JP2008127610A - Ion beam source, and film deposition system provided therewith - Google Patents

Ion beam source, and film deposition system provided therewith Download PDF

Info

Publication number
JP2008127610A
JP2008127610A JP2006312248A JP2006312248A JP2008127610A JP 2008127610 A JP2008127610 A JP 2008127610A JP 2006312248 A JP2006312248 A JP 2006312248A JP 2006312248 A JP2006312248 A JP 2006312248A JP 2008127610 A JP2008127610 A JP 2008127610A
Authority
JP
Japan
Prior art keywords
ion beam
beam source
cathode
vacuum chamber
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006312248A
Other languages
Japanese (ja)
Other versions
JP5016899B2 (en
Inventor
Takeshi Nakamuta
雄 中牟田
Masahiro Matsumoto
昌弘 松本
Toshihiro Suzuki
寿弘 鈴木
Atsuhito Ibori
敦仁 井堀
Noriaki Tani
典明 谷
Masashi Kubo
昌司 久保
Takafumi Matsumoto
孝文 松元
Koichi Hanzawa
幸一 半沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006312248A priority Critical patent/JP5016899B2/en
Publication of JP2008127610A publication Critical patent/JP2008127610A/en
Application granted granted Critical
Publication of JP5016899B2 publication Critical patent/JP5016899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion beam source for preventing abnormal discharge generated in the vicinity of each cathode and suppressing the generation of particles and splashes, and to provide a film deposition system provided therewith. <P>SOLUTION: The ion beam source comprises a metallic enclosure provided with cathodes, magnetic gaps, a magnetic field generating means for generating a magnetic field in the enclosure, reactive gas introducing means for introducing reactive gas into the enclosure, and anodes each arranged in the vicinity of the magnetic gap; wherein the cathodes are electrically insulated from ground potential. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、イオンビーム源及びこれを備えた成膜装置に関するものである。   The present invention relates to an ion beam source and a film forming apparatus including the ion beam source.

基板上に金属薄膜を形成し、これを酸素プラズマで処理することを繰り返して金属酸化膜を形成する装置は、高品位な光学薄膜を形成することができるため実用化されている。このような装置において、酸化アシスト等のためにイオンビーム源は使用されており、その一例として例えば特許文献1に開示がなされている。
このようなイオンビーム源を用いて、基板上に形成された金属酸化物にイオンビームを照射すると、図4に示すように、基板(図示せず)上の誘電材料31がエッジングされ、カソード32の表面に着膜する。
しかしながら、イオンビーム源30のカソード32の表面は、真空チャンバー1と導通されて接地電位であるため、カソード32の表面に着膜した誘電材料31に蓄積した電荷34とカソード32との間の電位差が生じ、局所的にアーク放電(異常放電)が起こり、パーティクルやスプラッシュにより基板を汚染するという問題があった。
An apparatus for forming a metal oxide film by repeatedly forming a metal thin film on a substrate and treating it with oxygen plasma has been put to practical use because a high-quality optical thin film can be formed. In such an apparatus, an ion beam source is used for oxidation assistance or the like, and an example thereof is disclosed in Patent Document 1, for example.
When such an ion beam source is used to irradiate a metal oxide formed on the substrate with an ion beam, the dielectric material 31 on the substrate (not shown) is edged as shown in FIG. The film is deposited on the surface.
However, since the surface of the cathode 32 of the ion beam source 30 is electrically connected to the vacuum chamber 1 and is at the ground potential, the potential difference between the charge 34 accumulated in the dielectric material 31 deposited on the surface of the cathode 32 and the cathode 32. There is a problem that arc discharge (abnormal discharge) occurs locally and the substrate is contaminated by particles and splash.

特表2003−506826号公報Special table 2003-506826 gazette

そこで、本発明は、カソード近傍に発生する異常放電を防止してパーティクルやスプラッシュの発生を抑制するためのイオンビーム源及びこれを備えた成膜装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an ion beam source for preventing abnormal discharge generated in the vicinity of a cathode and suppressing generation of particles and splash, and a film forming apparatus including the ion beam source.

上記課題を解決すべく、本発明者等は鋭意検討の結果、次の解決手段を見いだした。
即ち、本発明のイオンビーム源は、請求項1に記載の通り、金属製の筐体に、カソードと、磁気ギャップと、前記筐体内に磁場を生じさせる磁場発生手段と、前記筐体内に反応性ガスを導入するための反応性ガス導入手段と、前記磁気ギャップの近傍に配置されるアノードとを備えるイオンビーム源であって、前記カソードを接地電位から電気的に絶縁したことを特徴とする。
また、請求項2に記載の本発明は、請求項1に記載のイオンビーム源において、前記カソードには負電圧が印加されることを特徴とする。
また、請求項3に記載の本発明は、請求項2に記載のイオンビーム源において、前記カソード部に印加する負電圧は−10Vから−100Vであることを特徴とする。
また、請求項4に記載の本発明は、請求項2又は3に記載のイオンビーム源において、前記負電圧はパルス状に印加されることを特徴とする。
また、請求項5に記載の本発明は、請求項1乃至4の何れかに記載のイオンビーム源を真空チャンバー内に設け、前記イオンビーム源と前記真空チャンバーとを電気的に絶縁したことを特徴とする。
また、請求項6に記載の本発明は、請求項5に記載の成膜装置において、前記真空チャンバー内に、基板支持手段と、成膜手段と、酸化手段とを備えることを特徴とする。
In order to solve the above problems, the present inventors have found the following solution as a result of intensive studies.
That is, the ion beam source according to the present invention comprises a metal housing, a cathode, a magnetic gap, a magnetic field generating means for generating a magnetic field in the housing, and a reaction in the housing. An ion beam source comprising a reactive gas introduction means for introducing a reactive gas and an anode disposed in the vicinity of the magnetic gap, wherein the cathode is electrically insulated from a ground potential. .
According to a second aspect of the present invention, in the ion beam source according to the first aspect, a negative voltage is applied to the cathode.
According to a third aspect of the present invention, in the ion beam source according to the second aspect, a negative voltage applied to the cathode portion is -10V to -100V.
According to a fourth aspect of the present invention, in the ion beam source according to the second or third aspect, the negative voltage is applied in a pulse shape.
According to a fifth aspect of the present invention, the ion beam source according to any one of the first to fourth aspects is provided in a vacuum chamber, and the ion beam source and the vacuum chamber are electrically insulated. Features.
According to a sixth aspect of the present invention, in the film forming apparatus according to the fifth aspect, the vacuum chamber includes a substrate supporting means, a film forming means, and an oxidizing means.

本発明によれば、成膜の際に、アシスト源やエッチング源等として使用することができるイオンビーム源のカソード近傍における異常放電を防止することができ、この異常放電に起因するパーティクルやスプラッシュの発生を軽減することができる。   According to the present invention, it is possible to prevent abnormal discharge in the vicinity of the cathode of an ion beam source that can be used as an assist source, an etching source, or the like during film formation, and particles and splash caused by the abnormal discharge can be prevented. Occurrence can be reduced.

次に、図面を参照して本発明の一実施の形態について説明する。
図1は、成膜装置の概略構成図を示す。
真空チャンバー1の略中央部には、基板支持手段を備えた回転ドラム2が配置され、その回転方向に順に、第1成膜ゾーン3、第2成膜ゾーン4及び酸化ゾーン5が配置される。
スパッタリングを行う第1成膜ゾーン3は、電極(2台)からなるスパッタカソード6と、前記スパッタカソード6に隣接して配置されるTa、NbやTi等から構成されるターゲット7と、前記スパッタカソード6に交流電圧を印加するためのAC電源8と、第1成膜ゾーン3においてArガス等を導入するためのArガス導入系9から構成される。同様にスパッタリングを行う第2成膜ゾーン4は、電極(2台)からなるスパッタカソード10と、これに隣接して配置されるSi等から構成されるターゲット11と、前記スパッタカソード10に交流電圧を印加するためのAC電源12と、第2成膜ゾーン4においてArガス等を導入するためのガス導入系13から構成される。また、酸化ゾーン5には、酸化プラズマ源14が設置される。
アシスト源又はエッチング源として使用するイオンビーム源15は、第1成膜ゾーン3と酸化ゾーン5の間に配置され、アースされた真空チャンバー1内に固定される。
イオンビーム源15は、図2に示すように、軟鉄、SUSやアルミニウム等の金属により構成された中空の筐体16内に、その内部に磁場を発生させるための磁場発生手段17と、磁場発生手段17を囲むようにして設けられたアノード18を備える。また、筐体16の下部(真空チャンバー1側)には、真空チャンバー1内にO等の反応性ガスを導入するための反応性ガス導入手段19が設けられる。筐体16の上部(回転ドラム2側)には、磁気ギャップ20が形成され、その両側の筐体16の一部がカソード21として構成されている。そして、筐体16と真空チャンバー1との間には絶縁体23が設けられる。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration diagram of a film forming apparatus.
A rotating drum 2 provided with a substrate support means is disposed at a substantially central portion of the vacuum chamber 1, and a first film forming zone 3, a second film forming zone 4, and an oxidation zone 5 are sequentially disposed in the rotation direction. .
The first film formation zone 3 for performing sputtering includes a sputter cathode 6 composed of electrodes (two), a target 7 composed of Ta, Nb, Ti, etc. disposed adjacent to the sputter cathode 6, and the sputter. An AC power supply 8 for applying an AC voltage to the cathode 6 and an Ar gas introduction system 9 for introducing Ar gas or the like in the first film formation zone 3 are configured. Similarly, the second film formation zone 4 for performing sputtering includes a sputter cathode 10 composed of two electrodes, a target 11 composed of Si or the like disposed adjacent thereto, and an AC voltage applied to the sputter cathode 10. And an AC power source 12 for applying a gas, and a gas introduction system 13 for introducing Ar gas or the like in the second deposition zone 4. An oxidation plasma source 14 is installed in the oxidation zone 5.
An ion beam source 15 used as an assist source or an etching source is disposed between the first film formation zone 3 and the oxidation zone 5 and is fixed in a grounded vacuum chamber 1.
As shown in FIG. 2, the ion beam source 15 includes a magnetic field generating means 17 for generating a magnetic field in a hollow casing 16 made of a metal such as soft iron, SUS, or aluminum, and magnetic field generation. An anode 18 is provided so as to surround the means 17. In addition, a reactive gas introduction means 19 for introducing a reactive gas such as O 2 into the vacuum chamber 1 is provided in the lower part of the housing 16 (on the vacuum chamber 1 side). A magnetic gap 20 is formed on the upper portion of the housing 16 (on the rotating drum 2 side), and part of the housing 16 on both sides thereof is configured as a cathode 21. An insulator 23 is provided between the housing 16 and the vacuum chamber 1.

上記構成により、基板を保持した回転ドラム2を回転させ、第1及び第2成膜ゾーン3、4において金属膜を成膜し、その後、酸化ゾーン5を通過させることにより金属膜を酸化し、これらの工程を繰り返すことにより、所望の金属薄膜を基板上に形成する。これらの工程において、イオンビーム源15は、アノード18に、例えば、1500V〜3000V程度の電位を印加してプラズマを発生させてイオンビームを生成し、酸化ゾーン5における酸化のアシストをする。   With the above configuration, the rotating drum 2 holding the substrate is rotated to form a metal film in the first and second film formation zones 3 and 4, and then the metal film is oxidized by passing through the oxidation zone 5. By repeating these steps, a desired metal thin film is formed on the substrate. In these steps, the ion beam source 15 applies a potential of, for example, about 1500 V to 3000 V to the anode 18 to generate plasma to generate an ion beam, and assists oxidation in the oxidation zone 5.

上記のように、イオンビーム源15を接地電位としないことにより、カソード21表面に付着した膜に電荷が蓄積しても、局所的にアーク放電(異常放電)が生じることなく、パーティクルやスプラッシュの発生を抑えることができる。   As described above, since the ion beam source 15 is not set to the ground potential, even if charges are accumulated in the film attached to the surface of the cathode 21, no arc discharge (abnormal discharge) occurs locally, and particles and splashes are not generated. Occurrence can be suppressed.

また、カソード21には、負電圧を印加することが好ましい。プラズマを発生させ、カソード21表面に蓄積した電荷を補償することができるからである。尚、前記負電圧は、−10Vから−100Vとすることが好ましい。−10V未満であるとプラズマが発生せず、100Vを超えると異常放電が発生することがあるためである。   Further, it is preferable to apply a negative voltage to the cathode 21. This is because plasma can be generated to compensate for charges accumulated on the surface of the cathode 21. The negative voltage is preferably -10V to -100V. This is because plasma is not generated when the voltage is less than −10V, and abnormal discharge may occur when the voltage exceeds 100V.

また、負電圧は、正極に反転するパルスを重畳することが好ましい。負電圧のみを印加した場合にはイオンによる電荷の蓄積が発生する恐れがあるためである。尚、前記パルスの周波数は250kHz以下とすることが好ましい。   Moreover, it is preferable that the negative voltage superimposes an inverted pulse on the positive electrode. This is because when only a negative voltage is applied, charge accumulation due to ions may occur. The pulse frequency is preferably 250 kHz or less.

また、上記説明した成膜装置は、少なくとも、基板支持手段と、成膜手段と、酸化手段とを備えていればよく、説明した回転ドラム2、スパッタカソード6、10等に限定されるものではない。   Further, the film forming apparatus described above may be provided with at least the substrate support means, the film forming means, and the oxidation means, and is not limited to the rotating drum 2 and the sputter cathodes 6 and 10 described above. Absent.

次に、比較例とともに本実施例について説明する。   Next, this example will be described together with a comparative example.

(実施例1)
図1及び図2を使用して説明したように、真空チャンバー1とイオンビーム源15との間に絶縁性材料のテフロン(登録商標)23を設けて実施例1の成膜装置とした。
(Example 1)
As described with reference to FIGS. 1 and 2, a Teflon (registered trademark) 23 of an insulating material is provided between the vacuum chamber 1 and the ion beam source 15 to obtain the film forming apparatus of Example 1.

(比較例1)
上記実施例1の絶縁性材料を除き、イオンビーム源15の筐体16が接地電位となるようにして比較例1の成膜装置とした。
(Comparative Example 1)
Except for the insulating material of Example 1, the film forming apparatus of Comparative Example 1 was made such that the casing 16 of the ion beam source 15 was at ground potential.

上記実施例1及び比較例1の成膜装置を使用し、カソード21に特に電圧を印可せず、真空チャンバー1内を常温で0.2Paに減圧して10分間成膜を行い、Si(P型)製基板上に膜厚500オングストロームのSiO膜を形成した。 Using the film forming apparatus of Example 1 and Comparative Example 1 described above, no voltage was applied to the cathode 21 and the vacuum chamber 1 was decompressed to 0.2 Pa at room temperature to form a film for 10 minutes. A SiO 2 film having a thickness of 500 angstroms was formed on the substrate.

上記成膜の過程において、実施例1により生じたアーク放電は0回/秒であった。これに対して、比較例1により生じたアーク放電は200回/秒であった。
上記結果から、比較例1はイオンビーム源15のカソード21の表面に着膜した物質が、異常放電によってパーティクルやスプラッシュの発生原因となるおそれがあるのに対して、実施例1はそのおそれがないことがわかった。
During the film formation process, the arc discharge generated in Example 1 was 0 times / second. On the other hand, the arc discharge generated in Comparative Example 1 was 200 times / second.
From the above results, in Comparative Example 1, the material deposited on the surface of the cathode 21 of the ion beam source 15 may cause generation of particles and splash due to abnormal discharge, whereas Example 1 may cause this. I knew it was n’t there.

次に、実施例1の成膜装置を使用し、カソード21に印加する電圧を変更して真空チャンバー1内に発生するパーティクルの密度をパーティクルの粒径毎に測定した。
(実施例3)
カソード21に特に電圧を印可せず、真空チャンバー1内を常温で0.2Paに減圧して10分間成膜を行い、Si(P型)製基板上に膜厚500オングストロームのSiO膜を形成した例を実施例3とした。
(実施例4)
カソード21に−50Vの電圧を印加した例を実施例4とした。
Next, using the film forming apparatus of Example 1, the voltage applied to the cathode 21 was changed, and the density of particles generated in the vacuum chamber 1 was measured for each particle diameter.
(Example 3)
No voltage is applied to the cathode 21 and the vacuum chamber 1 is decompressed to 0.2 Pa at room temperature to form a film for 10 minutes to form a 500 angstrom thick SiO 2 film on a Si (P-type) substrate. Example 3 was designated as Example 3.
Example 4
An example in which a voltage of −50 V was applied to the cathode 21 was taken as Example 4.

(実施例5)
カソード21に−50V、周波数250kHzのパルスを重畳した例を実施例5とした。
(Example 5)
An example in which a pulse of −50 V and a frequency of 250 kHz was superimposed on the cathode 21 was taken as Example 5.

上記測定結果を図3に示す。
図3から、いずれの粒径に対しても、実施例3、4、5の順に真空チャンバー1内のパーティクル密度が減少していることが分かり、カソード21に負の電圧を印可すること、更に、パルスを重畳することが異常放電を低減するのに有効であることがわかった。
The measurement results are shown in FIG.
From FIG. 3, it can be seen that the particle density in the vacuum chamber 1 decreases in the order of Examples 3, 4, and 5 for any particle size, and a negative voltage is applied to the cathode 21. It was found that superimposing pulses is effective in reducing abnormal discharge.

本発明の一実施の形態の成膜装置の概略説明図Schematic explanatory drawing of the film-forming apparatus of one embodiment of this invention 同成膜装置のイオンビーム源の説明図Explanatory drawing of ion beam source of the same deposition equipment 実施例3乃至5の真空チャンバー内のパーティクル密度を示すグラフThe graph which shows the particle density in the vacuum chamber of Examples 3-5 従来のイオンビーム源の説明図Illustration of a conventional ion beam source

符号の説明Explanation of symbols

1 真空チャンバー
2 回転ドラム
3 第1成膜ゾーン
4 第2成膜ゾーン
5 酸化ゾーン
6 スパッタカソード
7 ターゲット
8 AC電源
9 ガス導入系
10 スパッタカソード
11 ターゲット
12 AC電源
13 ガス導入系
14 酸化プラズマ源
15 イオンビーム源
17 磁場発生手段
18 アノード
19 反応性ガス導入手段
20 磁気ギャップ
21 カソード
23 絶縁体
30 イオンビーム源
31 誘電材料
32 カソード
34 電荷
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Rotating drum 3 1st film-forming zone 4 2nd film-forming zone 5 Oxidation zone 6 Sputter cathode 7 Target 8 AC power supply 9 Gas introduction system 10 Sputter cathode 11 Target 12 AC power supply 13 Gas introduction system 14 Oxidation plasma source 15 Ion beam source 17 Magnetic field generation means 18 Anode 19 Reactive gas introduction means 20 Magnetic gap 21 Cathode 23 Insulator 30 Ion beam source 31 Dielectric material 32 Cathode 34 Charge

Claims (6)

金属製の筐体に、カソードと、磁気ギャップと、前記筐体内に磁場を生じさせる磁場発生手段と、前記筐体内に反応性ガスを導入するための反応性ガス導入手段と、前記磁気ギャップの近傍に配置されるアノードとを備えるイオンビーム源であって、前記カソードを接地電位から電気的に絶縁したことを特徴とするイオンビーム源。   A metal casing, a cathode, a magnetic gap, a magnetic field generating means for generating a magnetic field in the casing, a reactive gas introducing means for introducing a reactive gas into the casing, and a magnetic gap An ion beam source comprising an anode disposed in the vicinity of the ion beam source, wherein the cathode is electrically insulated from a ground potential. 前記カソードには負電圧が印加されることを特徴とする請求項1に記載のイオンビーム源。   The ion beam source according to claim 1, wherein a negative voltage is applied to the cathode. 前記カソード部に印加する負電圧は−10Vから−100Vであることを特徴とする請求項2に記載のイオンビーム源。   The ion beam source according to claim 2, wherein a negative voltage applied to the cathode unit is −10V to −100V. 前記負電圧はパルス状に印加されることを特徴とする請求項2又は3に記載のイオンビーム源。   4. The ion beam source according to claim 2, wherein the negative voltage is applied in a pulse shape. 請求項1乃至4の何れかに記載のイオンビーム源を真空チャンバー内に設け、前記イオンビーム源と前記真空チャンバーとを電気的に絶縁したことを特徴とする成膜装置。   5. A film forming apparatus, wherein the ion beam source according to claim 1 is provided in a vacuum chamber, and the ion beam source and the vacuum chamber are electrically insulated. 前記真空チャンバー内に、基板支持手段と、成膜手段と、酸化手段とを備えることを特徴とする請求項5に記載の成膜装置。   6. The film forming apparatus according to claim 5, further comprising a substrate supporting unit, a film forming unit, and an oxidizing unit in the vacuum chamber.
JP2006312248A 2006-11-17 2006-11-17 Ion beam source and film forming apparatus provided with the same Active JP5016899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312248A JP5016899B2 (en) 2006-11-17 2006-11-17 Ion beam source and film forming apparatus provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312248A JP5016899B2 (en) 2006-11-17 2006-11-17 Ion beam source and film forming apparatus provided with the same

Publications (2)

Publication Number Publication Date
JP2008127610A true JP2008127610A (en) 2008-06-05
JP5016899B2 JP5016899B2 (en) 2012-09-05

Family

ID=39553755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312248A Active JP5016899B2 (en) 2006-11-17 2006-11-17 Ion beam source and film forming apparatus provided with the same

Country Status (1)

Country Link
JP (1) JP5016899B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403101B1 (en) * 2012-10-17 2014-06-03 주식회사 포스코 Linear ion beam source
KR101404916B1 (en) 2012-09-06 2014-06-10 한국기계연구원 Unit for supplying gas and ion beam source having the unit
KR101447779B1 (en) * 2012-09-06 2014-10-08 한국기계연구원 Ion beam source and deposition apparatus having the ion beam source
WO2015019730A1 (en) * 2013-08-06 2015-02-12 株式会社神戸製鋼所 Film forming device
CN106663578A (en) * 2014-07-29 2017-05-10 发仁首路先株式会社 Ion source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037717A (en) * 1999-01-04 2000-03-14 Advanced Ion Technology, Inc. Cold-cathode ion source with a controlled position of ion beam
JP2001090835A (en) * 1999-09-24 2001-04-03 Teikoku Piston Ring Co Ltd Hard coating and sliding member coated therewith and its manufacturing method
JP2004269928A (en) * 2003-03-06 2004-09-30 Ulvac Japan Ltd Method and apparatus for manufacturing dielectric thin film
WO2005098081A1 (en) * 2004-04-09 2005-10-20 Ulvac, Inc. Film forming apparatus and film forming method
US6987364B2 (en) * 2003-09-03 2006-01-17 Guardian Industries Corp. Floating mode ion source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037717A (en) * 1999-01-04 2000-03-14 Advanced Ion Technology, Inc. Cold-cathode ion source with a controlled position of ion beam
JP2001090835A (en) * 1999-09-24 2001-04-03 Teikoku Piston Ring Co Ltd Hard coating and sliding member coated therewith and its manufacturing method
JP2004269928A (en) * 2003-03-06 2004-09-30 Ulvac Japan Ltd Method and apparatus for manufacturing dielectric thin film
US6987364B2 (en) * 2003-09-03 2006-01-17 Guardian Industries Corp. Floating mode ion source
WO2005098081A1 (en) * 2004-04-09 2005-10-20 Ulvac, Inc. Film forming apparatus and film forming method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404916B1 (en) 2012-09-06 2014-06-10 한국기계연구원 Unit for supplying gas and ion beam source having the unit
KR101447779B1 (en) * 2012-09-06 2014-10-08 한국기계연구원 Ion beam source and deposition apparatus having the ion beam source
KR101403101B1 (en) * 2012-10-17 2014-06-03 주식회사 포스코 Linear ion beam source
WO2015019730A1 (en) * 2013-08-06 2015-02-12 株式会社神戸製鋼所 Film forming device
JP2015030906A (en) * 2013-08-06 2015-02-16 株式会社神戸製鋼所 Film deposition apparatus
TWI554629B (en) * 2013-08-06 2016-10-21 Kobe Steel Ltd Film forming device
US9752229B2 (en) 2013-08-06 2017-09-05 Kobe Steel, Ltd. Film deposition device
CN106663578A (en) * 2014-07-29 2017-05-10 发仁首路先株式会社 Ion source

Also Published As

Publication number Publication date
JP5016899B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP3363919B2 (en) Apparatus for depositing a reactive film on a substrate
TWI597773B (en) Plasma processing device and plasma processing method
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
JP5031944B2 (en) Vacuum processing apparatus and surface treatment method
JP5016899B2 (en) Ion beam source and film forming apparatus provided with the same
WO2005121394A1 (en) Magnetron sputtering method and magnetron sputtering system
WO2006013968A1 (en) Thin-film forming apparatus
WO2010070845A1 (en) Sputtering device and sputtering method
JP2013139642A (en) Plasma treatment apparatus applied for sputtering film forming
CN111088472B (en) Coating system
JP2011124215A (en) Ion beam generator, and cleaning method thereof
KR20130073844A (en) Plasma processing devices with corrosion resistant components
JP4669831B2 (en) Ion beam source and film forming apparatus provided with the same
JP2005256024A (en) Thin film deposition apparatus and thin film deposition method
JP4471877B2 (en) Plasma surface treatment method
JP5060869B2 (en) Plasma processing equipment
JP2006299333A (en) Method for coating inner wall surface of extra-fine tube and coating apparatus
JP2010024532A (en) Magnetron sputtering apparatus, film-forming method, and method for manufacturing optical component
JP4171590B2 (en) Etching method
JP6497709B2 (en) Plasma CVD apparatus and method for manufacturing magnetic recording medium
JP6019343B2 (en) Plasma CVD apparatus, method for manufacturing magnetic recording medium, and film forming method
JP2017002340A (en) Dlc film coating apparatus and method of coating object to be coated by using dlc film coating apparatus
JP5156041B2 (en) Thin film formation method
JP6432884B2 (en) Carbon film manufacturing method
JP2011017088A (en) Plasma treatment apparatus for applying sputtering film deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5016899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250