JP2009085918A - Method for detecting scattered light - Google Patents

Method for detecting scattered light Download PDF

Info

Publication number
JP2009085918A
JP2009085918A JP2007259658A JP2007259658A JP2009085918A JP 2009085918 A JP2009085918 A JP 2009085918A JP 2007259658 A JP2007259658 A JP 2007259658A JP 2007259658 A JP2007259658 A JP 2007259658A JP 2009085918 A JP2009085918 A JP 2009085918A
Authority
JP
Japan
Prior art keywords
light
scattered light
detection
detection surface
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007259658A
Other languages
Japanese (ja)
Inventor
Toshihito Kimura
俊仁 木村
Takaichiro Nakamura
崇市郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007259658A priority Critical patent/JP2009085918A/en
Publication of JP2009085918A publication Critical patent/JP2009085918A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the S/N ratio by detecting scattered light at an appropriate acceptance angle in scattered light detection, using total reflection illumination. <P>SOLUTION: In a method for detecting scattered light using the total reflection illumination, the scattered light 20 having directivity is produced by approximately equalizing the size of the wavelength of a measurement light 9 to the size of the diameter of a scattering label microparticle 5 which labels a substance to be detected 2. The scattered light 20, having directivity, is detected from an appropriate direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エバネッセント光を利用した散乱光検出方法に関するものである。   The present invention relates to a scattered light detection method using evanescent light.

従来、タンパク質やDNA等を検出するバイオ測定において、全反射照明を利用した検出方法が注目されている。この検出方法は、屈折率の異なる界面で測定光が全反射する際に界面からしみ出す光、すなわちエバネッセント光と、試料中に含まれる被検出物質あるいはこの被検出物質に付けられている標識との散乱、吸収、発光等の光学的な相互作用を分析ことにより、上記被検出物質の存在またはその量を検出する方法である。   Conventionally, a detection method using total reflection illumination has attracted attention in bioassay for detecting proteins, DNA, and the like. This detection method consists of light that oozes out from the interface when the measurement light is totally reflected at the interface of different refractive index, that is, evanescent light, and a detected substance contained in the sample or a label attached to the detected substance. In this method, the presence or amount of the substance to be detected is detected by analyzing optical interactions such as scattering, absorption, and light emission.

このような検出方法の一例としては、蛍光性標識を用いた蛍光検出方法がある。   As an example of such a detection method, there is a fluorescence detection method using a fluorescent label.

蛍光検出方法は、冷却CCD等光検出器の高性能化と相まって、バイオ研究には欠かせない道具となっている。また、蛍光性標識に用いる材料においても、特に可視領域では蛍光量子収率の高い蛍光色素、例えばFITC(蛍光:525nm、蛍光量子収率:0.6)やCy5(蛍光:680nm、蛍光量子収率:0.3)のような実用の目安となる0.2を超える蛍光色素が開発され広く用いられている。さらに、表面プラズモンによる電場の増強を用いて、蛍光信号を増大することにより、1pM(ピコモーラ)を切るような高感度検出も実現されている。   The fluorescence detection method has become an indispensable tool for bioresearch, coupled with the enhancement of the performance of photodetectors such as cooled CCDs. Also in materials used for fluorescent labels, fluorescent dyes with high fluorescence quantum yield, particularly in the visible region, such as FITC (fluorescence: 525 nm, fluorescence quantum yield: 0.6) and Cy5 (fluorescence: 680 nm, fluorescence quantum yield). A fluorescent dye exceeding 0.2 which is a practical standard such as a rate of 0.3) has been developed and widely used. Furthermore, high-sensitivity detection that cuts 1 pM (picomolar) has been realized by increasing the fluorescence signal by using the enhancement of the electric field by surface plasmons.

しかしながら、蛍光色素は、光を吸収及び発光する性質上、化学構造的に弱いπ結合を有するため、強度の強い光による不可逆的破壊や雰囲気中の酸素やオゾンとの化学反応により変質してしまうという問題がある。これにより、蛍光色素全体から発せられる総蛍光量が経時的に減少する、いわゆる褪色を招いてしまうため、測定光の強度を一定以上あげることが出来ず、高感度化に限界がある。   However, fluorescent dyes have a weak π bond in terms of chemical structure due to the property of absorbing and emitting light, so they are altered by irreversible destruction by strong light and chemical reactions with oxygen and ozone in the atmosphere. There is a problem. This causes a so-called discoloration in which the total amount of fluorescence emitted from the entire fluorescent dye decreases over time, so that the intensity of measurement light cannot be increased beyond a certain level, and there is a limit to increasing sensitivity.

そこで、全反射照明を利用した検出方法の別の例として、特許文献1および特許文献2に示すような散乱性標識を用いた散乱光検出方法が挙げられる。   Therefore, another example of the detection method using total reflection illumination is a scattered light detection method using a scattering label as shown in Patent Document 1 and Patent Document 2.

散乱光検出方法は、金属微粒子等の散乱性標識によるエバネッセント光の弾性散乱を利用しており、上記のような褪色の問題が存在しない。さらに、蛍光色素を用いた一般的な蛍光検出方法よりも得られる検出光量が大きいため、より高い検出感度が要求されるような場合に用いる方法として利用されている。
特表平10−506190号公報 特表平8−500667号公報
The scattered light detection method uses elastic scattering of evanescent light by a scattering label such as metal fine particles, and does not have the above-described problem of fading. Furthermore, since the amount of detected light obtained is larger than that of a general fluorescence detection method using a fluorescent dye, it is used as a method used when higher detection sensitivity is required.
Japanese National Patent Publication No. 10-506190 JP-T-8-500667

しかしながら、上記のような散乱光検出方法において、試料中に含まれる夾雑物や試料供給面の凹凸等により生じるエバネッセント光のノイズ的な散乱光が問題となっている。これは、前述したノイズ的な散乱光が、本来検出対象としている散乱性標識による散乱光に対するノイズとなってしまうために、S/N比が低下し散乱光検出の定量性を失わせるためである。   However, in the scattered light detection method as described above, there is a problem of noise-like scattered light of evanescent light caused by impurities contained in the sample, unevenness of the sample supply surface, and the like. This is because the noise-like scattered light described above becomes noise with respect to the scattered light by the scattering label that is originally a detection target, so that the S / N ratio is lowered and the quantitativeness of the scattered light detection is lost. is there.

本発明は上記問題に鑑みてなされたものであり、S/N比を向上させ、より高い定量性を備えた散乱光検出方法の提供を目的とするものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a scattered light detection method with improved S / N ratio and higher quantitativeness.

上記目的を達成するために、本発明者は、測定光の波長と散乱性標識微粒子の直径とが同程度の大きさの場合、散乱光が指向性を有することに注目して、本発明に至った。   In order to achieve the above object, the present inventor has paid attention to the fact that the scattered light has directivity when the wavelength of the measurement light and the diameter of the scattering marker fine particles are approximately the same. It came.

すなわち、本発明による散乱光検出方法は、誘電体プリズム基板の一面からなる検出面に対し、検出面で全反射条件を満たすように測定光を入射して、検出面表面にエバネッセント光を発生させ、検出面に供給された試料中に含まれる散乱性標識微粒子に、エバネッセント光が散乱されることで生じる散乱光の量を検出することにより、被検出物質の存在量を検出する散乱光検出方法において、
測定光の波長λと、散乱性標識微粒子の直径Φとが下記式(1)を満たすものであり、
上記散乱光のうち、指向性を有する散乱光を検出することを特徴とするものである。
0.25≦Φ/λ・・・(1)
That is, in the scattered light detection method according to the present invention, the measurement light is incident on the detection surface composed of one surface of the dielectric prism substrate so as to satisfy the total reflection condition on the detection surface, and evanescent light is generated on the detection surface. A scattered light detection method for detecting the amount of a substance to be detected by detecting the amount of scattered light generated by scattering of evanescent light to scattering labeled fine particles contained in a sample supplied to a detection surface In
The wavelength λ of the measurement light and the diameter Φ of the scattering marker fine particles satisfy the following formula (1):
Among the scattered light, the scattered light having directivity is detected.
0.25 ≦ Φ / λ (1)

そして、本発明による散乱光検出方法において、指向性を有する散乱光は、
散乱光の散乱方向を示すベクトルと、測定光の検出面に対する入射方向を示すベクトルのうち、この検出面に平行な方向の平行成分ベクトルとがなす角θが、下記式(2)を満たすようなものであることが望ましい。
0°≦θ≦60°・・・(2)
In the scattered light detection method according to the present invention, the scattered light having directivity is
Of the vector indicating the scattering direction of the scattered light and the vector indicating the incident direction of the measurement light with respect to the detection surface, the angle θ formed by the parallel component vector in the direction parallel to the detection surface satisfies the following formula (2): It is desirable that
0 ° ≦ θ ≦ 60 ° (2)

ここで、「検出面」とは、試料等を供給して接せしめる誘電体プリズム基板のある一面であって、測定光を、この一面で全反射条件を満たすように誘電体プリズム基板を通し入射して、この一面の表面にエバネッセント光を発生させるように配されたものである。   Here, the “detection surface” is a surface of the dielectric prism substrate to which a sample or the like is supplied and brought into contact, and the measurement light is incident through the dielectric prism substrate so that the total reflection condition is satisfied on this surface. The evanescent light is generated on the surface of this surface.

また、「指向性を有する散乱光」とは、測定光の検出面に対する入射方向を示すベクトルのうち、この検出面に平行な方向の平行成分ベクトルが指す方向に指向性を有する散乱光であり、詳細は後述する。   In addition, “scattered light having directivity” is scattered light having directivity in the direction indicated by the parallel component vector in the direction parallel to the detection surface of the vectors indicating the incident direction of the measurement light with respect to the detection surface. Details will be described later.

さらに、本発明による散乱光検出方法において、指向性を有する散乱光のうち、検出面に対して誘電体プリズム基板側に進入してきた散乱光と、検出面における測定光の反射光とを分離して検出することが望ましい。   Further, in the scattered light detection method according to the present invention, among the scattered light having directivity, the scattered light that has entered the dielectric prism substrate side with respect to the detection surface is separated from the reflected light of the measurement light on the detection surface. It is desirable to detect them.

また、本発明による散乱光検出方法において、散乱性標識微粒子は、金属微粒子であることが望ましい。   In the scattered light detection method according to the present invention, the scattering label fine particles are desirably metal fine particles.

一方、本発明による散乱光検出装置は、請求項1から3に記載の散乱光検出方法で使用される散乱光検出装置であって、測定光を発する光源と、検出面を有しかつ測定光がこの検出面で全反射条件を満たすような位置に配された誘電体プリズム基板と、散乱性標識微粒子によるエバネッセント光の指向性を有する散乱光を検出するような位置に配された光検出器とを備えてなることを特徴とするものである。   On the other hand, the scattered light detection device according to the present invention is a scattered light detection device used in the scattered light detection method according to claim 1, and has a light source that emits measurement light, a detection surface, and measurement light. Is disposed at a position that satisfies the total reflection condition on the detection surface, and a photodetector disposed at a position that detects scattered light having the directivity of evanescent light by the scattering marker fine particles. It is characterized by comprising.

なお、本発明による散乱光検出装置において、誘電体プリズム基板は、指向性を有する散乱光のうち、検出面に対して誘電体プリズム基板側に進入してきた散乱光と、検出面における測定光の反射光とを分離する分離機構を有するものであることが望ましい。   In the scattered light detection device according to the present invention, the dielectric prism substrate is configured to transmit scattered light having directivity among scattered light that has entered the dielectric prism substrate side with respect to the detection surface and measurement light on the detection surface. It is desirable to have a separation mechanism that separates the reflected light.

本発明による散乱光検出方法によれば、全反射照明を用いた散乱光検出方法において、測定光の波長と散乱性標識微粒子の直径とが同程度の大きさの場合に生じる散乱光の指向性を利用し、この指向性を有する散乱光を主な検出対象として検出している。この結果、散乱光を効率よく検出することができるため、検出の定量性を向上させることが可能となる。   According to the scattered light detection method of the present invention, in the scattered light detection method using total reflection illumination, the directivity of the scattered light generated when the wavelength of the measurement light and the diameter of the scattering marker fine particle are approximately the same. The scattered light having this directivity is detected as the main detection target. As a result, since scattered light can be detected efficiently, it is possible to improve the quantitativeness of detection.

以下、本発明における最良の実施形態について図面を用いて説明するが、本発明はこれに限られるものではない。   Hereinafter, although the best embodiment in the present invention is described using a drawing, the present invention is not limited to this.

「散乱光検出方法」
本発明者は、全反射照明を用いた散乱光検出において、測定光の波長と散乱性標識微粒子の直径がほぼ同程度である場合、その散乱される方向により散乱光の強度が異なるという散乱光の指向性を見出した。
Scattered light detection method
In the scattered light detection using total reflection illumination, the present inventor found that when the wavelength of the measurement light and the diameter of the scattering marker fine particles are approximately the same, the scattered light has a different intensity depending on the direction of scattering. I found the directivity.

図1は、散乱光20の受光角度θと、Au微粒子5(直径Φ:150nm、350nm)によるエバネッセント光22の散乱光20の強度(図1a)およびS/N比(図1b)との関係を示す図である。S/N比は、Au微粒子5が存在しないときの検出信号(BG信号)に対する散乱光20の検出信号比で表している。なお、受光角度θは、図2aに示すように、検出面6sに対する測定光9の入射方向を示すベクトル9iのうち、この検出面6sに平行な方向の平行成分ベクトル9iyと、光検出器10の法線ベクトル21がなす角である。ここで、法線ベクトル21は、上記平行成分ベクトル9iyを含みかつ検出面6sに垂直な平面に含まれ、外向き(光検出器10に対して試料が存在しない側向き)方向のものである。   FIG. 1 shows the relationship between the light receiving angle θ of the scattered light 20 and the intensity (FIG. 1a) and S / N ratio (FIG. 1b) of the scattered light 20 of the evanescent light 22 by the Au fine particles 5 (diameter Φ: 150 nm, 350 nm). FIG. The S / N ratio is represented by the detection signal ratio of the scattered light 20 to the detection signal (BG signal) when the Au fine particles 5 are not present. As shown in FIG. 2a, the light receiving angle θ is equal to the parallel component vector 9iy in the direction parallel to the detection surface 6s out of the vector 9i indicating the incident direction of the measurement light 9 with respect to the detection surface 6s, and the photodetector 10. Is an angle formed by the normal vector 21. Here, the normal vector 21 includes the parallel component vector 9iy and is included in a plane perpendicular to the detection surface 6s, and has an outward direction (a direction in which no sample is present with respect to the photodetector 10). .

図1より、直径150nm及び350nm両方のAu微粒子5において、受光角度θが小さくなるほど散乱光20の強度が増加しおり、S/N比も増加しているのがわかる。特に、受光角度θ=10°で検出した場合のS/N比は、従来の受光角度(θ=90°、図中z方向からの検出)での検出に比べ、Φ=150nmのAu微粒子5を用いた場合ではおよそ2倍、Φ=350nmのAu微粒子5を用いた場合ではおよそ10倍にまで向上している。   As can be seen from FIG. 1, in the Au fine particles 5 having both diameters of 150 nm and 350 nm, the intensity of the scattered light 20 increases and the S / N ratio increases as the light receiving angle θ decreases. In particular, the S / N ratio in the case of detection at a light receiving angle θ = 10 ° is the Au fine particle 5 with Φ = 150 nm compared to the detection at the conventional light receiving angle (θ = 90 °, detection from the z direction in the figure). In the case of using the Au fine particles 5 with Φ = 350 nm, it is improved to about 10 times.

これより、エバネッセント光22の散乱光20は、上記ベクトル9iy方向(すなわち、図2a中y方向)に指向性を有しているといえる。ここで、上記「ベクトル9iy方向」は、エバネッセント光22の進行方向を表していることから、本発明における「前方方向」と定義する。   Accordingly, it can be said that the scattered light 20 of the evanescent light 22 has directivity in the vector 9iy direction (that is, the y direction in FIG. 2A). Here, since the “vector 9 iy direction” represents the traveling direction of the evanescent light 22, it is defined as the “forward direction” in the present invention.

さらに、散乱現象における対称性を考慮すれば、散乱光20の指向性は、図2bに示すような円錐面Cによって囲まれる方向に拡張できると考えられる。ここで、図2bの円錐面Cは、頂点を散乱性微粒子5に置き、かつこの頂点を通りベクトル9iyに平行な直線を軸として、前方方向に開いている円錐面である。   Furthermore, if the symmetry in the scattering phenomenon is taken into consideration, it is considered that the directivity of the scattered light 20 can be expanded in the direction surrounded by the conical surface C as shown in FIG. Here, the conical surface C in FIG. 2b is a conical surface that opens in the forward direction with a vertex placed on the scattering fine particle 5 and a straight line passing through the vertex and parallel to the vector 9iy.

次に、測定光の波長と散乱性標識微粒子の種類および直径の関係を調べた結果を以下に示す。   Next, the results of examining the relationship between the wavelength of the measurement light and the type and diameter of the scattering label fine particles are shown below.

図3、図4、図5は、それぞれ測定波長λが405nm、532nm、640nmの場合における、受光角度θとAu、AgおよびCu微粒子(直径Φ:150nm、350nm)によるエバネッセント光の散乱光のS/N比の関係を示す図である。   3, 4, and 5 show the light reception angle θ and the S of the evanescent light scattered by the Au, Ag, and Cu fine particles (diameter Φ: 150 nm, 350 nm) when the measurement wavelength λ is 405 nm, 532 nm, and 640 nm, respectively. It is a figure which shows the relationship of / N ratio.

これより、θ=〜60°の場合には、従来の受光角度(θ=90°)に対するS/N比の向上は、散乱性標識微粒子の種類にはほとんど依存しないことがわかる。一方、散乱性標識微粒子の直径Φに注目してみると、波長λが405nmの場合には、150nm、350nmどちらの直径Φでも上記のようなS/N比の向上がみられるが、波長λを532nm、640nmと長くしていくと、その向上の度合いが小さくなっていくのがわかる。特に、測定光の波長λが640nm、散乱性標識微粒子の直径Φが150nmの場合には、上記のようなS/N比の向上は見られなくなっている。すなわち、散乱性標識微粒子の直径Φと測定光の波長λとの比を表すΦ/λの値が、0.25以上であると、エバネッセント光の散乱光は十分な指向性を示すが、0.25未満であると、十分な指向性を示さなくなる。   From this, it can be seen that in the case of θ = ˜60 °, the improvement of the S / N ratio with respect to the conventional light receiving angle (θ = 90 °) hardly depends on the type of the scattering label fine particles. On the other hand, when attention is paid to the diameter Φ of the scattering-labeled fine particles, when the wavelength λ is 405 nm, the improvement in the S / N ratio as described above is observed at both the diameters Φ of 150 nm and 350 nm. It can be seen that the degree of improvement decreases with increasing the length of 532 nm and 640 nm. In particular, when the wavelength λ of the measurement light is 640 nm and the diameter Φ of the scattering labeling fine particles is 150 nm, the above improvement in the S / N ratio is not observed. That is, when the value of Φ / λ representing the ratio of the diameter Φ of the scattering label fine particles to the wavelength λ of the measurement light is 0.25 or more, the scattered light of the evanescent light exhibits sufficient directivity, but 0 When it is less than .25, sufficient directivity is not exhibited.

一方、Φ/λの値に上限値は存在せず、例えばΦ/λ=100においてもエバネッセント光の散乱光は前方方向に指向性を有する。   On the other hand, there is no upper limit for the value of Φ / λ. For example, even when Φ / λ = 100, the scattered light of evanescent light has directivity in the forward direction.

なお、これは散乱性標識微粒子の種類には依存しない。   This does not depend on the type of the scattering label fine particles.

ただし、散乱性標識微粒子の直径Φは、1μm以下であることが望ましく、さらには500nm以下であることがより望ましい。これは、散乱性標識微粒子の直径が大きすぎると、体積が増え物理的に邪魔になり二次的な散乱(検出対象としている散乱光がさらに散乱される現象)を引き起こすこと、重くなることで沈殿しやすくなり被検出物質をうまく標識できなくなること等の影響によるものである。一方、測定光の波長は、扱いやすさおよびコストの観点から、一般的に用いられているおよそ320〜750nm帯域の可視光を用いることが望ましい。以上を考慮すれば、本発明による効果を得るためのより望ましい条件として、Φ/λの値の上限値を、およそ3.1(=1000nm/320nm)とすることができるが、本発明は必ずしもこれに限定されるものではない。
また、図3、図4、図5は、上記のような指向性を有する散乱光の大部分が、およそ下記式(2)で示す範囲に含まれることを示唆している。したがって、対称性を考慮し、本発明において「指向性を有する散乱光」は、軸と母線がなす角θの範囲が下記式(2)で表される図2bに示す円錐面C内を通り放出される散乱光であることがより望ましい。
0.25≦Φ/λ・・・(1)
0°≦θ≦60°・・・(2)
However, the diameter Φ of the scattering labeling fine particles is desirably 1 μm or less, and more desirably 500 nm or less. This is because if the diameter of the scattering labeled fine particles is too large, the volume increases and it becomes physically obstructive, causing secondary scattering (a phenomenon in which the scattered light to be detected is further scattered) and becoming heavy. This is due to the effect that the substance to be detected is easily precipitated and the detected substance cannot be labeled well. On the other hand, it is desirable to use visible light in a band of about 320 to 750 nm, which is generally used, from the viewpoint of ease of handling and cost. Considering the above, as a more desirable condition for obtaining the effect of the present invention, the upper limit of the value of Φ / λ can be about 3.1 (= 1000 nm / 320 nm). It is not limited to this.
3, 4, and 5 suggest that most of the scattered light having the directivity as described above is included in the range represented by the following formula (2). Therefore, in consideration of symmetry, in the present invention, “scattered light having directivity” passes through the conical surface C shown in FIG. 2b in which the range of the angle θ formed by the axis and the bus is expressed by the following equation (2). More desirably, the scattered light is emitted.
0.25 ≦ Φ / λ (1)
0 ° ≦ θ ≦ 60 ° (2)

<第1の実施形態>
図6は、本実施形態による散乱光検出方法を用いて、被検出物質としての抗原2を含む試料1から、抗原2を検出する場合に用いる散乱光検出装置の概略部分断面図である。
<First Embodiment>
FIG. 6 is a schematic partial cross-sectional view of the scattered light detection device used when detecting the antigen 2 from the sample 1 containing the antigen 2 as the substance to be detected using the scattered light detection method according to the present embodiment.

図示の通り、この散乱光検出装置は、測定光9を発する光源8と、この測定光9が検出面6sで全反射条件を満たすような位置に配された、測定光9を透過させる材料からなる誘電体プリズム基板6と、検出面6s上に固定された一次抗体3と、検出面6s上に試料1が接するように試料1を保持する試料保持部7と、検出面6sに対して試料が供給される側のほぼ前方方向から指向性を有する散乱光20を効率的に検出するような位置に配された光検出器10とを備えてなるものである。そして、図中には、試料1中に含まれる抗原2と、直径が測定光9の波長と同程度の大きさの散乱性標識微粒子5と、散乱性標識微粒子5に特異的結合性を付与する二次抗体4も同時に示している。   As shown in the figure, this scattered light detection device includes a light source 8 that emits measurement light 9, and a material that transmits the measurement light 9 that is disposed at a position that satisfies the total reflection condition on the detection surface 6s. The dielectric prism substrate 6, the primary antibody 3 fixed on the detection surface 6 s, the sample holder 7 that holds the sample 1 so that the sample 1 is in contact with the detection surface 6 s, and the sample with respect to the detection surface 6 s And a photodetector 10 arranged at a position where the scattered light 20 having directivity can be efficiently detected from a substantially forward direction on the side to which the light is supplied. In the figure, the antigen 2 contained in the sample 1, the scattering-labeled fine particles 5 having a diameter approximately the same as the wavelength of the measuring light 9, and the specific properties of the scattering-labeled fine particles 5 are imparted. A secondary antibody 4 is also shown.

測定光9は、例えばレーザ光源等から得られる単波長光でも白色光源等から得られるブロード光でもよく、特に制限はない。しかしながら、散乱光の指向性を高める観点から、その波長λは、検出条件に応じて適宜選択し、特に被検出物質2を標識している散乱性標識微粒子5の直径Φと上記式(1)の関係を満たすものとする。さらに、前述した理由により、一般的に用いられているおよそ320〜750nm帯域の可視光を用いることが望ましい。   The measuring light 9 may be, for example, a single wavelength light obtained from a laser light source or the like, or a broad light obtained from a white light source or the like, and is not particularly limited. However, from the viewpoint of increasing the directivity of the scattered light, the wavelength λ is appropriately selected according to the detection conditions. In particular, the diameter Φ of the scattering-labeled fine particles 5 that label the substance 2 to be detected and the above formula (1) Satisfy the relationship. Furthermore, for the reason described above, it is desirable to use visible light in a band of about 320 to 750 nm that is generally used.

光源8は、例えばレーザ光源等でもよく、特に制限はないが、検出条件に応じて適宜選択することができる。また必要に応じて、光源8は、測定光9を検出面6sで全反射条件を満たすように誘電体プリズム基板6を通して入射させるために、測定光9を導光するためのミラーやレンズ等の導光系等を適宜組み合わせることが望ましい。   The light source 8 may be, for example, a laser light source and is not particularly limited, but can be appropriately selected according to detection conditions. Further, if necessary, the light source 8 is provided with a mirror, a lens, or the like for guiding the measurement light 9 so that the measurement light 9 is incident through the dielectric prism substrate 6 so as to satisfy the total reflection condition on the detection surface 6s. It is desirable to combine light guide systems and the like as appropriate.

誘電体プリズム基板6は、例えば樹脂やガラス等の透明材料から形成されたものである。樹脂製基板を用いた場合には、基板が安価であるという利点があり、ガラス製基板を用いた場合には、不純物や表面凹凸による散乱(この散乱は検出信号に対するノイズとなる)が小さいという利点があるため、用途および検出条件に合わせ適宜選択することが望ましい。誘電体プリズム基板6を樹脂から形成する場合には、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、シクロオレフィンを含む非晶性ポリオレフィン(APO)等を用いることができる。   The dielectric prism substrate 6 is made of a transparent material such as resin or glass. When a resin substrate is used, there is an advantage that the substrate is inexpensive, and when a glass substrate is used, scattering due to impurities and surface irregularities (this scattering becomes noise for the detection signal) is small. Since there is an advantage, it is desirable to select appropriately according to the application and detection conditions. When the dielectric prism substrate 6 is formed from a resin, polymethyl methacrylate (PMMA), polycarbonate (PC), amorphous polyolefin (APO) containing cycloolefin, or the like can be used.

一次抗体3および二次抗体4は、抗原2に対する抗体である。使用する抗体は、検出条件(特に抗原2)に応じて適宜選択することができる。一次抗体3の固定方法としては、例えば本実施形態の場合、下記(1)〜(3)のステップからなる方法により、検出面6s上にシランカップリング処理を施し実施することができる。   The primary antibody 3 and the secondary antibody 4 are antibodies against the antigen 2. The antibody to be used can be appropriately selected according to detection conditions (particularly, antigen 2). As a method for immobilizing the primary antibody 3, for example, in the case of this embodiment, the detection surface 6s can be subjected to a silane coupling treatment by a method comprising the following steps (1) to (3).

(1)シランカップリング剤(APS)によるアミノ基の導入
18mlのEtOH、1.98mlのMilliQ水、20ulの1N HClをねじ口付試験瓶に入れ、混合後、60℃にてインキュベータで温める。その後、この試験瓶に24.3mgのAPSを添加しよく撹拌する。そして、プリズム上に液体を保持するためのキュベットを設け、その中に、上記のAPS混合溶液を10ml分注する。キュベットに液体を入れた状態で、プリズムごと60℃のインキュベータに入れ、12分反応させる。その後、EtOH/MilliQ水(体積比9:1)でキュベット内の撹拌洗浄を5回行う。そして、キュベット内の液体を全て抜取り、90℃のインキュベータに入れ、180分加熱処理を行う。
(1) Introduction of amino group by silane coupling agent (APS) 18 ml of EtOH, 1.98 ml of MilliQ water, 20 ul of 1N HCl are put into a test bottle with a screw cap, and after mixing, warm at 60 ° C. in an incubator. Then, add 24.3 mg of APS to the test bottle and stir well. Then, a cuvette for holding the liquid is provided on the prism, and 10 ml of the above APS mixed solution is dispensed therein. With the liquid in the cuvette, the prism is placed in an incubator at 60 ° C. and allowed to react for 12 minutes. Thereafter, stirring and washing in the cuvette is performed 5 times with EtOH / MilliQ water (volume ratio 9: 1). Then, all the liquid in the cuvette is taken out, placed in an incubator at 90 ° C., and heated for 180 minutes.

APS:3-aminopropyltrimethoxysilane
(2)ジビニルスルホンによる修飾
ねじ口付き試験管に、10mlの4wt%ジビニルスルホン溶液と30mlのMilliQ水を加え、よく混合し1%ジビニルスルホン水溶液を作成する。そして、プリズム上のキュベットに上記水溶液を分注し、室温で60分反応させる。その後、MilliQ水にてキュベット内の撹拌洗浄を5回行う。
APS: 3-aminopropyltrimethoxysilane
(2) Modification with divinyl sulfone Add 10 ml of 4 wt% divinylsulfone solution and 30 ml of MilliQ water to a test tube with a screw cap, and mix well to prepare a 1% divinylsulfone aqueous solution. And the said aqueous solution is dispensed to the cuvette on a prism, and it makes it react for 60 minutes at room temperature. After that, stirring and washing in the cuvette is performed 5 times with MilliQ water.

(3)一次抗体3の固定
一次抗体3の希釈液をキュベットに分注し、自然乾燥させる。
(3) Immobilization of primary antibody 3 A diluted solution of primary antibody 3 is dispensed into a cuvette and allowed to air dry.

試料保持部7は、試料1を検出面6sに接するように保持でき、試料1中に含まれる標識から散乱される散乱光の検出を妨げないような形状や材料であれば特に制限されるものではない。すなわち、本実施形態においては、散乱光が指向性を示す前方方向から検出を行っているため、例えば図6に示すように、少なくとも散乱光の検出を行う前方方向の部分は光を透過させる材料からなるものが望ましい。また、その他の部分は、光を透過させない材料からなるものが望ましい。これは、意図しない外部からの光を遮断する等の観点からである。   The sample holder 7 is particularly limited as long as it can hold the sample 1 so as to be in contact with the detection surface 6s and does not interfere with detection of scattered light scattered from the label contained in the sample 1. is not. That is, in the present embodiment, since the scattered light is detected from the forward direction in which the directivity is shown, for example, as shown in FIG. 6, at least the forward direction portion where the scattered light is detected is a material that transmits the light. The one consisting of is desirable. The other parts are preferably made of a material that does not transmit light. This is from the viewpoint of blocking unintentional external light.

光検出器10は、試料1中に含まれる標識が散乱する散乱光を定量的に検出するもので、例えば富士フイルム株式会社製 LAS-1000 plus(商品名)を好適に用いることができる。しかしながら、これに限らず検出条件に応じて適宜選択することができ、CCD、PD(フォトダイオード)、光電子増倍管、c−MOS等を用いることができる。また本実施形態においては、光検出器10は、検出面6sに対して試料が供給される側のほぼ前方方向から指向性を有する散乱光20を効率的に検出するような位置に配されることが望ましい。特に、光検出器10の外向きの法線ベクトルが、図2中の平行成分ベクトル9iyを含みかつ検出面6sに垂直な平面に含まれることがより望ましい。さらに、上記外向きの法線ベクトルと検出面6sのなす角は、上記式(2)で表させる範囲にあることが望ましい。   The photodetector 10 quantitatively detects scattered light scattered by the label contained in the sample 1, and for example, LAS-1000 plus (trade name) manufactured by FUJIFILM Corporation can be suitably used. However, the present invention is not limited to this, and can be appropriately selected according to detection conditions, and a CCD, PD (photodiode), photomultiplier tube, c-MOS, or the like can be used. Further, in the present embodiment, the photodetector 10 is disposed at a position where the scattered light 20 having directivity is efficiently detected from a substantially forward direction on the side to which the sample is supplied with respect to the detection surface 6s. It is desirable. In particular, it is more desirable that the outward normal vector of the photodetector 10 is included in a plane including the parallel component vector 9iy in FIG. 2 and perpendicular to the detection surface 6s. Furthermore, it is desirable that the angle formed by the outward normal vector and the detection surface 6s is within the range expressed by the above equation (2).

そして、図7に示すように、本実施形態による散乱光検出方法は、誘電体プリズム基板6のある一面である検出面6sに一次抗体3を固定し、検出面6sに対し測定光9を全反射条件を満たすように入射して、この検出面6s表面にエバネッセント光22を発生させ、検出面6s上の凹凸等によるBG信号を光検出器10で検出し、その後、抗原2を含む試料1を流して(図7a)、この抗原2を一次抗体3に結合させ(図7b)、その後散乱性標識微粒子5で標識されかつ抗原2と特異的に結合する二次抗体4を流し(図7c)、一次抗体3に結合した抗原2に結合させて、いわゆるサンドイッチ方式により散乱性標識微粒子5を検出面6sに固定し(図7d)、その後、同様にしてエバネッセント光22を発生させ、検出面6sに固定された散乱性標識微粒子5による、エバネッセント光22の指向性を有する散乱光20を光検出器10によって検出する(図7e)ことを特徴とするものである。   Then, as shown in FIG. 7, in the scattered light detection method according to the present embodiment, the primary antibody 3 is fixed to the detection surface 6s, which is one surface of the dielectric prism substrate 6, and the measurement light 9 is completely applied to the detection surface 6s. Incidence is made so as to satisfy the reflection condition, evanescent light 22 is generated on the surface of the detection surface 6 s, and a BG signal due to unevenness on the detection surface 6 s is detected by the photodetector 10, and then the sample 1 containing the antigen 2 (FIG. 7a), the antigen 2 is bound to the primary antibody 3 (FIG. 7b), and then the secondary antibody 4 that is labeled with the scattering-labeled microparticles 5 and specifically binds to the antigen 2 is flowed (FIG. 7c). ), Bound to the antigen 2 bound to the primary antibody 3, and fixed to the detection surface 6s by the so-called sandwich method (FIG. 7d). Thereafter, the evanescent light 22 is generated in the same manner to detect the detection surface. Fixed to 6s According to scattering labeled microparticles 5, it is characterized in that the scattered light 20 having a directivity of the evanescent light 22 is detected by the photodetector 10 (FIG. 7e).

散乱性標識微粒子5の種類は、特に制限なく検出条件によって適宜選択されるが、散乱性および直径制御の観点から、金属微粒子であることが望ましく、さらにはAu、Ag、Cu、Ptからなる群より選択される少なくとも1種以上の金属にて構成される金属微粒子であることがより望ましい。一方、その直径Φは、測定光9の波長λと上記式(1)を満たすものとする。さらに、前述した理由により、1μm以下であることが望ましく、さらには500nm以下であることがより望ましい。   The kind of the scattering labeling fine particles 5 is appropriately selected depending on the detection conditions without any particular limitation, but is preferably a metal fine particle from the viewpoint of scattering properties and diameter control, and more preferably a group consisting of Au, Ag, Cu, and Pt. It is more desirable that the fine metal particles be composed of at least one or more kinds of metals selected. On the other hand, the diameter Φ satisfies the wavelength λ of the measuring light 9 and the above formula (1). Furthermore, for the reasons described above, it is desirable that the thickness be 1 μm or less, and more desirably 500 nm or less.

以下、図6を用いながら本実施形態における作用を示す。
検出面6s上には、抗原2と特異的に結合する一次抗体3が固定化されている。このときの状態をバックグラウンドとしてBG信号を検出する。その後、試料保持部7の中に試料1が供給され、試料1中の抗原2は一次抗体3に結合し固定される。そして、散乱性標識微粒子5で標識されかつ抗原2と特異的に結合する二次抗体4が流され、二次抗体4が抗原2に結合することによって散乱性標識微粒子5が検出面6sに固定される。その後、光源8から発せられる測定光9を、検出面6sで全反射条件を満たすように誘電体プリズム基板6を通し入射する。このとき、この検出面6s表面にエバネッセント光22が発生する。そして、上記検出面6sに固定された散乱性標識微粒子5にエバネッセント光22を照明する。このときの検出信号から上記BG信号を差し引くことによって、散乱性標識微粒子5により散乱されたエバネッセント光22の散乱光20を分析し、抗原2の検出を行うことができる。
Hereinafter, the operation of this embodiment will be described with reference to FIG.
A primary antibody 3 that specifically binds to the antigen 2 is immobilized on the detection surface 6s. The BG signal is detected using the state at this time as the background. Thereafter, the sample 1 is supplied into the sample holder 7, and the antigen 2 in the sample 1 is bound to the primary antibody 3 and fixed. Then, the secondary antibody 4 that is labeled with the scattering labeling fine particles 5 and specifically binds to the antigen 2 is flowed, and the secondary antibody 4 binds to the antigen 2 to fix the scattering labeling fine particles 5 to the detection surface 6s. Is done. Thereafter, measurement light 9 emitted from the light source 8 is incident through the dielectric prism substrate 6 so as to satisfy the total reflection condition on the detection surface 6s. At this time, evanescent light 22 is generated on the surface of the detection surface 6s. Then, the evanescent light 22 is illuminated on the scattering marker fine particles 5 fixed to the detection surface 6s. By subtracting the BG signal from the detection signal at this time, the scattered light 20 of the evanescent light 22 scattered by the scattering labeling fine particles 5 can be analyzed, and the antigen 2 can be detected.

ここで、以上の例では、散乱光検出によって実際に存在が確認されるのは散乱性標識微粒子5であるが、基本的に上記工程において、この散乱性標識微粒子5には抗原2が結合しているものと考えて、この散乱性標識微粒子5の存在を確認することにより、間接的に抗原2の存在を確認している。   Here, in the above example, it is the scattering labeled fine particles 5 that are actually confirmed by the scattered light detection, but basically, in the above process, the antigen 2 is bound to the scattering labeled fine particles 5. The presence of the antigen 2 is indirectly confirmed by confirming the presence of the scattering-labeled fine particles 5.

本実施形態による散乱光検出方法では、測定光9の波長λと散乱性標識微粒子5の直径Φとが上記式(1)を満たす関係にあるため、散乱性標識微粒子5によって生じるエバネッセント光22の散乱光20は前方方向に対して指向性を有している。そして、その指向性を有する散乱光20を前方方向から受光することで、従来の受光方向(図6中上方)から検出を行う場合に比べて、効率的に散乱光20を検出することができ、S/N比を向上させることが可能となる。   In the scattered light detection method according to the present embodiment, since the wavelength λ of the measurement light 9 and the diameter Φ of the scattering label fine particles 5 satisfy the above formula (1), the evanescent light 22 generated by the scattering label fine particles 5 The scattered light 20 has directivity with respect to the forward direction. And by receiving the scattered light 20 having the directivity from the front direction, it is possible to detect the scattered light 20 more efficiently than when detecting from the conventional light receiving direction (upward in FIG. 6). , The S / N ratio can be improved.

そして、上記のようなエバネッセント光22は、検出面6sから数百nm程度の領域にしか到達しない。この特性により、上記一次抗体3を用いて散乱性標識微粒子5と抗原2の対を検出面6sに集約させることにより、意図せず試料1中に残ってしまった不純物90や浮遊散乱性標識微粒子5’からの散乱等の影響を大幅に低減することができるため、さらなるS/N比の向上が可能となる。   The evanescent light 22 as described above reaches only a region of about several hundred nm from the detection surface 6s. Due to this characteristic, the primary antibody 3 is used to aggregate the pair of the scattering-labeled fine particles 5 and the antigens 2 onto the detection surface 6s, so that the impurities 90 and the floating scattering-labeled fine particles that remain in the sample 1 unintentionally. Since the influence such as scattering from 5 ′ can be greatly reduced, the S / N ratio can be further improved.

さらに、一次抗体3を用いて散乱性標識微粒子5と抗原2の対を検出面6sに集約させることにより、エバネッセント光22により照明される散乱性標識微粒子5の量を増加させることができる。これにより、多くの散乱光20を生じさせることができ、結果としてよりS/N比の高い散乱光検出が可能となる。   Furthermore, by using the primary antibody 3 to aggregate the pairs of the scattering labeled fine particles 5 and the antigens 2 on the detection surface 6s, the amount of the scattering labeled fine particles 5 illuminated by the evanescent light 22 can be increased. Thereby, a lot of scattered light 20 can be generated, and as a result, scattered light detection with a higher S / N ratio becomes possible.

また、指向性を有する散乱光20を検出しS/N比を向上させることができるため、表面に凹凸がない等の高価な誘電体プリズム基板を必ずしも必要としないため、低コストで散乱光検出を行うことが可能となる。   Further, since the scattered light 20 having directivity can be detected and the S / N ratio can be improved, an expensive dielectric prism substrate having no irregularities on the surface is not necessarily required, and thus the scattered light can be detected at a low cost. Can be performed.

以上のように、本実施形態では、散乱光を効率よく検出することができるため、検出の定量性を向上させかつ低コスト化させることが可能となる。   As described above, in the present embodiment, scattered light can be detected efficiently, so that the quantitativeness of detection can be improved and the cost can be reduced.

<第2の実施形態>
本実施形態で使用する散乱光検出装置は、図8に示すように、図6に示す第1の実施形態で使用した装置の誘電体プリズム基板6に、指向性を有する散乱光20のうち、検出面6sに対して誘電体プリズム基板6側に進入してきた散乱光20’と、検出面6sにおける測定光9の反射光9rとを分離する分離機構23を備えたものである。そして、光検出器10は、上記分離機構23によって分離された散乱光20’を検出するように配置されている。その他の構成は、第1の実施形態の場合と同様であり、図6に示す第1の実施形態と同等の要素についての説明は、特に必要のない限り省略する。
<Second Embodiment>
As shown in FIG. 8, the scattered light detection device used in the present embodiment has a directivity on the dielectric prism substrate 6 of the device used in the first embodiment shown in FIG. 6. A separation mechanism 23 is provided for separating the scattered light 20 ′ entering the dielectric prism substrate 6 with respect to the detection surface 6 s and the reflected light 9 r of the measurement light 9 on the detection surface 6 s. The photodetector 10 is arranged so as to detect the scattered light 20 ′ separated by the separation mechanism 23. Other configurations are the same as those in the case of the first embodiment, and description of elements equivalent to those in the first embodiment shown in FIG. 6 is omitted unless particularly necessary.

本実施形態による散乱光検出方法は、散乱性標識微粒子5を検出面6sに固定した後エバネッセント光22を発生させるまでは第1の実施形態と同様であり、その後、上記散乱性標識微粒子5によって生じる、エバネッセント光22の指向性を有する散乱光20のうち、分離機構23によって、検出面6sにおける測定光9の反射光9rと分離された、検出面6sに対して誘電体プリズム基板6側に進入してきた散乱光20’を光検出器10によって検出することを特徴とするものである。   The scattered light detection method according to the present embodiment is the same as that in the first embodiment until the evanescent light 22 is generated after the scattering labeled fine particles 5 are fixed to the detection surface 6s. Of the generated scattered light 20 having directivity of the evanescent light 22, the separation mechanism 23 separates the reflected light 9 r of the measurement light 9 on the detection surface 6 s from the detection surface 6 s toward the dielectric prism substrate 6. The scattered light 20 ′ that has entered is detected by the photodetector 10.

本実施形態においても、第1の実施形態と同様な効果を得ることができる。   Also in this embodiment, the same effect as that of the first embodiment can be obtained.

さらに、本実施形態では、エバネッセント光22の指向性を有する散乱光20のうち、検出面6sに対して誘電体プリズム基板6側に進入してきた散乱光20’を検出している。これにより、血液等の光を透過しにくい試料を用いて検出を行い、検出面6sに対して試料1側からでは散乱光20を検出しにくい場合等において有益となる。   Furthermore, in the present embodiment, the scattered light 20 ′ that has entered the dielectric prism substrate 6 side with respect to the detection surface 6 s is detected from the scattered light 20 having the directivity of the evanescent light 22. Thereby, detection is performed using a sample that does not easily transmit light such as blood, which is useful when it is difficult to detect the scattered light 20 from the sample 1 side with respect to the detection surface 6s.

なお、上記すべての実施形態において、抗原抗体反応を用いて説明してきたが、本発明はこれに限られるものではなく、他の特異的結合性を利用した反応を用いても本発明の課題を解決することができる。   In all the above embodiments, the antigen-antibody reaction has been described. However, the present invention is not limited to this, and the subject of the present invention can be achieved by using a reaction utilizing other specific binding properties. Can be solved.

散乱光の受光角度とAu微粒子(直径Φ:150nm、350nm)によるエバネッセント光の散乱光の強度(図1a)とS/N比(図1b)の関係を示す図The figure which shows the relationship between the light reception angle of scattered light, the intensity | strength (FIG. 1a) of the scattered light of the evanescent light by Au fine particle (diameter (PHI): 150nm, 350nm), and S / N ratio (FIG. 1b). 本発明において指向性を有する散乱光を規定する概念図Conceptual diagram for defining scattered light having directivity in the present invention 測定波長が405nmの場合における、受光角度θと、Au、AgおよびCu微粒子(直径:150nm、350nm)によるエバネッセント光の散乱光のS/N比との関係を示す図The figure which shows the relationship between light reception angle (theta) and S / N ratio of the scattered light of the evanescent light by Au, Ag, and Cu microparticles (diameter: 150 nm, 350 nm) in case a measurement wavelength is 405 nm. 測定波長が532nmの場合における、受光角度θと、Au、AgおよびCu微粒子(直径:150nm、350nm)によるエバネッセント光の散乱光のS/N比との関係を示す図The figure which shows the relationship between receiving angle (theta) and S / N ratio of the scattered light of the evanescent light by Au, Ag, and Cu microparticles (diameter: 150 nm, 350 nm) in case a measurement wavelength is 532 nm. 測定波長が640nmの場合における、受光角度θと、Au、AgおよびCu微粒子(直径:150nm、350nm)によるエバネッセント光の散乱光のS/N比との関係を示す図The figure which shows the relationship between light reception angle (theta) and the S / N ratio of the scattered light of the evanescent light by Au, Ag, and Cu microparticles (diameter: 150 nm, 350 nm) in case a measurement wavelength is 640 nm. 第1の実施形態における散乱光検出装置を概略的に示す部分断面図The fragmentary sectional view which shows roughly the scattered light detection apparatus in 1st Embodiment 第1の実施形態における散乱光検出方法を概略的に示す部分断面図The fragmentary sectional view which shows roughly the scattered light detection method in 1st Embodiment 第2の実施形態における散乱光検出装置を概略的に示す部分断面図The fragmentary sectional view which shows roughly the scattered light detection apparatus in 2nd Embodiment

符号の説明Explanation of symbols

1 試料
2 抗原
3 特異的結合物質(一次抗体)
4 二次抗体
5 散乱性標識微粒子
5’ 浮遊散乱性標識微粒子
6 誘電体プリズム基板
6a 検出面
7 試料保持部
8 光源
9 測定光
10 光検出器
20 散乱光
21 光検出器の法線ベクトル
22 エバネッセント光
23 散乱光分離機構
90 試料中の不純物
1 Sample 2 Antigen 3 Specific binding substance (primary antibody)
4 Secondary antibody 5 Scattering labeled fine particle 5 'Floating scattering labeled fine particle 6 Dielectric prism substrate 6a Detection surface 7 Sample holding part 8 Light source 9 Measurement light 10 Photodetector 20 Scattered light 21 Normal vector 22 of the light detector Evanescent Light 23 Scattered light separation mechanism 90 Impurity in sample

Claims (6)

誘電体プリズム基板の一面からなる検出面に対し、該検出面で全反射条件を満たすように測定光を入射して、該検出面表面にエバネッセント光を発生させ、該検出面に供給された試料中に含まれる散乱性標識微粒子に、前記エバネッセント光が散乱されることで生じる散乱光の量を検出することにより、前記被検出物質の存在量を検出する散乱光検出方法において、
前記測定光の波長λと、前記散乱性標識微粒子の直径Φとが下記式(1)を満たすものであり、
前記散乱光のうち、指向性を有する前記散乱光を検出することを特徴とする散乱光検出方法。
0.25≦Φ/λ・・・(1)
A measurement light is incident on a detection surface consisting of one surface of a dielectric prism substrate so as to satisfy the total reflection condition on the detection surface, evanescent light is generated on the detection surface, and the sample supplied to the detection surface In the scattered light detection method for detecting the abundance of the substance to be detected by detecting the amount of scattered light generated by scattering the evanescent light to the scattering label fine particles contained therein,
The wavelength λ of the measurement light and the diameter Φ of the scattering marker fine particles satisfy the following formula (1):
A scattered light detection method, comprising: detecting the scattered light having directivity among the scattered light.
0.25 ≦ Φ / λ (1)
前記指向性を有する前記散乱光が、
該散乱光の散乱方向を示すベクトルと、前記測定光の前記検出面に対する入射方向を示すベクトルのうち、該検出面に平行な方向の平行成分ベクトルとがなす角θが、下記式(2)を満たすようなものであることを特徴とする請求項1に記載の散乱光検出方法。
0°≦θ≦60°・・・(2)
The scattered light having the directivity is
Of the vector indicating the scattering direction of the scattered light and the vector indicating the incident direction of the measurement light with respect to the detection surface, an angle θ formed by a parallel component vector in a direction parallel to the detection surface is expressed by the following equation (2): The scattered light detection method according to claim 1, wherein:
0 ° ≦ θ ≦ 60 ° (2)
前記指向性を有する前記散乱光のうち、前記検出面に対して前記誘電体プリズム基板側に進入してきた該散乱光と、前記検出面における前記測定光の反射光とを分離して検出することを特徴とする請求項1または2に記載の散乱光検出方法。   Out of the scattered light having the directivity, the scattered light that has entered the dielectric prism substrate side with respect to the detection surface and the reflected light of the measurement light on the detection surface are separately detected. The scattered light detection method according to claim 1, wherein: 前記散乱性標識微粒子が、金属微粒子であることを特徴とする請求項1から3いずれかに記載の散乱光検出方法。   The scattered light detection method according to claim 1, wherein the scattering marker fine particles are metal fine particles. 請求項1から4いずれかに記載の散乱光検出方法で使用される散乱光検出装置であって、
前記測定光を発する光源と、
前記検出面を有し、かつ前記測定光が該検出面で全反射条件を満たすような位置に配された前記誘電体プリズム基板と、
前記散乱性標識微粒子による前記エバネッセント光の前記指向性を有する前記散乱光を検出するような位置に配された光検出器と
を備えてなることを特徴とする散乱光検出装置。
A scattered light detection device used in the scattered light detection method according to claim 1,
A light source that emits the measurement light;
The dielectric prism substrate having the detection surface and disposed at a position where the measurement light satisfies a total reflection condition on the detection surface;
A scattered light detection apparatus comprising: a photodetector arranged at a position to detect the scattered light having the directivity of the evanescent light by the scattering label fine particles.
前記誘電体プリズム基板が、前記指向性を有する前記散乱光のうち、前記検出面に対して前記誘電体プリズム基板側に進入してきた該散乱光と、前記検出面における前記測定光の前記反射光とを分離する分離機構を有するものであることを特徴とする請求項5に記載の散乱光検出装置。   Of the scattered light having the directivity, the dielectric prism substrate enters the dielectric prism substrate side with respect to the detection surface, and the reflected light of the measurement light on the detection surface The scattered light detection apparatus according to claim 5, further comprising a separation mechanism that separates the light from the light source.
JP2007259658A 2007-10-03 2007-10-03 Method for detecting scattered light Withdrawn JP2009085918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259658A JP2009085918A (en) 2007-10-03 2007-10-03 Method for detecting scattered light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259658A JP2009085918A (en) 2007-10-03 2007-10-03 Method for detecting scattered light

Publications (1)

Publication Number Publication Date
JP2009085918A true JP2009085918A (en) 2009-04-23

Family

ID=40659508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259658A Withdrawn JP2009085918A (en) 2007-10-03 2007-10-03 Method for detecting scattered light

Country Status (1)

Country Link
JP (1) JP2009085918A (en)

Similar Documents

Publication Publication Date Title
US8456158B2 (en) Detecting method and dielectric particles containing magnetic material employed in the detecting method
JP4851367B2 (en) Local plasmon enhanced fluorescence sensor
EP1903330B1 (en) Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
US10690596B2 (en) Surface plasmon-enhanced fluorescence measurement device and surface plasmon-enhanced fluorescence measurement method
US8106368B2 (en) Fluorescence detecting method
JP4885019B2 (en) Surface plasmon enhanced fluorescence sensor
JP5428322B2 (en) Assay method using plasmon excitation sensor
JP5450993B2 (en) Detection method, detection sample cell and detection kit
JP2009236709A (en) Surface plasmon sensing method and surface plasmon sensing device
JP2009258034A (en) Method and apparatus for detecting radiation light from surface plasmon, sample cell for detecting radiation light from surface plasmon and kit
JP6738070B2 (en) Optical detection device and optical detection method
JP2009080011A (en) Fluorescence detection method
JP2010210378A (en) Sensing method and sensing kit to be used of the same
EP3321688B1 (en) Detection device and detection method
WO2017057136A1 (en) Surface plasmon-field enhanced fluorescence spectroscopy and measurement kit
US20120322166A1 (en) Fluorescence detecting apparatus, sample cell for detecting fluorescence, and fluorescence detecting method
JP2007225576A (en) Reagent, element, and method for detection
JP2009128136A (en) Fluorescence detection method
JP2008203172A (en) Surface plasmon enhanced fluorescence detection method
JP2009192259A (en) Sensing device
JP2009085918A (en) Method for detecting scattered light
US20060154303A1 (en) Evanescent wave excited fluorescence detection method
JP2006343335A (en) Specimen detection using concentration of light
JP6703729B2 (en) Near-field enhancement chip and target substance detection device
JP5655125B2 (en) Fluorescence detection method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207