear wheel pitch width (tooth gap width + tooth thickness) is fixed, the phase of the tooth profile (Fig. 6) corresponding to the change in diameter and size of the cone (including the disk) is aligned, and the gear shift (gear change) ) Realizes the meshing function of the gear by the easy-to-operate V-shaped continuous tooth groove pattern (Figs. 6-611 to 617 based on Fig. 6-604).

更にこの構造により変速時の歯数余りを連続歯溝連結折り返しコーナ(図6−603)上に集約することが出来、これを複数の逆V字型連続歯溝パターン(図6−605が基本形)と、三角形状の緩衝歯溝(図4−411〜419)により歯数余りを0.5ピッチ以下(越えた場合は余りを分割:図4 421−a/b〜429−a/b)にして丸め込み吸収し、相手歯車との噛み合わせを常に維持する機能を有するラウンド歯溝構造(図4)とより成る‘連続トポロジカル歯形パターンと称す’歯数可変歯車式無段変速機能を実現する。Furthermore, this structure allows the remaining number of teeth at the time of shifting to be gathered on a continuous tooth gap connecting folded corner (FIG. 6-603), which is formed into a plurality of inverted V-shaped continuous tooth groove patterns (FIG. 6-605 is a basic shape). ) And a triangular buffer tooth groove (FIGS. 4-411 to 419), the remainder of the number of teeth is 0.5 pitch or less (if it exceeds, the remainder is divided: FIG. 4 421-a / b to 429-a / b) A round tooth gap structure (FIG. 4) having a function of absorbing and rounding and always maintaining the meshing with the counter gear is realized as a continuously variable gear type continuously variable transmission function called a “continuous topological tooth pattern”. .

円錐(円盤)の径変化に対応する全ての歯数(例では全37段相当)の歯形位置と位相が揃い回転時もギアチェンジ容易となる。また歯数(整数)に余りが出る径サイズでのピッチ変化率も維持されるため速度変化も少なく、歯車機構による大きな伝達力で入出力比を無段階に加減速制御可能な動力伝達装置が可能である。It is easy to change gears even during rotation because the tooth profile positions and phases of all teeth (corresponding to all 37 steps in the example) corresponding to the change in diameter of the cone (disk) are aligned. In addition, there is a power transmission device that can control the speed of input / output ratio steplessly with a large transmission force by the gear mechanism because the pitch change rate is maintained at a diameter size that leaves a remainder in the number of teeth (integer). Is possible.

更に構造が簡単で部品点数も格段に少なく(図1、図2の例では従来の37段37枚の歯車相当が1ケに)製造コストや長期運転時の維持コスト等も減り、総合的な製品生涯エネルギーコストで見ても省エネ型で環境にも配慮した動力可変伝達歯車である。Furthermore, the structure is simple and the number of parts is remarkably small (in the example of FIGS. 1 and 2, the conventional 37 steps and 37 gears are equivalent to one piece). This is a variable power transmission gear that is energy-saving and environmentally friendly in terms of product lifetime energy costs.

図1、2は本発明の請求項1、2の実施例に係る円錐(以下円盤も含む)型歯車のV字型連続歯溝の完成図であり、図3〜図6はその原理構造説明図である。このため構成要素等の出現順は逆に図6、5、4、3となる。なおこれら図中では同じ構成要素に対しては同じ参照番号を用いる場合がある。FIGS. 1 and 2 are completed views of a V-shaped continuous tooth gap of a conical (hereinafter also including a disk) gear according to the first and second embodiments of the present invention, and FIGS. FIG. For this reason, the order of appearance of components and the like is reversely shown in FIGS. In these drawings, the same reference numerals may be used for the same components.

請求項1のV字型連続歯溝の完成図は図1、図2であるが図6から説明すると、先ず円ピッチ幅を固定にして最大:最小の歯数比を4:1、歯数を12〜48(この開で無段歯車となるがシミュレーション上、37段の全モデルを想定:図6−601、602)の範囲で、4分割するため90度毎に完全一致する基準歯数(10段相当:12、16、20、24、28、32、36、40、44、48)と位置(図6−601)を設定してV字型連続歯溝構造の基本形(図6−604)を形成する。The completed drawing of the V-shaped continuous tooth gap of claim 1 is FIG. 1 and FIG. 2, but from FIG. 6, first, the circle pitch width is fixed and the maximum: minimum tooth ratio is 4: 1, the number of teeth. In the range of 12 to 48 (in this open, it becomes a continuously variable gear, but all models of 37 stages are assumed in the simulation: FIGS. 6-601 and 602), so the number of reference teeth that perfectly match every 90 degrees (Equivalent to 10 steps: 12, 16, 20, 24, 28, 32, 36, 40, 44, 48) and position (FIG. 6-601) are set, and the basic shape of the V-shaped continuous tooth space structure (FIG. 6-) 604).

更に中間27段の歯車の位相も上記と同じく90度毎を開始点として、左右45度に歯数余りを加えた歯形位置をコンピュータシミュレーションした右下(1/4)の噛み合わせ図と、V字型連続歯溝(基本形の図6−604を展開した図6−611〜617)を重ね図示したものである。全体はこの4倍(図2)となるが原理は全て同じである。Further, the phase of the middle 27 gears is 90 ° as the starting point, and a meshing diagram in the lower right (1/4) in which the tooth profile position obtained by adding the number of teeth to the left and right 45 degrees is calculated by computer simulation. FIG. 6 is an overlapping view of a letter-shaped continuous tooth groove (FIGS. 6-611 to 617, which are developed from the basic shape of FIG. 6-604). The whole is four times this (Fig. 2), but the principle is the same.

図3は、図2の円錐型連続トポロジカル歯形パターン歯車の同じく右下破線(図2−203)で示す部分を切り出したV字型連続歯形図と基準10種の歯車の歯先位置を重ね合わせマッピングした図であり、図4、6の通り、鉛直に近いV字型連続歯形構造により歯数可変切り替え動作(ギアチェンジ)を容易にしている。FIG. 3 is a view of the conical continuous topological tooth profile pattern gear of FIG. 2 with the same V-shaped continuous tooth profile cut out from the lower right broken line (FIG. 2-203) and the tooth tip positions of the 10 reference gears. FIGS. 4 and 6 are mapped views, and the tooth number variable switching operation (gear change) is facilitated by a V-shaped continuous tooth profile structure close to vertical as shown in FIGS.

請求項2の可変ラウンド歯溝構造について図5、図4で例を説明すれば、4分割されたV字型連続歯形で整数とならない歯数例(図5 5−r37、r38、r39:右回り時の歯先位置は小さいひし形、左周り時の歯先位置は小さい四角形位置)が4分割折り返し線(図5−501)を越えると歯数余りとなり、連続して捉えた逆V字連続歯形位置パターン(基本形:図6−605の太い点線表示)となる。これらの歯数余り値を算出すれば、(丸め込まれる最寄の基準歯数値−被余り算定歯数値)÷分割数より、(40−39)÷4=0.25(図5−i39)から(40−38)÷4=0.5(図5−i38)となり、0.5ピッチ以下の場合、丸め込みによる吸収も容易なので折り返し線(図5−501)近傍に設けた余り径ピッチ間隔に対応した三角形の調整用ラウンド歯溝構造の一部(図5−417)により歯数余りが吸収され位相が整う。The variable round tooth gap structure of claim 2 will be described with reference to FIGS. 5 and 4. An example of the number of teeth that does not become an integer in a V-shaped continuous tooth profile divided into four (FIG. 5, 5-r37, r38, r39: right) When the tooth tip position during rotation is a small rhombus and the tooth tip position when the counterclockwise rotation is a small square position) exceeds the 4-fold folding line (Fig. 5-501), the number of teeth is left, and the inverted V-shaped continuous Tooth profile position pattern (basic shape: thick dotted line display in FIG. 6-605). If these tooth number surplus values are calculated, from (40-39) ÷ 4 = 0.25 (FIG. 5-i39) from (the nearest reference tooth value to be rounded−the remainder calculating tooth value) ÷ number of divisions (40−38) ÷ 4 = 0.5 (FIG. 5-i 38). When the pitch is 0.5 pitch or less, absorption by rounding is easy, so the excess pitch interval provided near the folding line (FIG. 5-501). The remainder of the number of teeth is absorbed by a part of the corresponding triangular adjustment round tooth gap structure (FIG. 5-417), and the phase is adjusted.

しかし歯数37になると余りが0.75ピッチ(図5 5−r37)となり遊び角度が大きい(図5−503)ため噛み合う相手歯先との同期が遅れ、歯先同士の衝突の可能性がある。そこで折り返し線上の歯形(図5−505:同、図4−402〜406)を同期調整用セパレータ歯たけとして残し、遊びを前後2ケ所(図5−427−a/b:全体ではこれを9列(図4 421−a/b〜429−a/b)に分け0.5ピッチ以下にし余りを丸め込み吸収容易にして噛み合わせを整える。このラウンド歯溝を全体で4箇所の分割折り返しコーナ(図2−204、205,206、207)に配置して処理することにより全歯車の噛み合わせが成立し、歯数可変歯車機能が実現する。However, when the number of teeth becomes 37, the remainder becomes 0.75 pitch (5-r37 in FIG. 5) and the play angle is large (FIG. 5-503), so the synchronization with the mating counterpart teeth is delayed, and there is a possibility of collision between the tooth tips. is there. Therefore, the tooth profile on the folding line (Fig. 5-505: Fig. 4-402 to 406) is left as the synchronous adjustment separator toothpaste, and there are two play positions (Fig. 5-427-a / b: 9 in total). Dividing into rows (Fig. 4, 421-a / b to 429-a / b), the pitch is reduced to 0.5 pitch or less, the remainder is rounded to facilitate absorption, and the meshing is adjusted. By arranging and processing in FIGS. 2-204, 205, 206, and 207), the meshing of all the gears is established, and the gear number variable gear function is realized.

厳密に言えば各径での円周の長さに過不足は起きないが、歯数余りとなる時、各4箇所で最大〜0.5ピッチ以下の丸め込み時の速度変化にゆらぎが出る。従って、このような変速中の変速比と回転角度変化に厳しい精度を要求する場合や超高速回転での利用に際しては注意を要するが、通常の変速操作状況ではギアチェンジ途中の位置も変化するのでゆらぎは更に少なく、且つ速度比自体を変化させているので問題とならない。Strictly speaking, there is no excess or deficiency in the circumference of each diameter, but when the number of teeth becomes excessive, fluctuations occur in the speed change when rounding up to a maximum of 0.5 pitch or less at each of four locations. Therefore, when strict accuracy is required for the gear ratio and rotation angle change during such a shift, or when using at ultra-high speed rotation, care must be taken, but the position during gear change also changes under normal shift operation conditions. Fluctuations are even smaller and the speed ratio itself is changed, so there is no problem.

また上記の歯数余り条件下でもこの連続トポロジカル歯形パターン(図3)の通り、噛み合う相手の歯の角度θ(図3−301)が、円中心からの鉛直線上にある4分割折り返しコーナ(図3−306)でV字型連続歯形が反転している。このため歯数余りでの回転ムラも1/4周(90度)内で相殺され速度変化が生じない構造となっている。In addition, as shown in the continuous topological tooth profile pattern (FIG. 3) even when the number of teeth is excessive, the angle θ (FIG. 3-301) of the mating teeth is on a vertical line from the center of the circle (FIG. 3-301). 3-306) The V-shaped continuous tooth profile is inverted. For this reason, the rotation unevenness due to the excessive number of teeth is offset within a quarter turn (90 degrees), and the speed does not change.

連続歯溝の幅(図3−302)について詳述すると、歯溝の位置(図3−303)が中心軸の鉛直に対し(θ度:図3−301)傾いているため歯溝幅(図3−302)=噛み合う相手歯車の円ピッチ(図3−305)× cosθ+相手歯車の歯幅(図3−304)× sinθ。と各開始点(図2 201−a、b、c、d)から遠ざかるほど歯溝幅が広く必要となる。The width of the continuous tooth gap (FIG. 3-302) will be described in detail. Since the position of the tooth gap (FIG. 3-303) is inclined (θ degrees: FIG. 3-301) with respect to the vertical of the central axis, the tooth gap width ( FIG. 3-302) = circle pitch of the mating gear (FIG. 3-305) × cos θ + tooth width of the gear (FIG. 3-304) × sin θ. As the distance from the starting points (201-a, b, c, d in FIG. 2) increases, the tooth gap width becomes wider.

そこで噛み合う相手歯車の刃先4辺の角を取って丸めることにより歯溝幅の増加を押さえ噛み合い面積増により動力伝達力を増しギアチェンジもよりスムースにすることが可能である。更に動力伝達力を増すためには、V字連続歯溝の標準歯数位置で凹曲面のポケットを作ることにより噛み合い面積増加が図れ且つ、状態保持機能も具備される。また逆に、伝達力低下が許される範囲で、この円錐歯車と噛み合う相手伝達歯車の歯幅(図3−304:軸方向に測った歯の長さ)を薄くすることにより連続歯溝の幅を押さえることも可能である。Therefore, it is possible to suppress the increase in the tooth gap width by rounding the corners of the four edges of the mating gear, thereby increasing the power transmission force by increasing the meshing area and making the gear change smoother. In order to further increase the power transmission force, the engagement area can be increased by creating a concave curved pocket at the standard number of teeth of the V-shaped continuous tooth gap, and a state maintaining function is also provided. Conversely, the width of the continuous tooth gap is reduced by reducing the tooth width of the mating transmission gear meshing with the conical gear (Fig. 3-304: tooth length measured in the axial direction) within a range in which a reduction in transmission force is allowed. It is also possible to hold down.

次に図7は請求項3の円錐歯車式並行軸無段変速型動力伝達装置の実施例である。
これを実現するために、請求項1、2の円錐歯車を回転軸(図7−701、703)に沿って2ケ、互いに径の大きさが反対になるように並べ(図7−702、704)、その間に径の変化する歯先に対し互いに常に噛み合い移動可能な変速兼伝達用の歯車(図7−705)を配す。
Next, FIG. 7 shows an embodiment of a conical gear type parallel shaft continuously variable transmission type power transmission device.
In order to achieve this, the conical gears of claims 1 and 2 are arranged along the rotation axis (FIGS. 7-701 and 703) so that the diameters are opposite to each other (FIGS. 7-702, 704), and gears for transmission and transmission (FIG. 7-705) that can always mesh and move with respect to the tooth tips of which diameter changes in the meantime.

そしてこの変速兼伝達用歯車の位置を外部より自動又は、手動で変化(図7矢印:708)させることにより2ケの円錐歯車(入力軸対出力軸)の回転比を連続的に可変制御する機能を有する円錐歯車式無段変速型並行軸動力伝達装置を構成することができる。Then, the rotational ratio of the two conical gears (input shaft to output shaft) is continuously variably controlled by automatically or manually changing the position of the transmission / transmission gear from the outside (arrow 708 in FIG. 7). A conical gear type continuously variable transmission type parallel shaft power transmission device having a function can be configured.

なお前記1,2請求項の円錐歯車の歯数比1〜4:4〜1の間で37段相当以上の可変速が可能であり、従来、この規模の変速装置では74枚(37枚×2ケ)と複雑な噛み合い機構を必要としていたが図7の通り、基本的に3ケで実現している。In addition, variable speeds equivalent to 37 steps or more are possible between the gear ratios 1 to 4: 4 to 1 of the conical gears of the first and second claims. Conventionally, with a transmission of this scale, 74 (37 × 2) and a complicated meshing mechanism is required, but as shown in FIG.

図8は本発明の請求項4の実施例に係る円錐遊星歯車式同軸型無段変速動力伝達装置の実施例である。この請求項4を実現するために、先ず原軸(図8−801)に太陽歯車1(図8−802)を連結し、周りに前記1、2項説明の円錐型歯車の端を噛み合うように複数(図8−803,804)配置して遊星歯車構造を構成する。次にこの円錐型遊星歯車の径の変化する歯先に対し常に噛み合い、移動可能なように太陽歯車2(図8−806)を配し、これを回転力伝達可能で移動できるように連結した従軸(図8−807)を回転させる遊星歯車式同軸無段変速型動力伝達装置を構成する。なお原軸と従軸は同軸独立回転軸受(図8−808)により回転動作は独立している。FIG. 8 shows an embodiment of a conical planetary gear type coaxial continuously variable transmission power transmission device according to an embodiment of claim 4 of the present invention. In order to realize the fourth aspect, the sun gear 1 (FIG. 8-802) is first connected to the original shaft (FIG. 8-801), and the ends of the conical gears described in the first and second aspects are engaged with each other. A plurality of (FIGS. 8-803, 804) are arranged in a planetary gear structure. Next, the sun gear 2 (FIGS. 8-806) is arranged so as to be always meshed with the tooth tip of the conical planetary gear whose diameter changes, and is movable, and is connected so as to be able to transmit rotational force. A planetary gear type coaxial continuously variable transmission type power transmission device that rotates the driven shaft (FIG. 8-807) is constructed. The original shaft and the slave shaft are independent of rotation operation by a coaxial independent rotary bearing (FIG. 8-808).

ここで仮に、前出の太陽歯車1を回転動力の入力軸とすれば、太陽歯車2(図8−806)と円錐歯車の噛み合う位置(図8−805〜806)を外部より自動又は、手動で変化させることにより円錐歯車の片方と噛み合う太陽歯車2側で回転数を連続的に変化させて取出す機能を有する遊星歯車式無段変速型動力伝達装置を構成することができる。なお本説明図では円錐型遊星歯車は2ケだが、動力伝達力を増すために4ケ以上も可能である。If the sun gear 1 described above is used as an input shaft for rotational power, the position where the sun gear 2 (FIG. 8-806) meshes with the conical gear (FIG. 8-805-806) is automatically or manually applied from the outside. Thus, it is possible to configure a planetary gear continuously variable transmission type power transmission device having a function of continuously changing the rotational speed on the sun gear 2 side meshing with one of the conical gears. In this explanatory diagram, there are two conical planetary gears, but four or more conical planetary gears are possible to increase the power transmission force.

産業上の利用の可能性Industrial applicability

本発明の無段変速装置の利用分野として、揚力型風力発電装置の回転する風車部と発電機との動力伝達部において利用することにより、発電機の回転負荷を軽減して弱風域での不安定な風に対する自然揚力加速を促進させるとともに、トルク不足を補い発電機をより長時間廻し発電効率を向上させることが可能となる。また速度変速制御機能を持たないモータの無段変速機や、原動機の回転出力を無段階に可変速制御する内燃機関用変速機として用いれば初期駆動時のトルク増強や、負荷の変動に対して高効率で運転することができる。As a field of use of the continuously variable transmission of the present invention, it is used in a power transmission unit between a rotating wind turbine unit and a generator of a lift type wind power generator, thereby reducing the rotational load of the generator in a low wind region. While accelerating natural lift acceleration against unstable wind, it is possible to compensate for the lack of torque and rotate the generator for a longer time to improve power generation efficiency. Also, if it is used as a continuously variable transmission for motors that do not have a speed shift control function or a transmission for an internal combustion engine that continuously controls the rotational output of the prime mover, it will respond to torque increase during initial drive and fluctuations in load. It can be operated with high efficiency.

円錐歯車を側面から見た図A side view of a conical gear 円錐歯車を上面から見た連続無段トポロジカル歯形パターン図Continuous stepless topological tooth profile diagram of conical gears as seen from above 図2の円錐型歯車右下破線相当部分に重ね合わせた噛み合い歯車角度説明図Interlocking gear angle explanatory diagram superimposed on the portion corresponding to the lower right broken line in FIG. 歯数余り調整用ラウンド歯溝構造の右下(1/4)全景図Bottom right (1/4) panoramic view of round tooth gap structure for adjusting the number of teeth 歯数余り調整用ラウンド歯溝構造部分拡大説明図(図6に図4のラウンド歯溝構造を重ねて拡大表示)Rounded tooth gap structure for enlarged adjustment of the number of teeth (Expanded display with the round tooth gap structure of FIG. 4 superimposed on FIG. 6) V字型連続歯溝構造図(同じ円ピッチ幅で歯数12から48の想定歯形位置をコンピュータシュミレーションで算出した右下1/4を図示)V-shaped continuous tooth gap structure diagram (shown in the lower right ¼ calculated by computer simulation of assumed tooth profile positions with 12 to 48 teeth with the same circular pitch width) 円錐歯車式並行軸無段変速型動力伝達装置構成図Conical gear type parallel shaft continuously variable transmission type power transmission device configuration diagram 円錐遊星歯車式同軸型無段変速動力伝達装置構成図Conical planetary gear type coaxial continuously variable transmission 特許文献1の可変歯数歯車変速機図Patent Document 1: Variable Teeth Gear Transmission Diagram

符号の説明Explanation of symbols

101 円錐型歯車の回転軸
102 円錐型歯車の連続歯溝の底
103 円錐型歯車の連続歯先の山
201−a、b、c、d 円錐型歯車の4分割内連続歯溝の開始位置
203 図3と対応した切り出し範囲部分
204〜207 4分割折り返し線(歯数余りを丸め込むラウンド歯溝位置)
2−E001〜E048 外径歯数番号1〜48に対応
2−I001〜I012 内径歯数番号1〜12に対応
301 円錐型歯車の連続歯溝と噛み合う相手歯車の傾き角度θ
302 連続歯溝の幅
303 連続歯溝の切り込み線
304 連続歯溝と噛み合う相手歯車の歯幅(軸方向に測った歯の長さ)
305 連続歯溝と噛み合う相手歯車の円ピッチ幅(歯溝の幅+歯厚)
306 円錐型歯車の4分割折り返し線
401 4分割折り返し線
402〜406 歯数余り吸収処理時の位相調整用セパレータ歯たけ
411〜419 歯数余り補正用可変ラウンド歯溝(0.1〜0.5ピッチ対応)
421−a/b〜429−a/b 歯数余り分割補正用可変ラウンド歯溝
(0.5〜0.9ピッチ対応)
501 4分割折り返し線
502 歯数余り想定歯形軌跡円弧(5−r37、5−r38、5−r39)
503 歯数余り0.5ピッチを越えた場合を想定
504 歯数余り0.5ピッチ以下想定
505 位相調整用セパレータ歯たけ(0.5〜0.9ピッチ対応)
601 基準歯数10種の歯車噛み合い位置(○表示:歯数12、16、20、24、28、32、36、40、44、48と10段相当)
602 歯数余り27種の噛み合い位置(◇:右回転時表示、□:左回転時表示、歯数13、14、15、17、18、19、21、22、23、25、26、27、29、30、31、33、34、35、37、38、39、41、42、43、45、46、47と27段相当)
603 連続歯溝連結折り返し線
604 V字連結歯溝基本パターン構造(標準10種の歯形位置の基本形)
605 逆V字遊び歯溝基本パターン構造(歯数余り歯車の想定歯形位置の基本形)
611〜617 V字型連続歯溝
701 円錐歯車式並行軸無段変速型動力伝達装置の入力回転軸
702 本発明の入力側円錐歯車
703 出力回転軸
704 本発明の出力側円錐歯車
705 可動式速度制御兼伝達歯車(入出力等速位置)
706 速度制御兼伝達歯車の出力軸減速化位置(想定位置)
707 速度制御兼伝達歯車の出力軸加速化位置(想定位置)
801 円錐遊星歯車式同軸型無段変速動力伝達装置の原軸
802 太陽歯車1(位置固定)
803 本発明の円錐型遊星歯車1
804 本発明の円錐型遊星歯車2
805 位置可動式太陽歯車2(従軸減速位置:想定位置)
806 位置可動式太陽歯車2(従軸最大減速位置)
807 円錐遊星歯車式同軸型無段変速動力伝達装置の従軸
808 同軸独立(原軸・従軸)回転軸受け
809 回転軸受け
DESCRIPTION OF SYMBOLS 101 Conical gear rotating shaft 102 Conical gear continuous tooth groove bottom 103 Conical gear continuous tooth tip crest 201-a, b, c, d Starting position 203 of conical gear four-part inner continuous tooth groove Cutout range portions 204 to 207 corresponding to FIG. 3 4-fold folding line (round tooth gap position where the number of teeth is rounded off)
2-E001 to E048 Corresponds to outer diameter teeth number 1 to 48 2-I001 to I012 Corresponds to inner teeth number 1 to 301 301 Inclination angle θ of the counter gear meshing with the continuous tooth groove of the conical gear
302 Continuous tooth groove width 303 Continuous tooth groove cut line 304 Tooth gear width (tooth length measured in the axial direction) of the mating gear meshing with the continuous tooth groove
305 Circular pitch width of gear mating with continuous tooth gap (width of tooth gap + tooth thickness)
306 Four-fold folding line 401 of conical gear Four-fold folding lines 402 to 406 Phase adjustment separator teeth 411 to 419 at the time of the remaining number of teeth absorption process Variable round tooth groove (0.1 to 0.5 for number of teeth remaining correction) (Pitch correspondence)
421-a / b to 429-a / b Variable round tooth gap for correction of division of excess number of teeth
(0.5-0.9 pitch compatible)
501 Quadrant folding line 502 Tooth shape surplus assumed tooth profile locus arc (5-r37, 5-r38, 5-r39)
503 Assuming that the number of teeth exceeds 0.5 pitch 504 Assuming that the number of teeth is less than 0.5 pitch 505 Phase adjustment separator tooth gap (corresponding to 0.5 to 0.9 pitch)
601 Gear meshing position with 10 reference teeth (circle indication: number of teeth 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, equivalent to 10 steps)
602 Engagement positions with more than 27 teeth (◇: Displayed when rotating right, □: Displayed when rotating left, Number of teeth 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, (29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, equivalent to 27 steps)
603 Continuous tooth gap connection fold line 604 V-shaped connection tooth gap basic pattern structure (basic shape of standard 10 tooth positions)
605 Inverted V-shaped idle tooth groove basic pattern structure (basic form of the assumed tooth profile position of the gear with the remaining number of teeth)
611 to 617 V-shaped continuous tooth groove 701 Input rotation shaft 702 of conical gear type parallel shaft continuously variable transmission type power transmission device Input side conical gear 703 of the present invention Output rotation shaft 704 Output side conical gear 705 of the present invention Movable speed Control and transmission gear (input / output constant speed position)
706 Speed control and transmission gear output shaft deceleration position (assumed position)
707 Speed control and transmission gear output shaft acceleration position (assumed position)
801 Conical planetary gear type coaxial continuously variable transmission power transmission shaft 802 Sun gear 1 (fixed position)
803 Conical planetary gear 1 of the present invention
804 Conical planetary gear 2 of the present invention
805 Position movable sun gear 2 (slave driven deceleration position: assumed position)
806 Position movable sun gear 2 (slave maximum deceleration position)
807 Conical planetary gear type coaxial continuously variable transmission power transmission slave shaft 808 Coaxial independent (original shaft / slave shaft) rotation bearing 809 Rotation bearing

Claims (4)

歯車の基準である円ピッチ幅(歯溝の幅+歯厚)を一定にし、円錐(円盤も含む)の径の大きさに比例して連続的に歯数が変わる、V字型の連続歯溝を持つ「連続トポロジカル歯形パターンと称す」構造及び、これを有する円錐(円盤)型歯数可変歯車。V-shaped continuous teeth with a constant circular pitch width (tooth gap width + tooth thickness), which is the standard for gears, and the number of teeth continuously changing in proportion to the diameter of the cone (including the disk) A "continuous topological tooth pattern" structure having a groove and a conical (disk) type tooth number variable gear having the structure. 請求項1において、径の大きさに比例して連続的に歯数が変わる時、整数で割り切れない歯数余りを小さく分割して丸め込み吸収する為の逆V字型の連続歯溝と可変ラウンド歯溝構造及び、これを有する円錐(円盤)型歯数可変歯車。In claim 1, when the number of teeth continuously changes in proportion to the size of the diameter, an inverted V-shaped continuous tooth gap and a variable round for dividing and absorbing the remainder of the number of teeth that cannot be divided by an integer. Tooth gap structure and conical (disk) type tooth number variable gear having the same. 前記請求項1、2で構成される円錐歯車を回転軸に沿って2ケ、互いに径の大きさが反対になるように並べ、この円錐歯車の間に歯先に対し互いに常に噛み合い移動可能な伝達歯車を配し、この伝達歯車の位置を変化させることにより2ケの円錐歯車間の回転比を連続的に可変制御する機能を有する円錐歯車式並行軸無段変速型動力伝達構造。The conical gears of the first and second aspects are arranged along the rotation axis so that the diameters are opposite to each other, and the conical gears can always mesh with each other and move with respect to the tooth tip. A conical gear type parallel shaft continuously variable transmission type power transmission structure having a function of continuously changing the rotation ratio between two conical gears by arranging a transmission gear and changing the position of the transmission gear. 回転中心軸に連結して太陽歯車1を配置し、周りに前記請求項1、2で構成される円錐型歯車の端の歯先が噛み合うように複数ケ配置した遊星歯車機構と、この複数の円錐型遊星歯車の歯数が変化する歯先に対し常に噛み合うように同じ中心軸に沿って移動可能で独立回転できる太陽歯車2を配して、太陽歯車2の位置を中心軸に沿って変化させることにより太陽歯車1と太陽歯車2の回転比を連続的に可変制御する機能を有する円錐遊星歯車式同軸型無段変速動力伝達構造。A planetary gear mechanism in which a sun gear 1 is arranged in connection with a rotation center shaft, and a plurality of planetary gear mechanisms are arranged so that the tips of the ends of the conical gears configured in claim 1 and 2 are engaged with each other. The sun gear 2 that can move along the same central axis and can rotate independently is arranged so that it always meshes with the tooth tip of the conical planetary gear, and the position of the sun gear 2 changes along the central axis. A conical planetary gear type coaxial continuously variable transmission power transmission structure having a function of continuously and variably controlling the rotation ratio of the sun gear 1 and the sun gear 2 by making them.
JP2007237241A 2007-08-17 2007-08-17 Variable number of gears continuously variable transmission Expired - Fee Related JP4186196B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237241A JP4186196B1 (en) 2007-08-17 2007-08-17 Variable number of gears continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237241A JP4186196B1 (en) 2007-08-17 2007-08-17 Variable number of gears continuously variable transmission

Publications (2)

Publication Number Publication Date
JP4186196B1 JP4186196B1 (en) 2008-11-26
JP2009092080A true JP2009092080A (en) 2009-04-30

Family

ID=40148601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237241A Expired - Fee Related JP4186196B1 (en) 2007-08-17 2007-08-17 Variable number of gears continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4186196B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159104A (en) * 2011-01-31 2012-08-23 Katsuya Inoue Differential transmission, transmission, and vehicle with transmission mounted thereon
WO2012128463A2 (en) * 2011-03-24 2012-09-27 Oh Sung-Whan Continuous transmission gear
JP2017190864A (en) * 2016-04-11 2017-10-19 満男 大柿 Gear type continuously variable transmission
WO2023274527A1 (en) 2021-06-30 2023-01-05 Poelman Geert A transmission based on multi-ratio gears

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150360750A1 (en) * 2014-06-11 2015-12-17 Mega Unit Technology Limited Variable transmission gearing system
CN108253099A (en) * 2018-02-27 2018-07-06 倍能科技(广州)有限公司 Active variable gears speed change gear
CN110735891B (en) * 2019-09-30 2022-01-21 阿兹米特汽配(佛山)有限公司 Stepless speed changing automobile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159104A (en) * 2011-01-31 2012-08-23 Katsuya Inoue Differential transmission, transmission, and vehicle with transmission mounted thereon
WO2012128463A2 (en) * 2011-03-24 2012-09-27 Oh Sung-Whan Continuous transmission gear
WO2012128463A3 (en) * 2011-03-24 2012-11-22 Oh Sung-Whan Continuous transmission gear
JP2017190864A (en) * 2016-04-11 2017-10-19 満男 大柿 Gear type continuously variable transmission
WO2023274527A1 (en) 2021-06-30 2023-01-05 Poelman Geert A transmission based on multi-ratio gears

Also Published As

Publication number Publication date
JP4186196B1 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP2009092080A (en) Variable tooth-number geared continuously variable speed transmission
JPH08189548A (en) Inscribed meshing type planetary gear device
JP4952942B2 (en) Toothed parts and corresponding gear
US9562512B2 (en) Dual rotor wind or water turbine
JP6496418B2 (en) A gear device that uses a method of rotating while meshing and pushing.
JP5334963B2 (en) Variable ratio transmission
JPH10246173A (en) Planetary accelerator
JPWO2011121742A1 (en) Drive control apparatus for hybrid vehicle
JP2021521400A (en) Power transmission device
US9316102B2 (en) Rotors formed using involute curves
CN204253763U (en) Balanced planetary gear mechanism stepless speed variator
JP2011007317A (en) Continuously variable transmission device of conical gear type with variable number of teeth
GB2589708A (en) Rotor assembly
CN104989791B (en) Planetary mechanism and planetary reduction gear
CN208605570U (en) A kind of novel combination type non-circular gear infinitely variable speed transmission
CN207161664U (en) A kind of differential differential speed reducer
JP2006170413A (en) Bearing device for helical planetary reducer
JP5308422B2 (en) Involute gear pair
JP3343432B2 (en) Variable speed motor
CN100434755C (en) Pulsating stepless transmission
JP2002257204A (en) Revolution control gear type automatic continuously variable transmission
CN106089571B (en) Wind-powered electricity generation blade of adjustable length
JP2005016695A (en) Reduction gear
JP5702270B2 (en) transmission
JP2002295604A (en) Rotary motion transmitting mechanism with internal gear

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees