JP2009091933A - Vane pump - Google Patents

Vane pump Download PDF

Info

Publication number
JP2009091933A
JP2009091933A JP2007261772A JP2007261772A JP2009091933A JP 2009091933 A JP2009091933 A JP 2009091933A JP 2007261772 A JP2007261772 A JP 2007261772A JP 2007261772 A JP2007261772 A JP 2007261772A JP 2009091933 A JP2009091933 A JP 2009091933A
Authority
JP
Japan
Prior art keywords
pressure
low
housing
passage
vane pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007261772A
Other languages
Japanese (ja)
Other versions
JP5133647B2 (en
Inventor
Noboru Saito
昇 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP2007261772A priority Critical patent/JP5133647B2/en
Publication of JP2009091933A publication Critical patent/JP2009091933A/en
Application granted granted Critical
Publication of JP5133647B2 publication Critical patent/JP5133647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vane pump for preventing the leakage of operating fluid to the outside of a housing. <P>SOLUTION: The vane pump comprises a rotor 2 connected to a driving shaft 1, a plurality of vanes 3 provided on the rotor 2 reciprocatively in the radial direction, a cam ring 4 storing the rotor 2 and having an inner periphery cam face 4a on which the front ends of the vanes 3 slide with the rotation of the rotor 3, a pump chamber 7 defined between the rotor 2 and the cam ring 4, and the housing 13 storing the cam ring 4 and having a low pressure part and a high pressure part defined inside. Herein, connection means 36, 37 are formed on a partition part 35 which partitions the housing 13 into the high pressure part 9 and the low pressure part 30, for connecting the high pressure part 9 with the low pressure part 30 before pressure in the high pressure part rises to reach the breakdown strength of the housing 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、車両用のパワーステアリング装置の油圧供給源として用いられるベーンポンプに関するものである。   The present invention relates to a vane pump used as a hydraulic pressure supply source of a power steering device for a vehicle, for example.

ベーンポンプをパワーステアリング装置の油圧供給源として用いる場合、操舵アシスト力を付与する流体圧アクチュエータの負荷が増大するのに伴って、ベーンポンプ吐出口の負荷圧が上昇する。そこで、従来のベーンポンプには、ベーンポンプ吐出口の負荷圧を設定値以下に抑えるために、リリーフ弁を備えるものがある(例えば、特許文献1)。
特開2002−147374号公報
When the vane pump is used as a hydraulic pressure supply source of the power steering apparatus, the load pressure of the vane pump discharge port increases as the load of the fluid pressure actuator that applies the steering assist force increases. Therefore, some conventional vane pumps include a relief valve in order to keep the load pressure at the discharge port of the vane pump below a set value (for example, Patent Document 1).
JP 2002-147374 A

従来のベーンポンプにおいて、何らかの理由で、ハウジング内部におけるリリーフ弁上流の高圧部が閉塞された場合には、リリーフ弁が機能せず、ハウジングの内部圧力が異常に上昇してしまう。   In the conventional vane pump, when the high pressure part upstream of the relief valve inside the housing is blocked for some reason, the relief valve does not function and the internal pressure of the housing rises abnormally.

このような場合には、ハウジングの内部圧力によって、ハウジングが破損し、ハウジングの外部へと油が漏れるおそれがある。   In such a case, the housing may be damaged by the internal pressure of the housing, and oil may leak to the outside of the housing.

本発明は、上記の問題点に鑑みてなされたものであり、ハウジング外部への作動流体の漏れを防止することができるベーンポンプを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a vane pump that can prevent a working fluid from leaking outside the housing.

本発明は、駆動軸に連結されたロータと、前記ロータに対して径方向に往復動可能に設けられる複数のベーンと、前記ロータを収容すると共に、前記ロータの回転に伴って内周のカム面に前記ベーンの先端部が摺動するカムリングと、前記ロータと前記カムリングとの間に画成されたポンプ室と、前記カムリングを収容し、内部に低圧部と高圧部とを画成するハウジングと、を備えるベーンポンプにおいて、前記高圧部の圧力が上昇しハウジングの破壊強度に達する前に、前記高圧部を前記低圧部へと連通させる連通手段を、前記ハウジングにおける前記高圧部と前記低圧部とを隔てる隔壁部に形成したことを特徴とする。   The present invention relates to a rotor coupled to a drive shaft, a plurality of vanes provided so as to be capable of reciprocating in the radial direction with respect to the rotor, and a cam on the inner circumference as the rotor is accommodated. A cam ring in which the vane tip slides on a surface, a pump chamber defined between the rotor and the cam ring, and a housing which houses the cam ring and defines a low pressure portion and a high pressure portion therein A communication means for communicating the high pressure portion with the low pressure portion before the pressure of the high pressure portion rises and reaches the breaking strength of the housing, and the high pressure portion and the low pressure portion in the housing. It is formed in the partition part which divides.

本発明によれば、高圧部の圧力が上昇しハウジングの破壊強度に達する前に、ハウジングの隔壁部に形成された連通手段によって高圧部が低圧部へと連通するため、高圧部の圧力が破壊強度に達することが防止され、ハウジング内の作動流体の外部への漏れを防止することができる。   According to the present invention, since the high pressure portion communicates with the low pressure portion by the communication means formed in the partition wall portion of the housing before the pressure of the high pressure portion rises and reaches the breaking strength of the housing, the pressure of the high pressure portion is broken. The strength is prevented from reaching, and leakage of the working fluid in the housing to the outside can be prevented.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下では、本発明のベーンポンプを車両に搭載されるパワーステアリング装置の油圧供給源に適用した場合について説明する。   Below, the case where the vane pump of this invention is applied to the hydraulic pressure supply source of the power steering apparatus mounted in a vehicle is demonstrated.

図1及び図2を参照して、本発明の実施の形態に係るベーンポンプ100について説明する。図1はベーンポンプ100における駆動軸に平行な断面を示す断面図であり、図2はベーンポンプ100の油圧回路図である。   With reference to FIG.1 and FIG.2, the vane pump 100 which concerns on embodiment of this invention is demonstrated. FIG. 1 is a cross-sectional view showing a cross section parallel to the drive shaft in the vane pump 100, and FIG. 2 is a hydraulic circuit diagram of the vane pump 100.

まず、図1を参照して、ベーンポンプ100の構成について説明する。   First, the configuration of the vane pump 100 will be described with reference to FIG.

ベーンポンプ100は、駆動軸1にエンジン(図示せず)の動力が伝達され、駆動軸1に連結されたロータ2が回転するものである。   In the vane pump 100, the power of an engine (not shown) is transmitted to the drive shaft 1, and the rotor 2 connected to the drive shaft 1 rotates.

ベーンポンプ100は、ロータ2に対して径方向に往復動可能に設けられる複数のベーン3と、ロータ2を収容すると共にロータ2の回転に伴って内周のカム面4aにベーン3の先端部が摺動するカムリング4とを備える。   The vane pump 100 accommodates the plurality of vanes 3 provided so as to be capable of reciprocating in the radial direction with respect to the rotor 2 and the tip of the vane 3 on the inner cam surface 4 a as the rotor 2 rotates. And a sliding cam ring 4.

ロータ2及びカムリング4の一側部(図1では上側)にはポンプカバー5が配置され、他側部(図1では下側)にはサイドプレート6が配置される。このように、ポンプカバー5とサイドプレート6(一対の側部部材)は、ロータ2及びカムリング4の両側部を挟んだ状態で配置される。これにより、ロータ2とカムリング4との間には、各ベーン3によって仕切られたポンプ室7が画成される。   A pump cover 5 is disposed on one side (upper side in FIG. 1) of the rotor 2 and the cam ring 4, and a side plate 6 is disposed on the other side (lower side in FIG. 1). Thus, the pump cover 5 and the side plate 6 (a pair of side members) are arranged with the both sides of the rotor 2 and the cam ring 4 sandwiched therebetween. Thereby, a pump chamber 7 partitioned by the vanes 3 is defined between the rotor 2 and the cam ring 4.

ポンプカバー5には、ポンプ室7に作動油(作動流体)を導く低圧室8が形成され、サイドプレート6には、ポンプ室7が吐出する作動油が導かれる高圧室9が形成される。   The pump cover 5 is formed with a low pressure chamber 8 that guides hydraulic oil (working fluid) to the pump chamber 7, and the side plate 6 is formed with a high pressure chamber 9 that guides hydraulic oil discharged from the pump chamber 7.

サイドプレート6には、カムリング4を挿通すると共にポンプカバー5のピン穴5aに挿入される2本の位置決めピン14が設けられる。位置決めピン14によって、カムリング4に対するポンプカバー5とサイドプレート6の相対回転が規制され、ポンプ室7に対する低圧室8及び高圧室9の相対的な位置ずれが防止される。   The side plate 6 is provided with two positioning pins 14 that are inserted through the cam ring 4 and inserted into the pin holes 5 a of the pump cover 5. The positioning pin 14 restricts relative rotation of the pump cover 5 and the side plate 6 with respect to the cam ring 4, and prevents relative displacement between the low pressure chamber 8 and the high pressure chamber 9 with respect to the pump chamber 7.

駆動軸1は、ブッシュ26を介してポンプボディー10に回転自在に支持される。カムリング4とサイドプレート6は、ポンプボディー10に形成されたポンプ収容凹部10b内に収容される。ポンプ収容凹部10bは、ポンプカバー5によって封止される。   The drive shaft 1 is rotatably supported by the pump body 10 via the bush 26. The cam ring 4 and the side plate 6 are accommodated in a pump accommodating recess 10 b formed in the pump body 10. The pump housing recess 10 b is sealed by the pump cover 5.

このように、カムリング4は、ポンプカバー5、サイドプレート6、及びポンプボディー10によって構成されるハウジング13内に収容される。   As described above, the cam ring 4 is accommodated in the housing 13 constituted by the pump cover 5, the side plate 6, and the pump body 10.

ポンプボディー10には、低圧室8に連通し低圧室8に作動油を導く吸込通路11と、高圧室9に連通し高圧室9から導かれた作動油をベーンポンプ100の外部へと吐出する吐出通路12とが形成される。   The pump body 10 has a suction passage 11 that communicates with the low pressure chamber 8 and guides the hydraulic oil to the low pressure chamber 8, and a discharge that communicates with the high pressure chamber 9 and that is guided from the high pressure chamber 9 to the outside of the vane pump 100. A passage 12 is formed.

駆動軸1にエンジンの動力が伝達されロータ2が回転すると、ロータ2の回転に伴って各ベーン3間が拡張するポンプ室7は、低圧室8を介して吸込通路11から作動油を吸込む。また、各ベーン3間が収縮するポンプ室7は、高圧室9を介して吐出通路12から作動油を吐出する。吐出された作動油は、パワーステアリング装置における操舵アシスト力を付与する流体圧アクチュエータ21(図2参照)へと供給される。   When the engine power is transmitted to the drive shaft 1 and the rotor 2 rotates, the pump chamber 7 that expands between the vanes 3 with the rotation of the rotor 2 sucks hydraulic oil from the suction passage 11 through the low-pressure chamber 8. The pump chamber 7 in which the space between the vanes 3 contracts discharges hydraulic oil from the discharge passage 12 through the high-pressure chamber 9. The discharged hydraulic oil is supplied to a fluid pressure actuator 21 (see FIG. 2) that applies a steering assist force in the power steering apparatus.

このように、ポンプ室7における作動油の給排動作によって、ハウジング13の内部には、低圧室8及び吸込通路11の低圧部と、高圧室9及び吐出通路12の高圧部とが画成される。   In this manner, the hydraulic oil supply / discharge operation in the pump chamber 7 defines the low pressure chamber 8 and the low pressure portion of the suction passage 11 and the high pressure chamber 9 and the high pressure portion of the discharge passage 12 inside the housing 13. The

次に、主に図2を参照して、ベーンポンプ100の油圧回路について説明する。   Next, a hydraulic circuit of the vane pump 100 will be described mainly with reference to FIG.

ポンプ室7には吸込通路11と吐出通路12が接続され、吸込通路11はタンク29に連通し、吐出通路12には流量制御弁20が介装される。流量制御弁20は、パワーステアリング装置の流体圧アクチュエータ21側の負荷圧に応じてスプールが切り換わり、流体圧アクチュエータ21が必要とする流量を吐出するものである。   A suction passage 11 and a discharge passage 12 are connected to the pump chamber 7, the suction passage 11 communicates with a tank 29, and a flow control valve 20 is interposed in the discharge passage 12. The flow rate control valve 20 switches the spool according to the load pressure on the fluid pressure actuator 21 side of the power steering device, and discharges a flow rate required by the fluid pressure actuator 21.

吐出通路12における流量制御弁20の下流側には、リリーフ通路23が分岐して接続され、リリーフ通路23には、吐出通路12の作動油の圧力が所定圧力に達した場合に作動油の通過を許容するリリーフ弁24が介装される。リリーフ弁24を通過した作動油は、戻り通路28によって吸込通路11に還流する。なお、戻り通路28は低圧部となる。   A relief passage 23 is branched and connected to the downstream side of the flow rate control valve 20 in the discharge passage 12, and the hydraulic oil passes through the relief passage 23 when the pressure of the hydraulic oil in the discharge passage 12 reaches a predetermined pressure. Is provided with a relief valve 24. The hydraulic oil that has passed through the relief valve 24 returns to the suction passage 11 through the return passage 28. The return passage 28 is a low pressure part.

図1に示すように、ベーン3とポンプカバー5及びサイドプレート6との摺動面からの漏れた作動油は、駆動軸1とポンプカバー5との隙間27a、駆動軸1とロータ2のスプライン結合部との隙間27b、及び駆動軸1とサイドプレート6との隙間27cを通り、駆動軸1の軸支持部の潤滑を実現すべく、駆動軸1の外周とブッシュ26の内周との間を通過した後、駆動軸1の周囲に形成された油溜り25に流入する。このように、駆動軸1の周囲には、駆動軸1と各部材との隙間27a〜27cによって、ポンプ室7から漏れる作動流体が導かれる潤滑路27が構成される。なお、ポンプボディー10の端部には、潤滑油の漏れ防止するためのシール10aが設けられる。   As shown in FIG. 1, the hydraulic fluid leaking from the sliding surfaces of the vane 3, the pump cover 5, and the side plate 6 is a gap 27 a between the drive shaft 1 and the pump cover 5, and the spline between the drive shaft 1 and the rotor 2 Between the outer periphery of the drive shaft 1 and the inner periphery of the bush 26 in order to achieve lubrication of the shaft support portion of the drive shaft 1 through the clearance 27b with the coupling portion and the clearance 27c between the drive shaft 1 and the side plate 6. After passing, the oil flows into an oil sump 25 formed around the drive shaft 1. As described above, around the drive shaft 1, the lubrication path 27 through which the working fluid leaking from the pump chamber 7 is guided by the gaps 27 a to 27 c between the drive shaft 1 and each member. In addition, a seal 10a for preventing leakage of the lubricating oil is provided at the end of the pump body 10.

そして、油溜り25に導かれた作動油は、バイパス通路30を介して吸込通路11に還流する。なお、潤滑路27及びバイパス通路30は低圧部となる。   Then, the hydraulic oil guided to the oil reservoir 25 returns to the suction passage 11 via the bypass passage 30. In addition, the lubrication path 27 and the bypass path 30 become a low pressure part.

吐出通路12における流量制御弁20の上流側には、高圧室9の作動油を圧力スイッチ31へと導く導圧通路32が接続される。圧力スイッチ31は、ポンプ室7の負荷圧を検出しその負荷圧に応じて、エンジン制御装置にエンジンのアイドル回転数の指令信号を出力するものである。具体的には、ポンプ室7の負荷圧が増加した場合には、アイドル回転数を増加させる信号を出力する。圧力スイッチ31に導かれた作動油は、若干の漏れが発生し、その漏れた作動油は、ドレン通路33から油溜り25、バイパス通路30を経由して吸込通路11に還流する。なお、導圧通路32は高圧部であり、ドレン通路33は低圧部となる。   On the upstream side of the flow rate control valve 20 in the discharge passage 12, a pressure guide passage 32 that guides hydraulic oil in the high pressure chamber 9 to the pressure switch 31 is connected. The pressure switch 31 detects the load pressure in the pump chamber 7 and outputs a command signal for the engine idle speed to the engine control device in accordance with the load pressure. Specifically, when the load pressure in the pump chamber 7 increases, a signal for increasing the idle speed is output. The hydraulic oil guided to the pressure switch 31 is slightly leaked, and the leaked hydraulic oil returns to the suction passage 11 from the drain passage 33 through the oil reservoir 25 and the bypass passage 30. The pressure guide passage 32 is a high pressure portion, and the drain passage 33 is a low pressure portion.

以上のように構成されるベーンポンプ100において、何らかの理由で、ハウジング13内部におけるリリーフ弁24上流の高圧部が閉塞された場合には、リリーフ弁24が機能しない。その場合には、ハウジング13の高圧部の内部圧力が異常に上昇し、内部圧力がハウジング13の破壊強度に達した場合には、ハウジング13が破損し内部の作動油がベーンポンプ100の外部へと漏れてしまう。   In the vane pump 100 configured as described above, the relief valve 24 does not function when the high pressure portion upstream of the relief valve 24 inside the housing 13 is closed for some reason. In that case, when the internal pressure of the high pressure portion of the housing 13 rises abnormally and the internal pressure reaches the breaking strength of the housing 13, the housing 13 is damaged and the internal hydraulic oil is moved to the outside of the vane pump 100. Leaks.

その対策として、高圧部の圧力が上昇しハウジング13の破壊強度に達する前に、高圧部を低圧部へと連通させる連通手段が、ハウジング13における高圧部と低圧部とを隔てる隔壁部に形成される。以下、その連通手段について説明する。   As a countermeasure, communication means for communicating the high-pressure part to the low-pressure part before the pressure of the high-pressure part rises and reaches the breaking strength of the housing 13 is formed in the partition part separating the high-pressure part and the low-pressure part in the housing 13. The Hereinafter, the communication means will be described.

図3は、高圧部である高圧室9と低圧部であるバイパス通路30との隔壁部35に連通手段を形成した場合について示す断面図である。   FIG. 3 is a cross-sectional view showing a case where the communication means is formed in the partition wall portion 35 between the high pressure chamber 9 as the high pressure portion and the bypass passage 30 as the low pressure portion.

隔壁部35には、高圧室9とバイパス通路30とを連通する連通路36が形成される。連通路36には、硬質の球体(圧入部材)37が所定圧力にて圧入される。   A communication passage 36 that connects the high-pressure chamber 9 and the bypass passage 30 is formed in the partition wall portion 35. A hard sphere (press-in member) 37 is press-fitted into the communication path 36 at a predetermined pressure.

球体37の連通路36への圧入圧力は、ハウジング13の高圧部の圧力がハウジング13の破壊強度に達する前に、球体37が連通路36からバイパス通路30へと抜けるように、つまり、高圧室9とバイパス通路30とが連通するように設定される。   The press-fitting pressure of the sphere 37 into the communication path 36 is such that the sphere 37 can escape from the communication path 36 to the bypass path 30 before the pressure at the high pressure portion of the housing 13 reaches the breaking strength of the housing 13, that is, the high pressure chamber. 9 and the bypass passage 30 are set to communicate with each other.

具体的には、球体37の連通路36への圧入圧力、つまり高圧部と低圧部とを連通させるのに必要な圧力は、ハウジング13において高圧部を画成すると共に、破損した場合に作動油がベーンポンプ100の外部へと漏れてしまう部位の破壊強度うち、一番小さい破壊強度よりも小さい圧力に設定するのが望ましく、また、リリーフ弁24の設定圧力よりも大きく設定するのが望ましい。   Specifically, the press-fitting pressure of the sphere 37 into the communication path 36, that is, the pressure required to connect the high pressure portion and the low pressure portion defines the high pressure portion in the housing 13 and the hydraulic oil when it is damaged. It is desirable to set the pressure to be smaller than the smallest breaking strength among the breaking strengths of the parts that leak to the outside of the vane pump 100, and it is desirable to set the pressure higher than the set pressure of the relief valve 24.

球体37がこのようにして連通路36に圧入して配置されることによって、ハウジング13の高圧部の内部圧力が異常に上昇するような事態が発生した場合には、高圧室9の圧力によって球体37が連通路36から抜けバイパス通路30へと押し出される。これにより、高圧室9とバイパス通路30が連通し(図2に示す経路a)、高圧室9の作動油がバイパス通路30へと流入するため、ハウジング13内の高圧部の圧力上昇が抑えられ、高圧部の圧力がハウジング13の破壊強度に達するのを防止することができる。   When the spherical body 37 is press-fitted and arranged in the communication path 36 in this manner, when a situation occurs in which the internal pressure of the high pressure portion of the housing 13 increases abnormally, the spherical body is caused by the pressure of the high pressure chamber 9. 37 is removed from the communication path 36 and pushed out to the bypass path 30. As a result, the high pressure chamber 9 and the bypass passage 30 communicate with each other (path a shown in FIG. 2), and the hydraulic oil in the high pressure chamber 9 flows into the bypass passage 30, so that an increase in pressure in the high pressure portion in the housing 13 is suppressed. The pressure of the high pressure portion can be prevented from reaching the breaking strength of the housing 13.

高圧室9とバイパス通路30とが連通することによって、ベーンポンプ100のポンプとして機能は損なわれるが、ハウジング13の破損が防止されるため、外部への作動油の漏れを防止することができる。   When the high-pressure chamber 9 and the bypass passage 30 communicate with each other, the function of the vane pump 100 is impaired, but the housing 13 is prevented from being damaged, so that leakage of hydraulic oil to the outside can be prevented.

以上では、高圧室9とバイパス通路30との隔壁部35に連通手段を形成する場合について説明した。以下に、図1及び図2を参照して、連通手段を形成する他の隔壁部について説明する。なお、以下は例示であり、連通手段は、ハウジング13内にて高圧部と低圧部とを隔てる隔壁部であればどこに形成してもよい。図2において、高圧部と低圧部とが連通する連通路は一点鎖線にて示す。   The case where the communication means is formed in the partition wall portion 35 between the high pressure chamber 9 and the bypass passage 30 has been described above. Below, with reference to FIG.1 and FIG.2, the other partition part which forms a communication means is demonstrated. The following is an example, and the communication means may be formed anywhere as long as it is a partition wall that separates the high pressure portion and the low pressure portion in the housing 13. In FIG. 2, the communication path in which the high pressure portion and the low pressure portion communicate with each other is indicated by a one-dot chain line.

(1)高圧部である高圧室9と低圧部である潤滑路27との隔壁部50(図1参照)に連通手段を形成するようにしてもよい(図2に示す経路b)。
(2)高圧部である圧力スイッチ31の導圧通路32と低圧部であるドレン通路33との隔壁部51(図1参照)に連通手段を形成するようにしてもよい(図2に示す経路c)。
(3)高圧部である吐出通路12と低圧部であるバイパス通路30との隔壁部52(図1参照)に連通手段を形成するようにしてもよい(図2に示す経路d)。
(4)高圧部である高圧室9と低圧部である吸込通路11との隔壁部53(図1参照)に連通手段を形成するようにしてもよい(図2に示す経路e)。
(5)高圧部である吐出通路12と低圧部である戻り通路28との隔壁部(図示省略)に連通手段を形成するようにしてもよい(図2に示す経路f)。
(1) You may make it form a communication means in the partition part 50 (refer FIG. 1) of the high pressure chamber 9 which is a high voltage | pressure part, and the lubrication path 27 which is a low voltage | pressure part (path | route b shown in FIG. 2).
(2) Communication means may be formed in the partition wall portion 51 (see FIG. 1) between the pressure guide passage 32 of the pressure switch 31 that is the high pressure portion and the drain passage 33 that is the low pressure portion (the route shown in FIG. 2). c).
(3) Communication means may be formed in the partition wall portion 52 (see FIG. 1) between the discharge passage 12 that is the high pressure portion and the bypass passage 30 that is the low pressure portion (path d shown in FIG. 2).
(4) You may make it form a communication means in the partition part 53 (refer FIG. 1) of the high pressure chamber 9 which is a high voltage | pressure part, and the suction passage 11 which is a low voltage | pressure part (path | route e shown in FIG. 2).
(5) A communicating means may be formed in a partition wall (not shown) between the discharge passage 12 that is a high pressure portion and the return passage 28 that is a low pressure portion (path f shown in FIG. 2).

なお、連通手段は、ハウジング13における複数の隔壁部に形成してもよい。   The communication means may be formed in a plurality of partition walls in the housing 13.

次に、低圧部と高圧部との連通手段の他の形態を示す。なお、以下の図4〜図6において、低圧部は符号40、高圧部は符号41、隔壁部は符号42として示す。   Next, another form of communication means between the low pressure part and the high pressure part will be shown. In FIGS. 4 to 6 below, the low pressure part is indicated by reference numeral 40, the high pressure part is indicated by reference numeral 41, and the partition wall part is indicated by reference numeral 42.

(1)図4に示すように、低圧部40における連通路36に対向する位置に、球体37が連通路36から抜けた場合に、嵌り込む収容溝38を形成してもよい。低圧部40に収容溝38を形成することによって、球体37が連通路36から抜けた場合には、球体37は収容溝38に嵌るため、低圧部40内への球体の流入が防止される。なお、収容溝38は流入防止手段に該当する。 (1) As shown in FIG. 4, an accommodation groove 38 that fits when the spherical body 37 is removed from the communication path 36 may be formed at a position facing the communication path 36 in the low-pressure portion 40. By forming the accommodating groove 38 in the low-pressure portion 40, when the sphere 37 is removed from the communication path 36, the sphere 37 fits in the accommodating groove 38, and thus the sphere is prevented from flowing into the low-pressure portion 40. The accommodation groove 38 corresponds to inflow prevention means.

(2)図5に示すように、連通路36は、球体37が圧入される大径部36aと、大径部36aの下流側(低圧部40側)に形成され、大径部36aと比較して小径な小径部36bとを有する。隔壁部42には、大径部36aと小径部36bとの境界に、高圧部41の圧力が上昇し球体37が連通路36から抜けた場合に、球体37を受け止める球受部44が形成される。また、隔壁部42の内周面には、球体37が球受部44に嵌った場合に、球体37を迂回して低圧部40と高圧部41とを連通する連通溝45が複数形成される。連通路36及び隔壁部42をこのように形成することによって、球体37が連通路36から抜けた場合には、低圧部40内への球体37の流入を防止しつつ、低圧部40と高圧部41との連通を確保することができる。なお、球受部44及び連通溝45は流入防止手段に該当する。 (2) As shown in FIG. 5, the communication path 36 is formed on the large-diameter portion 36a into which the sphere 37 is press-fitted and on the downstream side (low-pressure portion 40 side) of the large-diameter portion 36a, and compared with the large-diameter portion 36a. And a small-diameter portion 36b having a small diameter. In the partition wall portion 42, a ball receiving portion 44 is formed at the boundary between the large diameter portion 36a and the small diameter portion 36b to receive the sphere 37 when the pressure of the high pressure portion 41 rises and the sphere 37 comes out of the communication path 36. The In addition, a plurality of communication grooves 45 that bypass the sphere 37 and connect the low-pressure portion 40 and the high-pressure portion 41 when the sphere 37 is fitted to the sphere receiving portion 44 are formed on the inner peripheral surface of the partition wall portion 42. . By forming the communication passage 36 and the partition wall portion 42 in this manner, when the sphere 37 is removed from the communication passage 36, the low pressure portion 40 and the high pressure portion are prevented from flowing into the low pressure portion 40. Communication with 41 can be ensured. The ball receiving portion 44 and the communication groove 45 correspond to inflow prevention means.

(3)図6に示すように、連通路36に球体37を軽圧入し連通路36を閉塞すると共に、球体37と低圧部40との間にスプリング(弾性体)43を介装するようにしてもよい。スプリング43のばね定数は、ハウジング13の高圧部の圧力がハウジング13の破壊強度に達する前に、圧縮されて球体37が連通路36から低圧部40へと抜けるように設定される。スプリング43を介して球体37を連通路36に配置する場合、スプリング43のばね定数によって球体37が連通路36から抜ける圧力を設定することができるため、高圧部と低圧部との連通時の圧力を設定し易い。また、球体37は、連通路36から抜けてもスプリング43にて支持されるため、低圧部40内への流入が防止される。そして、低圧部40と高圧部41の圧力がバランスした際には、球体37はスプリング43の付勢力によって連通路36内へと戻り、再び連通路36を閉塞することになる。なお、スプリング43は流入防止手段に該当する。 (3) As shown in FIG. 6, the spherical body 37 is lightly press-fitted into the communication path 36 to close the communication path 36, and a spring (elastic body) 43 is interposed between the spherical body 37 and the low pressure portion 40. May be. The spring constant of the spring 43 is set such that the sphere 37 is compressed and removed from the communication path 36 to the low pressure portion 40 before the pressure of the high pressure portion of the housing 13 reaches the breaking strength of the housing 13. When the sphere 37 is arranged in the communication path 36 via the spring 43, the pressure at which the sphere 37 is released from the communication path 36 can be set by the spring constant of the spring 43, so that the pressure at the time of communication between the high pressure part and the low pressure part Is easy to set. Moreover, since the spherical body 37 is supported by the spring 43 even if it passes through the communication path 36, the inflow into the low pressure part 40 is prevented. When the pressures of the low-pressure part 40 and the high-pressure part 41 are balanced, the sphere 37 returns to the communication path 36 by the urging force of the spring 43 and closes the communication path 36 again. The spring 43 corresponds to inflow prevention means.

(4)図7に示すように、球体37と高圧部41との間にスプリング43を介装できるような場合には、スプリング43を介して球体37を連通路36に所定圧力にて圧入するようにしてもよい。この場合、球体37が連通路36から抜ける圧力は、球体37の連通路36への圧入圧力によって設定される。スプリング43は、球体37が連通路36から低圧部40へと抜けた際には、伸長し球体37を支持することによって、球体37の低圧部40内への流入を防止する。 (4) As shown in FIG. 7, when the spring 43 can be interposed between the sphere 37 and the high pressure portion 41, the sphere 37 is press-fitted into the communication path 36 with a predetermined pressure via the spring 43. You may do it. In this case, the pressure at which the sphere 37 is released from the communication path 36 is set by the press-fitting pressure of the sphere 37 into the communication path 36. The spring 43 extends and supports the sphere 37 when the sphere 37 is removed from the communication path 36 to the low pressure portion 40, thereby preventing the sphere 37 from flowing into the low pressure portion 40.

(5)以上では、隔壁部42に連通路36を形成し、連通路36を球体37にて閉塞する場合について示した。この構成に代え、ハウジング13の高圧部41の圧力が上昇しハウジング13の破壊強度に達する前に、隔壁部42の変形によって高圧部41を低圧部40へと連通させるようにしてもよい。具体的には、図8に示すように、隔壁部42は、先端42aに向かって肉厚が小さく形成され、所定以上の圧力を受けた場合には、先端42a側が変形し、高圧部41を低圧部40へと連通させる連通路36が開口する。隔壁部42の変形強度は、ハウジング13において高圧部41を画成すると共に、破損した場合に作動油がベーンポンプ100の外部へと漏れてしまう部位の破壊強度うち、一番小さい破壊強度よりも小さい強度に設定するのが望ましい。 (5) The case where the communication path 36 is formed in the partition wall 42 and the communication path 36 is closed by the sphere 37 has been described above. Instead of this configuration, the high pressure portion 41 may be communicated with the low pressure portion 40 by deformation of the partition wall portion 42 before the pressure of the high pressure portion 41 of the housing 13 increases and reaches the breaking strength of the housing 13. Specifically, as shown in FIG. 8, the partition wall portion 42 is formed with a small thickness toward the tip 42 a, and when subjected to a predetermined pressure or more, the tip 42 a side is deformed, and the high-pressure portion 41 is A communication passage 36 that communicates with the low-pressure portion 40 is opened. The deformation strength of the partition wall 42 defines the high pressure portion 41 in the housing 13 and is smaller than the smallest breaking strength among the breaking strengths of the portion where the hydraulic oil leaks to the outside of the vane pump 100 when it is damaged. It is desirable to set the strength.

(6)また、ハウジング13の高圧部41の圧力が上昇しハウジング13の破壊強度に達する前に、隔壁部42の破断によって高圧部41を低圧部40へと連通させるようにしてもよい。隔壁部42の破断強度は、ハウジング13において高圧部を画成すると共に、破損した場合に作動油がベーンポンプ100の外部へと漏れてしまう部位の破壊強度うち、一番小さい破壊強度よりも小さい強度に設定するのが望ましい。 (6) Further, the high pressure portion 41 may be communicated with the low pressure portion 40 by breaking the partition wall portion 42 before the pressure of the high pressure portion 41 of the housing 13 increases and reaches the breaking strength of the housing 13. The breaking strength of the partition wall 42 defines a high-pressure portion in the housing 13 and is smaller than the smallest breaking strength among the breaking strengths of the portion where the hydraulic oil leaks to the outside of the vane pump 100 when it is damaged. It is desirable to set to.

以上に示す本実施の形態によれば、以下に示す効果を奏する。   According to the present embodiment described above, the following effects can be obtained.

高圧部の圧力が上昇しハウジング13の破壊強度に達する前に、ハウジング13の隔壁部に形成された連通手段によって高圧部が低圧部へと連通するため、高圧部の圧力が破壊強度に達することが防止され、ハウジング13内の作動流体の外部への漏れを防止することができる。   Before the pressure of the high pressure portion rises and reaches the breaking strength of the housing 13, the high pressure portion communicates with the low pressure portion by the communication means formed in the partition wall portion of the housing 13, so that the pressure of the high pressure portion reaches the breaking strength. Is prevented, and leakage of the working fluid in the housing 13 to the outside can be prevented.

本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

本発明に係るベーンポンプは、車両用のパワーステアリング装置の油圧供給源に適用することができる。   The vane pump according to the present invention can be applied to a hydraulic pressure supply source of a power steering device for a vehicle.

本発明の実施の形態に係るベーンポンプにおける駆動軸に平行な断面を示す断面図である。It is sectional drawing which shows a cross section parallel to the drive shaft in the vane pump which concerns on embodiment of this invention. 本発明の実施の形態に係るベーンポンプの油圧回路図である。1 is a hydraulic circuit diagram of a vane pump according to an embodiment of the present invention. 高圧部である高圧室と低圧部であるバイパス通路との隔壁部に連通手段を形成した場合について示す断面図である。It is sectional drawing shown about the case where a communication means is formed in the partition part of the high pressure chamber which is a high voltage | pressure part, and the bypass passage which is a low voltage | pressure part. 連通手段の他の形態を示す断面図である。It is sectional drawing which shows the other form of a communication means. 連通手段の他の形態を示す断面図である。It is sectional drawing which shows the other form of a communication means. 連通手段の他の形態を示す断面図である。It is sectional drawing which shows the other form of a communication means. 連通手段の他の形態を示す断面図である。It is sectional drawing which shows the other form of a communication means. 連通手段の他の形態を示す断面図である。It is sectional drawing which shows the other form of a communication means.

符号の説明Explanation of symbols

100 ベーンポンプ
1 駆動軸
2 ロータ
3 ベーン
4 カムリング
5 ポンプカバー
6 サイドプレート
7 ポンプ室
8 低圧室
9 高圧室
10 ポンプボディー
11 吸込通路
12 吐出通路
13 ハウジング
21 流体圧アクチュエータ
23 リリーフ通路
24 リリーフ弁
27 潤滑路
28 戻り通路
30 バイパス通路
31 圧力スイッチ
32 導圧通路
33 ドレン通路
35,42,50〜53 隔壁部
36 連通路
37 球体
40 低圧部
41 高圧部
43 スプリング
100 Vane Pump 1 Drive Shaft 2 Rotor 3 Vane 4 Cam Ring 5 Pump Cover 6 Side Plate 7 Pump Chamber 8 Low Pressure Chamber 9 High Pressure Chamber 10 Pump Body 11 Suction Passage 12 Discharge Passage 13 Housing 21 Fluid Pressure Actuator 23 Relief Passage 24 Relief Valve 27 Lubrication Passage 28 Return passage 30 Bypass passage 31 Pressure switch 32 Pressure guide passage 33 Drain passages 35, 42, 50 to 53 Partition portion 36 Communication passage 37 Sphere 40 Low pressure portion 41 High pressure portion 43 Spring

Claims (11)

駆動軸に連結されたロータと、
前記ロータに対して径方向に往復動可能に設けられる複数のベーンと、
前記ロータを収容すると共に、前記ロータの回転に伴って内周のカム面に前記ベーンの先端部が摺動するカムリングと、
前記ロータと前記カムリングとの間に画成されたポンプ室と、
前記カムリングを収容し、内部に低圧部と高圧部とを画成するハウジングと、を備えるベーンポンプにおいて、
前記高圧部の圧力が上昇し前記ハウジングの破壊強度に達する前に、前記高圧部を前記低圧部へと連通させる連通手段を、前記ハウジングにおける前記高圧部と前記低圧部とを隔てる隔壁部に形成したことを特徴とするベーンポンプ。
A rotor coupled to the drive shaft;
A plurality of vanes provided so as to be capable of reciprocating in the radial direction with respect to the rotor;
A cam ring that houses the rotor, and the tip of the vane slides on the cam surface of the inner periphery as the rotor rotates.
A pump chamber defined between the rotor and the cam ring;
In the vane pump that houses the cam ring and includes a housing that defines a low pressure portion and a high pressure portion therein,
Before the pressure of the high pressure part rises and reaches the breaking strength of the housing, communication means for communicating the high pressure part with the low pressure part is formed in the partition part that separates the high pressure part and the low pressure part in the housing Vane pump characterized by that.
前記連通手段は、
前記隔壁部に形成され、前記高圧部と前記低圧部とを連通する連通路と、
前記連通路に圧入された圧入部材と、を備え、
前記高圧部の圧力が上昇し前記ハウジングの破壊強度に達する前に、前記圧入部材が前記連通路から抜けることによって、前記高圧部を前記低圧部へと連通させることを特徴とする請求項1に記載のベーンポンプ。
The communication means is
A communication path formed in the partition wall and communicating the high pressure portion and the low pressure portion;
A press-fitting member press-fitted into the communication path,
2. The high pressure portion is communicated with the low pressure portion by removing the press-fitting member from the communication path before the pressure of the high pressure portion increases and reaches the breaking strength of the housing. Vane pump as described.
前記連通路から前記圧入部材が抜けた場合に、当該圧入部材の前記低圧部への流入を防止する流入防止手段を備えることを特徴とする請求項2に記載のベーンポンプ。   The vane pump according to claim 2, further comprising inflow prevention means for preventing inflow of the press-fitting member into the low-pressure portion when the press-fitting member is removed from the communication path. 前記連通手段は、前記高圧部の圧力が上昇し前記ハウジングの破壊強度に達する前に、前記隔壁部の破断によって前記高圧部を前記低圧部へと連通させることを特徴とする請求項1に記載のベーンポンプ。   2. The communication means connects the high-pressure portion to the low-pressure portion by breaking the partition wall before the pressure of the high-pressure portion rises and reaches the breaking strength of the housing. Vane pump. 前記連通手段は、前記高圧部の圧力が上昇し前記ハウジングの破壊強度に達する前に、前記隔壁部の変形によって前記高圧部を前記低圧部へと連通させることを特徴とする請求項1に記載のベーンポンプ。   2. The communication means connects the high-pressure part to the low-pressure part by deformation of the partition wall part before the pressure of the high-pressure part rises and reaches the breaking strength of the housing. Vane pump. 前記ハウジングは、
前記ロータ及び前記カムリングの両側部を挟んで配置され、前記ポンプ室に作動流体を導く低圧室と前記ポンプ室が吐出する作動流体が導かれる高圧室とが形成された一対の側部部材と、
前記カムリングを収容し、前記低圧室に連通する吸込通路と前記高圧室に連通する吐出通路とが形成されたポンプボディーと、を備え、
前記低圧部は、前記低圧室と前記吸込通路とを含み、
前記高圧部は、前記高圧室と前記吐出通路とを含むことを特徴とする請求項1から請求項5のいずれか一つに記載のベーンポンプ。
The housing is
A pair of side members disposed between both sides of the rotor and the cam ring, in which a low pressure chamber for guiding the working fluid to the pump chamber and a high pressure chamber for guiding the working fluid discharged from the pump chamber are formed;
A pump body that houses the cam ring and has a suction passage communicating with the low pressure chamber and a discharge passage communicating with the high pressure chamber;
The low pressure part includes the low pressure chamber and the suction passage,
The vane pump according to any one of claims 1 to 5, wherein the high-pressure section includes the high-pressure chamber and the discharge passage.
前記吐出通路の作動流体の圧力が所定圧力に達した場合に作動流体の通過を許容するリリーフ弁と、
前記リリーフ弁を通過した作動流体を前記吸込通路へと導く戻り通路と、を備え、
前記低圧部は、前記戻り通路を含むことを特徴とする請求項6に記載のベーンポンプ。
A relief valve that allows the working fluid to pass when the pressure of the working fluid in the discharge passage reaches a predetermined pressure;
A return passage for guiding the working fluid that has passed through the relief valve to the suction passage, and
The vane pump according to claim 6, wherein the low-pressure portion includes the return passage.
前記駆動軸の周囲に形成され、前記ポンプ室から漏れる作動流体が導かれる潤滑路を備え、
前記低圧部は、前記潤滑路を含むことを特徴とする請求項6又は請求項7に記載のベーンポンプ。
A lubricating path that is formed around the drive shaft and through which a working fluid leaking from the pump chamber is guided;
The vane pump according to claim 6 or 7, wherein the low-pressure portion includes the lubrication path.
前記潤滑路の作動流体を前記吸込通路へと導くバイパス通路を備え、
前記低圧部は、前記バイパス通路を含むことを特徴とする請求項8に記載のベーンポンプ。
A bypass passage for guiding the working fluid of the lubrication path to the suction passage;
The vane pump according to claim 8, wherein the low-pressure part includes the bypass passage.
前記高圧室の作動流体の圧力に応じて、エンジン制御装置にエンジンアイドル回転数の指令信号を出力する圧力スイッチと、
前記高圧室の作動流体を前記圧力スイッチに導く導圧通路と、を備え、
前記高圧部は、前記導圧通路を含むことを特徴とする請求項6から請求項9のいずれか一つに記載のベーンポンプ。
A pressure switch for outputting a command signal of the engine idle speed to the engine control device in accordance with the pressure of the working fluid in the high pressure chamber;
A pressure guiding passage for guiding the working fluid in the high pressure chamber to the pressure switch,
The vane pump according to any one of claims 6 to 9, wherein the high-pressure portion includes the pressure guiding passage.
前記圧力スイッチに導かれた作動油の漏れを前記吸込通路へと導くドレン通路を備え、
前記低圧部は、前記ドレン通路を含むことを特徴とする請求項10に記載のベーンポンプ。
A drain passage that guides leakage of hydraulic fluid led to the pressure switch to the suction passage;
The vane pump according to claim 10, wherein the low-pressure portion includes the drain passage.
JP2007261772A 2007-10-05 2007-10-05 Vane pump Expired - Fee Related JP5133647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261772A JP5133647B2 (en) 2007-10-05 2007-10-05 Vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261772A JP5133647B2 (en) 2007-10-05 2007-10-05 Vane pump

Publications (2)

Publication Number Publication Date
JP2009091933A true JP2009091933A (en) 2009-04-30
JP5133647B2 JP5133647B2 (en) 2013-01-30

Family

ID=40664173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261772A Expired - Fee Related JP5133647B2 (en) 2007-10-05 2007-10-05 Vane pump

Country Status (1)

Country Link
JP (1) JP5133647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058892A (en) * 2012-09-18 2014-04-03 Hitachi Automotive Systems Steering Ltd Variable displacement type vane pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193862A (en) * 1997-09-19 1999-04-06 Jidosha Kiki Co Ltd Variable-displacement pump
JP2002147374A (en) * 2000-11-13 2002-05-22 Unisia Jecs Corp Variable displacement vane pump
JP2003074479A (en) * 2001-08-31 2003-03-12 Unisia Jkc Steering System Co Ltd Variable displacement pump
JP2003206862A (en) * 2002-01-10 2003-07-25 Matsushita Electric Ind Co Ltd Compressor
JP2004340007A (en) * 2003-05-14 2004-12-02 Toyota Industries Corp Bypass device in variable displacement compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193862A (en) * 1997-09-19 1999-04-06 Jidosha Kiki Co Ltd Variable-displacement pump
JP2002147374A (en) * 2000-11-13 2002-05-22 Unisia Jecs Corp Variable displacement vane pump
JP2003074479A (en) * 2001-08-31 2003-03-12 Unisia Jkc Steering System Co Ltd Variable displacement pump
JP2003206862A (en) * 2002-01-10 2003-07-25 Matsushita Electric Ind Co Ltd Compressor
JP2004340007A (en) * 2003-05-14 2004-12-02 Toyota Industries Corp Bypass device in variable displacement compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058892A (en) * 2012-09-18 2014-04-03 Hitachi Automotive Systems Steering Ltd Variable displacement type vane pump

Also Published As

Publication number Publication date
JP5133647B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5116546B2 (en) Variable displacement vane pump
JP5216397B2 (en) Variable displacement vane pump
JP2006226164A (en) Vane pump
US9291163B2 (en) Pump having fitting portions
JP2011149334A (en) Hydraulic control device for vehicle
WO2016084804A1 (en) Variable capacity vane pump
JP5007085B2 (en) Tandem pump valve structure
JP5371795B2 (en) Variable displacement vane pump
JP2007032517A (en) Variable displacement vane pump
JP5133647B2 (en) Vane pump
JP2009074664A (en) Shuttle valve
JP2009275537A (en) Variable displacement vane pump
JP2010255551A (en) Variable displacement vane pump
JP2010150958A (en) Vane pump
JP5162233B2 (en) Variable displacement vane pump
JP2009121350A (en) Vane pump
JP2010001810A (en) Variable displacement vane pump
JP2010255552A (en) Variable displacement vane pump
JP2011127556A (en) Variable displacement vane pump
JP2009052525A (en) Vane pump
JP2023086446A (en) Relief valve and oil pump device with the same
JP5412341B2 (en) Vane pump
JP5255715B2 (en) Variable displacement vane pump
KR20220026217A (en) Relief valve oil pump
JP2015059523A (en) Variable displacement vane pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5133647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees