JP2009074664A - Shuttle valve - Google Patents

Shuttle valve Download PDF

Info

Publication number
JP2009074664A
JP2009074664A JP2007246437A JP2007246437A JP2009074664A JP 2009074664 A JP2009074664 A JP 2009074664A JP 2007246437 A JP2007246437 A JP 2007246437A JP 2007246437 A JP2007246437 A JP 2007246437A JP 2009074664 A JP2009074664 A JP 2009074664A
Authority
JP
Japan
Prior art keywords
stepped
shuttle valve
spool
diameter
spools
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007246437A
Other languages
Japanese (ja)
Inventor
Yukihiro Shoji
幸広 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2007246437A priority Critical patent/JP2009074664A/en
Publication of JP2009074664A publication Critical patent/JP2009074664A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Fluid Gearings (AREA)
  • Multiple-Way Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the volumetric efficiency of an HST by preventing leakage from a high-pressure side to a cooler circuit in a shuttle valve. <P>SOLUTION: The shuttle valve 10 has a stepped hole 12 drilled on a main body 11, and a spool 13 slidably fitted into the stepped hole 12. Two inlets 26, 27, and one outlet 28 are arranged on the main body 11. Stepped spools 13a, 13b are slidably fitted into the stepped hole 12. Spring members 18a, 18b are loosely inserted into projection sections 19a, 19b arranged on a large-diameter sections 20a, 20b of the stepped spools 13a, 13b. Shaft sections 23, 24 are formed on a middle-diameter sections 21a, 21b, the shaft sections 23, 24 are slidably inserted each other, and the stepped spools 13a, 13b are connected with resilient force of the spring members 18a, 18b at a pushed state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、油圧無段変速機、ハイドロスタティックトランスミッション(HST)、油圧閉回路等に使用されるシャトルバルブに関する。   The present invention relates to a shuttle valve used for a hydraulic continuously variable transmission, a hydrostatic transmission (HST), a hydraulic closed circuit, and the like.

従来、油圧の伝達装置であるハイドロスタティックトランスミッション(HST)や閉回路では、閉回路上の作動油の温度上昇や油中の異物を取り除く際、該回路の低圧側の油をクーラやフィルタに連通するため、シャトルバルブを使用している(例えば、特許文献1参照)。
特開平11−125331号公報 (図8)
Conventionally, in a hydrostatic transmission (HST) that is a hydraulic transmission device and a closed circuit, when the temperature of hydraulic oil on the closed circuit rises and foreign matter in the oil is removed, the oil on the low pressure side of the circuit is communicated to a cooler or a filter. Therefore, a shuttle valve is used (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-125331 (FIG. 8)

しかしながら、特許文献1に示されたものは該特許文献1の図8に示すようにシャトルバルブはスプールタイプを使用しているが、スプールと本体との嵌合部にクリアランス、例えば10〜30μmに保持されているため、高圧側からクーラ回路に油の漏れが発生し、その漏れが発熱となって油温上昇となって油の酸化を早めて油やHSTの寿命を早めたり、HSTの容積効率が悪くなるという問題がある。
本発明は上記の課題を解決するためになされたもので、高圧側からクーラ回路への油の漏れを防止してHSTの容積効率を向上したシャトルバルブを提供することを目的とする。
However, as shown in FIG. 8 of Patent Document 1, the shuttle valve uses a spool type as shown in Patent Document 1, but the clearance between the spool and the main body is set to a clearance, for example, 10 to 30 μm. Since the oil is leaked from the high pressure side to the cooler circuit, the leakage generates heat and the oil temperature rises, accelerating the oxidation of the oil and shortening the life of the oil and HST, and the volume of the HST. There is a problem of inefficiency.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a shuttle valve that prevents the leakage of oil from the high-pressure side to the cooler circuit and improves the volumetric efficiency of HST.

前記の課題を解決するために請求項1記載の発明は、第一及び第二の二つの入口と一つの共通の出口を有し、前記出口は前記入口圧力の作用によって該入口のいずれか一方に接続されるシャトルバルブにおいて、
本体と、
前記本体に摺動自在に嵌挿された第一の段付スプールと、
前記第一の段付スプールに対向して同軸状に設けられ前記本体に摺動自在に嵌挿された第二の段付スプールと、
前記第一の段付スプールの大径部に当接して設けられた第一のばね部材と、
前記第一のばね部材に対向して前記第二の段付スプールの大径部に当接して設けられた第二のばね部材と、
を備え、
前記第一及び第二の段付スプールは前記第一及び第二のばね部材により押圧され互い押し勝手に嵌挿されていることを特徴とする。
本発明によれば、大径部で摺動することによりスプールが滑らかに動くことができ、ばね部材により第一の段付スプールと第二の段付スプールが離れないようにすることができる。またばね部材ングによりスプールが中央で位置決めされる。
In order to solve the above-mentioned problem, the invention according to claim 1 has first and second two inlets and one common outlet, and the outlet is one of the inlets by the action of the inlet pressure. In the shuttle valve connected to
The body,
A first stepped spool slidably fitted into the body;
A second stepped spool that is coaxially provided opposite to the first stepped spool and is slidably fitted into the main body;
A first spring member provided in contact with the large diameter portion of the first stepped spool;
A second spring member provided in contact with the large diameter portion of the second stepped spool facing the first spring member;
With
The first and second stepped spools are pressed by the first and second spring members and are inserted into each other without any effort.
According to the present invention, the spool can move smoothly by sliding on the large diameter portion, and the first stepped spool and the second stepped spool can be prevented from being separated by the spring member. The spool is positioned in the center by the spring member.

請求項2記載の発明は、前記第一及び第二の段付スプールは前記大径部に隣接する中径部の端面がエッジ部に形成され前記本体に形成されたテーパー面に係合しているので、圧油の漏れを確実に遮断することができるので好適である。さらに、エッジ部とテーパー面で係合しているため、圧力が高ければ高いほぼシール性が向上し、確実に油を遮断することができる。
請求項3記載の発明は、前記中径部に軸部材が形成され該軸部材が互いに摺動自在に嵌挿されているで、一体的に移動でき誤動作が発生しないのでよい。また、本体の加工も第一の段付スプール孔である中径孔と第二段付きスプール孔である小径孔の加工も同軸が不要で加工コストを軽減することができるのでよい。
According to a second aspect of the present invention, the first and second stepped spools are engaged with a tapered surface formed on the main body with an end surface of an intermediate diameter portion adjacent to the large diameter portion formed at an edge portion. Therefore, it is preferable because the leakage of the pressure oil can be reliably blocked. Furthermore, since the edge portion and the tapered surface are engaged, the higher the pressure, the higher the sealing performance, and the oil can be shut off reliably.
According to a third aspect of the present invention, since a shaft member is formed at the middle diameter portion and the shaft members are slidably inserted into each other, they can move together and no malfunction occurs. Also, the machining of the main body can be performed because the machining of the medium-diameter hole, which is the first stepped spool hole, and the small-diameter hole, which is the second stepped spool hole, is unnecessary, and the machining cost can be reduced.

本発明は、高精度な加工なしで簡単な構造で高圧でも漏れのない確実にシールすることができる。   According to the present invention, it is possible to reliably seal without leakage even at high pressure with a simple structure without high-precision processing.

以下、本発明のシャトルバルブにつき好適の実施の形態を挙げ、添付図面を参照して詳細に説明する。
図1は、本発明の実施に形態に係るシャトルバルブ10の概略構造を示す略縦断面である。図1において、シャトルバルブ10は、本体11の軸方向(図1で矢印XおよびY方向)に穿設された段付穴12と、該段付穴12に摺動自在に嵌入されたスプール13と、を備える。
前記段付穴12は大径孔14a,14bと、前記大径孔14a,14bと同軸状に設けられ該大径孔14a,14bの端面に隣接して形成された中径孔15a,15bと、前記中径孔15a,15bとに設けられ該中径孔15a,15bの端面に隣接して形成された小径孔16がこの順序で同軸状に対向して穿設され連通している。前記大径孔14a,14b及び前記中径孔15a,15bは同径であり、該中径孔15a,15bは該大径孔14a,14bよりも孔径が小さい。さらに、大径孔14a,14bと中径孔15a,15bとは側壁面による段付形状にして連通しており、中径孔15a,15bと小径孔16との接合面はテーパー面17a,17bに形成されている。なお、大径孔14a,14bは油室として機能する。
Hereinafter, preferred embodiments of the shuttle valve of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic longitudinal sectional view showing a schematic structure of a shuttle valve 10 according to an embodiment of the present invention. In FIG. 1, the shuttle valve 10 includes a stepped hole 12 drilled in the axial direction of the main body 11 (in the directions of arrows X and Y in FIG. 1), and a spool 13 slidably fitted in the stepped hole 12. And comprising.
The stepped hole 12 includes large-diameter holes 14a and 14b, and medium-diameter holes 15a and 15b that are provided coaxially with the large-diameter holes 14a and 14b and are formed adjacent to end surfaces of the large-diameter holes 14a and 14b. The small-diameter holes 16 provided in the medium-diameter holes 15a and 15b and formed adjacent to the end surfaces of the medium-diameter holes 15a and 15b are formed so as to be coaxially opposed and communicated in this order. The large diameter holes 14a and 14b and the medium diameter holes 15a and 15b have the same diameter, and the medium diameter holes 15a and 15b are smaller in diameter than the large diameter holes 14a and 14b. Further, the large-diameter holes 14a, 14b and the medium-diameter holes 15a, 15b communicate with each other in a stepped shape by the side wall surface, and the joint surfaces of the medium-diameter holes 15a, 15b and the small-diameter hole 16 are tapered surfaces 17a, 17b. Is formed. The large diameter holes 14a and 14b function as an oil chamber.

前記スプール13は、段付スプール13a,13bより形成されている。前記段付スプール13aは大径孔14aに対して軸方向に突出しばね部材18aを遊挿する突起部19aと、中径孔15aに軸方向に厚みをもって摺動自在に嵌挿して前記突起部19aを接合した大径部20aと、前記大径部20aに隣接して設けられ端面を段付に形成し該段付にエッジ部22aを設けてテーパー面17aに係合する中径部21aと、前記中径部21aに接合し小径孔16に突出する軸部23と、を備える。
一方、段付スプール13bは、大径孔14bに対して軸方向に突出しばね部材18bを遊挿する突起部19bと、中径孔15bに軸方向に厚みをもって摺動自在に嵌挿して前記突起部19bを接合した大径部20bと、前記大径部20bに隣接して設けられ端面を段付に形成し該段付にエッジ部22bを設けてテーパー面17bに係合する中径部21bと、前記中径部21bに接合し小径孔16に突出して軸部23に嵌合する軸部24と、を備える。
軸部23は軸部24の穴部25に嵌入され、互いに摺動自在に形成されているが、軸部23に穴部(図示しない)を設けて軸部24を嵌入してよい。
The spool 13 is formed of stepped spools 13a and 13b. The stepped spool 13a protrudes in the axial direction with respect to the large-diameter hole 14a and is loosely inserted into the medium-diameter hole 15a with a thickness in the axial direction so that the spring member 18a is loosely inserted. A large-diameter portion 20a, and an intermediate-diameter portion 21a that is provided adjacent to the large-diameter portion 20a and that has an end surface that is stepped, and that is provided with an edge portion 22a and engages the tapered surface 17a. A shaft portion 23 which is joined to the medium diameter portion 21a and protrudes from the small diameter hole 16.
On the other hand, the stepped spool 13b protrudes in the axial direction with respect to the large-diameter hole 14b and is loosely inserted into the medium-diameter hole 15b with a thickness in the axial direction so that the spring member 18b is inserted freely. A large-diameter portion 20b joined to the portion 19b, and a medium-diameter portion 21b that is provided adjacent to the large-diameter portion 20b, has an end surface formed in a stepped shape, and an edge portion 22b is provided in the stepped portion to engage the tapered surface 17b. And a shaft portion 24 that is joined to the medium diameter portion 21b, protrudes into the small diameter hole 16, and is fitted to the shaft portion 23.
The shaft portion 23 is fitted into the hole portion 25 of the shaft portion 24 and is formed to be slidable with each other. However, a hole portion (not shown) may be provided in the shaft portion 23 to insert the shaft portion 24.

前記ばね部材18a,18bのそれぞれの弾発力は、段付スプール13a,13bに付勢し、これらの段付スプール13a,13bが軸部23、24を介して互いに離反しないように押し勝手に設けられている。
また、本体11に形成された大径孔14a,14b及び小径孔16は、該本体11に穿設され図示しない圧油供給源に接続する圧油供給路26(26a)、27(27a)が連通し、かつ前記小径孔16には、図示しないクーラまたはタンク等に接続する供給路28が連通している。
The elastic force of each of the spring members 18a and 18b urges the stepped spools 13a and 13b, and pushes the stepped spools 13a and 13b so as not to separate from each other via the shaft portions 23 and 24. Is provided.
The large-diameter holes 14a and 14b and the small-diameter hole 16 formed in the main body 11 are provided with pressure oil supply paths 26 (26a) and 27 (27a) that are drilled in the main body 11 and connected to a pressure oil supply source (not shown). The small diameter hole 16 communicates with a supply path 28 connected to a cooler or a tank (not shown).

本発明の実施の形態に係るシャトルバルブ10は基本的には以上の構成されるものであり、次に動作について説明する。図2乃至図4はシャトルバルブ10の動作説明図である。
図2は圧油供給路26、27に供給される圧油が同圧の状態を示している。この場合、段付スプール13a,13bはばね部材18a,18bの弾発力によりシャトルバルブ10の中央、すなわち小径孔16の略中央に戻されている。よって、段付スプール13a,13bに連通する圧油供給路26,27のそれぞれは中径部21a,21bのエッジ部22a,22bとテーパー面17a,17bとの隙間、小径孔16よりタンクポート(図示しない)に連通する供給路28に連通している。
The shuttle valve 10 according to the embodiment of the present invention is basically configured as described above. Next, the operation will be described. 2 to 4 are explanatory views of the operation of the shuttle valve 10.
FIG. 2 shows a state in which the pressure oil supplied to the pressure oil supply paths 26 and 27 is the same pressure. In this case, the stepped spools 13 a and 13 b are returned to the center of the shuttle valve 10, that is, approximately the center of the small diameter hole 16 by the elastic force of the spring members 18 a and 18 b. Therefore, each of the pressure oil supply passages 26 and 27 communicating with the stepped spools 13a and 13b has a tank port (not shown) between the edge portions 22a and 22b of the medium diameter portions 21a and 21b and the tapered surfaces 17a and 17b. It communicates with a supply path 28 that communicates with (not shown).

図3は圧油供給路26が圧油供給路27より高圧になっている状態を示す。すなわち、高圧の圧油が圧油供給路26,26aを通り、大径孔14aに流入し大径部20aの側壁面に作用すると、スプール13aは矢印Y方向に変位する。これにより、中径部21aのエッジ部22aはテーパー面17aに当接し、圧油供給路26に流入する圧油をシールする。
一方、スプール13aの軸部23はスプール13bの軸部24の穴部25を介し係合しているので、該スプール13bがスプール13aと協動して矢印X方向に変位し、テーパー面17bと中径部21bのエッジ部22bとの間に隙間が発生する。よって、圧油供給路27に流入している圧油は、テーパー面17bとエッジ部22bとの隙間より小径穴16を介して供給路28より図示しないクーラまたはタンク等に流れる。
FIG. 3 shows a state in which the pressure oil supply path 26 is at a higher pressure than the pressure oil supply path 27. That is, when high-pressure oil flows through the pressure oil supply passages 26 and 26a and flows into the large-diameter hole 14a and acts on the side wall surface of the large-diameter portion 20a, the spool 13a is displaced in the arrow Y direction. Thereby, the edge part 22a of the medium diameter part 21a contacts the taper surface 17a, and seals the pressure oil flowing into the pressure oil supply path 26.
On the other hand, since the shaft portion 23 of the spool 13a is engaged through the hole 25 of the shaft portion 24 of the spool 13b, the spool 13b is displaced in the direction of the arrow X in cooperation with the spool 13a, and the tapered surface 17b. A gap is generated between the edge portion 22b of the medium diameter portion 21b. Therefore, the pressure oil flowing into the pressure oil supply path 27 flows from the supply path 28 to a cooler or a tank (not shown) through the small diameter hole 16 through the gap between the tapered surface 17b and the edge portion 22b.

図4は圧油供給路27が圧油供給路26より高圧になっている状態を示す。この状態では高圧の圧油が圧油供給路27,27aを通り、大径孔14bに流入し大径部20bの側壁面に作用すると、スプール13bは矢印X方向に変位する。これにより、中径部21bのエッジ部22bはテーパー面17bに当接し、圧油供給路27に流入する圧油をシールする。
そこで、スプール13aがスプール13bと協動して矢印X方向に変位し、テーパー面17aと中径部21aのエッジ部22aとの間に隙間が発生する。よって、圧油供給路28に流入している圧油は、テーパー面17aとエッジ部22aとの隙間より小径穴16を介して供給路28より図示しないクーラまたはタンク等に流れる。
FIG. 4 shows a state in which the pressure oil supply path 27 is at a higher pressure than the pressure oil supply path 26. In this state, when high-pressure oil flows through the oil supply passages 27 and 27a and flows into the large-diameter hole 14b and acts on the side wall surface of the large-diameter portion 20b, the spool 13b is displaced in the arrow X direction. Thereby, the edge part 22b of the medium diameter part 21b contacts the taper surface 17b, and seals the pressure oil flowing into the pressure oil supply path 27.
Therefore, the spool 13a is displaced in the direction of the arrow X in cooperation with the spool 13b, and a gap is generated between the tapered surface 17a and the edge portion 22a of the medium diameter portion 21a. Therefore, the pressure oil flowing into the pressure oil supply path 28 flows from the supply path 28 to a cooler or a tank (not shown) through the small diameter hole 16 through the gap between the tapered surface 17a and the edge portion 22a.

図5は本発明の実施の形態に係るシャトルバルブ10を用いた油圧制御装置30を示す。
前記油圧制御装置30は基本的にはポンプ31と、アクチュエータのモータ32と、Aポート33及びBポート34を介して前記ポンプ31及びモータ32に接続されたシャトルバルブ35と、該シャトルバルブ35のタンクポート36の下流に設けられた圧力制御弁37と、を備える。
前記圧力制御弁37には低圧側の圧力が下がらないようにするブーストポンプ38が連通している。前記油圧制御装置30には安全弁39、40、チェック弁41,42、絞り43、フィルタ44、クーラ45等が設けられている。
FIG. 5 shows a hydraulic control apparatus 30 using the shuttle valve 10 according to the embodiment of the present invention.
The hydraulic control device 30 basically includes a pump 31, an actuator motor 32, a shuttle valve 35 connected to the pump 31 and the motor 32 via an A port 33 and a B port 34, and the shuttle valve 35. And a pressure control valve 37 provided downstream of the tank port 36.
The pressure control valve 37 communicates with a boost pump 38 that prevents the pressure on the low pressure side from dropping. The hydraulic control device 30 is provided with safety valves 39 and 40, check valves 41 and 42, a throttle 43, a filter 44, a cooler 45, and the like.

次に油圧制御装置30の作動について説明する。
ポンプ31がAポート33側に吐出する場合は、該Aポート33側が高圧になりモータ32を回転させる。そのとき、シャトルバルブ35はAポート33が高圧のため、低圧のBポート34はシャトルバルブ35のタンクポート36に連通する。
一方、Bポート34の圧油はシャトルバルブ35、絞り43を経て圧力制御弁37を流れてフィルタ44よりクーラ45を流入して冷却される。前記Bポート34は圧油が抜けるためブーストポンプ38からの冷却された圧油がチェック弁41を経て補給されて回路内の油温が低い温度に保たれる。
Next, the operation of the hydraulic control device 30 will be described.
When the pump 31 discharges to the A port 33 side, the A port 33 side becomes a high pressure and the motor 32 is rotated. At that time, since the A port 33 of the shuttle valve 35 is high pressure, the low pressure B port 34 communicates with the tank port 36 of the shuttle valve 35.
On the other hand, the pressure oil in the B port 34 flows through the shuttle valve 35 and the throttle 43, flows through the pressure control valve 37, enters the cooler 45 through the filter 44, and is cooled. Since the pressure oil is discharged from the B port 34, the cooled pressure oil from the boost pump 38 is supplied through the check valve 41, and the oil temperature in the circuit is kept at a low temperature.

ポンプ31がBポート34側に吐出する場合は、該Bポート34側が高圧になるため低圧のAポート33がシャトルバルブ35のタンクポート36に連通するので、圧油はAポート33側からシャトルバルブ35、絞り43、圧力制御弁37、フィルタ44、クーラ45を通り冷却される。   When the pump 31 discharges to the B port 34 side, since the B port 34 side becomes high pressure, the low pressure A port 33 communicates with the tank port 36 of the shuttle valve 35, so that the pressure oil flows from the A port 33 side to the shuttle valve. 35, the throttle 43, the pressure control valve 37, the filter 44, and the cooler 45 are cooled.

本発明の実施の形態に係るシャトルバルブの略縦断面図である。1 is a schematic longitudinal sectional view of a shuttle valve according to an embodiment of the present invention. 図1の段付スプール13a,13bに作用する圧油が同圧の場合のシャトルバルブの動作説明図である。It is operation | movement explanatory drawing of a shuttle valve in case the pressure oil which acts on the stepped spools 13a and 13b of FIG. 1 is the same pressure. 図1の段付スプール13aに高圧が作用した場合のシャトルバルブの動作説明図である。It is operation | movement explanatory drawing of a shuttle valve when a high pressure acts on the stepped spool 13a of FIG. 図1の段付スプール13bに高圧が作用した場合のシャトルバルブの動作説明図である。It is operation | movement explanatory drawing of a shuttle valve when a high pressure acts on the stepped spool 13b of FIG. シャトルバルブを使用した油圧制御装置の回路図である。It is a circuit diagram of the hydraulic control apparatus using a shuttle valve.

符号の説明Explanation of symbols

10 シャトルバルブ 11 本体
12 段付孔 13,13a,13b 段付スプール
14a,14b 大径孔 15a,15b 中径孔
17a,17b テーパー面 22a.22b エッジ部



10 Shuttle valve 11 Body 12 Stepped hole 13, 13a, 13b Stepped spool 14a, 14b Large diameter hole 15a, 15b Medium diameter hole 17a, 17b Tapered surface 22a. 22b Edge part



Claims (3)

第一及び第二の二つの入口と一つの共通の出口を有し、前記出口は前記入口圧力の作用によって該入口のいずれか一方に接続されるシャトルバルブにおいて、
本体と、
前記本体に摺動自在に嵌挿された第一の段付スプールと、
前記第一の段付スプールに対向して同軸状に設けられ前記本体に摺動自在に嵌挿された第二の段付スプールと、
前記第一の段付スプールの大径部に当接して設けられた第一のばね部材と、
前記第一のばね部材に対向して前記第二の段付スプールの大径部に当接して設けられた第二のばね部材と、
を備え、
前記第一及び第二の段付スプールは前記第一及び第二のばね部材により押圧され互い押し勝手に嵌挿されていることを特徴とするシャトルバルブ。
A shuttle valve having a first and a second two inlets and a common outlet, the outlet being connected to one of the inlets by the action of the inlet pressure;
The body,
A first stepped spool slidably fitted into the body;
A second stepped spool that is coaxially provided opposite to the first stepped spool and is slidably fitted into the main body;
A first spring member provided in contact with the large diameter portion of the first stepped spool;
A second spring member provided in contact with the large diameter portion of the second stepped spool facing the first spring member;
With
The shuttle valve according to claim 1, wherein the first and second stepped spools are pressed by the first and second spring members and are inserted into each other.
請求項1記載のシャトルバルブにおいて、
前記第一及び第二の段付スプールは前記大径部に隣接する中径部の端面がエッジ部に形成され前記本体に形成されたテーパー面に係合することを特徴するシャトルバルブ。
The shuttle valve according to claim 1, wherein
The first and second stepped spools are shuttle valves characterized in that an end surface of a medium diameter portion adjacent to the large diameter portion is formed at an edge portion and engages with a tapered surface formed in the main body.
請求項1または2記載のシャトルバルブにおいて、
前記中径部に軸部材が形成され該軸部材が互いに摺動自在に嵌挿されていることを特徴とするシャトルバルブ。
The shuttle valve according to claim 1 or 2,
A shuttle valve characterized in that a shaft member is formed in the middle diameter portion, and the shaft members are slidably inserted into each other.
JP2007246437A 2007-09-25 2007-09-25 Shuttle valve Withdrawn JP2009074664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246437A JP2009074664A (en) 2007-09-25 2007-09-25 Shuttle valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246437A JP2009074664A (en) 2007-09-25 2007-09-25 Shuttle valve

Publications (1)

Publication Number Publication Date
JP2009074664A true JP2009074664A (en) 2009-04-09

Family

ID=40609829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246437A Withdrawn JP2009074664A (en) 2007-09-25 2007-09-25 Shuttle valve

Country Status (1)

Country Link
JP (1) JP2009074664A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015147A (en) * 2016-07-28 2016-10-12 安徽环球传动科技有限公司 Shuttle valve with middle position unloading function and braking system for hydraulic motor drive
CN108980425A (en) * 2018-08-21 2018-12-11 上海涛普流体技术有限公司 With gate shuttle valve
JP2019116946A (en) * 2017-12-27 2019-07-18 三菱重工機械システム株式会社 Hydraulic driving device
CN114278633A (en) * 2021-12-03 2022-04-05 四川航天烽火伺服控制技术有限公司 Rotary valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015147A (en) * 2016-07-28 2016-10-12 安徽环球传动科技有限公司 Shuttle valve with middle position unloading function and braking system for hydraulic motor drive
CN106015147B (en) * 2016-07-28 2017-12-15 安徽环球传动科技有限公司 A kind of shuttle valve with middle position unloading function and fluid motor-driven brakes
JP2019116946A (en) * 2017-12-27 2019-07-18 三菱重工機械システム株式会社 Hydraulic driving device
JP7064872B2 (en) 2017-12-27 2022-05-11 三菱重工機械システム株式会社 Hydraulic drive
CN108980425A (en) * 2018-08-21 2018-12-11 上海涛普流体技术有限公司 With gate shuttle valve
CN114278633A (en) * 2021-12-03 2022-04-05 四川航天烽火伺服控制技术有限公司 Rotary valve
CN114278633B (en) * 2021-12-03 2024-05-28 四川航天烽火伺服控制技术有限公司 Rotary valve

Similar Documents

Publication Publication Date Title
JP4775362B2 (en) Spool valve
CN101473284A (en) Fluid-controlled valve
JP2015055355A (en) Hydraulic pressure supply system of vehicle automatic transmission
JP2009074664A (en) Shuttle valve
JP6286307B2 (en) Directional control valve
WO2013111503A1 (en) Actuator
US20150233372A1 (en) Gear pump having grooved mounting adapter
JP2007177821A (en) Hydraulic drive unit
JP2011122651A (en) Solenoid valve
JP2004205043A (en) Solenoid valve of low energy consumption
CN110030219B (en) Pilot operated directional control valve and valve system including the same
JP2008014492A (en) Cartridge valve assembly
CN217354975U (en) Pilot cushion valve, hydraulic control loop and engineering machinery
JP2017223312A (en) Spool valve mechanism
JP2011208652A (en) Relief valve with relief pressure changing function
WO2014112605A1 (en) Oil-supply device
JP2009275537A (en) Variable displacement vane pump
JP5419087B2 (en) Hydraulic system for supplying hydraulic fluid to the consumer
JP2007064271A (en) Control valve with detent
US9945494B2 (en) Pneumatic directional valve and method of operation
JP5133647B2 (en) Vane pump
JP6208557B2 (en) Air discharge device
JP2009162349A (en) Relief valve
JP5869271B2 (en) Diaphragm valve device
JP2010255551A (en) Variable displacement vane pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120110

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110