JP2009087875A - High heat radiation electrochemical element and power supply device - Google Patents
High heat radiation electrochemical element and power supply device Download PDFInfo
- Publication number
- JP2009087875A JP2009087875A JP2007259123A JP2007259123A JP2009087875A JP 2009087875 A JP2009087875 A JP 2009087875A JP 2007259123 A JP2007259123 A JP 2007259123A JP 2007259123 A JP2007259123 A JP 2007259123A JP 2009087875 A JP2009087875 A JP 2009087875A
- Authority
- JP
- Japan
- Prior art keywords
- electrochemical element
- coating layer
- power supply
- far
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 39
- 239000002245 particle Substances 0.000 claims abstract description 23
- -1 silicate compound Chemical class 0.000 claims abstract description 7
- 239000011247 coating layer Substances 0.000 claims description 43
- 238000001228 spectrum Methods 0.000 claims description 11
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 7
- 150000004760 silicates Chemical class 0.000 claims description 3
- 238000000295 emission spectrum Methods 0.000 abstract description 4
- 230000005856 abnormality Effects 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 17
- 238000009782 nail-penetration test Methods 0.000 description 16
- 230000017525 heat dissipation Effects 0.000 description 13
- 239000000126 substance Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920002050 silicone resin Polymers 0.000 description 5
- 239000005995 Aluminium silicate Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 235000012211 aluminium silicate Nutrition 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 229910052987 metal hydride Inorganic materials 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 229920005549 butyl rubber Polymers 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000000191 radiation effect Effects 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- OSOVKCSKTAIGGF-UHFFFAOYSA-N [Ni].OOO Chemical compound [Ni].OOO OSOVKCSKTAIGGF-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910000483 nickel oxide hydroxide Inorganic materials 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000031070 response to heat Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229920006300 shrink film Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052613 tourmaline Inorganic materials 0.000 description 1
- 239000011032 tourmaline Substances 0.000 description 1
- 229940070527 tourmaline Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は遠赤外線放射率の高い被覆層を具備することにより高い放熱特性を有し、異常時の発熱に対し効率良く熱を放出することができる電気化学素子および電源装置に関する。 The present invention relates to an electrochemical element and a power supply device that have a high heat radiation characteristic by including a coating layer having a high far-infrared emissivity, and that can efficiently release heat in response to heat generated in an abnormal state.
リチウムイオン二次電池、ニッケル水素二次電池、電気二重層キャパシタ等の電気化学素子は小型携帯用電源として幅広く用いられてきており、エネルギー密度や出力特性の飛躍的向上がなされてきている。それに伴いこれらの電気化学素子やこれを用いた電源装置が短絡等の異常事態が発生した場合の発熱が大きな問題となっている。更には近年になって小型携帯用電源以外に、ハイブリッド電気自動車用電源やエネルギー貯蔵用電源などの新しい用途が開けつつあり、これら大型化に伴う発熱の問題がますます深刻になってきている。
従来から、これら電気化学素子または電源装置で起こる発熱の問題を解決するために多くの提案がある。
Electrochemical elements such as lithium ion secondary batteries, nickel metal hydride secondary batteries, and electric double layer capacitors have been widely used as small portable power sources, and energy density and output characteristics have been dramatically improved. Along with this, heat generation when an abnormal situation such as a short circuit occurs in these electrochemical elements or a power supply device using the same is a big problem. Furthermore, in recent years, new applications such as a power source for hybrid electric vehicles and an energy storage power source are being opened in addition to a small portable power source, and the problem of heat generation due to the increase in size has become more serious.
Conventionally, there have been many proposals for solving the problem of heat generation occurring in these electrochemical elements or power supply devices.
例えば特許文献1では、電気化学素子や電源装置にヒートパイプを具備させることにより、発生した熱を逃がすことが提案されている。ヒートパイプ、ヒートシンク等は金属パイプ、金属ケースの中に溶媒を封じ込めたものであり、発生した熱により溶媒が蒸発し、その対流現象により放熱していくものである。実際に、このヒートパイプ、ヒートシンクの見かけ熱伝導率は極めて高く、放熱特性の優れた部品であるが、残念ながら価格が極めて高いことと、これらの部品を組み込むことにより余分な重量、体積が必要となることから、小型・軽量化が重要な電気化学素子、及び/又は電源装置には適してはいない。
For example,
特許文献2では、電池表面と電池収納部内側面との間に高熱伝導部材を介在させることにより、放熱させるとの提案がある。熱伝導率が大きく、且つ安価な材料としては金属材料があるが、電気絶縁性の要求される電気化学素子や電源装置の場合には用いることはできない。また電気絶縁性を有し且つ熱伝導率の大きな材料としてはダイヤモンド、サファイヤ、窒化アルミ、窒化ホウ素等の材料が知られているが、何れも高価なものであり汎用的に用いられるものではない。更に、こうした熱伝導という原理で放熱するという方法には発熱部と受熱部(熱を外部に逃がす部分)は完全に密着していないと十分な放熱効果が発揮されないという致命的な問題点がある。種々の形状を有する電気化学素子と熱伝導材料を完全に密着させることは事実上不可能であり、また内部に空間が存在せざるを得ない電源装置の場合にも適切な方法ではない。
In
特許文献3では、シリコーンゲルをマトリックスとし、高熱伝導性材料を配合した放熱シートを電池に貼り付けることが提案されている。この方法によれば電池の形状に合わせて放熱シートを貼り付けることが可能になるが、これを電源装置に用いようとした場合には電池に貼り付けた放熱シートを更に受熱部(熱を外部に逃がす部分)とを密着させなければならないという熱伝導機構で放熱する場合に共通の問題点が残っている。 Patent Document 3 proposes that a heat-dissipating sheet containing a silicone gel as a matrix and blended with a high thermal conductivity material is attached to a battery. According to this method, it is possible to attach a heat radiating sheet according to the shape of the battery. However, when it is intended to be used for a power supply device, the heat radiating sheet attached to the battery is further replaced with a heat receiving portion (heat is transferred to the outside A common problem remains when heat is dissipated by a heat conduction mechanism that must be in close contact with the part to be released.
特許文献4では、これまでの伝熱、対流とは異なる新たな放熱機構である熱放射(熱輻射)に基づく方法が提案されている。すなわち熱放射率が0.6以上の高放射率の層を電池、特に電池端子部分に形成させることにより放熱特性が改善され、電池の安全性が高められるという。この熱放射に基づく放熱機構の場合には熱伝導の場合とは異なり、熱が空間を伝わって放熱していくので発熱部と受熱部(熱を外部に逃がす部分)とが密着している必要がなく、電気化学素子や電源装置には最適な放熱方法として注目された。しかしながら、未だその放熱効果は十分でなく、特に近年問題となっている電気化学素子の局部的に大きな発熱が起こる内部短絡という現象に対しては問題点が残っている。 Patent Document 4 proposes a method based on thermal radiation (thermal radiation), which is a new heat radiation mechanism different from conventional heat transfer and convection. That is, it is said that by forming a high emissivity layer having a thermal emissivity of 0.6 or more in the battery, particularly the battery terminal portion, the heat dissipation characteristics are improved and the safety of the battery is enhanced. In the case of a heat dissipation mechanism based on this heat radiation, unlike heat conduction, the heat is dissipated through the space, so the heat generating part and the heat receiving part (the part that releases heat to the outside) must be in close contact. It has attracted attention as an optimal heat dissipation method for electrochemical devices and power supply devices. However, the heat dissipation effect is still not sufficient, and there remains a problem particularly with respect to the phenomenon of internal short circuit in which large heat is generated locally in electrochemical devices, which has become a problem in recent years.
特許文献5では、同じく電池の外装部材(主に高分子の熱収縮チューブ)を着色することで熱放射率(輻射率)を0.6以上とし、熱放射の機能を発揮させる方法が提案されている。従来から用いられている外装部材に熱放射の機能を盛り込んだ点では注目されるが、やはり局部的に大きな発熱が起こる内部短絡という現象に対して効果は不十分であった。
以上述べたように、電気化学素子および電源装置に関する熱の問題は深刻なものであり、単に発熱による電源の特性の劣化という問題にとどまらず、異常時の発熱による電源としての安全性にも影響を及ぼす大きな課題であるが、未だにその課題を解決する手段は見出されていないのが現状である。
本発明はこれらの問題を解決するためになされたもので、熱放射という放熱機構に着目し、その改良により局部的に大きな発熱を伴う内部短絡時にも放熱効果が充分発揮され信頼性、安全性の高い電気化学素子および電源装置を提供するものである。
As described above, the thermal problems related to electrochemical elements and power supply devices are serious, and not only the problem of deterioration of power supply characteristics due to heat generation, but also the safety as a power supply due to heat generation in the event of an abnormality. However, at present, no means for solving the problem has been found.
The present invention was made in order to solve these problems. Focusing on a heat radiation mechanism called heat radiation, the improvement provides a sufficient heat radiation effect even in the case of an internal short-circuit accompanied by a large amount of heat locally. The present invention provides an electrochemical element and a power supply device with high performance.
本発明者らは、上記課題を解決するために鋭意検討を行った。その結果、特定の波長範囲に高い遠赤外線放射率を有する被覆層を形成させることにより上記課題を解決できることを見出し、本発明に至った。すなわち、本発明は次の電気化学素子および電源装置である。
1.無機酸化物及びケイ酸塩化合物からなる群から選択される少なくとも1種の粒子を主成分とする被覆層を有する電気化学素子であって、該被覆層を100℃で測定した遠赤外線放射スペクトルにおいて、4〜15μmの波長範囲に遠赤外線放射率の値が0.85を越す点を有することを特徴とする電気化学素子。
2.100℃で測定した遠赤外線放射率の値が0.95を越す点を4〜15μmの波長範囲に有する被覆層を形成したことを特徴とする上記1記載の電気化学素子。
3.100℃で測定した遠赤外線放射率の値が0.85を越す点を波長が5〜10μmの範囲に有することを特徴とする上記1に記載の電気化学素子。
4.100℃で測定した遠赤外線放射率の値が0.95を越す点を波長が5〜10μmの範囲に有することを特徴とする上記2に記載の電気化学素子。
5.無機酸化物及びケイ酸塩化合物からなる群から選択される少なくとも1種の粒子を主成分とする被覆層を有する電気化学素子と、該電気化学素子を収納する容器ケースとを含む電源装置であって、電気化学素子が上記1〜4のいずれか1つに記載のものであることを特徴とする電源装置。
6.無機酸化物及びケイ酸塩化合物からなる群から選択される少なくとも1種の粒子を主成分とする被覆層を有する容器ケースと、該容器ケースに収納された電気化学素子とを含む電源装置であって、該被覆層を100℃で測定した遠赤外線放射スペクトルにおいて、4〜15μmの波長範囲に遠赤外線放射率の値が0.85を越す点を有することを特徴とする電源装置。
The present inventors have intensively studied to solve the above problems. As a result, the present inventors have found that the above problem can be solved by forming a coating layer having a high far-infrared emissivity in a specific wavelength range, and have reached the present invention. That is, this invention is the following electrochemical element and power supply device.
1. An electrochemical element having a coating layer mainly composed of at least one kind of particles selected from the group consisting of inorganic oxides and silicate compounds, wherein the coating layer is measured in a far infrared radiation spectrum measured at 100 ° C An electrochemical element having a point where the value of far-infrared emissivity exceeds 0.85 in a wavelength range of 4 to 15 µm.
2. The electrochemical element as described in 1 above, wherein a coating layer having a point where the far-infrared emissivity measured at 100 ° C. exceeds 0.95 is formed in a wavelength range of 4 to 15 μm.
3. The electrochemical device as described in 1 above, wherein the far infrared emissivity measured at 100 ° C. has a point where the wavelength exceeds 0.85 in a wavelength range of 5 to 10 μm.
4. The electrochemical element according to 2 above, wherein the far infrared emissivity measured at 100 ° C. has a point where the wavelength exceeds 0.95 in a wavelength range of 5 to 10 μm.
5). A power supply device including an electrochemical element having a coating layer mainly composed of at least one kind of particles selected from the group consisting of an inorganic oxide and a silicate compound, and a container case for storing the electrochemical element. The power supply device is characterized in that the electrochemical element is the one described in any one of 1 to 4 above.
6). A power supply device including a container case having a coating layer mainly composed of at least one kind of particles selected from the group consisting of an inorganic oxide and a silicate compound, and an electrochemical element housed in the container case. A far-infrared radiation spectrum measured at 100 ° C. of the coating layer has a far-infrared emissivity value exceeding 0.85 in a wavelength range of 4 to 15 μm.
本発明の電気化学素子および電源装置は、熱放射という放熱機構に基づき高い放熱効果を有し、電気化学素子および電源装置の異常時における信頼性、安全性を高めるという効果を有する。 The electrochemical element and the power supply device of the present invention have a high heat dissipation effect based on a heat dissipation mechanism called heat radiation, and have an effect of improving reliability and safety when the electrochemical element and the power supply device are abnormal.
以下、本発明について詳しく述べる。
本発明の電気化学素子とは、電気化学的に電気エネルギーを生み出す素子のことであり、以下にその一例を示す。金属リチウムを負極とし、二酸化マンガン、フッ化カーボンなどを正極とするリチウム一次電池;カーボン材料、金属酸化物、リチウム合金などを負極とし、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウムなどを正極とするリチウムイオン二次電池;活性炭を正極、負極に用いた電気二重層コンデンサー; バナジウム、チタン、鉄などのリチウム−遷移金属複合酸化物を負極とし、コバルト、マンガン、鉄などのリチウム−遷移金属複合酸化物を正極とする水系イオン電池;カドミウム、水素吸蔵合金などを負極とし、オキシ水酸化ニッケルなどを正極とするアルカリ二次電池;水素を燃料源とし酸素との反応により電気エネルギーを取り出す燃料電池などである。
The present invention will be described in detail below.
The electrochemical element of the present invention is an element that electrochemically generates electric energy, and an example thereof is shown below. Lithium primary battery with metallic lithium as negative electrode and manganese dioxide, carbon fluoride as positive electrode; carbon material, metal oxide, lithium alloy, etc. as negative electrode, lithium cobaltate, lithium nickelate, lithium manganate, iron phosphate Lithium ion secondary battery with lithium as positive electrode; Electric double layer capacitor with activated carbon as positive electrode and negative electrode; Lithium-transition metal composite oxide such as vanadium, titanium and iron as negative electrode, cobalt, manganese, iron, etc. Water-based ion battery using lithium-transition metal composite oxide as a positive electrode; alkaline secondary battery using cadmium, hydrogen storage alloy, etc. as negative electrode, nickel oxyhydroxide, etc. as positive electrode; reaction using hydrogen as a fuel source and oxygen For example, a fuel cell that extracts energy.
電源装置とは、少なくとも前述の電気化学素子の一つまたは複数個と該電気化学素子を収納する容器ケースとからなり、必要に応じ他の部品、例えば制御システム回路基板等を組み込むことによって電源として機能する装置のことである。
遠赤外線放射スペクトルとは、後述の分光測定器により測定される物質の遠赤外線放射率を波長毎にプロットした図である。本発明は被覆層が特定の波長範囲で特定の遠赤外線放射率を有する時に電気化学素子および電源装置の実際の放熱効果が顕著に発揮されるという知見に基づいている。すなわち、被覆層が4〜15μmの波長範囲に100℃で測定した遠赤外線放射率の値が少なくとも0.85、好ましくは0.95を越す点を有していることが必要である。なお、以下においては、特に断らない限り遠赤外線放射率の値は100℃で測定した値をいうものとする。4〜15μmの波長範囲に遠赤外線放射率の値が0.85を越す点を有さない場合には、放熱効果、特に内部短絡のような局部的に大きな発熱が発生するような場合に充分な放熱効果を発揮できない。さらに被覆層が5〜10μmの波長範囲に遠赤外線放射率の値が少なくとも0.85、好ましくは0.95を越す点を有していることが好ましい。
A power supply device is composed of at least one or a plurality of the aforementioned electrochemical elements and a container case for storing the electrochemical elements, and if necessary, as a power supply by incorporating other components such as a control system circuit board. A functioning device.
The far-infrared emission spectrum is a diagram in which the far-infrared emissivity of a substance measured by a spectrometer described later is plotted for each wavelength. The present invention is based on the finding that when the coating layer has a specific far-infrared emissivity in a specific wavelength range, the actual heat dissipation effect of the electrochemical element and the power supply device is remarkably exhibited. That is, it is necessary that the coating layer has a point where the far-infrared emissivity value measured at 100 ° C. in the wavelength range of 4 to 15 μm is at least 0.85, preferably exceeding 0.95. In the following description, the far-infrared emissivity value is a value measured at 100 ° C. unless otherwise specified. When there is no point where the far-infrared emissivity value exceeds 0.85 in the wavelength range of 4 to 15 μm, it is sufficient for the heat dissipation effect, particularly when large heat generation such as internal short circuit occurs. The heat dissipation effect cannot be demonstrated. Furthermore, it is preferred that the coating layer has a far infrared emissivity value of at least 0.85, preferably exceeding 0.95 in the wavelength range of 5 to 10 μm.
本発明における被覆層とは、上記範囲の遠赤外線放射率(以下、単に「放射率」ともいう。)を示す熱放射機能を有する物質を含有した層のことである。そのような熱放射機能を有する物質として好ましい例としては、酸化チタン、酸化アルミニウム、二酸化珪素、酸化ジルコニウム、酸化スズ、酸化マグネシウム、酸化亜鉛、酸化インジウム、及び酸化アンチモン等の無機酸化物、並びにカオリン、ゼオライト、パーライト、タルク、ドロマイト、及び電気石等のケイ酸塩化合物が挙げられ、かかる群の一種もしくは二種以上を配合することにより本発明で用いることができる。これらの物質は各波長に対する放射率に差が有るので、被覆層が4〜15μmの波長範囲において平均的に放射率が高く、かつ特定波長において0.85以上の放射率となるように、二種以上を混合することがより好ましい。被覆層には、上述した熱放射機能を有する物質を主成分として含む以外に、結着剤、例えばシリコーン樹脂等を添加してもよい。 The coating layer in the present invention is a layer containing a substance having a thermal radiation function exhibiting far-infrared emissivity in the above range (hereinafter also simply referred to as “emissivity”). Preferable examples of the substance having such a heat radiation function include inorganic oxides such as titanium oxide, aluminum oxide, silicon dioxide, zirconium oxide, tin oxide, magnesium oxide, zinc oxide, indium oxide, and antimony oxide, and kaolin. And silicate compounds such as zeolite, perlite, talc, dolomite, and tourmaline can be used, and can be used in the present invention by blending one or more of these groups. Since these materials have a difference in emissivity with respect to each wavelength, the coating layer has an average high emissivity in a wavelength range of 4 to 15 μm and an emissivity of 0.85 or more at a specific wavelength. It is more preferable to mix seeds or more. In addition to containing the above-mentioned substance having a heat radiation function as a main component, the coating layer may contain a binder, for example, a silicone resin.
上記熱放射機能を有する物質を用いた被覆層を電気化学素子、及び/又は電源装置に形成させるには以下の方法が例示される。
第1の方法としては、熱放射機能を有する物質を含有したシートを作成し、これを電気化学素子、及び/又は電源装置に貼付し被覆層とする方法がある。この場合には熱放射機能を有する物質とバインダー樹脂またはその溶液、もしくは分散液からなる組成物を、ガラスクロス、樹脂フィルム、金属板、または金属箔等の基材に塗布または含浸、乾燥させてシートにする。必要に応じて、該シートの片面に粘着層を形成させ粘着シートにすることもできる。
The following method is exemplified for forming the coating layer using the substance having the heat radiation function on the electrochemical element and / or the power supply device.
As a first method, there is a method in which a sheet containing a substance having a heat radiation function is prepared, and this is attached to an electrochemical element and / or a power supply device to form a coating layer. In this case, a composition composed of a substance having a heat radiation function and a binder resin or a solution or dispersion thereof is applied or impregnated on a substrate such as a glass cloth, a resin film, a metal plate, or a metal foil, and dried. Make a sheet. If necessary, an adhesive layer can be formed on one side of the sheet to form an adhesive sheet.
上記バインダー樹脂としては特に限定されないが、スチレン・ブタジエン樹脂、ブチルゴム、アクリル系樹脂、エポキシ樹脂、シリコーン樹脂等が挙げられる。該シートにおいては、熱放射機能を有する物質100重量部に対して、バインダー樹脂5〜75重量部であることが好ましい。また、粘着層を構成する樹脂としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤等が挙げられ、厚さは1〜25μmが好ましい。 The binder resin is not particularly limited, and examples thereof include styrene / butadiene resin, butyl rubber, acrylic resin, epoxy resin, and silicone resin. In the sheet, the binder resin is preferably 5 to 75 parts by weight with respect to 100 parts by weight of the substance having a heat radiation function. Moreover, as resin which comprises an adhesion layer, a rubber adhesive, an acrylic adhesive, a silicone adhesive, etc. are mentioned, Thickness is preferable 1-25 micrometers.
第2の方法としては、熱放射機能を有する物質とバインダー樹脂またはその溶液、もしくは分散液からなる組成物を塗料として用い、電気化学素子、及び/又は電源装置に直接塗布乾燥し被覆層とする方法がある。この方法の場合に用いることのできるバインダー樹脂は特に限定されないが、スチレン・ブタジエン樹脂、ブチルゴム、アクリル系樹脂、エポキシ樹脂、シリコーン樹脂等が挙げられる。 As the second method, a composition comprising a substance having a heat radiation function and a binder resin or a solution or dispersion thereof is used as a paint, and applied directly to an electrochemical element and / or a power supply device and dried to form a coating layer. There is a way. The binder resin that can be used in this method is not particularly limited, and examples thereof include styrene / butadiene resin, butyl rubber, acrylic resin, epoxy resin, and silicone resin.
第3の方法としては、熱放射機能を有する物資を溶射、蒸着、またはCVD等の方法で直接電気化学素子、及び/又は電源装置に形成し被覆層とする方法がある。
上記被覆層を形成させる方法の中で、第1のシート状にする方法が簡便で、且つ高い放熱効果が得られ好ましい。また、その時の基材としてはガラスクロスを用いるのが耐熱性、耐久性等の観点から好ましい。かかる被覆層の厚みは特に限定されないが5μm〜200μmの範囲が好ましい。厚みが5μm以上であれば十分な放熱効果が発揮され、200μm以下であればスペース効率にすぐれる。
電気化学素子に被覆層を形成させる場合には、電気化学素子の容器外面の側面、底面、及び/又は上端部の全面もしくは一部に形成するのが好ましい。また電源装置に被覆層を形成させる場合には電源装置の容器ケース内面もしくは外面の全面または一部に形成させるのが好ましい。勿論電気化学素子の容器外面および電源装置の容器ケースの内面、外面の被覆層を形成しても良い。
As a third method, there is a method in which a material having a heat radiation function is directly formed on an electrochemical element and / or a power supply device by a method such as thermal spraying, vapor deposition, or CVD to form a coating layer.
Among the methods of forming the coating layer, the method of forming the first sheet is preferable because it is simple and provides a high heat dissipation effect. Further, it is preferable to use a glass cloth as the base material at that time from the viewpoint of heat resistance, durability, and the like. Although the thickness of this coating layer is not specifically limited, The range of 5 micrometers-200 micrometers is preferable. If the thickness is 5 μm or more, a sufficient heat dissipation effect is exhibited, and if it is 200 μm or less, the space efficiency is excellent.
When the coating layer is formed on the electrochemical device, it is preferably formed on the whole or a part of the side surface, bottom surface, and / or upper end portion of the outer surface of the container of the electrochemical device. Moreover, when forming a coating layer in a power supply device, it is preferable to form it in the whole surface or a part of container case inner surface or outer surface of a power supply device. Of course, a coating layer may be formed on the outer surface of the container of the electrochemical element and the inner and outer surfaces of the container case of the power supply device.
以下、本発明を実施例、比較例により詳細に説明する。
図1は、本発明の電気化学素子と被覆層の一例を示す。図1において、1は電池容器、2は電池容器の長側面(最も面積の広い側面を意味する。)、3は電池容器の短側面、4は正極端子、5は負極端子、6は安全弁、7は被覆層である。図2は遠赤外線放射スペクトルを示す。図3は外部短絡試験時の電池容器の表面温度変化を示す。図4は釘刺し試験時の電池容器の表面温度変化を示す。図5は2個の電池を直列に接続した組電池を示す。図6は該組電池と容器ケースからなる電源装置を示す。
尚、遠赤外線放射スペクトルの測定は100℃においてフーリエ変換赤外分光光度計(日本分光株式会社製、FT−IR660)を用いて行なった。測定された遠赤外線放射率の値は、遠赤外線放射率が既知の標準物質(Tempil Inc.社のPyromark)によって較正した。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.
FIG. 1 shows an example of an electrochemical element and a coating layer of the present invention. In FIG. 1, 1 is a battery container, 2 is a long side surface of the battery container (meaning a side surface having the largest area), 3 is a short side surface of the battery container, 4 is a positive electrode terminal, 5 is a negative electrode terminal, 6 is a safety valve, 7 is a coating layer. FIG. 2 shows the far-infrared emission spectrum. FIG. 3 shows changes in the surface temperature of the battery container during the external short circuit test. FIG. 4 shows changes in the surface temperature of the battery container during the nail penetration test. FIG. 5 shows an assembled battery in which two batteries are connected in series. FIG. 6 shows a power supply device comprising the assembled battery and a container case.
The far-infrared radiation spectrum was measured using a Fourier transform infrared spectrophotometer (manufactured by JASCO Corporation, FT-IR660) at 100 ° C. The measured far-infrared emissivity values were calibrated with a reference material with known far-infrared emissivity (Pyromark, Tempil Inc.).
[参考例1]
LiCoO2100質量部に対し、グラファイト2.5質量部、アセチレンブラック2.5質量部、結合剤としてポリフッ化ビニリデン8質量部を加え、N−メチルピロリドン質量部を溶剤に用いてペースト状にしたものを、厚み18μmのアルミ箔の両面に塗布、乾燥させ合計厚み220μmの正極を作製した。次に、グラファイト100質量部に対し、結合剤としてポリフッ化ビニリデン8質量部を加え、N−メチルピロリドン質量部を溶剤に用いてペースト状にしたものを、厚み12μmの銅箔の両面に塗布、乾燥させ合計厚み150μmの負極を作製した。正極と負極の間にポリエチレン製の厚み24μmのセパレータを介在させて互いに積層し、多数回捲回して渦巻型の電極体を作製した後、電極体側面をプレスし偏平化させた。この電極体をアルミ製電池缶からなる容器(たて48mm、よこ34mm、厚み6mm)に収納した後、電解液としてLiPF6をエチレンカーボネート/メチルエチルカーボネートの体積比1:2の混合溶媒に1mol・dm−3の濃度に溶解させたものを注液した。正極端子、負極端子、及び金属薄膜型の安全弁を組み込んで封入し、図1に示す角型リチウムイオン二次電池を作製した。
[Reference Example 1]
With respect to 100 parts by mass of LiCoO 2 , 2.5 parts by mass of graphite, 2.5 parts by mass of acetylene black, 8 parts by mass of polyvinylidene fluoride as a binder were added, and N-methylpyrrolidone parts by mass were used as a solvent to make a paste. This was applied to both sides of an aluminum foil having a thickness of 18 μm and dried to prepare a positive electrode having a total thickness of 220 μm. Next, 8 parts by mass of polyvinylidene fluoride as a binder is added to 100 parts by mass of graphite, and a paste formed using N-methylpyrrolidone parts by mass as a solvent is applied to both sides of a copper foil having a thickness of 12 μm. A dried negative electrode having a total thickness of 150 μm was produced. A separator made of polyethylene and having a thickness of 24 μm was interposed between the positive electrode and the negative electrode, wound around many times to produce a spiral electrode body, and then the side surface of the electrode body was pressed and flattened. After this electrode body was accommodated in a container made of an aluminum battery can (length: 48 mm, width: 34 mm, thickness: 6 mm), 1 mol of LiPF 6 was added as an electrolyte in a mixed solvent of ethylene carbonate / methyl ethyl carbonate in a volume ratio of 1: 2. -A solution dissolved at a concentration of dm- 3 was injected. A positive electrode terminal, a negative electrode terminal, and a metal thin film type safety valve were incorporated and sealed to produce a square lithium ion secondary battery shown in FIG.
[実施例1]
シリコーン樹脂の水性分散体(シリコーン樹脂含量54重量%)100重量部に、熱放射機能を有する物質の粉末(以下「熱放射粉末」という。)として二酸化珪素粉末(平均粒径3.5μm)35重量部、酸化アルミニウム粉末(平均粒径8.3μm)25重量部、酸化ジルコニウム粉末(平均粒径1.5μm)15重量部をミキサーで分散混合した。この分散液を厚み30μmのガラスクロス(旭化成エレクトロニクス株式会社製1037)に含浸させた後、120℃で乾燥を行い平均厚み60μmのシートを得た(ガラスクロスの隙間が熱放射粉末で埋まると共にガラスクロスの両側に15μm厚の熱放射粉末層ができている。)。このシートの片面にブチルゴムからなる厚み10μmの粘着層をヘキサン溶液を塗布することで形成し、たて40mmよこ30mmに切断して、参考例1の角型電池の両側の長側面に密着させて被覆層とした。
この被覆層の遠赤外線放射スペクトルを測定した結果を図2に示す。波長8.5μmに放射率の最大値を有し、その値は0.98であった。この角型電池を4.35Vまで過充電した状態で外部短絡試験を行い、その時の電池缶表面温度変化を図3に示す。次に同様にして作成した角型電池を4.35Vまで過充電した状態で内部短絡試験として釘刺し試験を行い、その時の電池缶表面温度変化を図4に示す。表1にこれらの結果をまとめて示す。
[Example 1]
Silicon dioxide powder (average particle size 3.5 μm) 35 as a powder of a substance having a heat radiation function (hereinafter referred to as “heat radiation powder”) in 100 parts by weight of an aqueous dispersion of silicone resin (silicone resin content 54% by weight) Part by weight, 25 parts by weight of aluminum oxide powder (average particle size 8.3 μm), and 15 parts by weight of zirconium oxide powder (average particle size 1.5 μm) were dispersed and mixed with a mixer. After impregnating this dispersion into a glass cloth having a thickness of 30 μm (1037 manufactured by Asahi Kasei Electronics Co., Ltd.), drying was performed at 120 ° C. to obtain a sheet having an average thickness of 60 μm. A heat radiation powder layer having a thickness of 15 μm is formed on both sides of the cloth.) An adhesive layer made of butyl rubber having a thickness of 10 μm is formed on one side of this sheet by applying a hexane solution, cut to a length of 40 mm and 30 mm, and adhered to the long side surfaces on both sides of the prismatic battery of Reference Example 1. It was set as the coating layer.
The result of measuring the far-infrared emission spectrum of this coating layer is shown in FIG. It has a maximum value of emissivity at a wavelength of 8.5 μm, and its value was 0.98. An external short-circuit test was performed in a state where this square battery was overcharged to 4.35 V, and the change in the battery can surface temperature at that time is shown in FIG. Next, a nail penetration test was performed as an internal short-circuit test in a state where a square battery prepared in the same manner was overcharged to 4.35 V, and the change in the battery can surface temperature at that time is shown in FIG. Table 1 summarizes these results.
なお、外部短絡試験、及び釘刺し試験は以下の手順で行った。
[外部短絡試験]
電池缶の短側面に熱電対を配置し、正極端子と負極端子を3mm径の銅線で接続し、外部短絡させた。短絡させた時間を0としてその後の温度変化を熱電対で測定した。
[釘刺し試験]
電池缶の短側面に熱電対を配置し、3mmΦの釘を電池缶の長側面の中央部に刺す。刺した時間を0としてその後の温度変化を熱電対で測定した。
The external short circuit test and the nail penetration test were performed according to the following procedure.
[External short circuit test]
A thermocouple was placed on the short side surface of the battery can, and the positive electrode terminal and the negative electrode terminal were connected with a copper wire having a diameter of 3 mm to externally short-circuit. The time of short-circuiting was set to 0, and the subsequent temperature change was measured with a thermocouple.
[Nail penetration test]
A thermocouple is placed on the short side of the battery can, and a 3 mmφ nail is inserted into the center of the long side of the battery can. The puncture time was set to 0 and the subsequent temperature change was measured with a thermocouple.
[実施例2]
実施例1において、熱放射粉末を二酸化珪素粉末(平均粒径 3.5μm)35重量部、酸化アルミニウム粉末(平均粒径8.3μm)25重量部、酸化スズ粉末(平均粒径0.5μm)15重量部に代えた以外は同じ操作を行い、平均厚み60μmのシートを得た。この被覆層の遠赤外放射スペクトルを測定した結果、波長6.5μmに放射率の最大値を有し、その値は0.96であった。実施例1と同様の条件で外部短絡試験と釘刺し試験を行った。その結果を表1に示す。
[Example 2]
In Example 1, 35 parts by weight of silicon dioxide powder (average particle size 3.5 μm), 25 parts by weight of aluminum oxide powder (average particle size 8.3 μm), tin oxide powder (average particle size 0.5 μm) The same operation was performed except that the amount was changed to 15 parts by weight to obtain a sheet having an average thickness of 60 μm. As a result of measuring the far-infrared radiation spectrum of this coating layer, it had a maximum value of emissivity at a wavelength of 6.5 μm, and its value was 0.96. An external short circuit test and a nail penetration test were performed under the same conditions as in Example 1. The results are shown in Table 1.
[実施例3]
実施例1において、熱放射粉末を二酸化珪素粉末(平均粒径 3.5μm)35重量部、カオリン粉末(平均粒径0.3μm)30重量部、酸化マグネシウム粉末(平均粒径3.5μm)5重量部に代えた以外は同じ操作を行い、平均厚み60μmのシートを得た。この被覆層の遠赤外放射スペクトルを測定した結果、波長11.5μmに放射率の最大値を有し、その値は0.88であった。実施例1と同様の条件で外部短絡試験と釘刺し試験を行った。その結果を表1に示す。
[Example 3]
In Example 1, the heat radiation powder was 35 parts by weight of silicon dioxide powder (average particle size 3.5 μm), 30 parts by weight of kaolin powder (average particle size 0.3 μm), magnesium oxide powder (average particle size 3.5 μm) 5 A sheet having an average thickness of 60 μm was obtained by performing the same operation except that the weight part was used. As a result of measuring the far-infrared radiation spectrum of this coating layer, it had a maximum value of emissivity at a wavelength of 11.5 μm, and its value was 0.88. An external short circuit test and a nail penetration test were performed under the same conditions as in Example 1. The results are shown in Table 1.
[実施例4]
実施例1において、熱放射粉末を酸化アルミニウム粉末(平均粒径8.3μm)35重量部、カオリン粉末(平均粒径0.3μm)30重量部、燐酸カルシウム粉末(平均粒径3.5μm)5重量部に代えた以外は同じ操作を行い、平均厚み60μmのシートを得た。この被覆層の遠赤外放射スペクトルを測定した結果、波長4.5μmに放射率の最大値を有し、その値は0.87であった。実施例1と同様の条件で外部短絡試験と釘刺し試験を行った。その結果を表1に示す。
[Example 4]
In Example 1, 35 parts by weight of aluminum oxide powder (average particle size 8.3 μm), 30 parts by weight of kaolin powder (average particle size 0.3 μm), calcium phosphate powder (average particle size 3.5 μm) 5 A sheet having an average thickness of 60 μm was obtained by performing the same operation except that the weight part was used. As a result of measuring the far-infrared radiation spectrum of this coating layer, it had a maximum emissivity at a wavelength of 4.5 μm, and its value was 0.87. An external short circuit test and a nail penetration test were performed under the same conditions as in Example 1. The results are shown in Table 1.
[比較例1]
実施例1において、熱放射粉末を活性白土粉末(平均粒径0.3μm)35重量部、カオリン粉末(平均粒径0.3μm)35重量部に代えた以外は同じ操作を行い、平均厚み60μmのシートを得た。この被覆層の遠赤外放射スペクトルの測定結果を図2に示す。波長8.5μmに放射率の最大値を有し、その値は0.81であった。実施例1と同様の条件で外部短絡試験と釘刺し試験とを行った。その結果をそれぞれ図3、図4に示す。表1にこれらの結果をまとめて示す。
[Comparative Example 1]
In Example 1, the same operation was performed except that the heat radiation powder was replaced with 35 parts by weight of activated clay powder (average particle size 0.3 μm) and 35 parts by weight of kaolin powder (average particle size 0.3 μm), and the average thickness 60 μm. Got the sheet. The measurement result of the far-infrared radiation spectrum of this coating layer is shown in FIG. It has a maximum value of emissivity at a wavelength of 8.5 μm, and the value was 0.81. An external short circuit test and a nail penetration test were performed under the same conditions as in Example 1. The results are shown in FIGS. 3 and 4, respectively. Table 1 summarizes these results.
[比較例2]
実施例1において、熱放射粉末を活性白土粉末(平均粒径8.3μm)35重量部、酸化カルシウム粉末(平均粒径2.3μm)35重量部に代えた以外は同じ操作を行い、平均厚み60μmのシートを得た。この被覆層の遠赤外放射スペクトルを測定した結果、波長15.5μmに放射率の最大値を有し、その値は0.79であった。実施例1と同様の条件で外部短絡試験と釘刺し試験を行った。その結果を表1に示す。
[Comparative Example 2]
In Example 1, the same operation was performed except that the heat radiation powder was replaced with 35 parts by weight of activated clay powder (average particle size 8.3 μm) and 35 parts by weight of calcium oxide powder (average particle size 2.3 μm), and the average thickness was changed. A 60 μm sheet was obtained. As a result of measuring the far-infrared radiation spectrum of this coating layer, it had a maximum value of emissivity at a wavelength of 15.5 μm, and its value was 0.79. An external short circuit test and a nail penetration test were performed under the same conditions as in Example 1. The results are shown in Table 1.
[比較例3]
参考例1で作成した電池を用い被覆層を形成させずに実施例1と同様の条件で外部短絡試験と釘刺し試験を行った。その結果を表1に示す。
[Comparative Example 3]
An external short circuit test and a nail penetration test were performed under the same conditions as in Example 1 without using the battery prepared in Reference Example 1 and forming a coating layer. The results are shown in Table 1.
[実施例5]
実施例1で作成した被覆層を有する電池を2個直列に接続し図5に示す組電池を作成した。この組電池を図6に示すポリカーボネート樹脂製の電源装置容器ケースに入れた。電源装置容器ケースの長側面の内側にも実施例1で作成したものと同じ被覆層を形成した。この電源装置を8.7Vまで過充電した状態で実施例1と同様の条件で外部短絡試験と釘刺し試験を行った。
結果を表1に示す。電池が電源装置容器ケース内に密閉された状態でも優れた安全性が維持されていた。
[Example 5]
Two batteries having the coating layer prepared in Example 1 were connected in series to prepare an assembled battery shown in FIG. This assembled battery was placed in a polycarbonate resin power supply container case shown in FIG. The same coating layer as that prepared in Example 1 was also formed inside the long side surface of the power supply device case. An external short circuit test and a nail penetration test were performed under the same conditions as in Example 1 with this power supply device overcharged to 8.7V.
The results are shown in Table 1. Even when the battery was sealed in the power supply container case, excellent safety was maintained.
[実施例6]
市販の円筒型ニッケル水素電池(三洋電機製 N−TG1S 直径14mm、高さ50mm)の外装熱収縮フィルムを剥がして、実施例1で作成した厚み60μmのシートに同じ10μmの粘着層を形成したものを側面に1周に渡って貼り付けた。このニッケル水素電池を市販の充電器(三洋電機製 NC−TG1)で7時間充電した後、実施例1と同様の条件で外部短絡試験と釘刺し試験を行なった。但し、釘刺し試験は側面の中央部に釘を刺した。その結果を表1に示す。
[Example 6]
A commercially available cylindrical nickel-metal hydride battery (Sanyo Electric N-
[比較例4]
実施例6と同じ市販の円筒型ニッケル水素電池(三洋電機製 N−TG1S 直径14mm、高さ50mm)の外装熱収縮フィルムを剥がして、市販の充電器(三洋電機製 NC−TG1)で7時間充電した後、実施例1と同様の条件で外部短絡試験と釘刺し試験を行なった。但し、釘刺し試験は側面の中央部に釘を刺した。その結果を表1に示す。尚、遠赤外線放射率は被覆層のない電池缶表面の値を示す。
[Comparative Example 4]
The external heat-shrink film of the same commercially available cylindrical nickel-metal hydride battery (N-
本発明の電気化学素子および電源装置は放熱性に優れ、外部短絡、内部短絡といった異常時においても優れた信頼性、安全性を維持することができ、小型携帯用電源、大型電源として有用に用いることができる。 The electrochemical element and the power supply device of the present invention are excellent in heat dissipation, can maintain excellent reliability and safety even in abnormal situations such as external short-circuit and internal short-circuit, and are usefully used as a small portable power source and a large power source. be able to.
1 電池容器
2 電池容器の長側面
3 電池容器の短側面
4 正極端子
5 負極端子
6 安全弁
7 被覆層
8 接続板
9 正極リード線
10 負極リード線
11 電源装置容器ケース
12 長側面
13 正極リード線口
14 負極リード線口
DESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007259123A JP2009087875A (en) | 2007-10-02 | 2007-10-02 | High heat radiation electrochemical element and power supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007259123A JP2009087875A (en) | 2007-10-02 | 2007-10-02 | High heat radiation electrochemical element and power supply device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009087875A true JP2009087875A (en) | 2009-04-23 |
Family
ID=40661009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007259123A Withdrawn JP2009087875A (en) | 2007-10-02 | 2007-10-02 | High heat radiation electrochemical element and power supply device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009087875A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011096552A (en) * | 2009-10-30 | 2011-05-12 | Sony Corp | Nonaqueous electrolyte battery |
WO2012029240A1 (en) | 2010-08-31 | 2012-03-08 | 日東電工株式会社 | Heat-dissipating case and lithium battery pack using same, and semi-conducting tape for heat dissipation |
WO2012105177A1 (en) * | 2011-01-31 | 2012-08-09 | 日東電工株式会社 | Assembled battery device |
EP2801120A4 (en) * | 2012-01-05 | 2015-11-11 | Electrovaya Inc | Thin film electrochemical cell with a polymer double seal |
CN105977228A (en) * | 2016-07-05 | 2016-09-28 | 电子科技大学 | Method for reducing object balance temperature through infrared radiation |
-
2007
- 2007-10-02 JP JP2007259123A patent/JP2009087875A/en not_active Withdrawn
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011096552A (en) * | 2009-10-30 | 2011-05-12 | Sony Corp | Nonaqueous electrolyte battery |
US9224991B2 (en) | 2009-10-30 | 2015-12-29 | Sony Corporation | Nonaqueous electrolyte battery |
US9236584B2 (en) | 2009-10-30 | 2016-01-12 | Sony Corporation | Nonaqueous electrolyte battery including package member having blackbody material layer |
US9431639B2 (en) | 2009-10-30 | 2016-08-30 | Sony Corporation | Battery and a package for a battery |
US10305071B2 (en) | 2009-10-30 | 2019-05-28 | Murata Manufacturing Co., Ltd. | Battery package including blackbody material layer and nonaqueous electrolyte battery including the same |
WO2012029240A1 (en) | 2010-08-31 | 2012-03-08 | 日東電工株式会社 | Heat-dissipating case and lithium battery pack using same, and semi-conducting tape for heat dissipation |
WO2012105177A1 (en) * | 2011-01-31 | 2012-08-09 | 日東電工株式会社 | Assembled battery device |
CN103339790A (en) * | 2011-01-31 | 2013-10-02 | 日东电工株式会社 | Assembled battery device |
US20130323575A1 (en) * | 2011-01-31 | 2013-12-05 | Nitto Denko Corporation | Assembled battery device |
EP2801120A4 (en) * | 2012-01-05 | 2015-11-11 | Electrovaya Inc | Thin film electrochemical cell with a polymer double seal |
US10797277B2 (en) | 2012-01-05 | 2020-10-06 | Electrovaya Inc. | Thin film electrochemical cell with a polymer double seal |
CN105977228A (en) * | 2016-07-05 | 2016-09-28 | 电子科技大学 | Method for reducing object balance temperature through infrared radiation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI624979B (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery utilizing the same | |
EP2299535A1 (en) | Battery pack | |
CN105355805B (en) | Nonaqueous electrolyte battery | |
KR101513821B1 (en) | Battery electrode and use thereof | |
US9887404B2 (en) | Secondary battery | |
US20070190408A1 (en) | Separator and method of manufacturing non-aqueous electrolyte secondary battery using the same | |
CN103855422B (en) | Secondary cell active material, electrode for secondary battery and secondary cell | |
US20100183910A1 (en) | Battery pack and battery-mounted device | |
JP2001283910A (en) | Battery | |
JP2003297303A (en) | Electrochemical device module | |
WO2018159000A1 (en) | Battery pack, electric power tool, and electronic apparatus | |
JP5341280B2 (en) | Lithium secondary battery pack, electronic device using the same, charging system and charging method | |
US20110111285A1 (en) | Assembled sealing member and battery using the same | |
JP2014127242A (en) | Lithium secondary battery | |
JP2006156235A (en) | Negative electrode and battery | |
CN110048088B (en) | Lithium secondary battery | |
JP4053802B2 (en) | Electrochemical devices | |
JP2009087875A (en) | High heat radiation electrochemical element and power supply device | |
JP4824450B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3579227B2 (en) | Thin rechargeable battery | |
JP7505641B2 (en) | Secondary battery | |
KR102525677B1 (en) | Lithium secondary battery | |
KR100954591B1 (en) | Electrode Assembly and Lithi? secondary Battery having the Same | |
JP2013157219A (en) | Nonaqueous electrolyte secondary battery | |
JP2005190953A (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20101207 |