JP2009090639A - Radio-wave-transmitting decorative member - Google Patents

Radio-wave-transmitting decorative member Download PDF

Info

Publication number
JP2009090639A
JP2009090639A JP2008194740A JP2008194740A JP2009090639A JP 2009090639 A JP2009090639 A JP 2009090639A JP 2008194740 A JP2008194740 A JP 2008194740A JP 2008194740 A JP2008194740 A JP 2008194740A JP 2009090639 A JP2009090639 A JP 2009090639A
Authority
JP
Japan
Prior art keywords
decorative member
radio wave
light reflecting
layer
wave transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008194740A
Other languages
Japanese (ja)
Other versions
JP5017207B2 (en
Inventor
Toshiyuki Kawaguchi
利行 川口
Kazutoki Tawara
和時 田原
Tsutomu Saga
努 佐賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2008194740A priority Critical patent/JP5017207B2/en
Priority to DE112008002496.0T priority patent/DE112008002496B4/en
Priority to US12/678,375 priority patent/US9187820B2/en
Priority to PCT/JP2008/066833 priority patent/WO2009038116A1/en
Priority to CN2008801073587A priority patent/CN101802248B/en
Publication of JP2009090639A publication Critical patent/JP2009090639A/en
Application granted granted Critical
Publication of JP5017207B2 publication Critical patent/JP5017207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio-wave-transmitting decorative member which has a radio-wave-transmitting property and metallic luster like a mirror finished surface, hardly loses the metallic luster and can be manufactured inexpensively. <P>SOLUTION: The radio-wave-transmitting decorative member 10 comprises: a base 12; and a light reflection layer 14 which is disposed on the base 12 and is made of a semiconductor substance, wherein, as the light reflection layer 14, a vapor deposition film formed by physical deposition of the semiconductor substance is preferably used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属調光沢を有する電波透過性装飾部材に関する。   The present invention relates to a radio wave transmitting decorative member having a metallic luster.

携帯電話の筐体、ボタン;時計の筐体;自動車のフロントグリル、バンパ等には、意匠性の点から、金属調の装飾部材、特に、鏡面のような金属光沢を有する装飾部材が多用されている。   From the viewpoint of design, metal-like decorative members, especially mirror-like decorative members with a metallic luster, are frequently used for mobile phone cases, buttons; watch cases; automobile front grills, bumpers, etc. ing.

そして、該装飾部材としては、下記の理由等から、電波(マイクロ波等。)を透過し、かつ電波に影響を及ぼさない装飾部材が要求されている。
(i)携帯電話の筐体内部には、電波を送受信するアンテナが配置されている。
(ii)標準電波を受信して誤差を自動修正する機能を持つ電波時計の筐体内部には、電波を受信するアンテナが配置されている。
(iii)障害物の検知、車間距離の測定等を行うレーダ装置を搭載する自動車では、該レーダ装置のアンテナがフロントグリルまたはバンパの近傍に配置されている。
(iv)通信機器等で扱う電波の周波数が100GHz程度の高い周波数帯域にシフトしており、装飾部材によって電波が影響を受けやすく、該機器において機能障害が発生しやすい。
As the decorative member, a decorative member that transmits radio waves (such as microwaves) and does not affect the radio waves is required for the following reasons.
(I) An antenna for transmitting and receiving radio waves is disposed inside the casing of the mobile phone.
(Ii) An antenna for receiving radio waves is disposed inside a housing of a radio clock having a function of receiving standard radio waves and automatically correcting errors.
(Iii) In an automobile equipped with a radar device that detects an obstacle, measures a distance between vehicles, and the like, an antenna of the radar device is disposed in the vicinity of a front grill or a bumper.
(Iv) The frequency of the radio wave handled by the communication device or the like is shifted to a high frequency band of about 100 GHz, and the radio wave is easily affected by the decorative member, and the functional failure is likely to occur in the device.

電波透過性を有する金属調の装飾部材としては、下記のものが提案されている。
(1)基体上に、インジウム、インジウム合金、スズまたはスズ合金の蒸着膜を有する成形品(特許文献1)。
(2)基材上に、インジウム/酸化インジウム複合蒸着膜を有する転写材(特許文献2)。
(3)基材上に、細片状の光輝材が分散した塗膜を有する装飾製品(特許文献3)。
(4)基材上に、開口部が設けられた反射膜(金属)を有する装飾品(特許文献4)。
The following are proposed as metallic decorative members having radio wave permeability.
(1) A molded article having a deposited film of indium, an indium alloy, tin, or a tin alloy on a substrate (Patent Document 1).
(2) A transfer material having an indium / indium oxide composite deposited film on a substrate (Patent Document 2).
(3) A decorative product having a coating film on which a strip-like glittering material is dispersed on a substrate (Patent Document 3).
(4) A decorative article having a reflective film (metal) provided with an opening on a substrate (Patent Document 4).

インジウム、スズ、鉛、亜鉛、ビスマス、アンチモン等の金属蒸着膜においては、該金属が微細な独立した島として存在しているため、島と島との間の、金属の存在しない間隙を電波が通過できることが知られている。そのため、(1)、(2)の装飾部材は、電波透過性を有し、かつ金属光沢を有する。   In metal deposition films such as indium, tin, lead, zinc, bismuth, and antimony, the metal exists as fine independent islands, so that radio waves pass through the gap between the islands where no metal exists. It is known that it can pass. Therefore, the decorative members of (1) and (2) have radio wave transparency and metallic luster.

しかし、(1)、(2)の装飾部材において、充分な金属光沢を得るために金属蒸着膜を厚くすると、島同士が部分的に連結し、良導体となるネットワークが形成されるため、電波の周波数によっては反射または吸収が起こる。
また、スズは、酸化、塩化等を起こしやすく、経時的に金属光沢が失われる。一方、インジウムは、たいへん高価である。
However, in the decorative members of (1) and (2), if the metal vapor deposition film is made thick in order to obtain a sufficient metallic luster, the islands are partially connected to form a good conductor network. Depending on the frequency, reflection or absorption occurs.
In addition, tin is liable to oxidize, chlorinate, and lose its metallic luster over time. On the other hand, indium is very expensive.

(3)の装飾部材は、塗膜に光揮材を分散させたものであるため、鏡面のような金属光沢を有するものではない。
(4)の装飾部材は、光反射層の開口部の大きさに対応した特定の周波数の電波しか通過できない。
特開2005−249773号公報 特許第3414717号公報 特開2006−282886号公報 特開2006−276008号公報
Since the decorative member (3) is obtained by dispersing a volatile material in a coating film, it does not have a metallic luster like a mirror surface.
The decorative member (4) can pass only radio waves having a specific frequency corresponding to the size of the opening of the light reflecting layer.
JP 2005-249773 A Japanese Patent No. 3414717 JP 2006-282886 A JP 2006-276008 A

本発明は、電波透過性および鏡面のような金属調光沢を有し、該金属調光沢が失われにくく、かつ低コストである電波透過性装飾部材を提供する。   The present invention provides a radio wave transmitting decorative member that has radio wave permeability and metallic gloss like a mirror surface, is less likely to lose the metallic gloss, and is low in cost.

本発明の電波透過性装飾部材は、基体と、該基体上に設けられた、半導体物質からなる光反射層とを有することを特徴とする。
前記光反射層は、半導体物質の物理的蒸着によって形成された蒸着膜であることが好ましい。
前記光反射層には、前記半導体物質が存在しない間隙が形成されていないことが好ましい。
The radio wave transmitting decorative member of the present invention includes a base and a light reflection layer made of a semiconductor material provided on the base.
The light reflecting layer is preferably a deposited film formed by physical vapor deposition of a semiconductor material.
It is preferable that no gap in which the semiconductor material does not exist is formed in the light reflecting layer.

前記半導体物質は、シリコンまたはゲルマニウムであることが好ましい。
前記基体は、有機高分子の成形体であることが好ましい。
光反射層の厚さは、10〜500nmであることが好ましい。
The semiconductor material is preferably silicon or germanium.
The substrate is preferably an organic polymer molded body.
The thickness of the light reflecting layer is preferably 10 to 500 nm.

本発明の電波透過性装飾部材は、前記基体と前記光反射層との間に設けられた、白色顔料を含むマスク層を有していてもよい。
本発明の電波透過性装飾部材は、前記基体と前記光反射層との間に設けられた接着促進層を有していてもよい。
The radio wave transmitting decorative member of the present invention may have a mask layer including a white pigment provided between the base and the light reflecting layer.
The radio wave transmitting decorative member of the present invention may have an adhesion promoting layer provided between the base and the light reflecting layer.

本発明の電波透過性装飾部材は、電波透過性および鏡面のような金属調光沢を有し、該金属調光沢が失われにくく、かつ低コストである。   The radio wave transmitting decorative member of the present invention has radio wave transparency and a metallic luster such as a mirror surface, the metallic luster is not easily lost, and the cost is low.

本発明における光とは、可視光を意味し、電波とは、周波数が10MHz〜1000GHzの電磁波(サブミリ波〜マイクロ波)を意味する。   The light in the present invention means visible light, and the radio wave means an electromagnetic wave (submillimeter wave to microwave) having a frequency of 10 MHz to 1000 GHz.

<電波透過性装飾部材>
図1は、本発明の電波透過性装飾部材の一例を示す断面図である。電波透過性装飾部材10は、基体12と、基体12上に設けられた光反射層14とを有する。
<Radio wave transmitting decorative member>
FIG. 1 is a cross-sectional view showing an example of a radio wave transmitting decorative member of the present invention. The radio wave transmitting decorative member 10 includes a base 12 and a light reflection layer 14 provided on the base 12.

(基体)
基体としては、電波透過性の基体を用いる。電波透過性の基体としては、絶縁性の有機材料または無機材料からなる絶縁性基体が挙げられる。絶縁性とは、表面抵抗率が10Ω以上であることを意味し、表面抵抗率は10Ω以上が好ましい。基体の表面抵抗率は、JIS K7194に記載の4探針法により測定する。
基体の形状としては、フィルム、シート、立体成形体等が挙げられる。
(Substrate)
As the substrate, a radio wave transmitting substrate is used. Examples of the radio wave transmitting base include an insulating base made of an insulating organic material or inorganic material. Insulating means that the surface resistivity is 10 6 Ω or more, and the surface resistivity is preferably 10 8 Ω or more. The surface resistivity of the substrate is measured by a four-probe method described in JIS K7194.
Examples of the shape of the substrate include a film, a sheet, and a three-dimensional molded body.

基体の材料としては、成形加工性の点から、有機材料が好ましい。
有機材料としては、ポリオレフィン(ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体等。)、環状ポリオレフィン、変性ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミド(ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン6−12、ナイロン6−66等。)、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリ−(4−メチルペンテン−1)、アイオノマー、アクリル系樹脂、ポリメチルメタクリレート、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、アクリロニトリル−スチレン共重合体(AS樹脂)、ブタジエン−スチレン共重合体、ポリオキシメチレン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンテレフタレート等。)、ポリエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアセタール、ポリフェニレンオキシド、変性ポリフェニレンオキシド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、芳香族ポリエステル(液晶ポリマー)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、その他フッ素系樹脂、熱可塑性エラストマー(スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等。)、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、シリコーン系樹脂、ウレタン系樹脂、ポリパラキシリレン樹脂、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、アクリロニトリル−ブタジエン共重合体ゴム、スチレン−ブタジエン共重合体ゴム、スチレン−イソプレン共重合体ゴム、スチレン−ブタジエン−イソプレン共重合体ゴム、ジエン系ゴムの水素添加物、飽和ポリオレフィンゴム(エチレン・プロピレン共重合体等のエチレン・α−オレフィン共重合体等。)、エチレン−プロピレン−ジエン共重合体、α−オレフィン−ジエン共重合体、ウレタンゴム、シリコーンゴム、ポリエーテル系ゴム、アクリルゴム等が挙げられる。
As the base material, an organic material is preferable from the viewpoint of moldability.
Organic materials include polyolefin (polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, etc.), cyclic polyolefin, modified polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide (nylon 6, Nylon 46, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, nylon 6-12, nylon 6-66, etc.), polyimide, polyamideimide, polycarbonate, poly- (4-methylpentene-1), ionomer , Acrylic resin, polymethyl methacrylate, acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-styrene copolymer (AS resin), butadiene-styrene copolymer, polyoxymethyl , Polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyester (polyethylene terephthalate, polybutylene terephthalate, polycyclohexane terephthalate, etc.), polyether, polyether ketone, polyether ether ketone, polyether imide, polyacetal, polyphenylene oxide, Modified polyphenylene oxide, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, aromatic polyester (liquid crystal polymer), polytetrafluoroethylene, polyvinylidene fluoride, other fluororesins, thermoplastic elastomers (styrene, polyolefin, poly Vinyl chloride, polyurethane, polyester, polyamide, polybutadiene, trans polyisopropyl Epoxy resin, phenolic resin, urea resin, melamine resin, unsaturated polyester, silicone resin, urethane resin, polyparaxylylene resin, natural rubber, polybutadiene rubber , Polyisoprene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, styrene-isoprene copolymer rubber, styrene-butadiene-isoprene copolymer rubber, hydrogenated diene rubber, saturated polyolefin rubber (Ethylene / α-olefin copolymer such as ethylene / propylene copolymer), ethylene-propylene-diene copolymer, α-olefin-diene copolymer, urethane rubber, silicone rubber, polyether rubber, An acrylic rubber etc. are mentioned.

有機材料は、1種を単独で用いてもよく、2種以上を組み合わせて共重合体、ブレンド、ポリマーアロイ、積層体等として用いてもよい。
有機材料は、必要に応じて添加剤を含んでいてもよい。添加剤としては、補強材、酸化防止剤、紫外線吸収剤、滑剤、防曇剤、防霧剤、可塑剤、顔料、近赤外吸収剤、帯電防止剤、着色剤等が挙げられる。
An organic material may be used individually by 1 type, and may be used as a copolymer, a blend, a polymer alloy, a laminated body, etc. combining 2 or more types.
The organic material may contain an additive as necessary. Examples of additives include reinforcing materials, antioxidants, ultraviolet absorbers, lubricants, antifogging agents, antifogging agents, plasticizers, pigments, near infrared absorbers, antistatic agents, and coloring agents.

無機材料としては、ガラス(珪酸塩ガラス、石英ガラス等。)、金属酸化物(Al、BeO、MgO、ZrO、Cr等。)、金属窒化物(AlN、Si、TiN等。)、金属炭化物(TiC等。)、金属窒化物(MoB、TiB等。)、金属ケイ化物(MoSi、WSi等。)等のセラミックスが挙げられる。
無機材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the inorganic material include glass (silicate glass, quartz glass, etc.), metal oxide (Al 2 O 3 , BeO, MgO, ZrO 2 , Cr 2 O 3, etc.), metal nitride (AlN, Si 3 N, etc.). 4, TiN, or the like.), metal carbides (TiC, and the like.), a metal nitride (MoB 2, Ti 2 B, and the like.), metal silicide (MoSi 2, W 3 Si 2 and so on.) include ceramics such.
An inorganic material may be used individually by 1 type, and may be used in combination of 2 or more type.

基体の平均表面粗さは、0.5μm以下が好ましく、0.1μm以下がより好ましい。基体の平均表面粗さが0.5μm以下であれば、光反射層を薄くしても、光反射層が基体の表面に追従するため、鏡面のような金属調光沢が充分に得られる。
基体の平均表面粗さは、JIS B0601−2001の算術平均粗さRaである。
The average surface roughness of the substrate is preferably 0.5 μm or less, and more preferably 0.1 μm or less. If the average surface roughness of the substrate is 0.5 μm or less, even if the light reflecting layer is made thin, the light reflecting layer follows the surface of the substrate, so that a metallic gloss like a mirror surface can be obtained sufficiently.
The average surface roughness of the substrate is the arithmetic average roughness Ra of JIS B0601-2001.

(光反射層)
光反射層は、半導体物質からなる層である。
半導体物質としては、元素半導体物質または化合物半導体物質が挙げられる。
元素半導体物質としては、シリコン、ゲルマニウムが挙げられ、シリコンとゲルマニウムを同時に用いても構わない。常温で安定的に半導体特性を示し、可視光域の吸収が小さい点から、ゲルマニウムが好ましい。
化合物半導体物質としては、SiGe、GaAs、GaSb、InP、InAs、InSb、PbS、PbSe、PbTe等のバンドギャップが赤外線域にある半導体物質が挙げられ、可視光域の吸収が小さいものが好ましい。
(Light reflecting layer)
The light reflecting layer is a layer made of a semiconductor material.
Examples of the semiconductor material include elemental semiconductor materials and compound semiconductor materials.
Examples of the elemental semiconductor material include silicon and germanium, and silicon and germanium may be used at the same time. Germanium is preferred because it exhibits semiconductor characteristics stably at room temperature and has low absorption in the visible light region.
Examples of the compound semiconductor material include semiconductor materials having a band gap in the infrared region, such as SiGe, GaAs, GaSb, InP, InAs, InSb, PbS, PbSe, and PbTe, and those having low absorption in the visible light region are preferable.

半導体物質は、光反射層の表面抵抗率を高く維持できる限りは、ドーパントとならない不純物を含んでいてもよい。
半導体物質は、ドーパント(ボロン、リン、砒素、アンチモン等。)をできるだけ含まないことが好ましい。ドーパントの量は1ppm以下が好ましく、10ppb以下がより好ましい。
The semiconductor material may contain impurities that do not become dopants as long as the surface resistivity of the light reflecting layer can be maintained high.
The semiconductor material preferably contains as little dopant (boron, phosphorus, arsenic, antimony, etc.) as possible. The amount of the dopant is preferably 1 ppm or less, and more preferably 10 ppb or less.

光反射層の厚さは、10〜500nmが好ましく、50〜200nmがさらに好ましい。光反射層の厚さが10nm以上であれば、光が透過しにくくなり、金属調光沢が充分に得られる。光反射層の厚さが500nm以下であれば、不純物による導電性の上昇が抑えられ、充分な電波透過性を維持できる。また、内部応力の上昇が抑えられ、装飾部材の反り、変形、クラック、剥離等が抑えられる。
光反射層の厚さは、光反射層の断面の高分解能顕微鏡像から測定できる。
10-500 nm is preferable and, as for the thickness of a light reflection layer, 50-200 nm is more preferable. If the thickness of the light reflecting layer is 10 nm or more, it becomes difficult for light to pass therethrough, and a sufficient metallic gloss can be obtained. If the thickness of the light reflection layer is 500 nm or less, an increase in conductivity due to impurities can be suppressed, and sufficient radio wave transmission can be maintained. In addition, an increase in internal stress is suppressed, and warping, deformation, cracking, peeling, and the like of the decorative member are suppressed.
The thickness of the light reflecting layer can be measured from a high resolution microscopic image of the cross section of the light reflecting layer.

光反射層の表面抵抗率は、10Ω以上が好ましい。光反射層の表面抵抗率が10Ω以上であれば、充分な電波透過性を維持できる。
光反射層の表面抵抗率は、JIS K7194に記載の4探針法により測定する。
The surface resistivity of the light reflecting layer is preferably 10 6 Ω or more. If the surface resistivity of the light reflection layer is 10 6 Ω or more, sufficient radio wave permeability can be maintained.
The surface resistivity of the light reflecting layer is measured by a four-probe method described in JIS K7194.

光反射層の平均表面粗さは、0.05μm以下が好ましい。光反射層の平均表面粗さが0.05μm以下であれば、乱反射が抑えられ、充分な金属調光沢が得られる。光反射層の平均表面粗さの下限は、研磨加工で実現可能な0.1nmとする。
光反射層の平均表面粗さは、JIS B0601−2001の算術平均粗さRaである。具体的には、図2に示すように、原子間力顕微鏡により表面形状を測定し、平均線の方向に基準長さだけ抜き取り、抜き取り部分の平均線から粗さ曲線までの偏差の絶対値を合計し平均した値(算術平均粗さRa)を求める。
The average surface roughness of the light reflecting layer is preferably 0.05 μm or less. When the average surface roughness of the light reflecting layer is 0.05 μm or less, irregular reflection is suppressed and sufficient metallic gloss is obtained. The lower limit of the average surface roughness of the light reflecting layer is 0.1 nm that can be realized by polishing.
The average surface roughness of the light reflecting layer is the arithmetic average roughness Ra of JIS B0601-2001. Specifically, as shown in FIG. 2, the surface shape is measured with an atomic force microscope, the reference length is extracted in the direction of the average line, and the absolute value of the deviation from the average line of the extracted portion to the roughness curve is obtained. A summed and averaged value (arithmetic mean roughness Ra) is obtained.

光反射層は、例えば、半導体物質の物理的蒸着によって形成される。
物理的蒸着法は、真空にした容器の中で蒸発材料(半導体物質)を何らかの方法で気化させ、気化した蒸発材料を近傍に置いた基体上に堆積させて薄膜を形成する方法であり、蒸発材料の気化方法の違いで、蒸発系とスパッタリング系とに分けられる。蒸発系としては、EB蒸着、イオンプレーティング等が挙げられ、スパッタリング系としては、RF(高周波)スパッタリング、マグネトロンスパッタリング、対向ターゲット型マグネトロンスパッタリング等が挙げられる。
The light reflecting layer is formed, for example, by physical vapor deposition of a semiconductor material.
The physical vapor deposition method is a method in which a vaporized material (semiconductor substance) is vaporized by some method in a vacuumed container, and the vaporized vaporized material is deposited on a substrate placed nearby to form a thin film. Depending on the material vaporization method, it can be divided into an evaporation system and a sputtering system. Examples of the evaporation system include EB deposition and ion plating. Examples of the sputtering system include RF (radio frequency) sputtering, magnetron sputtering, and counter target type magnetron sputtering.

EB蒸着法は、膜がポーラスになりやすく膜強度が不足する傾向があるが、基体のダメージが少ないとう特徴がある。イオンプレーティグによれば、付着力の強い膜を得ることができるので好ましい。マグネトロンスパッタリングは、膜の成長速度が速く、対向ターゲット型マグネトロンスパッタリングは、基体にプラズマダメージを与えることなく薄膜を生成することができ、RFスパッタリングでは抵抗の高いターゲット(蒸発材料)を用いることができるので好ましい。   The EB vapor deposition method tends to be porous, and the film strength tends to be insufficient. Ion plating is preferable because a film having strong adhesion can be obtained. Magnetron sputtering has a high film growth rate, opposed target type magnetron sputtering can generate a thin film without causing plasma damage to the substrate, and RF sputtering can use a target with high resistance (evaporation material). Therefore, it is preferable.

図3は、シリコンを用いたRFスパッタリングによって形成された光反射層の表面の高分解能透過型電子顕微鏡像であり、図4は、該光反射層の断面の高分解能透過型電子顕微鏡像である。従来のインジウム、スズ等を用いた場合に見られる独立した島(微小クラスター)の集合体とは異なり、半導体物質が存在しない間隙が形成されておらず、均質な非晶質構造を有した連続した層となっている。   FIG. 3 is a high-resolution transmission electron microscope image of the surface of the light reflection layer formed by RF sputtering using silicon, and FIG. 4 is a high-resolution transmission electron microscope image of the cross section of the light reflection layer. . Unlike conventional aggregates of independent islands (microclusters) seen when using indium, tin, etc., there are no gaps where no semiconductor material exists, and there is a continuous amorphous structure. It has become a layer.

(マスク層)
図5に示すように、電波透過性装飾部材10は、基体12と光反射層14との間に、白色顔料を含むマスク層16を有していてもよい。
光反射層が薄い場合、光の一部が反射することなく透過するため、基体と光反射層との間に電波透過性のマスク層を設けることで、装飾部材の反射率を調整できる。マスク層の反射率を高めることにより、装飾部材の反射率は向上し、明度の高い金属調光沢が得られる。
(Mask layer)
As shown in FIG. 5, the radio wave transmitting decorative member 10 may have a mask layer 16 containing a white pigment between the base 12 and the light reflecting layer 14.
When the light reflecting layer is thin, part of the light is transmitted without being reflected. Therefore, the reflectance of the decorative member can be adjusted by providing a radio wave transmitting mask layer between the base and the light reflecting layer. By increasing the reflectivity of the mask layer, the reflectivity of the decorative member is improved and a metallic gloss with high brightness is obtained.

白色顔料としては、酸化チタン、酸化マグネシウム等が挙げられる。
マスク層の形成方法としては、白色顔料を含む塗料を塗布する方法;白色顔料を用いた物理的蒸着による方法等が挙げられる。
Examples of white pigments include titanium oxide and magnesium oxide.
Examples of the method for forming the mask layer include a method of applying a paint containing a white pigment; a method of physical vapor deposition using a white pigment, and the like.

(接着促進層)
本発明の電波透過性装飾部材は、基体と光反射層(またはマスク層)との密着性を向上させるため、基体と光反射層(またはマスク層)との間に接着促進層(図示略)を有していてもよい。また、必要に応じて、接着促進層を形成する前に、基体の表面に酸化処理(酸素プラズマ処理等。)を施してもよい。
接着促進層としては、シランカップリング層、金属層、親水層等が挙げられる。
(Adhesion promoting layer)
The radio wave transmitting decorative member of the present invention has an adhesion promoting layer (not shown) between the substrate and the light reflecting layer (or mask layer) in order to improve the adhesion between the substrate and the light reflecting layer (or mask layer). You may have. Further, if necessary, an oxidation treatment (oxygen plasma treatment or the like) may be performed on the surface of the substrate before forming the adhesion promoting layer.
Examples of the adhesion promoting layer include a silane coupling layer, a metal layer, and a hydrophilic layer.

シランカップリング層は、シランカップリング剤からなる層である。シランカップリング剤としては、シアノエチルトリメトキシシラン、シアノプロピルトリメトキシシラン等が挙げられる。
金属層は、厚さ数原子の金属からなる層である。金属としては、ニッケル、クロム、アルミニウム、チタン等、有機材料と親和性のある金属が挙げられ、基体と同様の絶縁性が必要である。
親水層としては、イトロ処理等によって形成された酸化ケイ素膜等が挙げられる。
The silane coupling layer is a layer made of a silane coupling agent. Examples of the silane coupling agent include cyanoethyltrimethoxysilane and cyanopropyltrimethoxysilane.
The metal layer is a layer made of a metal having a thickness of several atoms. Examples of the metal include metals having an affinity for organic materials such as nickel, chromium, aluminum, and titanium, and the same insulating property as that of the substrate is necessary.
Examples of the hydrophilic layer include a silicon oxide film formed by ittro treatment or the like.

(保護層)
必要に応じて、光反射層の表面に保護層(図示略)を設けてもよい。
保護層としては、シリカ等からなるトップコート層等が挙げられる。
(Protective layer)
A protective layer (not shown) may be provided on the surface of the light reflecting layer as necessary.
Examples of the protective layer include a topcoat layer made of silica or the like.

以上説明した本発明の電波透過性装飾部材にあっては、基体上に半導体物質からなる光反射層を有するため、電波透過性および鏡面のような金属調光沢を有する。また、スズ等の卑金属単体に比べて酸化、塩化等を起こしにくい、シリコンまたはゲルマニウムのような半導体物質を用いているため、経時的に金属調光沢が失われにくい。また、インジウム等のレアメタル単体に比べて安価な、シリコンまたはゲルマニウムのような半導体物質を用いているため、低コストである。   The radio wave transmitting decorative member of the present invention described above has a light reflection layer made of a semiconductor material on the substrate, and thus has radio wave transparency and metallic gloss like a mirror surface. In addition, since a semiconductor material such as silicon or germanium that is less prone to oxidation, chlorination or the like than a base metal such as tin is used, the metallic luster is hardly lost over time. Further, since a semiconductor material such as silicon or germanium, which is cheaper than a rare metal alone such as indium, is used, the cost is low.

シリコンまたはゲルマニウムのような半導体物質が電波を透過させ、金属調光沢を示す理由は、以下のように考えられる。
金属の特徴である自由電子は電気伝導性をもたらす。また、電磁波(光、電波)が金属の中に入ろうとすると、自由電子が動いて強い電子分極が起き、入ってきた電磁波の電界とは逆の電束が誘起されるため、電磁波が金属の中に入りにくく、電磁波は反射し透過できない。また、可視光領域にて高い反射率を有するため、金属光沢と認識される。
一方、半導体物質の場合、わずかな数の自由電子しかなく、金属とは異なり電波は反射されず透過できる。金属調光沢は、自由電子によるものではなく、バンド間の直接遷移による強い吸収が可視光領域に存在することによって、強い電子分極が起き、高い屈折率を持ち、それゆえ高い反射率を持つためと考えられている。
The reason why a semiconductor material such as silicon or germanium transmits radio waves and exhibits metallic luster is considered as follows.
Free electrons, which are characteristic of metals, provide electrical conductivity. Also, when electromagnetic waves (light, radio waves) try to enter the metal, free electrons move, causing strong electronic polarization, and an electric flux opposite to the electric field of the incoming electromagnetic waves is induced. It is difficult to enter inside, and electromagnetic waves cannot be reflected and transmitted. Moreover, since it has a high reflectance in the visible light region, it is recognized as metallic luster.
On the other hand, in the case of a semiconductor material, there are only a few free electrons, and unlike a metal, radio waves can be transmitted without being reflected. Metallic luster is not due to free electrons, but due to the presence of strong absorption in the visible light region due to the direct transition between bands, strong electronic polarization occurs and has a high refractive index and hence a high reflectivity. It is believed that.

(電波透過性)
同軸管タイプシールド効果測定システム(キーコム社製、S−39D、ASTM D4935準拠)を用い、外部胴体内径39mmの同軸管内に円盤上試料を置き、同軸管両端に接続されたベクトルネットワークアナライザー(アンリツ社製、37247C)により透過減衰量(S21)および反射減衰量(S11)を求めた。透過減衰量が0dBに近いほど、電波透過性が優れている。
(Radio wave transmission)
Using a coaxial tube type shield effect measurement system (Keycom Corp., S-39D, ASTM D4935 compliant), a sample on a disk is placed in a coaxial tube with an outer body inner diameter of 39 mm and connected to both ends of the coaxial tube (Anritsu Corporation) Manufactured, 37247C), the transmission attenuation (S21) and the reflection attenuation (S11) were obtained. The closer the transmission attenuation is to 0 dB, the better the radio wave transmission.

(ミリ波斜入射透過性)
水平方式透過減衰量測定装置(キーコム社製、入射角度調整可)の2つのレンズアンテナ間にサンプルを置き、レンズアンテナに接続されたスカラーネットワークアナライザ(Wiltron54147A(逓倍器使用))により、測定周波数76GHzにおいて、サンプルの角度を調整して−45度から45度の斜入射透過減衰量を求めた。透過減衰量が0dBに近いほど、電波透過性が優れている。
(Millimeter wave oblique transmission)
A sample is placed between two lens antennas of a horizontal transmission attenuation measurement device (manufactured by Keycom, Incident angle adjustable), and a measurement frequency of 76 GHz is measured by a scalar network analyzer (Witron 54147A (using a multiplier)) connected to the lens antenna. Then, the angle of the sample was adjusted to obtain an oblique incident transmission attenuation amount of −45 degrees to 45 degrees. The closer the transmission attenuation is to 0 dB, the better the radio wave transmission.

(反射率)
反射率は、JIS Z 8722の条件d(n−D)による、正反射率を含めた拡散反射率を言い、短波長側が360nm〜400nm、長波長側が760nm〜830nmである可視光線領域の平均値であって、積分球を用い光沢成分の正反射光を含めて測定した。
具体的には、装飾部材の反射率を、紫外可視近赤外分光光度計(日本分光社製、V−570)を用い、積分球を用いて光沢成分の正反射光を含めて測定した。波長380nmから780nmまでの測定点401箇所の平均を求めた。
(Reflectance)
The reflectance refers to diffuse reflectance including regular reflectance according to JIS Z 8722 condition d (n-D). The average value in the visible light region where the short wavelength side is 360 nm to 400 nm and the long wavelength side is 760 nm to 830 nm. The measurement was performed using an integrating sphere including the specular reflection light of the gloss component.
Specifically, the reflectance of the decorative member was measured by using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corp., V-570), including specular reflection light of the gloss component, using an integrating sphere. The average of 401 measurement points from wavelengths 380 nm to 780 nm was determined.

(透過率)
装飾部材の透過率を、紫外可視近赤外分光光度計(日本分光社製、V−570)を用い、積分球を用いて測定した。
(Transmittance)
The transmittance of the decorative member was measured using an integrating sphere using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, V-570).

(光反射層の厚さ)
透過型電子顕微鏡(日本電子社製、JEM―4000EX)を用い、光反射層の断面を観察し、5箇所の光反射層の厚さを測定し、平均した。
(Light reflecting layer thickness)
Using a transmission electron microscope (manufactured by JEOL Ltd., JEM-4000EX), the cross section of the light reflecting layer was observed, and the thicknesses of the five light reflecting layers were measured and averaged.

(平均表面粗さ)
走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー社製、SPA300)を用い、原子間力顕微鏡DFMモードで、光反射層の表面1μm□を走査し、表面形状の像を作成し、平均表面粗さ(算術平均粗さRa)を求めた。
(Average surface roughness)
Using a scanning probe microscope (SII NanoTechnology Corp., SPA300), the surface of the light reflecting layer is scanned with an atomic force microscope in DFM mode, an image of the surface shape is created, and the average surface roughness ( Arithmetic average roughness Ra) was determined.

(表面抵抗率)
光反射層の表面抵抗率は、抵抗率計(ダイアインスツルメント社製、ロレスタGP MCP−T600型、JIS K7194準拠)を用い、直列4探針プローブ(ASP)を試料上に置き測定した。測定電圧は10Vとした。
(Surface resistivity)
The surface resistivity of the light reflection layer was measured by using a resistivity meter (manufactured by Dia Instruments, Loresta GP MCP-T600 type, JIS K7194 compliant) with a series 4-probe probe (ASP) placed on the sample. The measurement voltage was 10V.

(内部応力)
厚さ0.3mmのポリカーボネートシート(大きさ100mm角)上に光反射層を形成した後、該シートを定盤の上に載せ、盛り上がったシートの中央部と定盤との隙間を定規で測定した。該隙間を内部応力の指針とした。
(Internal stress)
After forming a light reflecting layer on a polycarbonate sheet (size: 100 mm square) with a thickness of 0.3 mm, place the sheet on a surface plate, and measure the gap between the center of the raised sheet and the surface plate with a ruler. did. The gap was used as a guideline for internal stress.

(密着性)
光反射層の密着性については、JIS K5400に準じた碁盤目試験にて評価した。
(Adhesion)
The adhesion of the light reflecting layer was evaluated by a cross cut test according to JIS K5400.

〔実施例1〕
ターゲットとして、ボロンドープされたシリコン(ボロンドープ量:約1ppb)を用意した。
RFスパッタ装置(芝浦メカトロニクス社製、CFS−4ES)のカソードとしてターゲットを装着し、真空チャンバ内を真空にした後、真空チャンバ内にアルゴンガスを導入し、RFスパッタリングにて厚さ0.3mmのポリカーボネートシート上に、ターゲットの半導体物質を物理的に蒸着させ、装飾部材を得た。
[Example 1]
As a target, boron-doped silicon (boron doping amount: about 1 ppb) was prepared.
A target is mounted as a cathode of an RF sputtering apparatus (Shibaura Mechatronics Co., Ltd., CFS-4ES), the inside of the vacuum chamber is evacuated, argon gas is introduced into the vacuum chamber, and a thickness of 0.3 mm is formed by RF sputtering. A target semiconductor material was physically vapor-deposited on a polycarbonate sheet to obtain a decorative member.

該装飾部材について、光反射層の厚さ、平均表面粗さ、1GHzおよび3GHzにおける透過減衰量(S21)、反射率、表面抵抗率、内部応力を測定した。また、該装飾部材の外観を観察した。結果を表1に示す。
また、該装飾部材の透過減衰量(S21)および反射減衰量(S11)のグラフを図6に示す。
また、該装飾部材の反射率のグラフ(マスク層なし)を図7に示し、該装飾部材の透過率のグラフ(マスク層なし)を図8に示す。
For the decorative member, the thickness of the light reflection layer, the average surface roughness, the transmission attenuation (S21) at 1 GHz and 3 GHz, the reflectance, the surface resistivity, and the internal stress were measured. Further, the appearance of the decorative member was observed. The results are shown in Table 1.
Further, a graph of the transmission attenuation amount (S21) and the reflection attenuation amount (S11) of the decorative member is shown in FIG.
FIG. 7 shows a reflectance graph (without a mask layer) of the decorative member, and FIG. 8 shows a transmittance graph (without a mask layer) of the decorative member.

〔実施例2〜3〕
光反射層の厚さが表1に示す厚さとなるように、RFスパッタリングの条件を変更した以外は、実施例1と同様にして装飾部材を得た。
該装飾部材について、光反射層の厚さ、平均表面粗さ、1GHzおよび3GHzにおける透過減衰量(S21)、反射率、表面抵抗率、内部応力を測定した。また、該装飾部材の外観を観察した。結果を表1に示す。
[Examples 2-3]
A decorative member was obtained in the same manner as in Example 1 except that the RF sputtering conditions were changed so that the thickness of the light reflecting layer was as shown in Table 1.
For the decorative member, the thickness of the light reflection layer, the average surface roughness, the transmission attenuation (S21) at 1 GHz and 3 GHz, the reflectance, the surface resistivity, and the internal stress were measured. Further, the appearance of the decorative member was observed. The results are shown in Table 1.

〔比較例1〕
ターゲットとして、アルミニウム単体を用いた以外は、実施例1と同様にして装飾部材を得た。
該装飾部材について、光反射層の厚さ、平均表面粗さ、1GHzおよび3GHzにおける透過減衰量(S21)、反射率、表面抵抗率、内部応力を測定した。また、該装飾部材の外観を観察した。結果を表1に示す。
[Comparative Example 1]
A decorative member was obtained in the same manner as in Example 1 except that aluminum alone was used as a target.
For the decorative member, the thickness of the light reflection layer, the average surface roughness, the transmission attenuation (S21) at 1 GHz and 3 GHz, the reflectance, the surface resistivity, and the internal stress were measured. Further, the appearance of the decorative member was observed. The results are shown in Table 1.

Figure 2009090639
Figure 2009090639

〔実施例4〕
厚さ0.5mmのポリプロピレンシート(有機化モンモリナイトを10質量%含有)を脱脂洗浄した後、表面に酸素プラズマ処理を施し、ついで、クロムを厚さ1.5原子分となるようにスパッタリングし、接着促進層を形成した。
ターゲットとして、GaAs(Asの原子%は50.005%)を用意した。
RFスパッタ装置(芝浦メカトロニクス社製、CFS−4ES)のカソードとしてターゲットを装着し、真空チャンバ内を真空にした後、真空チャンバ内にアルゴンガスを導入し、RFスパッタリングにて接着促進層上に、ターゲットの半導体物質を物理的に蒸着させ、装飾部材を得た。
Example 4
After degreasing and cleaning a 0.5 mm thick polypropylene sheet (containing 10% by mass of organic montmorillonite), the surface was subjected to oxygen plasma treatment, and then chromium was sputtered to a thickness of 1.5 atoms. An adhesion promoting layer was formed.
As a target, GaAs (As atom% is 50.005%) was prepared.
A target is mounted as a cathode of an RF sputtering apparatus (Shibaura Mechatronics, CFS-4ES), the vacuum chamber is evacuated, argon gas is introduced into the vacuum chamber, and RF sputtering is performed on the adhesion promoting layer. The target semiconductor material was physically evaporated to obtain a decorative member.

該装飾部材について、光反射層の厚さ、平均表面粗さ、1GHzおよび3GHzにおける透過減衰量(S21)、反射率、表面抵抗率、内部応力を測定し、密着性(剥離したマス目/全マス目)を評価した。また、該装飾部材の外観を観察した。結果を表2に示す。光反射層の剥離は見られなかった。   For the decorative member, the thickness of the light reflection layer, the average surface roughness, the transmission attenuation at 1 GHz and 3 GHz (S21), the reflectance, the surface resistivity, and the internal stress were measured, and the adhesiveness (the peeled square / total The squares) were evaluated. Further, the appearance of the decorative member was observed. The results are shown in Table 2. No peeling of the light reflecting layer was observed.

〔実施例5〕
厚さ0.5mmのポリメチルメタクリレートシートを脱脂洗浄した後、表面に酸素プラズマ処理を施し、ついで、チタンを厚さ1.0原子分となるようにスパッタリングし、接着促進層を形成した。
接着促進層上に、酸化チタン粉を含有した隠蔽性の高い白色アクリル塗料を塗布し、マスク層を形成した。
ターゲットとして、シリコンを用意した。
RFスパッタ装置(芝浦メカトロニクス社製、CFS−4ES)のカソードとしてターゲットを装着し、真空チャンバ内を真空にした後、真空チャンバ内にアルゴンガスを導入し、RFスパッタリングにて接着促進層上に、ターゲットの半導体物質を物理的に蒸着させ、装飾部材を得た。
Example 5
After degreasing and washing the 0.5 mm thick polymethyl methacrylate sheet, the surface was subjected to oxygen plasma treatment, and then sputtered to a thickness of 1.0 atom to form an adhesion promoting layer.
On the adhesion promoting layer, a highly concealed white acrylic paint containing titanium oxide powder was applied to form a mask layer.
Silicon was prepared as a target.
A target is mounted as a cathode of an RF sputtering apparatus (Shibaura Mechatronics, CFS-4ES), the vacuum chamber is evacuated, argon gas is introduced into the vacuum chamber, and RF sputtering is performed on the adhesion promoting layer. The target semiconductor material was physically evaporated to obtain a decorative member.

該装飾部材について、光反射層の厚さ、平均表面粗さ、1GHzおよび3GHzにおける透過減衰量(S21)、反射率、表面抵抗率、内部応力を測定した。また、該装飾部材の外観を観察した。結果を表2に示す。
また、該装飾部材の反射率のグラフ(マスク層あり)を図7に示し、該装飾部材の透過率のグラフ(マスク層あり)を図8に示す。実施例5の装飾部材は、マスク層の効果により、実施例1の装飾部材に比べ、反射率は上がり、透過率はほぼ0となった。その結果、明度の高い金属調光沢を呈した。
For the decorative member, the thickness of the light reflection layer, the average surface roughness, the transmission attenuation (S21) at 1 GHz and 3 GHz, the reflectance, the surface resistivity, and the internal stress were measured. Further, the appearance of the decorative member was observed. The results are shown in Table 2.
FIG. 7 shows a reflectance graph (with a mask layer) of the decorative member, and FIG. 8 shows a transmittance graph (with a mask layer) of the decorative member. Due to the effect of the mask layer, the decorative member of Example 5 had higher reflectance and almost zero transmittance as compared to the decorative member of Example 1. As a result, it showed a metallic luster with high brightness.

〔実施例6〕
ターゲットをボロンドープされたゲルマニウム(ボロンドープ量:約0.1ppb)としたこと以外は、実施例1と同様にして装飾部材を得た。
該装飾部材について、光反射層の厚さ、平均表面粗さ、1GHzおよび3GHzにおける透過減衰量(S21)、反射率、表面抵抗率、内部応力を測定した。また、該装飾部材の外観を観察した。結果を表2に示す。
また、該装飾部材の透過減衰量(S21)および反射減衰量(S11)のグラフを図9に示す。
Example 6
A decorative member was obtained in the same manner as in Example 1 except that the target was boron-doped germanium (boron doping amount: about 0.1 ppb).
For the decorative member, the thickness of the light reflection layer, the average surface roughness, the transmission attenuation (S21) at 1 GHz and 3 GHz, the reflectance, the surface resistivity, and the internal stress were measured. Further, the appearance of the decorative member was observed. The results are shown in Table 2.
Further, a graph of the transmission attenuation amount (S21) and the reflection attenuation amount (S11) of the decorative member is shown in FIG.

Figure 2009090639
Figure 2009090639

〔実施例7〕
厚さ2.5mmのポリカーボネートシートを脱脂洗浄した後、表面に酸素プラズマ処理を施し、酸化マグネシウム粉を含有した隠蔽性の高い白色のアクリレート塗料を塗布し、UV照射により硬化させ、マスク層を形成した。
ターゲットとして、ゲルマニウムと銀との焼結合金(銀の割合:0.1体積%)を用意した。
RFスパッタ装置(芝浦メカトロニクス社製、CFS−4ES)のカソードとしてターゲットを装着し、真空チャンバ内を真空にした後、真空チャンバ内にアルゴンガスを導入し、RFスパッタリングにてマスク層上に、ターゲットの合金を物理的に蒸着させ、装飾部材を得た。
Example 7
After degreasing and cleaning a polycarbonate sheet with a thickness of 2.5 mm, the surface is subjected to oxygen plasma treatment, a highly concealed white acrylate paint containing magnesium oxide powder is applied, and cured by UV irradiation to form a mask layer did.
As a target, a sintered alloy of germanium and silver (silver ratio: 0.1% by volume) was prepared.
A target is mounted as a cathode of an RF sputtering apparatus (Shibaura Mechatronics, CFS-4ES), the inside of the vacuum chamber is evacuated, argon gas is introduced into the vacuum chamber, and the target is formed on the mask layer by RF sputtering. The alloy was physically vapor-deposited to obtain a decorative member.

該装飾部材について、光反射層の厚さ、76GHzにおいて入射角度を−45度から45度に変化させた斜入射透過減衰量、反射率、表面抵抗率を測定した。また、該装飾部材の外観を観察した。結果を表3および該装飾部材の斜入射透過減衰量のグラフを図10に示す。
実施例7の装飾部材は、76GHzの高周波域において、入射角度を変化させてもその影響は少なく、透過率はほぼ0で良い直進性を示し、明度の高い金属調光沢を呈した。
With respect to the decorative member, the thickness of the light reflection layer, the oblique incident transmission attenuation amount, the reflectance, and the surface resistivity were measured by changing the incident angle from −45 degrees to 45 degrees at 76 GHz. Further, the appearance of the decorative member was observed. The results are shown in Table 3 and a graph of the oblique incident transmission attenuation of the decorative member is shown in FIG.
In the high frequency range of 76 GHz, the decorative member of Example 7 had little effect even when the incident angle was changed, showed a straightness with a transmittance of almost zero, and exhibited a metallic brightness with high brightness.

〔実施例8〕
光反射層の厚さを500nmとしたこと以外は実施例7と同様に装飾部材を作製した。
該装飾部材について、光反射層の厚さ、76GHzにおいて入射角度を−45度から45度に変化させた斜入射透過減衰量、反射率、表面抵抗率を測定した。また、該装飾部材の外観を観察した。結果を表3および該装飾部材の斜入射透過減衰量のグラフを図11に示す。
実施例8の装飾部材は、76GHzの高周波域において、入射角度を変化させてもその影響は少なく、透過率はほぼ0で良い直進性を示し、明度の高い金属調光沢を呈した。
Example 8
A decorative member was produced in the same manner as in Example 7 except that the thickness of the light reflecting layer was 500 nm.
With respect to the decorative member, the thickness of the light reflection layer, the oblique incident transmission attenuation amount, the reflectance, and the surface resistivity were measured by changing the incident angle from −45 degrees to 45 degrees at 76 GHz. Further, the appearance of the decorative member was observed. The results are shown in Table 3 and a graph of the oblique incident transmission attenuation of the decorative member is shown in FIG.
In the high frequency range of 76 GHz, the decorative member of Example 8 had little effect even when the incident angle was changed, showed a straightness with a transmittance of almost zero, and exhibited a metallic brightness with high brightness.

Figure 2009090639
Figure 2009090639

本発明の電波透過性装飾部材は、携帯電話の筐体、ボタン;電波時計の筐体;通信機器の筐体;レーダ搭載の自動車のフロントグリル、バンパ等として有用である。   The radio wave transmitting decorative member of the present invention is useful as a casing of a mobile phone, a button; a casing of a radio timepiece; a casing of a communication device; a front grill, a bumper, etc. of a radar-equipped automobile.

本発明の電波透過性装飾部材の一例を示す断面図である。It is sectional drawing which shows an example of the electromagnetic wave transmission decorative member of this invention. 光反射層の表面の原子間力顕微鏡像である。It is an atomic force microscope image of the surface of a light reflection layer. 光反射層の表面の高分解能透過型電子顕微鏡像である。It is a high-resolution transmission electron microscope image of the surface of a light reflection layer. 光反射層の断面の高分解能透過型電子顕微鏡像である。It is a high-resolution transmission electron microscope image of the cross section of a light reflection layer. 本発明の電波透過性装飾部材の他の例を示す断面図である。It is sectional drawing which shows the other example of the radio wave transmitting decorative member of the present invention. 実施例1の電波透過性装飾部材の透過減衰量(S21)および反射減衰量(S11)のグラフである。It is a graph of the transmission attenuation amount (S21) and the reflection attenuation amount (S11) of the radio wave transmitting decorative member of Example 1. 実施例1および実施例5の電波透過性装飾部材の反射率のグラフである。It is a graph of the reflectance of the radio wave transmitting decorative member of Example 1 and Example 5. 実施例1および実施例5の電波透過性装飾部材の透過率のグラフである。It is a graph of the transmittance | permeability of the radio wave transmitting decorative member of Example 1 and Example 5. 実施例6の電波透過性装飾部材の透過減衰量(S21)および反射減衰量(S11)のグラフである。It is a graph of the transmission attenuation amount (S21) and reflection attenuation amount (S11) of the radio wave transmitting decorative member of Example 6. 実施例7の電波透過性装飾部材の斜入射透過減衰量のグラフである。It is a graph of the oblique incidence transmission attenuation amount of the radio wave transmitting decorative member of Example 7. 実施例8の電波透過性装飾部材の斜入射透過減衰量のグラフである。It is a graph of the oblique incidence transmission attenuation amount of the radio wave transmitting decorative member of Example 8.

符号の説明Explanation of symbols

10 電波透過性装飾部材
12 基体
14 光反射層
16 マスク層
DESCRIPTION OF SYMBOLS 10 Radio wave transmitting decorative member 12 Base | substrate 14 Light reflection layer 16 Mask layer

Claims (8)

基体と、
該基体上に設けられた、半導体物質からなる光反射層と
を有する電波透過性装飾部材。
A substrate;
A radio wave transmitting decorative member having a light reflecting layer made of a semiconductor material provided on the substrate.
前記光反射層が、半導体物質の物理的蒸着によって形成された蒸着膜である、請求項1に記載の電波透過性装飾部材。   The radio wave transmitting decorative member according to claim 1, wherein the light reflecting layer is a deposited film formed by physical vapor deposition of a semiconductor material. 前記光反射層には、前記半導体物質が存在しない間隙が形成されていない、請求項1または2に記載の電波透過性装飾部材。   3. The radio wave transmitting decorative member according to claim 1, wherein a gap in which the semiconductor material does not exist is not formed in the light reflecting layer. 前記半導体物質が、シリコンまたはゲルマニウムである、請求項1〜3のいずれかに記載の電波透過性装飾部材。   The radio wave transmitting decorative member according to claim 1, wherein the semiconductor substance is silicon or germanium. 前記基体が、有機材料の成形体である、請求項1〜4のいずれかに記載の電波透過性装飾部材。   The radio wave transmitting decorative member according to any one of claims 1 to 4, wherein the base is a molded body of an organic material. 光反射層の厚さが、10〜500nmである、請求項1〜5のいずれかに記載の電波透過性装飾部材。   The radio wave transmitting decorative member according to any one of claims 1 to 5, wherein the light reflecting layer has a thickness of 10 to 500 nm. 前記基体と前記光反射層との間に、白色顔料を含むマスク層を有する、請求項1〜6のいずれかに記載の電波透過性装飾部材。   The radio wave transmitting decorative member according to any one of claims 1 to 6, further comprising a mask layer containing a white pigment between the base and the light reflecting layer. 前記基体と前記光反射層との間に接着促進層を有する、請求項1〜7のいずれかに記載の電波透過性装飾部材。   The radio wave transmitting decorative member according to any one of claims 1 to 7, further comprising an adhesion promoting layer between the base and the light reflecting layer.
JP2008194740A 2007-09-18 2008-07-29 Radio wave transmitting decorative member Active JP5017207B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008194740A JP5017207B2 (en) 2007-09-18 2008-07-29 Radio wave transmitting decorative member
DE112008002496.0T DE112008002496B4 (en) 2007-09-18 2008-09-18 Radio wave transmitting ornamental element
US12/678,375 US9187820B2 (en) 2007-09-18 2008-09-18 Radio wave transmitting decorative member
PCT/JP2008/066833 WO2009038116A1 (en) 2007-09-18 2008-09-18 Radio-wave-transmitting decorative member
CN2008801073587A CN101802248B (en) 2007-09-18 2008-09-18 Radio-wave-transmitting decorative member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007241417 2007-09-18
JP2007241417 2007-09-18
JP2008194740A JP5017207B2 (en) 2007-09-18 2008-07-29 Radio wave transmitting decorative member

Publications (2)

Publication Number Publication Date
JP2009090639A true JP2009090639A (en) 2009-04-30
JP5017207B2 JP5017207B2 (en) 2012-09-05

Family

ID=40663099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194740A Active JP5017207B2 (en) 2007-09-18 2008-07-29 Radio wave transmitting decorative member

Country Status (1)

Country Link
JP (1) JP5017207B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090638A (en) * 2007-09-18 2009-04-30 Shin Etsu Polymer Co Ltd Radio-wave-transmitting decorative member
JP2010076201A (en) * 2008-09-25 2010-04-08 Mitsubishi Electric Corp Electromagnetic wave transmitting decoration substrate, and housing
DE102009025950A1 (en) * 2009-06-10 2010-12-16 Yih Dar Technologies Co., Ltd. Coating structure for 3C-product with metal-like glossiness and without any weakening of the radio frequencies, comprises a substrate, a reflection increased adhesive layer applied on the substrate, and a germanium or germanium alloy layer
JP2011029548A (en) * 2009-07-29 2011-02-10 Mitsubishi Electric Corp Electromagnetic wave transmitting decorative component
JP2011025634A (en) * 2009-07-29 2011-02-10 Mitsubishi Electric Corp Electromagnetic wave transmissive decorative component
JPWO2009110090A1 (en) * 2008-03-07 2011-07-14 三菱電機株式会社 Decorative parts
JP2012030478A (en) * 2010-07-30 2012-02-16 Nidek Co Ltd Decorative body, and method of manufacturing the same
WO2012066417A1 (en) * 2010-11-15 2012-05-24 Zanini Auto Grup, Sa Decorative radome for automotive vehicular applications
DE102011018364A1 (en) * 2011-04-01 2012-10-04 Oerlikon Trading Ag, Trübbach Proximity sensor
JP2013086469A (en) * 2011-10-21 2013-05-13 Shin Etsu Polymer Co Ltd Radio wave-transmitting decorative member and method of manufacturing the same
JP2013519109A (en) * 2010-02-03 2013-05-23 ジョンソン コントロールズ オートモーティブ エレクトロニクス ゲーエムベーハー Display device
JP2013118405A (en) * 2013-02-28 2013-06-13 Mitsubishi Electric Corp Electromagnetic wave transmitting decorative component
JP2018512826A (en) * 2015-04-15 2018-05-17 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーンOerlikon Surface Solutions Ag, Pfaeffikon Wireless electric rechargeable device with metallic coating
KR101925470B1 (en) * 2017-06-27 2018-12-05 주식회사 엘지화학 Decoration element and preparing method thereof
KR20190038655A (en) * 2016-09-28 2019-04-08 후아웨이 테크놀러지 컴퍼니 리미티드 METAL ENCLOSURE OF MOBILE DEVICE, METHOD OF MANUFACTURING METAL ENCLOSURE AND MOBILE DEVICE
JP2020101807A (en) * 2017-06-20 2020-07-02 アップル インコーポレイテッドApple Inc. Interior coatings for glass structures in electronic devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322520A (en) * 1993-05-14 1994-11-22 Mitsubishi Electric Corp Separating plate of radio wave and infrared ray and production thereof
JPH0997011A (en) * 1995-09-29 1997-04-08 Toppan Printing Co Ltd Seal
JP2002173340A (en) * 2000-12-07 2002-06-21 Central Glass Co Ltd Glass for bending and/or tempering
JP2002339084A (en) * 2001-03-13 2002-11-27 Kiyousera Opt Kk Metal film and metal film coated member
JP2003344622A (en) * 2002-05-27 2003-12-03 Sun Tec Corp Kk Half mirror
JP2005055329A (en) * 2003-08-06 2005-03-03 Toyota Motor Corp Molding placed in beam course of radar device, and its manufacturing method
JP2007064696A (en) * 2005-08-29 2007-03-15 Citizen Seimitsu Co Ltd Decoration member, dial plate provide with the decoration member and its manufacturing method
JP2007093241A (en) * 2005-09-27 2007-04-12 Toyoda Gosei Co Ltd Radar device cover and manufacturing method thereof
JP2008207337A (en) * 2007-02-23 2008-09-11 Reiko Co Ltd Half tone metallic luster transfer film excellent in corrosion resistance and design property, and molded article obtained by using it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322520A (en) * 1993-05-14 1994-11-22 Mitsubishi Electric Corp Separating plate of radio wave and infrared ray and production thereof
JPH0997011A (en) * 1995-09-29 1997-04-08 Toppan Printing Co Ltd Seal
JP2002173340A (en) * 2000-12-07 2002-06-21 Central Glass Co Ltd Glass for bending and/or tempering
JP2002339084A (en) * 2001-03-13 2002-11-27 Kiyousera Opt Kk Metal film and metal film coated member
JP2003344622A (en) * 2002-05-27 2003-12-03 Sun Tec Corp Kk Half mirror
JP2005055329A (en) * 2003-08-06 2005-03-03 Toyota Motor Corp Molding placed in beam course of radar device, and its manufacturing method
JP2007064696A (en) * 2005-08-29 2007-03-15 Citizen Seimitsu Co Ltd Decoration member, dial plate provide with the decoration member and its manufacturing method
JP2007093241A (en) * 2005-09-27 2007-04-12 Toyoda Gosei Co Ltd Radar device cover and manufacturing method thereof
JP2008207337A (en) * 2007-02-23 2008-09-11 Reiko Co Ltd Half tone metallic luster transfer film excellent in corrosion resistance and design property, and molded article obtained by using it

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090638A (en) * 2007-09-18 2009-04-30 Shin Etsu Polymer Co Ltd Radio-wave-transmitting decorative member
JPWO2009110090A1 (en) * 2008-03-07 2011-07-14 三菱電機株式会社 Decorative parts
JP5250023B2 (en) * 2008-03-07 2013-07-31 三菱電機株式会社 Decorative parts
JP2010076201A (en) * 2008-09-25 2010-04-08 Mitsubishi Electric Corp Electromagnetic wave transmitting decoration substrate, and housing
DE102009025950A1 (en) * 2009-06-10 2010-12-16 Yih Dar Technologies Co., Ltd. Coating structure for 3C-product with metal-like glossiness and without any weakening of the radio frequencies, comprises a substrate, a reflection increased adhesive layer applied on the substrate, and a germanium or germanium alloy layer
JP2011029548A (en) * 2009-07-29 2011-02-10 Mitsubishi Electric Corp Electromagnetic wave transmitting decorative component
JP2011025634A (en) * 2009-07-29 2011-02-10 Mitsubishi Electric Corp Electromagnetic wave transmissive decorative component
JP2013519109A (en) * 2010-02-03 2013-05-23 ジョンソン コントロールズ オートモーティブ エレクトロニクス ゲーエムベーハー Display device
JP2016173565A (en) * 2010-02-03 2016-09-29 ジョンソン コントロールズ オートモーティブ エレクトロニクス ゲーエムベーハー Display device
JP2012030478A (en) * 2010-07-30 2012-02-16 Nidek Co Ltd Decorative body, and method of manufacturing the same
JP2014500956A (en) * 2010-11-15 2014-01-16 サニーニ アウト グルプ ソシエダッド アノニマ Decorative radome for automobile
KR20140001928A (en) * 2010-11-15 2014-01-07 자니니 오토 그룹 에스. 에이 Decorative radome for automotive vehicular applications
US9114760B2 (en) 2010-11-15 2015-08-25 Zanini Auto Grup, Sa Decorative radome for automotive vehicular applications
WO2012066417A1 (en) * 2010-11-15 2012-05-24 Zanini Auto Grup, Sa Decorative radome for automotive vehicular applications
KR101899172B1 (en) * 2010-11-15 2018-09-14 자니니 오토 그룹 에스. 에이 Decorative radome for automotive vehicular applications
DE102011018364A1 (en) * 2011-04-01 2012-10-04 Oerlikon Trading Ag, Trübbach Proximity sensor
JP2013086469A (en) * 2011-10-21 2013-05-13 Shin Etsu Polymer Co Ltd Radio wave-transmitting decorative member and method of manufacturing the same
JP2013118405A (en) * 2013-02-28 2013-06-13 Mitsubishi Electric Corp Electromagnetic wave transmitting decorative component
JP2018512826A (en) * 2015-04-15 2018-05-17 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーンOerlikon Surface Solutions Ag, Pfaeffikon Wireless electric rechargeable device with metallic coating
KR102282120B1 (en) * 2016-09-28 2021-07-26 후아웨이 테크놀러지 컴퍼니 리미티드 Metal enclosures for mobile devices, methods of making metal enclosures, and mobile devices
KR20190038655A (en) * 2016-09-28 2019-04-08 후아웨이 테크놀러지 컴퍼니 리미티드 METAL ENCLOSURE OF MOBILE DEVICE, METHOD OF MANUFACTURING METAL ENCLOSURE AND MOBILE DEVICE
JP2019537238A (en) * 2016-09-28 2019-12-19 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Metal enclosure for mobile device, manufacturing method for metal enclosure and mobile device
US11178785B2 (en) 2016-09-28 2021-11-16 Huawei Technologies Co., Ltd. Metal enclosure of mobile device, production method for metal enclosure, and mobile device
JP2020101807A (en) * 2017-06-20 2020-07-02 アップル インコーポレイテッドApple Inc. Interior coatings for glass structures in electronic devices
US11230493B2 (en) 2017-06-20 2022-01-25 Apple Inc. Interior coatings for glass structures in electronic devices
US11697615B2 (en) 2017-06-20 2023-07-11 Apple Inc. Interior coatings for glass structures in electronic devices
KR101925470B1 (en) * 2017-06-27 2018-12-05 주식회사 엘지화학 Decoration element and preparing method thereof
US11448800B2 (en) 2017-06-27 2022-09-20 Lg Chem, Ltd. Decorative member and method for preparing same

Also Published As

Publication number Publication date
JP5017207B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5017207B2 (en) Radio wave transmitting decorative member
US9187820B2 (en) Radio wave transmitting decorative member
JP5017206B2 (en) Radio wave transmitting decorative member
JP5401132B2 (en) Radio wave transmitting decorative member and manufacturing method thereof
JP5346632B2 (en) Radio wave transmitting decorative film and decorative member using the same
EP3536495A1 (en) Electromagnetic wave-permeable shiny metal member, article using same, and metal thin film
JP5210919B2 (en) Vehicle exterior member and front grill
EP1657782B1 (en) Method of manufacturing a molded article
TW201934782A (en) Radio wave-transmitting lustrous metal member, article using same, and method for producing same
JP2013086469A (en) Radio wave-transmitting decorative member and method of manufacturing the same
WO2019208499A1 (en) Electromagnetically permeable article with metallic gloss
JP7319078B2 (en) Electromagnetic wave permeable metallic luster article
WO2019208494A1 (en) Electromagnetic wave transmissive metallic luster product and metal thin film
WO2019139122A1 (en) Radio wave-transmitting lustrous metal member, article using same, and method for producing same
CN112004666A (en) Electromagnetic wave transmitting metallic luster article
JP2019188807A (en) Electromagnetic wave transmissive metallic luster product and metal thin film
WO2021187069A1 (en) Electromagnetic wave transmissive metallic luster member
WO2019208489A1 (en) Electromagnetic wave-transmitting metallic-luster article
JP2011025634A (en) Electromagnetic wave transmissive decorative component
WO2019208490A1 (en) Electromagnetic wave-permeable metal glossy article and method for manufacturing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5017207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350