JP2009091603A - Apparatus for forming optical thin film and control method therefor - Google Patents

Apparatus for forming optical thin film and control method therefor Download PDF

Info

Publication number
JP2009091603A
JP2009091603A JP2007261065A JP2007261065A JP2009091603A JP 2009091603 A JP2009091603 A JP 2009091603A JP 2007261065 A JP2007261065 A JP 2007261065A JP 2007261065 A JP2007261065 A JP 2007261065A JP 2009091603 A JP2009091603 A JP 2009091603A
Authority
JP
Japan
Prior art keywords
thin film
optical thin
film
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007261065A
Other languages
Japanese (ja)
Inventor
Atsuhito Ibori
敦仁 井堀
Hisafumi Mimura
寿文 三村
Takeshi Nakamuta
雄 中牟田
Toshihiro Suzuki
寿弘 鈴木
Masahiro Matsumoto
昌弘 松本
Noriaki Tani
典明 谷
Kentaro Kawabe
健太郎 川邊
Masashi Kubo
昌司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007261065A priority Critical patent/JP2009091603A/en
Publication of JP2009091603A publication Critical patent/JP2009091603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for forming an optical thin film, which can inhibit particles from being produced when forming the optical thin film, and to provide a method for controlling the apparatus. <P>SOLUTION: This film-forming apparatus includes: a vacuum chamber; a rotating drum which is provided in the inner peripheral surface of the vacuum chamber and can hold a substrate on its peripheral surface; and film-forming regions for sputtering metallic targets which are divided by a deposition shield plate, and an oxidation region for oxidizing a sputtered metallic thin film, which are provided in the peripheral direction of the rotating drum; and passes the substrate through each of the regions to form an optical thin film on the substrate, wherein the deposition shield plate has a temperature control means thereon. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属ターゲットのスパッタリングと、スパッタリングされた金属薄膜の酸化とを繰り返して基材上に光学薄膜を成膜するための成膜装置とその制御方法に関する。   The present invention relates to a film forming apparatus for forming an optical thin film on a substrate by repeatedly sputtering a metal target and oxidizing the sputtered metal thin film, and a control method thereof.

従来、回転ドラムに保持された基材上に金属薄膜を成膜し、これを酸素プラズマで酸化して酸化膜とし、それを交互に繰り返して金属酸化膜を形成する方法は、高品位な光学薄膜を形成する方法として実用化されている(例えば、特許文献1)。
この光学薄膜は、光学フィルターとして使用され、最近では、高性能・多機能化の要求が高まっているため、膜特性に対する要求が厳しいものとなってきている。その中で、パーティクル、ピンホール等が原因により発生する、膜中のコンタミや欠陥は大きな問題となっており、生産において歩留まりを低下させる主原因となっている。
ところで、特許文献1に開示される装置の場合、通常、スパッタされた材料が飛散することを避けるために、成膜領域を区割するようにして、ターゲットの両側方から回転ドラム側方向に防着板を立設するようにしている。
しかしながら、防着板と回転ドラムとの間を通過した酸素が金属スパッタ粒子と反応して、剥離しやすい酸化物質(絶縁物)となって防着板に付着し、チャージアップにより剥離することにより、パーティクルが発生するという問題があった。
このパーティクルを抑制するために、防着板にAlを溶射して、酸化物質の剥離を低減する方法が考えられるが、プラズマ放電の時間に応じてパーティクルの発生量は増加するために十分な抑制効果が得られなかった。
Conventionally, a method for forming a metal oxide film by forming a metal thin film on a substrate held on a rotating drum and oxidizing it with oxygen plasma to form an oxide film is a high-quality optical method. It has been put to practical use as a method for forming a thin film (for example, Patent Document 1).
This optical thin film is used as an optical filter, and recently, the demand for high performance and multi-functionality has been increasing, and thus the demand for film properties has become severe. Among them, contamination and defects in the film caused by particles, pinholes, and the like are a major problem, and are the main causes of lowering yield in production.
By the way, in the case of the apparatus disclosed in Patent Document 1, normally, in order to prevent the sputtered material from being scattered, the film formation region is divided so as to prevent it from both sides of the target toward the rotating drum. A landing plate is erected.
However, oxygen that has passed between the deposition plate and the rotating drum reacts with the metal sputtered particles, becomes an easily detachable oxide (insulator), adheres to the deposition plate, and peels off due to charge-up. There was a problem that particles were generated.
In order to suppress this particle, a method of spraying Al on the deposition plate to reduce the exfoliation of the oxidized material can be considered, but it is sufficient suppression because the amount of generated particles increases with the plasma discharge time. The effect was not obtained.

特開2005−206875号公報JP 2005-206875 A

そこで、本発明は、光学薄膜を成膜する際のパーティクルを抑えることが可能な光学薄膜の成膜装置及びその装置の制御方法を提供することを目的とする。   Therefore, an object of the present invention is to provide an optical thin film deposition apparatus capable of suppressing particles when forming an optical thin film, and a control method for the apparatus.

上記課題を解決すべく、本発明者等は鋭意検討の結果、以下の解決手段を見いだした。
即ち、本発明の光学薄膜の成膜装置は、請求項1に記載の通り、真空チャンバの内周面に、その周面に基材を保持することが可能な回転ドラムを備え、前記回転ドラムの周方向に、防着板により区割された金属ターゲットをスパッタリングするための成膜領域と、スパッタリングされた金属薄膜を酸化するための酸化領域とを備え、前記各領域に基材を通過させ、前記基材上に光学薄膜を成膜するための装置であって、前記防着板に温度制御手段を設けたことを特徴とする。
また、請求項2に記載の本発明は、請求項1に記載の光学薄膜の成膜装置において、前記金属ターゲットと前記基材とが対向する際の互いの間隔が120mm〜300mmとなるようにしたことを特徴とする。
また、本発明の光学薄膜の成膜装置の制御方法は、請求項3に記載の通り、真空チャンバの内周面に、その周面に基材を保持することが可能な回転ドラムを備え、前記回転ドラムの周方向に、防着板により区割された金属ターゲットをスパッタリングするための成膜領域と、前記金属薄膜を酸化するための酸化領域とを備え、前記各領域に基材を通過させ、前記基材上に光学薄膜を成膜するための装置の制御方法であって、前記金属ターゲットをスパッタリングする際に、前記防着板の温度を100℃から400℃の範囲に調整することを特徴とする。
また、請求項4に記載の本発明は、請求項3に記載の光学薄膜の成膜装置の制御方法において、前記金属ターゲットと前記基材とが対向する際の互いの間隔が120mm〜300mmとなるようにしたことを特徴とする。
In order to solve the above-mentioned problems, the present inventors have intensively studied and found the following solution.
That is, the optical thin film deposition apparatus according to the present invention comprises, on the inner peripheral surface of a vacuum chamber, a rotating drum capable of holding a base material on the peripheral surface, and the rotating drum. In the circumferential direction, a film formation region for sputtering a metal target divided by an adhesion-preventing plate and an oxidation region for oxidizing the sputtered metal thin film are provided, and the substrate is passed through each of the regions. An apparatus for forming an optical thin film on the substrate, wherein the deposition preventing plate is provided with a temperature control means.
Moreover, the present invention according to claim 2 is the optical thin film deposition apparatus according to claim 1, wherein the distance between the metal target and the substrate when facing each other is 120 mm to 300 mm. It is characterized by that.
The method for controlling an optical thin film deposition apparatus according to the present invention comprises, as described in claim 3, a rotating drum capable of holding a substrate on the inner peripheral surface of the vacuum chamber, In the circumferential direction of the rotating drum, a film formation region for sputtering a metal target divided by an adhesion preventing plate and an oxidation region for oxidizing the metal thin film pass through the base material in each region. A method of controlling an apparatus for forming an optical thin film on the substrate, wherein the temperature of the deposition preventing plate is adjusted to a range of 100 ° C. to 400 ° C. when the metal target is sputtered. It is characterized by.
Further, the present invention according to claim 4 is the method for controlling an optical thin film deposition apparatus according to claim 3, wherein the distance between the metal target and the substrate when facing each other is 120 mm to 300 mm. It was made to become.

本発明によれば、成膜により発生するパーティクルレベルを著しく低減させることができる。これによりコンタミ、膜欠陥の少ない高品位の金属酸化膜の成膜を実現させることができ、生産における歩留まりの向上へもつながる。   According to the present invention, the level of particles generated by film formation can be significantly reduced. As a result, it is possible to form a high-quality metal oxide film with few contamination and film defects, which leads to an improvement in production yield.

次に、図面を参照して本発明の一実施の形態について説明する。
図1は、本発明の成膜装置の概略構成を示すもので、真空チャンバ1の略中央部には、基材支持手段2を備えた回転ドラム3が配置され、その回転方向に順に、第1成膜領域4、酸化領域5及び第2成膜領域6が配置される。
スパッタリングを行う第1成膜領域4は、2台の電極からなるスパッタカソード7と、前記スパッタカソード7の回転ドラム3側に配置されたTa等から構成される細長片形状のターゲット8と、前記スパッタカソード7に交流電圧を印加するためのAC電源9と、Arガス等を導入するためのArガス導入系10から構成される。同様にスパッタリングを行う第2成膜領域6は、2台の電極からなるスパッタカソード11と、Si等から構成されるターゲット12と、前記スパッタカソード11に交流電圧を印加するためのAC電源13と、第2成膜領域4においてArガス等を導入するためのガス導入系14から構成される。尚、各成膜領域4,6のターゲット8,12の両側方には回転ドラム2側に向けて防着板15,16を立設している。また、酸化領域5は、酸化プラズマ源17と、Ar及びOガス導入系18を備えている。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of a film forming apparatus according to the present invention. A rotating drum 3 provided with a base material supporting means 2 is disposed at a substantially central portion of a vacuum chamber 1, and in order in the rotation direction, One film formation region 4, an oxidation region 5 and a second film formation region 6 are arranged.
The first film-forming region 4 for performing sputtering includes a sputter cathode 7 composed of two electrodes, a strip-shaped target 8 composed of Ta or the like disposed on the rotating drum 3 side of the sputter cathode 7, An AC power source 9 for applying an AC voltage to the sputtering cathode 7 and an Ar gas introduction system 10 for introducing Ar gas or the like are included. Similarly, the second film-forming region 6 for performing sputtering includes a sputtering cathode 11 composed of two electrodes, a target 12 composed of Si or the like, and an AC power source 13 for applying an AC voltage to the sputtering cathode 11. The second film formation region 4 includes a gas introduction system 14 for introducing Ar gas or the like. In addition, on both sides of the targets 8 and 12 in the respective film formation regions 4 and 6, deposition preventing plates 15 and 16 are erected toward the rotary drum 2 side. The oxidation region 5 includes an oxidation plasma source 17 and an Ar and O 2 gas introduction system 18.

上記防着板15,16には、図示しないが、シースヒーターやランプヒーター等の温度調整手段を備えている。これにより、少なくとも、スパッタリングによる成膜過程において、防着板15,16を100℃〜400℃に温度調整を行う。   Although not shown, the deposition preventing plates 15 and 16 are provided with temperature adjusting means such as a sheath heater and a lamp heater. Thus, the temperature of the deposition preventing plates 15 and 16 is adjusted to 100 ° C. to 400 ° C. at least in the film formation process by sputtering.

上記装置により、基材19を回転ドラム3の基材支持手段2に固定し、第1成膜領域4において、スパッタリングにより単原子層程度の金属膜を成膜し、酸化領域5により該金属膜の酸化を行い、更にその上に、第2成膜領域6において、同様に単原子層程度の金属膜を成膜し、酸化領域5により該金属膜の酸化を行い、交互に金属酸化膜を積層して光学薄膜を得る。
本発明では、前記スパッタリングにより単原子層程度の金属膜を成膜する際に、防着板15,16を100℃〜400℃の範囲に、その温度を調整する。これにより、プラズマ発生時に、防着板15,16が急激に温度上昇することがないため、防着板15,16と、これに付着した酸化物質との熱膨張係数の差に起因する酸化物質の剥離を抑えることが可能となる。
また、ターゲット8,12と基材19とが対向する際の互いの間隔が120mm〜300mmとすることが好ましい。理由は明らかではないが、この範囲内であれば、防着板15,16の温度制御を行う際に、パーティクルの発生をより抑えることができることがわかっているためである。
With the above apparatus, the base material 19 is fixed to the base material support means 2 of the rotary drum 3, a metal film of about a monoatomic layer is formed by sputtering in the first film formation region 4, and the metal film is formed by the oxidation region 5. Further, in the second film formation region 6, a metal film of about a monoatomic layer is formed on the second film formation region 6, and the metal film is oxidized by the oxidation region 5. Laminate to obtain an optical thin film.
In the present invention, when the metal film having a monoatomic layer is formed by sputtering, the temperature of the deposition preventing plates 15 and 16 is adjusted to a range of 100 ° C to 400 ° C. Thus, when the plasma is generated, the temperature of the deposition preventive plates 15 and 16 does not rapidly increase. Therefore, the oxidizing substance caused by the difference in thermal expansion coefficient between the deposition preventing plates 15 and 16 and the oxidizing substance attached thereto. Can be prevented.
Moreover, it is preferable that the mutual space | interval when the targets 8 and 12 and the base material 19 oppose is 120 mm-300 mm. Although the reason is not clear, it is known that when the temperature is controlled within this range, the generation of particles can be further suppressed when the temperature control of the deposition preventing plates 15 and 16 is performed.

尚、本発明における金属膜の成膜は、スパッタリングによるものであれば特に制限はなく、ECRスパッタ方式、ターゲットの裏面に磁石を配置してスパッタを行うマグネトロンスパッタ方式、DC電源を使用するのがDCマグネトロンスパッタ方式、RF電源を使用するのがRFマグネトロンスパッタ方式等を採用することができる。   The metal film formation in the present invention is not particularly limited as long as it is by sputtering, and an ECR sputtering method, a magnetron sputtering method in which a magnet is placed on the back surface of the target to perform sputtering, or a DC power source may be used. A DC magnetron sputtering method, an RF power source using an RF magnetron sputtering method, or the like can be employed.

前記金属ターゲット8,12としては、Si、Ti、Ta、Nb、Al、Mg、Sb、Zr、Zn、Sn、Caから選択された少なくとも1種の元素を含有するものを使用することができる。
また、上記ターゲット8,12の寸法は、特に制限するものではないが、例えば、短手方向は120mm〜145mmとすることができ、長手方向の長さは600〜900mmとすることができる。また、その形状は、矩形状、或いは、楕円形状等があるが、楕円形状の場合は、幅が短い方を短手方向とし、長い方を長手方向とする。
As the metal targets 8 and 12, those containing at least one element selected from Si, Ti, Ta, Nb, Al, Mg, Sb, Zr, Zn, Sn, and Ca can be used.
The dimensions of the targets 8 and 12 are not particularly limited. For example, the lateral direction can be 120 mm to 145 mm, and the longitudinal length can be 600 to 900 mm. Further, the shape includes a rectangular shape or an elliptical shape. In the case of an elliptical shape, the shorter one is defined as the shorter direction, and the longer one is defined as the longer direction.

次に、本発明の実施例について比較例とともに説明する。
(実施例1)
図1に示す構造の成膜装置を使用して、第1成膜領域4において、短手方向の長さ145mm、長手方向の長さ640mmの矩形状のSiOターゲット8を、真空チャンバ内を0.15Paとして、7.0kWでスパッタリングを行い、直径15mm、厚さ1mmのガラス製基材19に500ÅのSiO膜を成膜した。
尚、成膜期間中は、防着板15の温度を280℃となるように調整を行った。また、ターゲット8と基材19とが対向する際の間隔を200mmとした。
Next, examples of the present invention will be described together with comparative examples.
Example 1
Using the film forming apparatus having the structure shown in FIG. 1, in the first film forming region 4, a rectangular SiO 2 target 8 having a length of 145 mm in the short side direction and a length of 640 mm in the long side direction is placed inside the vacuum chamber. Sputtering was performed at 7.0 kW at 0.15 Pa, and a 500 SiO SiO 2 film was formed on a glass substrate 19 having a diameter of 15 mm and a thickness of 1 mm.
During the film formation period, the temperature of the deposition preventing plate 15 was adjusted to 280 ° C. Moreover, the space | interval when the target 8 and the base material 19 oppose was 200 mm.

(比較例1)
防着板15の温度調整を行わなかった以外は、実施例1と同様に成膜を行った。
(Comparative Example 1)
Film formation was performed in the same manner as in Example 1 except that the temperature of the deposition preventing plate 15 was not adjusted.

(実施例2)
図1に示す構造の成膜装置を使用して、第1成膜領域4において、短手方向の長さ145mm、長手方向の長さ640mmの矩形状のSiターゲット8を、真空チャンバ内を0.15Paとして、7.0kWでスパッタリングを行うようにし、第2の成膜領域6において、短手方向の長さ450mm、長手方向の長さ640mmの矩形状のNbターゲット12を、真空チャンバ内を0.15Paとして、7.0kWでスパッタリングを行うようにし、幅直径15mm、厚さ1mmのガラス製基材にSiO膜とNb膜とを交互に合計35層積層した。
尚、成膜期間中は、防着板15,16の温度をそれぞれ280℃、230℃となるように調整を行った。また、ターゲット8,12と基材19とが対向する際の間隔を200mmとした。
(Example 2)
Using the film forming apparatus having the structure shown in FIG. 1, in the first film forming region 4, a rectangular Si target 8 having a length of 145 mm in the short direction and a length of 640 mm in the long direction is set to 0 in the vacuum chamber. Sputtering is performed at 7.0 kW at .15 Pa, and in the second film formation region 6, a rectangular Nb target 12 having a length of 450 mm in the short direction and a length of 640 mm in the long direction is placed inside the vacuum chamber. Sputtering was performed at 7.0 kW at 0.15 Pa, and a total of 35 layers of SiO 2 films and Nb 2 O 5 films were alternately laminated on a glass substrate having a width of 15 mm and a thickness of 1 mm.
During the film formation period, the temperature of the deposition preventing plates 15 and 16 was adjusted to 280 ° C. and 230 ° C., respectively. Moreover, the space | interval when the targets 8 and 12 and the base material 19 oppose was 200 mm.

(比較例2)
防着板15,16の温度調整を行わなかった以外は、実施例2と同様に成膜を行った。
(Comparative Example 2)
Film formation was performed in the same manner as in Example 2 except that the temperature adjustment of the adhesion preventing plates 15 and 16 was not performed.

図2に、実施例1及び比較例1の成膜の際に真空チャンバ内1に発生したパーティクルをパーティクルカウンタによって測定した結果(左側)と、実施例2及び比較例2で得られた光学薄膜の成膜後のパーティクル密度を測定した結果(右側)を示す。   FIG. 2 shows the result of measuring particles generated in the vacuum chamber 1 during film formation in Example 1 and Comparative Example 1 using a particle counter (left side), and the optical thin film obtained in Example 2 and Comparative Example 2. The result (right side) of measuring the particle density after film formation is shown.

実施例1は、5μm以上の粒径のパーティクルの発生を殆ど抑えることができているのに対して、比較例1は、1.000個/cm程度の割合でパーティクルが生じていることがわかった。
実施例2は、5μm以上の粒径のパーティクル密度が0.010個/cm程度であるのに対して、比較例2は、5μm以上の粒径のパーティクル密度が10.000を超えた。
In Example 1, generation of particles having a particle diameter of 5 μm or more can be almost suppressed, whereas in Comparative Example 1, particles are generated at a rate of about 1.000 particles / cm 2. all right.
In Example 2, the particle density with a particle diameter of 5 μm or more was about 0.010 particles / cm 2 , whereas in Comparative Example 2, the particle density with a particle diameter of 5 μm or more exceeded 10.000.

上記結果から、本実施例1及び2は、成膜過程におけるパーティクルの発生を有効に防ぐことができ、得られた光学薄膜は優れた光学特性を備えることがわかった。   From the above results, it was found that Examples 1 and 2 can effectively prevent generation of particles in the film formation process, and the obtained optical thin film has excellent optical characteristics.

本発明は、光学薄膜の分野をはじめとして、広く成膜の分野において利用可能である。   The present invention can be widely used in the field of film formation including the field of optical thin films.

本発明の一実施の形態を説明するための真空チャンバ内の断面図Sectional drawing in the vacuum chamber for demonstrating one embodiment of this invention (左側)実施例1及び比較例1の成膜の際に真空チャンバ内1に発生したパーティクルをパーティクルカウンタによって測定した結果を示すグラフ、(右側)実施例2及び比較例2で得られた光学薄膜の成膜後のパーティクル密度を測定した結果を示すグラフ(Left side) Graph showing the result of measuring particles generated in the vacuum chamber 1 during film formation in Example 1 and Comparative Example 1 with a particle counter, (Right side) Optics obtained in Example 2 and Comparative Example 2 Graph showing the result of measuring the particle density after film formation

符号の説明Explanation of symbols

1 真空チャンバ
2 基材支持手段
3 回転ドラム
4 第1の成膜領域
5 酸化領域
6 第2の成膜領域
7 スパッタカソード
8 ターゲット
9 AC電源
10 Arガス導入系
11 スパッタカソード
12 ターゲット
13 AC電源
14 Arガス導入系
15 防着板
16 防着板
17 酸化プラズマ源
18 Ar及びOガス導入系
19 基材
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Base material support means 3 Rotating drum 4 1st film-forming area 5 Oxidation area 6 2nd film-forming area 7 Sputter cathode 8 Target 9 AC power supply 10 Ar gas introduction system 11 Sputter cathode 12 Target 13 AC power supply 14 Ar gas introduction system 15 Protective plate 16 Protective plate 17 Oxidation plasma source 18 Ar and O 2 gas introduction system 19 Base material

Claims (4)

真空チャンバの内周面に、その周面に基材を保持することが可能な回転ドラムを備え、前記回転ドラムの周方向に、防着板により区割された金属ターゲットをスパッタリングするための成膜領域と、スパッタリングされた金属薄膜を酸化するための酸化領域とを備え、前記各領域に基材を通過させ、前記基材上に光学薄膜を成膜するための装置であって、前記防着板に温度制御手段を備えることを特徴とする光学薄膜の成膜装置。   A rotary drum capable of holding a substrate on the inner peripheral surface of the vacuum chamber is provided on the inner peripheral surface of the vacuum chamber, and a component for sputtering a metal target divided by an adhesion preventing plate in the circumferential direction of the rotary drum. An apparatus for forming an optical thin film on the base material by providing a film region and an oxidation region for oxidizing the sputtered metal thin film, allowing the base material to pass through each of the regions, An optical thin film deposition apparatus comprising a temperature control means on a deposition plate. 前記金属ターゲットと前記基材とが対向する際の互いの間隔が120mm〜300mmとなるようにしたことを特徴とする請求項1に記載の光学薄膜の成膜装置。   2. The optical thin film deposition apparatus according to claim 1, wherein an interval between the metal target and the substrate when facing each other is 120 mm to 300 mm. 真空チャンバの内周面に、その周面に基材を保持することが可能な回転ドラムを備え、前記回転ドラムの周方向に、防着板により区割された金属ターゲットをスパッタリングするための成膜領域と、前記金属薄膜を酸化するための酸化領域とを備え、前記各領域に基材を通過させ、前記基材上に光学薄膜を成膜するための装置の制御方法であって、前記金属ターゲットをスパッタリングする際に、前記防着板の温度を100℃から400℃の範囲に調整することを特徴とする光学薄膜の成膜装置の制御方法。   A rotary drum capable of holding a substrate on the inner peripheral surface of the vacuum chamber is provided on the inner peripheral surface of the vacuum chamber, and a component for sputtering a metal target divided by an adhesion preventing plate in the circumferential direction of the rotary drum. A method for controlling an apparatus for forming an optical thin film on the substrate, comprising a film region and an oxidation region for oxidizing the metal thin film, allowing a substrate to pass through each region, When sputtering a metal target, the temperature of the said adhesion prevention board is adjusted in the range of 100 to 400 degreeC, The control method of the film-forming apparatus of the optical thin film characterized by the above-mentioned. 前記金属ターゲットと前記基材とが対向する際の互いの間隔が120mm〜300mmとなるようにしたことを特徴とする請求項3に記載の光学薄膜の成膜装置の制御方法。   4. The method for controlling an optical thin film deposition apparatus according to claim 3, wherein an interval between the metal target and the base material is 120 mm to 300 mm.
JP2007261065A 2007-10-04 2007-10-04 Apparatus for forming optical thin film and control method therefor Pending JP2009091603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261065A JP2009091603A (en) 2007-10-04 2007-10-04 Apparatus for forming optical thin film and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261065A JP2009091603A (en) 2007-10-04 2007-10-04 Apparatus for forming optical thin film and control method therefor

Publications (1)

Publication Number Publication Date
JP2009091603A true JP2009091603A (en) 2009-04-30

Family

ID=40663880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261065A Pending JP2009091603A (en) 2007-10-04 2007-10-04 Apparatus for forming optical thin film and control method therefor

Country Status (1)

Country Link
JP (1) JP2009091603A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152271A (en) * 1987-12-09 1989-06-14 Toshiba Corp Sputtering device
JPH0313564A (en) * 1989-06-08 1991-01-22 Fujitsu Ltd Apparatus for producing semiconductor
JPH05279845A (en) * 1992-04-02 1993-10-26 Hitachi Ltd Sputtering method and device therefor
JPH06322528A (en) * 1993-05-06 1994-11-22 Hitachi Ltd Sputtering method and sputtering device
JP2005256119A (en) * 2004-03-12 2005-09-22 Ricoh Opt Ind Co Ltd Deposition system
JP2007231303A (en) * 2006-02-27 2007-09-13 Shincron:Kk Thin film deposition apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152271A (en) * 1987-12-09 1989-06-14 Toshiba Corp Sputtering device
JPH0313564A (en) * 1989-06-08 1991-01-22 Fujitsu Ltd Apparatus for producing semiconductor
JPH05279845A (en) * 1992-04-02 1993-10-26 Hitachi Ltd Sputtering method and device therefor
JPH06322528A (en) * 1993-05-06 1994-11-22 Hitachi Ltd Sputtering method and sputtering device
JP2005256119A (en) * 2004-03-12 2005-09-22 Ricoh Opt Ind Co Ltd Deposition system
JP2007231303A (en) * 2006-02-27 2007-09-13 Shincron:Kk Thin film deposition apparatus

Similar Documents

Publication Publication Date Title
JP5395255B2 (en) Electronic device manufacturing method and sputtering method
KR101067104B1 (en) Film deposition apparatus, manufacturing method of electronic device
JP4537479B2 (en) Sputtering equipment
JP5362112B2 (en) Sputter deposition apparatus and deposition preventing member
JP2007042818A (en) Depositing apparatus and method
JP2024099043A (en) Ion gun and ion beam sputtering device
JP2008127610A (en) Ion beam source, and film deposition system provided therewith
JP2009091603A (en) Apparatus for forming optical thin film and control method therefor
US20140110248A1 (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
JP5632946B2 (en) Shielding member
JP4769181B2 (en) Target and backing plate
JP4858492B2 (en) Sputtering equipment
JPH11229131A (en) Sputtering device for film formation
JP2008007837A (en) Sputtering film deposition system and sputtering film deposition method
JP2013147711A (en) Vapor deposition apparatus
JP2012067331A (en) Film deposition method and sputtering apparatus
JP2008127611A (en) Ion beam source, and film deposition system provided therewith
JP2007314841A (en) Mask for use in forming film by sputtering, and manufacturing method therefor
WO2018207577A1 (en) Film-forming device and method for forming piezoelectric film
JP5978072B2 (en) Insulating film formation method
JP2007131930A (en) Reactive magnetron sputtering system
JP4678996B2 (en) Dielectric film forming method and film forming apparatus
JP4715736B2 (en) Sputtering equipment
JP2020041167A (en) Component for film deposition apparatus and preparation method of film deposition
JP5269920B2 (en) Manufacturing method of parts for vacuum film forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100610

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A02 Decision of refusal

Effective date: 20120410

Free format text: JAPANESE INTERMEDIATE CODE: A02