JP2009091607A - Method for coating inner wall surface of converter with slag - Google Patents

Method for coating inner wall surface of converter with slag Download PDF

Info

Publication number
JP2009091607A
JP2009091607A JP2007261822A JP2007261822A JP2009091607A JP 2009091607 A JP2009091607 A JP 2009091607A JP 2007261822 A JP2007261822 A JP 2007261822A JP 2007261822 A JP2007261822 A JP 2007261822A JP 2009091607 A JP2009091607 A JP 2009091607A
Authority
JP
Japan
Prior art keywords
converter
slag
steel
hole
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007261822A
Other languages
Japanese (ja)
Other versions
JP5079444B2 (en
Inventor
Hiroshi Imagawa
浩志 今川
Shinji Sasagawa
真司 笹川
Kenji Onishi
憲二 大西
Takashi Oku
隆 奥
Kaoru Matsumura
馨 松邑
Hideaki Sone
英彰 曽根
Takuma Nagaishi
卓磨 永石
Koji Kono
幸次 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007261822A priority Critical patent/JP5079444B2/en
Publication of JP2009091607A publication Critical patent/JP2009091607A/en
Application granted granted Critical
Publication of JP5079444B2 publication Critical patent/JP5079444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for coating the inner wall surface of a converter with slag, which enables refractory in the periphery of a tapping hole to be effectively repaired, at which the inner wall surface is especially severely worn, while shortening a period of time for stopping the operation of the converter in order to repair the refractory as much as possible. <P>SOLUTION: The method for coating the inner wall surface of the converter with slag includes: a step (A) of lowering the temperature of the slag 16 to 1,150 to 1,400°C by swinging the converter 10 several times, in which the steel has been tapped out and the slag 16 remains; and a step (B) of forming a coating of the slag 16 on the surface of the refractory 13 which is arranged in the inner wall surface of the converter 10, while discharging the slag 16 from the tapping hole 12 provided in an upper side of a side part of the converter 10 by tilting the converter 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、転炉内壁面のスラグコーティング方法に係り、更に詳細には、転炉精錬の副生成物であるスラグを転炉の内壁面に配設された耐火物の表面にコーティングして耐火物を保護する転炉内壁面のスラグコーティング方法に関する。 The present invention relates to a method for coating slag on the inner wall of a converter, and more specifically, slag, which is a by-product of converter refining, is coated on the surface of a refractory disposed on the inner wall of the converter. The present invention relates to a slag coating method for an inner wall surface of a converter for protecting an object.

吹錬操業により損耗した転炉の内壁面に配設された耐火物の補修方法として、転炉精錬の副生成物であるスラグを耐火物の表面にコーティングするスラグコーティング方法が一般的に用いられている。スラグコーティング方法は、転炉の操業を完全に停止することなく比較的短時間で実施することができ、転炉内壁面の耐火物の交換間隔を長くすることができるので、転炉の操業効率の向上に有効である。
例えば、特許文献1には、転炉操業での出鋼後に、転炉内に残留させた溶融スラグに分解吸熱反応を起こす固化材を添加して吹付け又は転炉傾動等のコーティングアクションを行って、転炉内壁面をスラグコーティングする方法が開示されている。
また、特許文献2には、転炉内に残留させた溶融スラグに、転炉の底部に設けられた底吹羽口から、ガス発生物質を混入した不活性ガスを吹き込む転炉内壁面へのスラグコーティング法が開示されている。
As a method for repairing refractories disposed on the inner wall of a converter that has been worn out by blowing operation, a slag coating method is generally used in which slag, which is a by-product of converter refining, is coated on the surface of the refractory. ing. The slag coating method can be carried out in a relatively short time without completely stopping the converter operation, and the refractory replacement interval on the inner wall surface of the converter can be lengthened. It is effective in improving
For example, in Patent Document 1, a solidified material that causes a decomposition endothermic reaction is added to the molten slag remaining in the converter after the steel is produced in the converter operation, and a coating action such as spraying or tilting the converter is performed. Thus, a method of slag coating the converter inner wall surface is disclosed.
Further, in Patent Document 2, the molten slag remaining in the converter is supplied from the bottom tuyeres provided at the bottom of the converter to the inner wall surface of the converter where the inert gas mixed with the gas generating substance is blown. A slag coating method is disclosed.

特開平9−209022号公報Japanese Patent Laid-Open No. 9-209022 特開昭59−93816号公報JP 59-93816

しかしながら、特許文献1記載の転炉内壁面へのスラグコーティング方法においては、溶融スラグ中に固化材が均質に溶解及び分散するまでに長時間を要すると共に、吹付け又は転炉傾動等のコーティングアクションでは、最も損耗の大きい出鋼孔の近傍に十分な厚さを有するコーティングを形成することが困難である。また、出鋼孔の近傍に形成されるコーティングは多層になるため、コーティングの剥離強度が低くなり、高耐用性が得られない。
また、特許文献2記載の転炉内壁面へのスラグコーティング法においても、最も損耗の大きい出鋼孔の近傍に十分な厚さを有するコーティングを形成することが困難であり、出鋼孔の近傍に形成されるコーティングは多層になるため、コーティングの剥離強度が低くなり、高耐用性が得られない。
However, in the slag coating method on the converter inner wall surface described in Patent Document 1, it takes a long time until the solidified material is uniformly dissolved and dispersed in the molten slag, and the coating action such as spraying or tilting the converter In this case, it is difficult to form a coating having a sufficient thickness in the vicinity of the steel hole having the largest wear. Moreover, since the coating formed in the vicinity of the steel hole is multi-layered, the peeling strength of the coating is lowered, and high durability cannot be obtained.
Also, in the slag coating method on the converter inner wall surface described in Patent Document 2, it is difficult to form a coating having a sufficient thickness in the vicinity of the most worn out steel hole, and in the vicinity of the steel hole. Since the coating formed in the multilayer is multi-layered, the peel strength of the coating is lowered and high durability cannot be obtained.

本発明はかかる事情に鑑みてなされたもので、耐火物の補修のために転炉の稼働を停止する時間を極力短縮しながら、損耗が特に激しい出鋼孔近傍の耐火物に対する効果的な補修を可能にする転炉内壁面のスラグコーティング方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and effective repair for refractories in the vicinity of a steel outlet hole where wear is particularly severe while shortening the time to stop the operation of the converter as much as possible for repair of refractories. An object of the present invention is to provide a method for coating slag on the inner wall of a converter that makes it possible.

前記目的に沿う本発明に係る転炉内壁面のスラグコーティング方法は、出鋼後にスラグを残留させた転炉を複数回揺動させて該スラグの温度を低下させる工程Aと、前記転炉を傾けて、前記転炉の側部上側に設けられた出鋼孔からスラグを排出させながら、前記転炉の内壁面に配設された耐火物の表面に前記スラグのコーティングを形成する工程Bとを有する。 The slag coating method for the inner wall surface of the converter according to the present invention that meets the above-mentioned object includes the step A of lowering the temperature of the slag by swinging the converter in which the slag remains after the steel is output a plurality of times, and the converter Inclining and forming the coating of the slag on the surface of the refractory disposed on the inner wall surface of the converter while discharging the slag from the steel outlet hole provided on the upper side of the converter Have

本発明に係る転炉内壁面のスラグコーティング方法において、前記工程Aでは前記スラグの温度を1150℃〜1400℃に低下させることが好ましい。 In the slag coating method for the converter inner wall surface according to the present invention, in the step A, the temperature of the slag is preferably lowered to 1150 ° C to 1400 ° C.

本発明に係る転炉内壁面のスラグコーティング方法において、前記転炉の揺動回数が2〜5回であることが好ましい。 In the slag coating method for a converter inner wall surface according to the present invention, it is preferable that the number of oscillations of the converter is 2 to 5 times.

本発明に係る転炉内壁面のスラグコーティング方法において、前記出鋼孔の内径が140〜300mmであることが好ましい。 In the slag coating method for a converter inner wall surface according to the present invention, it is preferable that an inner diameter of the steel outlet hole is 140 to 300 mm.

本発明に係る転炉内壁面のスラグコーティング方法において、前記工程Aで前記転炉を揺動させる前に、粒径が10〜50mmで、前記転炉内に残留したスラグの6〜30質量%の塩基性炭酸塩塊を投入してもよい。 In the slag coating method for a converter inner wall surface according to the present invention, before the converter is swung in the step A, the particle diameter is 10 to 50 mm, and 6 to 30% by mass of the slag remaining in the converter. The basic carbonate mass may be added.

本発明に係る転炉内壁面のスラグコーティング方法において、前記工程Bでは、前記出鋼孔からの前記スラグの排出を5〜120秒間行うことが好ましい。 In the slag coating method for a converter inner wall surface according to the present invention, in the step B, it is preferable that the slag is discharged from the steel outlet hole for 5 to 120 seconds.

請求項1〜6記載の転炉内壁面のスラグコーティング方法においては、出鋼から排滓に至る一連の転炉操業工程の中で転炉内壁面に配設された耐火物の補修を行うことができるので、耐火物の補修のために転炉の稼動を停止する時間を短縮できる。
また、工程Aにおいてスラグの温度を低下させることにより、スラグの粘性を増大させて転炉内壁面に付着しやすくし、次いで工程Bで出鋼孔からスラグを排出しながらコーティングを形成するので、特に損耗の激しい出鋼孔の近傍に十分な厚さを有するスラグコーティングを形成することができる。したがって、転炉内壁面の耐火物の交換間隔を長くすることができ、転炉の操業効率の向上及び操業コストの低下に寄与しうる。
In the slag coating method of the converter inner wall surface according to claim 1, repairing the refractory disposed on the converter inner wall surface in a series of converter operation steps from steel tapping to waste. Therefore, the time to stop the operation of the converter for repairing refractories can be shortened.
Further, by reducing the temperature of the slag in the process A, the viscosity of the slag is increased and easily adhered to the inner wall surface of the converter, and then the coating is formed while discharging the slag from the steel outlet hole in the process B. In particular, it is possible to form a slag coating having a sufficient thickness in the vicinity of a steel hole that is heavily worn. Therefore, it is possible to lengthen the interval for exchanging the refractories on the inner wall surface of the converter, which can contribute to improvement of the operation efficiency of the converter and reduction of the operation cost.

特に、請求項2記載の転炉内壁面のスラグコーティング方法においては、スラグの温度を1150℃〜1400℃に低下させるので、スラグの流動性を確保しつつ粘性を増大させることができる。したがって、十分な厚さを有するコーティングを形成することができる。 In particular, in the slag coating method for the converter inner wall surface according to claim 2, the temperature of the slag is lowered to 1150 ° C. to 1400 ° C., so that the viscosity can be increased while ensuring the fluidity of the slag. Therefore, a coating having a sufficient thickness can be formed.

請求項3記載の転炉内壁面のスラグコーティング方法においては、転炉の揺動回数が2〜5回であるので、必要最低限の転炉の揺動によりスラグの温度を低下させることができる。 In the slag coating method for the converter inner wall surface according to claim 3, since the number of oscillations of the converter is 2 to 5 times, the temperature of the slag can be lowered by the minimum oscillation of the converter. .

請求項4記載の転炉内壁面のスラグコーティング方法においては、出鋼孔の内径が140〜300mmであるので、スラグが出鋼孔の近傍で固化してコーティングを形成するために必要かつ十分な滞留時間を確保することにより、十分な厚さを有しかつ均一なコーティングを形成することができる。 In the slag coating method of the converter inner wall surface according to claim 4, since the inner diameter of the steel outlet hole is 140 to 300 mm, it is necessary and sufficient for the slag to solidify in the vicinity of the steel outlet hole to form a coating. By ensuring the residence time, a uniform coating having a sufficient thickness can be formed.

請求項5記載の転炉内壁面のスラグコーティング方法においては、工程Aで転炉を揺動させる前に投入される塩基性炭酸塩塊が、分解吸熱反応によりスラグ温度を低下させると共に、反応生成物である酸化物が耐火性の骨材の役割を果たすため、コーティングの耐用性を向上させることができる。 In the slag coating method of the converter inner wall surface according to claim 5, the basic carbonate lump added before the converter is swung in step A reduces the slag temperature by a decomposition endothermic reaction and generates a reaction. Since the oxide which is a thing plays the role of a fireproof aggregate, the durability of a coating can be improved.

請求項6記載の転炉内壁面のスラグコーティング方法においては、工程Bで、出鋼孔からのスラグの排出を5〜120秒間行うので、転炉の操業効率を低下させることなく、十分な厚さのコーティングを出鋼孔の近傍に形成することができる。 In the slag coating method of the converter inner wall surface according to claim 6, since the slag is discharged from the steel outlet hole for 5 to 120 seconds in Step B, a sufficient thickness is obtained without reducing the operation efficiency of the converter. This coating can be formed in the vicinity of the exit hole.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る転炉内壁面へのスラグコーティング方法を適用する転炉の概略説明図、図2は同転炉を揺動させる一連のサイクルの説明図、図3は出鋼孔の近傍に形成された凸状の付着物を説明するための出鋼孔近傍の部分概略図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a schematic explanatory diagram of a converter to which a slag coating method for a converter inner wall surface according to an embodiment of the present invention is applied, and FIG. 2 is an explanatory diagram of a series of cycles for swinging the converter. FIG. 3 is a partial schematic view of the vicinity of the steel exit hole for explaining the convex deposit formed in the vicinity of the steel exit hole.

図1に示すように、本発明の一実施の形態に係る転炉内壁面のスラグコーティング方法に適用される転炉10は、銑鉄を精錬して鋼を製造するのに用いる樽形の反応炉で、図示しないトラニオン軸の周りに揺動可能に支持されている。通常の精錬時には、転炉10は直立した状態で使用されるが、溶銑の注入、溶鋼の取出し、及びスラグの排出等の際には、トラニオン軸の周りにどちらの方向にも傾けることができる。
転炉10の頂部には炉口11が設けられている。溶銑の注入、精錬終了後のスラグの排出、及び図示しない上吹きランスからの酸素の吹込みは、この炉口11から行われる。
転炉10の側部上側には、転炉10を一方向に傾けたときに下向きになるよう出鋼孔12が設けられている。転炉10の外壁は鋼鉄製であり、内壁面には、耐熱性及び耐衝撃性を有する耐火物13が配設されている。また、転炉10の底部には、不活性ガス等を吹き込むための羽口14が設けられている。
また、出鋼孔12には、耐火物よりなる円筒状の出鋼孔スリーブ15が取付けられている。
As shown in FIG. 1, a converter 10 applied to a method for coating a slag on the inner wall surface of a converter according to an embodiment of the present invention is a barrel-shaped reactor used for refining pig iron to produce steel. Thus, it is swingably supported around a trunnion shaft (not shown). During normal refining, the converter 10 is used in an upright state, but it can be tilted around the trunnion shaft in either direction during hot metal injection, molten steel removal, slag discharge, etc. .
A furnace port 11 is provided at the top of the converter 10. Injection of hot metal, discharge of slag after completion of refining, and injection of oxygen from an upper blowing lance (not shown) are performed from the furnace port 11.
A steel outlet hole 12 is provided on the upper side of the converter 10 so as to face downward when the converter 10 is tilted in one direction. The outer wall of the converter 10 is made of steel, and a refractory 13 having heat resistance and impact resistance is disposed on the inner wall surface. A tuyere 14 for blowing inert gas or the like is provided at the bottom of the converter 10.
Further, a cylindrical steel exit hole sleeve 15 made of a refractory is attached to the steel exit hole 12.

転炉10を用いた鋼の製造は、下記のようにして行われる。
転炉10に溶銑を注入し、更に炭酸カルシウムや石灰等を主原料とするスラグ原料を添加する。これにランスから高圧の酸素を吹き込み撹拌すると、酸素は溶銑中の炭素、ケイ素、リン、マンガン等の不純物と反応(酸化反応)し、高熱が発生する。このとき、高温の溶鉄が転炉10内を激しく流動するので、耐火物13が損耗する。
酸化生成物のうち、一酸化炭素は気体となって除去され、ケイ素、リン等の酸化生成物は、スラグ原料と結びついてスラグを形成し、溶鉄から除去される。このようにして不純物が除去され、溶鋼が生成する。
精錬終了後、出鋼孔12が下向きになるように転炉10を傾けて、出鋼孔12から溶綱を取り出す(出鋼)。このとき、高速で流動する溶綱と、出鋼孔12の近傍に配設された耐火物13との間に摩擦が生じるため、耐火物13の損耗は出鋼孔12の近傍において特に顕著である。
Manufacturing of steel using the converter 10 is performed as follows.
Hot metal is poured into the converter 10 and a slag raw material mainly containing calcium carbonate or lime is added. When high-pressure oxygen is blown into the lance and stirred, the oxygen reacts with impurities such as carbon, silicon, phosphorus, and manganese in the hot metal (oxidation reaction), and high heat is generated. At this time, since the high-temperature molten iron flows vigorously in the converter 10, the refractory 13 is worn out.
Among the oxidation products, carbon monoxide is removed as a gas, and oxidation products such as silicon and phosphorus are combined with the slag raw material to form slag and removed from the molten iron. In this way, impurities are removed and molten steel is produced.
After finishing the refining, the converter 10 is tilted so that the steel output hole 12 faces downward, and the molten steel is taken out from the steel output hole 12 (steel output). At this time, friction occurs between the molten steel flowing at high speed and the refractory 13 disposed in the vicinity of the steel outlet hole 12, so that the wear of the refractory 13 is particularly remarkable in the vicinity of the steel outlet hole 12. is there.

本実施の形態に係る転炉内壁面のスラグコーティング方法は、出鋼後にスラグ16(図2参照)を残留させた転炉10を複数回揺動させてスラグ16の温度を低下させる工程Aと、転炉10を傾けて、出鋼孔12からスラグ16を排出させながら、転炉10の内壁面に配設された耐火物13の表面にスラグのコーティングを形成する工程Bとを有する。
以下、工程A及び工程Bについて詳細に説明する。
The slag coating method for the converter inner wall surface according to the present embodiment includes a step A in which the converter 10 in which the slag 16 (see FIG. 2) remains after the steelmaking is swung a plurality of times to lower the temperature of the slag 16. The process B includes the step B of forming the slag coating on the surface of the refractory 13 disposed on the inner wall surface of the converter 10 while the converter 10 is tilted and the slag 16 is discharged from the steel outlet hole 12.
Hereinafter, step A and step B will be described in detail.

工程Aでは、出鋼後にスラグ16を残留させた転炉10を複数回揺動させて、比較的低温な転炉10の上部の内壁面にスラグ16を接触させることにより、スラグ16の温度を低下させる。
出鋼時にスラグ16を転炉10内に残留させるための方法に特に制限はなく、任意の方法を用いることができるが、例えば、スラグボールが用いられる。スラグボールは、スラグ16よりも比重が大きく、かつ溶鋼よりも比重が小さい耐熱性の材料よりなり、出鋼孔12の内径よりも径が大きな球状の形状を有している。出鋼孔12から溶鋼が排出されている間は、スラグボールは、溶鋼と、その上に浮上しているより比重の小さなスラグ16との界面付近に位置しているが、溶鋼の排出が終了すると、スラグ16よりも比重の大きなスラグボールは、スラグ16内に沈み、内部から出鋼孔12を閉塞するので、スラグ16は出鋼孔12から排出されず、転炉10の内部に残留する。
このようにして、出鋼時にスラグ16を残留させた転炉10を一旦正立させた後、トラニオン軸の周りに揺動させて、スラグ16の温度を低下させる。出鋼終了直後のスラグ16は高温(例えば、約1700℃)で粘性に乏しく、そのままでは耐火物13の表面に付着してコーティングを形成しないため、転炉10を揺動させることにより温度を低下させて、粘性を増大させる必要がある。
In step A, the temperature of the slag 16 is adjusted by swinging the converter 10 in which the slag 16 remains after steelmaking a plurality of times and bringing the slag 16 into contact with the inner wall surface of the upper part of the converter 10 having a relatively low temperature. Reduce.
There is no restriction | limiting in particular in the method for making the slag 16 remain in the converter 10 at the time of steel extraction, Although arbitrary methods can be used, For example, a slag ball is used. The slag ball is made of a heat-resistant material having a specific gravity larger than that of the slag 16 and smaller than that of the molten steel, and has a spherical shape whose diameter is larger than the inner diameter of the outgoing steel hole 12. While the molten steel is being discharged from the exit steel hole 12, the slag ball is located in the vicinity of the interface between the molten steel and the slag 16 having a smaller specific gravity that floats on the molten steel, but the discharge of the molten steel is completed. Then, the slag ball having a specific gravity larger than that of the slag 16 sinks in the slag 16 and closes the steel outlet hole 12 from the inside, so that the slag 16 is not discharged from the steel outlet hole 12 and remains in the converter 10. .
In this way, after the converter 10 in which the slag 16 remains at the time of steel output is once erected, the converter 10 is swung around the trunnion shaft to lower the temperature of the slag 16. The slag 16 immediately after the completion of steel production is poor in viscosity at a high temperature (for example, about 1700 ° C.) and does not form a coating by adhering to the surface of the refractory 13 as it is, so the temperature is lowered by swinging the converter 10. It is necessary to increase the viscosity.

スラグ16の温度は、1150〜1400℃に低下させる。スラグ16の温度が1400℃よりも高い状態では粘性が低すぎるため、耐火物13の表面に十分な厚さのコーティングを形成することが困難である。逆に、スラグ16の温度が1150℃を下回ると、スラグ16の粘性が増大しすぎるため流動性が低下し、やはり耐火物13の表面に十分な厚さのコーティングを形成することが困難である。 The temperature of the slag 16 is lowered to 1150 to 1400 ° C. Since the viscosity is too low when the temperature of the slag 16 is higher than 1400 ° C., it is difficult to form a coating having a sufficient thickness on the surface of the refractory 13. On the contrary, when the temperature of the slag 16 is lower than 1150 ° C., the viscosity of the slag 16 increases too much, so that the fluidity is lowered, and it is difficult to form a coating having a sufficient thickness on the surface of the refractory 13. .

転炉10の揺動とは、図2及び下記に示す(A)、(B)、(C)、及び(D)からなる一連のサイクルを所定の回数繰り返して実行することをいい、この一連のサイクルの繰り返し回数を揺動回数という。
(A)正立状態にある転炉10をトラニオン軸の周りに回転させ、出鋼孔12が上を向いた状態にする。
(B)出鋼孔12が上を向いた状態にある転炉10をトラニオン軸の周りに、(A)と逆方向に回転させ、再び正立状態にする。
(C)正立状態にある転炉10をトラニオン軸の周りに(A)と逆方向に回転させ、出鋼孔12からスラグが排出されないように転炉10を傾ける。
(D)出鋼孔12が下を向いた状態にある転炉10をトラニオン軸の周りに、(A)と同一方向に回転させ、再び正立状態にする。
The swing of the converter 10 means that a series of cycles consisting of (A), (B), (C), and (D) shown in FIG. The number of repetitions of this cycle is called the number of oscillations.
(A) The converter 10 in an upright state is rotated around the trunnion shaft so that the steel outlet hole 12 faces upward.
(B) The converter 10 with the steel output hole 12 facing upward is rotated around the trunnion shaft in the direction opposite to that of (A) to be brought into an upright state again.
(C) The converter 10 in an upright state is rotated around the trunnion shaft in the direction opposite to (A), and the converter 10 is tilted so that no slag is discharged from the steel outlet hole 12.
(D) The converter 10 with the steel output hole 12 facing downward is rotated around the trunnion shaft in the same direction as (A), and is brought into an upright state again.

なお、(A)〜(D)からなる一連のサイクルは、転炉内壁面のスラグコーティングに要する時間を短縮するために、転炉10を途中で静止させることなく連続的に実行するのが好ましい。また、転炉10の回転速度、及び(A)、(C)における転炉10の傾斜角度は、常に一定の値としてもよいが、転炉10の内部に残留したスラグ16の量等に応じて適宜定めてもよい。 In addition, in order to shorten the time required for the slag coating of the converter inner wall surface, it is preferable to continuously execute the series of cycles including (A) to (D) without stopping the converter 10 in the middle. . Further, the rotation speed of the converter 10 and the inclination angle of the converter 10 in (A) and (C) may always be a constant value, but depending on the amount of slag 16 remaining in the converter 10 and the like. May be determined as appropriate.

スラグの温度を上記の範囲に低下させるために必要な転炉10の揺動回数は、出鋼後に転炉10内に残留するスラグの量にバラツキが生じる等の理由により、一義的に決定することは困難であるが、一般的に2回以上5回以下であることが好ましい。揺動回数が0回又は1回の場合には、揺動による十分なスラグの冷却効果が得られない。逆に、揺動回数が6回以上になると、スラグと転炉10の内壁温度との差が小さくなるため、揺動回数の増大に伴う冷却効果の増加量が飽和する。 The number of oscillations of the converter 10 necessary for lowering the slag temperature to the above range is uniquely determined for reasons such as variations in the amount of slag remaining in the converter 10 after steelmaking. In general, it is preferably 2 times or more and 5 times or less. When the number of swings is 0 or 1, a sufficient slag cooling effect due to the swing cannot be obtained. On the contrary, when the number of oscillations is 6 times or more, the difference between the slag and the inner wall temperature of the converter 10 becomes small, and the amount of increase in the cooling effect accompanying the increase in the number of oscillations is saturated.

転炉10の揺動回数は、出鋼後に転炉10内に残留するスラグ16の量及び温度等に応じて定めてもよい。残留スラグ16の量が少ない場合には、蓄熱量も小さいため、より少ない揺動回数で十分な冷却効果を得ることができるからである。例えば、残留するスラグの量が40トン未満である場合には、揺動回数を2回とし、残留するスラグの量が40トン以上である場合には、揺動回数を5回としてもよい。
このように、転炉10内に残留するスラグ16の量に応じて揺動回数を最適化することにより、必要最低限の時間でスラグコーティングを行うことができる。
The number of oscillations of the converter 10 may be determined according to the amount and temperature of the slag 16 remaining in the converter 10 after steel output. This is because when the amount of residual slag 16 is small, the amount of stored heat is also small, so that a sufficient cooling effect can be obtained with a smaller number of oscillations. For example, when the amount of remaining slag is less than 40 tons, the number of swings may be two, and when the amount of remaining slag is 40 tons or more, the number of swings may be five.
Thus, by optimizing the number of oscillations according to the amount of slag 16 remaining in the converter 10, slag coating can be performed in the minimum necessary time.

なお、最後の回(例えば、揺動回数を5回とした場合には5回目)の揺動の際には、一連のサイクルのうち(D)を実行せず、(C)を実行後、出鋼孔12が下を向いた状態のままで(必要ならば転炉10の傾斜角度を変化させてもよい)出鋼孔12を開き、スラグ16を排出させながらコーティングを行う工程Bを開始してもよい。このようにすることにより、転炉10を一旦正立状態に戻してから再び傾けるのに要する時間を節約できる。 In the last swing (for example, the fifth swing when the number of swings is 5), (D) is not executed in the series of cycles, and after executing (C), Opening the steel hole 12 with the steel hole 12 facing downward (if necessary, the tilt angle of the converter 10 may be changed) and starting the process B for coating while discharging the slag 16 May be. By doing so, it is possible to save the time required for the converter 10 to be returned to the upright state and then tilted again.

転炉10の揺動を開始する前に、塩基性炭酸塩塊を転炉10内に投入する。用いることができる塩基性炭酸塩としては、例えば、アルカリ金属、アルカリ土類金属等の炭酸塩が挙げられる。その具体例としては、炭酸マグネシウム(MgCO)、炭酸カルシウム(CaCO)、生ドロマイト(MgCO・CaCO)等が挙げられるが、コスト面から、生ドロマイトが好ましい。 Before starting the oscillation of the converter 10, a basic carbonate lump is charged into the converter 10. Examples of basic carbonates that can be used include carbonates such as alkali metals and alkaline earth metals. Specific examples thereof include magnesium carbonate (MgCO 3 ), calcium carbonate (CaCO 3 ), raw dolomite (MgCO 3 · CaCO 3 ), and raw dolomite is preferable from the viewpoint of cost.

これらの塩基性炭酸塩を転炉10内に投入すると、炉熱により脱炭酸反応を起こし、酸化物と二酸化炭素を生成する。脱炭酸反応は吸熱反応であるため、スラグの温度を、例えば50〜60℃低下させることができる。したがって、塩基性炭酸塩塊の投入により、スラグの冷却効率を高め、転炉10の揺動回数を低減させることができる。
また、脱炭酸反応により生成するCaO、MgO等の酸化物は、2000℃以上の高い融点を有しているため、耐火物13の表面に形成されたスラグコーティングの強度を高める骨材としても作用しうる。
When these basic carbonates are put into the converter 10, a decarboxylation reaction is caused by furnace heat, and oxides and carbon dioxide are generated. Since the decarboxylation reaction is an endothermic reaction, the temperature of the slag can be reduced by, for example, 50 to 60 ° C. Therefore, by introducing the basic carbonate lump, the cooling efficiency of the slag can be increased and the number of oscillations of the converter 10 can be reduced.
In addition, since oxides such as CaO and MgO produced by the decarboxylation reaction have a high melting point of 2000 ° C. or higher, they also act as an aggregate that increases the strength of the slag coating formed on the surface of the refractory 13. Yes.

なお、骨材としては、例えば、転炉煉瓦の廃材(マグカーボン煉瓦塊;MgO−C)を塊状にした物がコスト面では優れていると考えられるが、炭酸イオンを含まないため、塩基性炭酸塩に比べて冷却効果に劣っている。また、マグカーボン煉瓦はスラグに対する濡れ性が低いため、スラグコーティングの骨材としては、十分な効果を発揮できず、生ドロマイト等の塩基性炭酸塩を用いた場合に比べて骨材の脱落が発生しやすい。 In addition, as an aggregate, although it is thought that the thing which made the waste material (magcarbon brick block; MgO-C) of a converter brick into a block shape is excellent in cost, for example, since it does not contain carbonate ion, it is basic. Cooling effect is inferior compared to carbonate. In addition, since magcarbon bricks have low wettability to slag, the aggregates of slag coating cannot be fully effective, and the aggregates fall off compared to when using basic carbonates such as raw dolomite. Likely to happen.

塩基性炭酸塩塊の平均粒径は、10mm以上50mm以下とする。
平均粒径が10mmを下回ると、生成する酸化物の骨材としての耐用性が不十分である。逆に、平均粒径が50mmを上回ると、生成する酸化物の粒径が、耐火物13の表面に形成されるスラグコーティングの厚さに比べて大きすぎるため、コーティングからの脱落が発生しやすくなる。
The average particle size of the basic carbonate block is 10 mm or more and 50 mm or less.
When the average particle size is less than 10 mm, the durability of the generated oxide as an aggregate is insufficient. On the contrary, when the average particle diameter exceeds 50 mm, the particle diameter of the generated oxide is too large compared to the thickness of the slag coating formed on the surface of the refractory 13, so that the coating easily falls off. Become.

塩基性炭酸塩塊の投入量は、転炉10内に残留したスラグ16の質量の6質量%以上30質量%とし、10質量%以上20質量%以下であることが好ましい。塩基性炭酸塩塊の投入量がスラグ16の質量の6質量%を下回ると、骨材としてスラグコーティングの耐用性を向上させる効果が不十分である。逆に、塩基性炭酸塩塊の投入量がスラグ16の質量の30質量%を上回ると、スラグに含まれる骨材(酸化物)の比率が高くなりすぎ、凹凸のない均質なコーティングが形成されにくくなる。特に、図3に示すように、出鋼孔12の近傍に凸状の付着物17が形成されると、残湯(出鋼時に排出されない溶鋼)18が発生し、溶鋼歩留まりを低下させる原因となる。 The input amount of the basic carbonate lump is 6% by mass to 30% by mass with respect to the mass of the slag 16 remaining in the converter 10, and is preferably 10% by mass to 20% by mass. When the input amount of the basic carbonate lump is less than 6% by mass of the mass of the slag 16, the effect of improving the durability of the slag coating as an aggregate is insufficient. Conversely, if the amount of basic carbonate block input exceeds 30% by mass of the slag 16, the ratio of aggregate (oxide) contained in the slag becomes too high, and a uniform coating without irregularities is formed. It becomes difficult. In particular, as shown in FIG. 3, when a convex deposit 17 is formed in the vicinity of the steel exit hole 12, residual hot water (molten steel that is not discharged at the time of steel output) 18 is generated, which causes a decrease in the yield of molten steel. Become.

工程Bでは、転炉10を傾けて、出鋼孔12からスラグ16を排出(孔排滓)させながら、転炉10の内壁面に配設された耐火物13の表面にスラグのコーティングを形成する。なお、出鋼孔12からの排出の後、転炉10内に残存したスラグ16は、炉口11より排出される。
工程Aで温度を低下させたスラグ16を、炉口11からではなく出鋼孔12から排出することにより、損耗の大きい出鋼孔12近傍に配設された耐火物13の表面に効果的にスラグコーティングを行うことが可能になる。
In the process B, the slag coating is formed on the surface of the refractory 13 disposed on the inner wall surface of the converter 10 while the converter 10 is tilted and the slag 16 is discharged (hole rejection) from the steel outlet hole 12. To do. Note that the slag 16 remaining in the converter 10 after being discharged from the steel outlet hole 12 is discharged from the furnace port 11.
By discharging the slag 16 whose temperature has been lowered in the process A not from the furnace port 11 but from the steel outlet hole 12, it is effectively applied to the surface of the refractory 13 disposed in the vicinity of the steel outlet hole 12 with high wear. Slag coating can be performed.

出鋼孔12近傍の耐火物13の表面に十分な厚さのスラグコーティングを形成するためには、出鋼孔12近傍において、スラグ16が固化するのに十分な滞留時間を確保できるようにスラグの流速を調整する必要がある。このような要求を満足するために、出鋼孔12の内径(具体的には出鋼孔スリーブ15の内径)を140mmφ以上300mmφ以下とする。出鋼孔12の内径が140mmφを下回ると、スラグの流動速度が小さくなり、図3に示すように、出鋼孔12の近傍に凸状の付着物17が形成されやすくなるため、残湯18の発生による、溶鋼歩留まりの低下が起こりやすくなる。逆に、出鋼孔12の内径が300mmφを上回ると、スラグの流動速度が大きくなるため、コーティングの厚さの確保が困難になり、耐用性の低下を招く。 In order to form a slag coating having a sufficient thickness on the surface of the refractory 13 near the exit steel hole 12, the slag is secured in the vicinity of the exit steel hole 12 so as to ensure a sufficient residence time for the slag 16 to solidify. It is necessary to adjust the flow rate. In order to satisfy such a requirement, the inner diameter of the outgoing steel hole 12 (specifically, the inner diameter of the outgoing steel hole sleeve 15) is set to 140 mmφ or more and 300 mmφ or less. When the inner diameter of the outgoing steel hole 12 is less than 140 mmφ, the flow rate of the slag is reduced and, as shown in FIG. 3, the convex deposit 17 is likely to be formed in the vicinity of the outgoing steel hole 12. The yield of molten steel tends to decrease due to the occurrence of. On the other hand, if the inner diameter of the outgoing steel hole 12 exceeds 300 mmφ, the flow rate of the slag increases, so that it becomes difficult to ensure the thickness of the coating, resulting in a decrease in durability.

スラグコーティングを行うために、出鋼孔12からスラグを排出させる時間(以下「孔排滓時間」という)は、5秒以上120秒以下とする。孔排滓時間が5秒を下回ると、形成されるスラグコーティングの厚さが不十分で、コーティングによる耐火物13の保護効果が不十分である。逆に、孔排滓時間が120秒を上回ると、転炉10の非稼働時間が増大することによる稼動効率の低下の影響が顕著になる。また、出鋼孔12近傍でのスラグの滞留時間が長くなりすぎ、図3に示すように、出鋼孔12の近傍に凸状の付着物17が形成されやすくなるため、残湯18の発生による、溶鋼歩留まりの低下が起こりやすくなる。 In order to perform the slag coating, the time for discharging the slag from the steel outlet hole 12 (hereinafter referred to as “hole evacuation time”) is set to 5 seconds or more and 120 seconds or less. If the hole evacuation time is less than 5 seconds, the thickness of the slag coating formed is insufficient, and the protective effect of the refractory 13 by the coating is insufficient. On the other hand, when the hole removal time exceeds 120 seconds, the influence of a decrease in operation efficiency due to an increase in the non-operation time of the converter 10 becomes significant. Moreover, since the residence time of the slag in the vicinity of the outgoing steel hole 12 becomes too long and, as shown in FIG. 3, a convex deposit 17 is easily formed in the vicinity of the outgoing steel hole 12, the remaining hot water 18 is generated. As a result, the yield of molten steel tends to decrease.

次に、本発明の作用効果を確認するために行った実施例について説明する。
図4は孔排滓を行った場合と孔排滓を行わなかった場合の耐火物の残厚と出鋼回数との関係を示すグラフ、図5は平均スラグ温度と耐火物の損耗速度の関係を示すグラフ、図6は残留スラグ量が20t及び40tの場合における転炉の揺動回数とスラグ温度との関係を示すグラフ、図7は出鋼孔スリーブの内径と耐火物の損耗速度との関係を示すグラフ、図8は生ドロマイト又はマグカーボン煉瓦塊の添加割合と耐火物の損耗速度の関係を示すグラフ、図9は孔排滓時間と耐火物の損耗速度との関係を示すグラフ、図10は孔排滓を行う場合と行わない場合における転炉の非稼働時間の比較を示すグラフである。
Next, examples carried out for confirming the effects of the present invention will be described.
FIG. 4 is a graph showing the relationship between the remaining thickness of the refractory and the number of times of steel extraction when hole removal is performed and when hole removal is not performed, and FIG. 5 is the relationship between the average slag temperature and the wear rate of the refractory FIG. 6 is a graph showing the relationship between the number of oscillations of the converter and the slag temperature when the residual slag amount is 20 t and 40 t, and FIG. 7 is a graph showing the relationship between the inner diameter of the outlet steel hole sleeve and the wear rate of the refractory. Graph showing the relationship, FIG. 8 is a graph showing the relationship between the addition ratio of raw dolomite or magcarbon brick mass and the refractory wear rate, FIG. 9 is a graph showing the relationship between the hole evacuation time and the refractory wear rate, FIG. 10 is a graph showing a comparison of converter non-operation time when hole removal is performed and when hole removal is not performed.

実験(試験操業)条件
実施例の実施には350t転炉を使用した。
出鋼孔スリーブの内径は、出鋼回数の増加に伴い損耗が進んで拡大して行くため、各実験における第1回の出鋼時に測定した出鋼孔スリーブの実測値を代表値として用いた。
実験操作は、下記に示すとおりである。
転炉中での鋼の精錬及び出鋼孔からの出鋼を完了後、転炉内にスラグが残留した状態で、必要な場合には、所定量の生ドロマイトを投入した(具体的な添加量は、各実験の項において説明する)。その後、転炉を所定回数揺動させた後(具体的な揺動回数は、各実験の項において説明する)、転炉出鋼孔からスラグを所定時間排出(孔排滓)した(具体的な孔排滓時間は、各実験の項において説明する)。なお、試験操業中の出鋼孔からのスラグの排出の実施比率((出鋼孔からのスラグの排出を実施した回数)/(全出鋼回数))は50%に統一した。
その後、転炉に残存したスラグを、転炉を傾けて炉口から全量排出した。
Experimental (Test Operation) Conditions A 350 t converter was used in the implementation of the example.
Since the inner diameter of the outgoing steel hole sleeve increases as the number of outgoing steels increases and wear increases, the measured value of the outgoing steel hole sleeve measured at the first outgoing steel in each experiment was used as a representative value. .
The experimental operation is as shown below.
After completing the refining of steel in the converter and the steel output from the outlet hole, the slag remained in the converter and, if necessary, a predetermined amount of raw dolomite was added (specific addition The amount is explained in the section of each experiment). Then, after the converter was rocked a predetermined number of times (the specific number of times of rocking will be explained in the section of each experiment), the slag was discharged from the converter steel outlet hole for a predetermined time (hole removal) (specifically The hole removal time is explained in the section of each experiment). In addition, the implementation ratio ((number of times slag was discharged from the steel outlet holes) / (total number of steel outlets)) was unified to 50% during the test operation.
Thereafter, the slag remaining in the converter was entirely discharged from the furnace port by tilting the converter.

スラグの温度の測定
放射温度計を用いて、出鋼孔又は炉口から排出直後のスラグの温度を測定した。そのため、スラグ温度の測定値は、転炉内におけるスラグの温度とほぼ等しいと考えられる。
Measurement of slag temperature Using a radiation thermometer, the temperature of slag immediately after discharging from the steel outlet hole or furnace port was measured. Therefore, the measured value of the slag temperature is considered to be approximately equal to the temperature of the slag in the converter.

耐火物の損耗速度の測定
レーザープロフィールメーターを用いて、30〜50回出鋼を行う度に、出鋼孔近傍の同一部位の耐火物の厚さ(残厚)を測定した。残厚を出鋼回数(ch:chargeの略)に対してプロットしたグラフの傾きから、単位出鋼回数あたりの耐火物の損耗速度(mm/ch)を求めた。
Measurement of Wear Rate of Refractory Using a laser profile meter, the thickness (residual thickness) of the refractory at the same site in the vicinity of the steel exit hole was measured each time steel was extracted 30 to 50 times. The wear rate (mm / ch) of the refractory per unit steel output was determined from the slope of the graph in which the remaining thickness was plotted against the steel output (ch: abbreviation for charge).

実験1:スラグコーティングの有無と耐火物の損耗速度との関係
転炉中での鋼の精錬及び出鋼孔からの出鋼を完了後、転炉内に残留したスラグに対し10〜12質量%の生ドロマイトを投入した。転炉内に残留したスラグ量が40t以上の場合は4回、転炉内に残留したスラグ量が40t未満の場合には2回、転炉を揺動させ、スラグの温度を1400℃以下に低下させた。10秒間孔排滓(出鋼孔スリーブの内径220〜280mmφ)した後、転炉に残存したスラグを、転炉を傾けて炉口から全量排出した場合と、転炉を揺動させた後、孔排滓を行わず、炉口から全量排出した場合について、出鋼孔近傍の耐火物の損耗速度を比較した。
Experiment 1: Relationship between presence or absence of slag coating and wear rate of refractory 10 to 12% by mass with respect to slag remaining in the converter after refining of the steel in the converter and completion of steel output from the steel outlet hole Of raw dolomite. When the amount of slag remaining in the converter is 40t or more, the converter is swung four times when the amount of slag remaining in the converter is less than 40t, and the slag temperature is reduced to 1400 ° C or less twice. Reduced. After removing the hole for 10 seconds (the inner diameter of the steel hole sleeve is 220 to 280 mmφ), the slag remaining in the converter is discharged from the furnace port by tilting the converter, and after oscillating the converter, In the case where the entire amount was discharged from the furnace port without hole removal, the wear rates of the refractories near the steel outlet holes were compared.

孔排滓を行った場合(●で示す)と、孔排滓を行わなかった場合(▲で示す)の耐火物の残厚と出鋼回数との関係を図4に示す。孔排滓を行った場合と行わなかった場合における耐火物の損耗速度は、それぞれ0.2mm/ch及び0.5mm/chである。以上の結果から、出鋼孔近傍の耐火物へのスラグコーティングにより、損耗速度がスラグコーティングを行わなかった場合の約40%に低下していることがわかる。また、孔排滓を行わなかった場合には、約1400回出鋼を行うと、耐火物の損耗が進み、操業を停止して耐火物を補修する必要が生じるが、孔排滓を行った場合には、耐火物の補修のため操業を一時停止することなく3000回以上連続して操業を行うことが可能である。
これらの結果から、出鋼孔近傍の耐火物へのスラグコーティングの効果が確認された。
FIG. 4 shows the relationship between the remaining thickness of the refractory and the number of times of steel extraction when the hole evacuation is performed (indicated by ●) and when the hole evacuation is not performed (indicated by ▲). The wear rates of the refractory when the hole removal is performed and when the hole removal is not performed are 0.2 mm / ch and 0.5 mm / ch, respectively. From the above results, it can be seen that the slag coating on the refractory in the vicinity of the steel outlet hole reduces the wear rate to about 40% when the slag coating is not performed. In addition, in the case where hole evacuation was not performed, when the steel was removed approximately 1400 times, the refractory was worn out and it was necessary to stop the operation and repair the refractory. In some cases, the operation can be continuously performed 3000 times or more without temporarily stopping the operation for repairing the refractory.
From these results, the effect of the slag coating on the refractory near the steel hole was confirmed.

実験2:孔排滓時のスラグの温度と耐火物の損耗速度との関係
転炉中での鋼の精錬及び出鋼孔からの出鋼を完了後、転炉内に残留したスラグに対し10〜12質量%の生ドロマイトを投入した。その後、転炉を2回揺動させ、出鋼孔(出鋼孔スリーブの内径220mmφ)からスラグを10秒間排出させ、放射温度計を用いてその温度を測定した。転炉に残存したスラグは、転炉を傾けて炉口から全量排出した。また、30〜50ch毎に、レーザープロフィールメーターを用いて出鋼孔近傍の耐火物の残厚測定を行い、損耗速度を求めた。その後、転炉に残存したスラグを、転炉を傾けて炉口から全量排出した。
異なる原料ロット毎に数十〜数百回ずつ実験を行った。
Experiment 2: Relationship between slag temperature and refractory wear rate at the time of hole removal 10% of slag remaining in the converter after refining of the steel in the converter and completion of steel output from the outlet hole ˜12% by weight of raw dolomite was added. Thereafter, the converter was swung twice, and the slag was discharged for 10 seconds from the steel outlet hole (the inner diameter of the steel outlet hole sleeve was 220 mmφ), and the temperature was measured using a radiation thermometer. All the slag remaining in the converter was discharged from the furnace port by tilting the converter. Further, every 30 to 50 ch, the remaining thickness of the refractory near the exit hole was measured using a laser profile meter to determine the wear rate. Thereafter, the slag remaining in the converter was entirely discharged from the furnace port by tilting the converter.
The experiment was performed several tens to several hundreds for each different raw material lot.

平均スラグ温度と耐火物の損耗速度の関係を図5に示す。スラグの温度が1400℃を超える付近から、スラグの温度の上昇に伴い損耗速度も増大しており、約1500℃では、スラグコーティングを行わなかった場合の損耗速度(0.5mm/ch)とほぼ同一の値となっていることがわかる。以上の結果から、スラグの温度が1400℃を超えると、スラグコーティングの効果が減少し、1500℃では粘性が減少して殆どコーティングが形成されていないと考えられる。
これらの結果から、十分な耐用性を有するスラグコーティングのためには、スラグの温度を1400℃以下に低下させる必要があることが確認された。
FIG. 5 shows the relationship between the average slag temperature and the refractory wear rate. From the vicinity of the slag temperature exceeding 1400 ° C., the wear rate increases as the slag temperature rises. At about 1500 ° C., the wear rate when the slag coating is not performed (0.5 mm / ch) is almost the same. It can be seen that the values are the same. From the above results, it is considered that when the temperature of the slag exceeds 1400 ° C., the effect of the slag coating decreases, and at 1500 ° C., the viscosity decreases and almost no coating is formed.
From these results, it was confirmed that the temperature of the slag needs to be reduced to 1400 ° C. or lower in order to have a sufficient durability.

実験3:転炉の揺動回数とスラグ温度との関係
転炉中での鋼の精錬及び出鋼孔からの出鋼を完了後、転炉内に残留したスラグに対し10〜12質量%の生ドロマイトを投入し、出鋼孔(出鋼孔スリーブの内径220mmφ)からスラグを5秒間排出させ、放射温度計を用いてその温度を測定した。その後、転炉を1回揺動させる度に出鋼孔(出鋼孔スリーブの内径220mmφ)からスラグを5秒間排出させ、放射温度計を用いてその温度を測定した。6回揺動した後、転炉に残存したスラグを、転炉を傾けて炉口から全量排出した。
Experiment 3: Relationship between the number of oscillations of the converter and the slag temperature After completing the refining of the steel in the converter and the steel output from the outlet hole, 10-12 mass% of the slag remaining in the converter Raw dolomite was charged, slag was discharged from a steel outlet hole (the inner diameter of the steel outlet hole sleeve was 220 mmφ) for 5 seconds, and the temperature was measured using a radiation thermometer. Thereafter, each time the converter was swung once, the slag was discharged from the steel outlet hole (the inner diameter of the steel outlet hole sleeve was 220 mmφ) for 5 seconds, and the temperature was measured using a radiation thermometer. After rocking 6 times, the slag remaining in the converter was discharged from the furnace port by tilting the converter.

残留スラグ量が20t及び40tの場合における、転炉の揺動回数とスラグ温度との関係を図6に示す。いずれの場合にも、スラグの温度を1400℃程度まで低下させるためには、1回の揺動では不十分であり、少なくとも転炉を2回揺動させる必要があること、及び揺動回数が5回を超えると、スラグの温度が殆ど低下しなくなることがわかる。
これらの結果から、操業効率を大きく低下させることなくスラグの温度を1400℃以下に低下させるためには、転炉の揺動を2〜5回行うことが好ましいことが確認された。
FIG. 6 shows the relationship between the number of oscillations of the converter and the slag temperature when the residual slag amount is 20 t and 40 t. In any case, in order to reduce the temperature of the slag to about 1400 ° C., one swing is not sufficient, and it is necessary to swing the converter at least twice, and the number of swings is It can be seen that when the number of times exceeds five, the temperature of the slag hardly decreases.
From these results, it was confirmed that it is preferable to swing the converter 2 to 5 times in order to reduce the temperature of the slag to 1400 ° C. or less without greatly reducing the operation efficiency.

実験4:出鋼孔の内径と耐火物の損耗速度との関係
転炉中での鋼の精錬及び出鋼孔からの出鋼を完了後、転炉内に残留したスラグに対し10〜12質量%の生ドロマイトを投入した。転炉内に残留したスラグ量が40t以上の場合は4回、転炉内に残留したスラグ量が40t未満の場合には2回、転炉を揺動させ、スラグの温度を1400℃以下に低下させた。10秒間孔排滓(出鋼孔スリーブの内径160〜330mmφ)した後、転炉に残存したスラグを、転炉を傾けて炉口から全量排出した。30〜50ch毎に、レーザープロフィールメーターを用いて出鋼孔近傍の耐火物の残厚測定を行い、損耗速度を求めた。
Experiment 4: Relationship between the inner diameter of the steel exit hole and the wear rate of the refractory 10 to 12 mass with respect to the slag remaining in the converter after the refining of the steel in the converter and the steel exit from the exit hole are completed. % Raw dolomite. When the amount of slag remaining in the converter is 40t or more, the converter is swung four times when the amount of slag remaining in the converter is less than 40t, and the slag temperature is reduced to 1400 ° C or less twice. Reduced. After evacuating the hole for 10 seconds (the inner diameter of the steel outlet sleeve 160 to 330 mmφ), the slag remaining in the converter was discharged from the furnace port by inclining the converter. Every 30 to 50 ch, the remaining thickness of the refractory in the vicinity of the steel hole was measured using a laser profile meter to determine the wear rate.

出鋼孔スリーブの内径と耐火物の損耗速度との関係を図7に示す。出鋼孔スリーブの内径が300mmφを超えると、損耗速度がほぼ直線的に増大しているが、スラグの流動速度が増大して、コーティングを形成するために必要な滞留時間が確保できなくなるためであると考えられる。
以上の結果から、耐用性の高いスラグコーティングを出鋼孔近傍の耐火物に形成させるためには、出鋼孔(スリーブ)の内径を300mmφ以下にすることが好ましいことが確認された。
FIG. 7 shows the relationship between the inner diameter of the steel exit hole sleeve and the wear rate of the refractory. When the inner diameter of the steel hole sleeve exceeds 300 mmφ, the wear rate increases almost linearly, but the flow rate of the slag increases, and the residence time necessary to form the coating cannot be secured. It is believed that there is.
From the above results, it was confirmed that in order to form a highly durable slag coating on the refractory in the vicinity of the steel exit hole, it is preferable that the inner diameter of the steel exit hole (sleeve) be 300 mmφ or less.

実験5:生ドロマイトの添加量と耐火物の損耗速度との関係
転炉中での鋼の精錬及び出鋼孔からの出鋼を完了後、転炉内に残留したスラグに対し0〜40質量%の生ドロマイト、及び比較のために転炉内に残留したスラグに対し6〜30質量%のマグカーボン煉瓦塊を投入した。転炉内に残留したスラグ量が40t以上の場合は4回、転炉内に残留したスラグ量が40t未満の場合には2回、転炉を揺動させ、スラグの温度を1400℃以下に低下させた。10秒間孔排滓(出鋼孔スリーブの内径220mmφ)した後、転炉に残存したスラグを、転炉を傾けて炉口から全量排出した。30〜50ch毎に、レーザープロフィールメーターを用いて出鋼孔近傍の耐火物の残厚測定を行い、損耗速度を求めた。
Experiment 5: Relationship between the amount of raw dolomite added and the refractory wear rate 0 to 40 mass relative to the slag remaining in the converter after the refining of the steel in the converter and completion of the steel output from the outlet hole % Of raw dolomite and, for comparison, 6 to 30% by mass of a magcarbon brick block was added to the slag remaining in the converter. When the amount of slag remaining in the converter is 40t or more, the converter is swung four times when the amount of slag remaining in the converter is less than 40t, and the slag temperature is reduced to 1400 ° C or less twice. Reduced. After evacuating the hole for 10 seconds (the inner diameter of the steel outlet hole sleeve was 220 mmφ), the slag remaining in the converter was discharged from the furnace port by inclining the converter. Every 30 to 50 ch, the remaining thickness of the refractory in the vicinity of the steel hole was measured using a laser profile meter to determine the wear rate.

生ドロマイト(●で示す)及びマグカーボン煉瓦塊(■で示す)の添加割合(転炉内に残留したスラグ質量に対する生ドロマイト及びマグカーボン煉瓦塊の質量の割合)と耐火物の損耗速度の関係を図8に示す。生ドロマイトの添加割合の増大に伴い耐火物の損耗速度は低下した。また、生ドロマイトの添加割合が6質量%以上の場合、損耗速度は0.25mm/ch以下となり、十分な耐用性が得られることがわかった。生ドロマイトの添加割合が12質量%を超えると、損耗速度の低下量は飽和し、添加割合の増大に伴う損耗速度の顕著な改善は観測されなかった。更に、生ドロマイトの添加割合が30質量%を超えると、出鋼孔の近傍に残湯の原因となる凸状の付着物が観測された。
以上の結果から、耐用性の高いスラグコーティングを出鋼孔近傍の耐火物に形成させるためには、転炉内に残留したスラグの6〜30質量%の生ドロマイトを投入することが好ましいことが確認された。
Relationship between the addition rate of raw dolomite (indicated by ●) and magcarbon brick mass (indicated by ■) (ratio of the mass of raw dolomite and magcarbon brick mass to the mass of slag remaining in the converter) and the refractory wear rate Is shown in FIG. With increasing raw dolomite addition rate, the refractory wear rate decreased. Moreover, when the addition ratio of raw dolomite was 6 mass% or more, it was found that the wear rate was 0.25 mm / ch or less, and sufficient durability was obtained. When the addition ratio of raw dolomite exceeded 12% by mass, the amount of decrease in the wear rate was saturated, and no significant improvement in the wear rate accompanying the increase in the addition ratio was observed. Furthermore, when the addition ratio of raw dolomite exceeded 30% by mass, convex deposits causing residual hot water were observed in the vicinity of the tapped holes.
From the above results, in order to form a highly durable slag coating on the refractory in the vicinity of the steel hole, it is preferable to introduce raw dolomite of 6 to 30% by mass of the slag remaining in the converter. confirmed.

生ドロマイトの代わりにマグカーボン煉瓦塊を添加した場合にも、耐火物の損耗速度において若干の改善が見られたが、生ドロマイトに比べその効果は小さかった。 When a magcarbon brick block was added instead of raw dolomite, a slight improvement was seen in the wear rate of the refractory, but the effect was small compared to raw dolomite.

実験6:孔排滓時間と耐火物の損耗速度との関係
転炉中での鋼の精錬及び出鋼孔からの出鋼を完了後、転炉内に残留したスラグに対し10〜12質量%の生ドロマイトを投入した。転炉内に残留したスラグ量が40t以上の場合は4回、転炉内に残留したスラグ量が40t未満の場合には2回、転炉を揺動させ、スラグの温度を1400℃以下に低下させた。1〜180秒間孔排滓(出鋼孔スリーブの内径220〜280mmφ)した後、転炉に残存したスラグを、転炉を傾けて炉口から全量排出した。30〜50ch毎に、レーザープロフィールメーターを用いて出鋼孔近傍の耐火物の残厚測定を行い、損耗速度を求めた。
Experiment 6: Relationship between hole removal time and wear rate of refractory 10 to 12% by mass with respect to slag remaining in the converter after the refining of the steel in the converter and completion of steel output from the outlet hole Of raw dolomite. When the amount of slag remaining in the converter is 40t or more, the converter is swung four times when the amount of slag remaining in the converter is less than 40t, and the slag temperature is reduced to 1400 ° C or less twice. Reduced. After evacuation for 1 to 180 seconds (the inner diameter of the steel hole sleeve was 220 to 280 mmφ), the slag remaining in the converter was discharged from the furnace port by inclining the converter. Every 30 to 50 ch, the remaining thickness of the refractory in the vicinity of the steel hole was measured using a laser profile meter to determine the wear rate.

孔排滓時間と耐火物の損耗速度との関係を図9に示す。孔排滓時間が1〜2秒の場合には、損耗速度が十分低下していないのに対し、孔排滓時間が5秒以上の場合には、損耗速度が約0.2mm/chに低下しており、十分な耐用性を有することがわかる。
また、孔排滓を行う場合と行わない場合における転炉の非稼働時間の比較を図10に示す。孔排滓時間が120秒を超えても、損耗速度はわずかながら減少しており、耐用性の向上が確認されるが、あまり孔排滓時間を長くしすぎると、図10に示すように孔排滓の実施に伴う転炉の非稼働時間が増大する。これらの結果及び転炉の稼動効率を勘案すると、孔排滓時間は120秒以下であることが好ましい。
以上の結果から、耐用性の高いスラグコーティングを出鋼孔近傍の耐火物に形成させるためには、孔排滓を5〜120秒間行うことが好ましいことが確認された。
FIG. 9 shows the relationship between the hole removal time and the wear rate of the refractory. When the hole evacuation time is 1 to 2 seconds, the wear rate is not sufficiently reduced, whereas when the hole evacuation time is 5 seconds or more, the wear rate is reduced to about 0.2 mm / ch. It can be seen that it has sufficient durability.
Moreover, the comparison of the non-operation time of the converter in the case where it does and does not perform hole evacuation is shown in FIG. Even if the hole evacuation time exceeds 120 seconds, the wear rate is slightly reduced, and improvement in durability is confirmed. However, if the hole evacuation time is excessively long, as shown in FIG. The non-operating time of the converter increases due to the implementation of evacuation. Considering these results and the operating efficiency of the converter, the hole evacuation time is preferably 120 seconds or less.
From the above results, in order to form a highly durable slag coating on the refractory in the vicinity of the steel outlet hole, it was confirmed that it is preferable to carry out the hole removal for 5 to 120 seconds.

本発明の一実施の形態に係る転炉内壁面のスラグコーティング方法が適用される転炉の断面を示す説明図である。It is explanatory drawing which shows the cross section of the converter to which the slag coating method of the converter inner wall surface which concerns on one embodiment of this invention is applied. 同転炉を揺動させる一連のサイクルの説明図である。It is explanatory drawing of a series of cycles which rocks the converter. 出鋼孔の近傍に形成された凸状の付着物を説明するための出鋼孔近傍の部分概略図である。It is a partial schematic diagram in the vicinity of a steel outlet hole for explaining convex deposits formed in the vicinity of the steel outlet hole. 孔排滓を行った場合と孔排滓を行わなかった場合の耐火物の残厚と出鋼回数との関係を示すグラフである。It is a graph which shows the relationship between the remaining thickness of a refractory, and the number of times of steel extraction when hole evacuation is performed and when hole evacuation is not performed. 平均スラグ温度と耐火物の損耗速度の関係を示すグラフである。It is a graph which shows the relationship between average slag temperature and the wear rate of a refractory. 残留スラグ量が20t及び40tの場合における、転炉の揺動回数とスラグ温度との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of rocking | fluctuation of a converter, and slag temperature in case residual slag amount is 20t and 40t. 出鋼孔スリーブの内径と耐火物の損耗速度との関係を示すグラフである。It is a graph which shows the relationship between the internal diameter of a steel exit hole sleeve, and the wear rate of a refractory. 生ドロマイト又はマグカーボン煉瓦塊の添加割合と耐火物の損耗速度の関係を示すグラフである。It is a graph which shows the relationship between the addition rate of raw dolomite or a mag-carbon brick block, and the wear rate of a refractory. 孔排滓時間と耐火物の損耗速度との関係を示すグラフである。It is a graph which shows the relationship between hole removal time and the wear rate of a refractory. 孔排滓を行う場合と行わない場合における転炉の非稼働時間の比較を示すグラフである。It is a graph which shows the comparison of the non-operation time of a converter in the case where it does not perform hole excretion and it does not.

符号の説明Explanation of symbols

10:転炉、11:炉口、12:出鋼孔、13:耐火物、14:羽口、15:出鋼孔スリーブ、16:スラグ、17:凸状付着物、18:残湯 10: Converter, 11: Furnace, 12: Outgoing steel hole, 13: Refractory material, 14: Tuyere, 15: Outgoing steel hole sleeve, 16: Slag, 17: Convex deposit, 18: Residual hot water

Claims (6)

出鋼後にスラグを残留させた転炉を複数回揺動させて該スラグの温度を低下させる工程Aと、前記転炉を傾けて、前記転炉の側部上側に設けられた出鋼孔からスラグを排出させながら、前記転炉の内壁面に配設された耐火物の表面に前記スラグのコーティングを形成する工程Bとを有することを特徴とする転炉内壁面のスラグコーティング方法。 From step A, the converter in which the slag remains after rocking is swung several times to lower the temperature of the slag, and the converter is tilted, from the steel outlet hole provided on the upper side of the converter. And a step B of forming a coating of the slag on the surface of the refractory disposed on the inner wall surface of the converter while discharging the slag. 請求項1記載の転炉内壁面のスラグコーティング方法において、前記工程Aでは前記スラグの温度を1150℃〜1400℃に低下させることを特徴とする転炉内壁面のスラグコーティング方法。 The slag coating method for an inner wall surface of a converter according to claim 1, wherein the temperature of the slag is lowered to 1150 ° C to 1400 ° C in the step A. 請求項1及び2のいずれか1項に記載の転炉内壁面のスラグコーティング方法において、前記転炉の揺動回数が2〜5回であることを特徴とする転炉内壁面のスラグコーティング方法。 3. The slag coating method for a converter inner wall surface according to claim 1, wherein the number of oscillations of the converter is 2 to 5 times. 4. . 請求項1〜3のいずれか1項に記載の転炉内壁面のスラグコーティング方法において、前記出鋼孔の内径が140〜300mmであることを特徴とする転炉内壁面のスラグコーティング方法。 4. The slag coating method for a converter inner wall surface according to claim 1, wherein an inner diameter of the steel outlet hole is 140 to 300 mm. 5. 請求項1〜4のいずれか1項に記載の転炉内壁面のスラグコーティング方法において、前記工程Aで前記転炉を揺動させる前に、粒径が10〜50mmで、前記転炉内に残留したスラグの6〜30質量%の塩基性炭酸塩塊を投入することを特徴とする転炉内壁面のスラグコーティング方法。 In the slag coating method of the converter inner wall surface of any one of Claims 1-4, before making the said converter rock | fluctuate by the said process A, a particle size is 10-50 mm and in the said converter. A slag coating method for an inner wall surface of a converter, wherein 6-30% by mass of a basic carbonate lump of residual slag is added. 請求項1〜5のいずれか1項に記載の転炉内壁面のスラグコーティング方法において、前記工程Bでは、前記出鋼孔からの前記スラグの排出を5〜120秒間行うことを特徴とする転炉内壁面のスラグコーティング方法。 In the slag coating method of the converter inner wall surface of any one of Claims 1-5, in the said process B, discharge | emission of the said slag from the said steel outlet hole is performed for 5-120 seconds, The rolling characterized by the above-mentioned. Slag coating method for furnace inner wall.
JP2007261822A 2007-10-05 2007-10-05 Slag coating method for converter inner wall Active JP5079444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261822A JP5079444B2 (en) 2007-10-05 2007-10-05 Slag coating method for converter inner wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261822A JP5079444B2 (en) 2007-10-05 2007-10-05 Slag coating method for converter inner wall

Publications (2)

Publication Number Publication Date
JP2009091607A true JP2009091607A (en) 2009-04-30
JP5079444B2 JP5079444B2 (en) 2012-11-21

Family

ID=40663883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261822A Active JP5079444B2 (en) 2007-10-05 2007-10-05 Slag coating method for converter inner wall

Country Status (1)

Country Link
JP (1) JP5079444B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621614A (en) * 2020-07-23 2020-09-04 攀钢集团攀枝花钢钒有限公司 Steel-smelting converter repairing method
CN111778378A (en) * 2020-07-13 2020-10-16 唐山飞迪冶金材料有限公司 Converter slag splashing furnace protecting material and using method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345616A (en) * 1976-10-07 1978-04-24 Kawasaki Steel Co Protecting method of converter walls having furnace walls of magnesia
JPS5993816A (en) * 1982-11-17 1984-05-30 Nippon Steel Corp Method for coating inner wall of converter with slag
JPS63130708A (en) * 1986-11-20 1988-06-02 Nippon Steel Corp Method for repairing steel tapping hole in converter
JPH02263910A (en) * 1989-04-04 1990-10-26 Nippon Steel Corp Method for treating remaining molten metal in converter
JPH09209022A (en) * 1996-01-31 1997-08-12 Kawasaki Steel Corp Method for coating slag on inner wall surface of converter
JPH11229021A (en) * 1998-02-13 1999-08-24 Nippon Steel Corp Method for protecting lining refractory in converter type furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345616A (en) * 1976-10-07 1978-04-24 Kawasaki Steel Co Protecting method of converter walls having furnace walls of magnesia
JPS5993816A (en) * 1982-11-17 1984-05-30 Nippon Steel Corp Method for coating inner wall of converter with slag
JPS63130708A (en) * 1986-11-20 1988-06-02 Nippon Steel Corp Method for repairing steel tapping hole in converter
JPH02263910A (en) * 1989-04-04 1990-10-26 Nippon Steel Corp Method for treating remaining molten metal in converter
JPH09209022A (en) * 1996-01-31 1997-08-12 Kawasaki Steel Corp Method for coating slag on inner wall surface of converter
JPH11229021A (en) * 1998-02-13 1999-08-24 Nippon Steel Corp Method for protecting lining refractory in converter type furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778378A (en) * 2020-07-13 2020-10-16 唐山飞迪冶金材料有限公司 Converter slag splashing furnace protecting material and using method thereof
CN111621614A (en) * 2020-07-23 2020-09-04 攀钢集团攀枝花钢钒有限公司 Steel-smelting converter repairing method

Also Published As

Publication number Publication date
JP5079444B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4745731B2 (en) Method of melting hot metal with cupola
CN107058672A (en) A kind of method of use hot metal containing low silicon converter smelting Low-phosphorus Steel
US9771626B2 (en) Starting a smelting process
CN107083469A (en) The method for reducing steelmaking converter furnace bottom
JP5079444B2 (en) Slag coating method for converter inner wall
AU2015372430B2 (en) Method of sealing and repairing a refractory tap hole
JP4711735B2 (en) Method of melting fly ash mixed powder into molten slag
CN110484679A (en) A kind of control method of the double slag meltings of converter
JP2018024898A (en) Dephosphorization method of molten pig iron excellent in dephosphorization efficiency and iron content yield
JP2006249568A (en) Method for producing molten iron having low phosphorus
JP5411466B2 (en) Iron bath melting furnace and method for producing molten iron using the same
JP2009149956A (en) Method for producing molten steel with converter
JP2009041043A (en) Method for suppressing slag-forming in continuous melting furnace
TWI722622B (en) Method for manufacturing steel and method for reducing basicity of slag
JP6947343B1 (en) Fluctuation detection method of solidified layer and blast furnace operation method
WO2021220751A1 (en) Method for detecting fluctuation in coagulation layer and blast furnace operation method
JPH09118907A (en) Vertical type quick melting furnace
WO2009087183A1 (en) Cooling of a metallurgical smelting reduction vessel
CN114941049A (en) Converter bottom control method
JP2021046591A (en) Method for melting iron-containing material
JP2017226874A (en) Dephosphorization method of molten pig iron excellent in dephosphorization efficiency
JP2021028409A (en) Converter-type refining vessel
EP1431403A1 (en) Direct smelting furnace and process therefor
JP2001355011A (en) Operational method for reducing residual iron when blast furnace is repaired
JP2001294912A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5079444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350