JP2009084633A - Plasma nitriding treatment device, and continuous type plasma nitriding treatment method - Google Patents

Plasma nitriding treatment device, and continuous type plasma nitriding treatment method Download PDF

Info

Publication number
JP2009084633A
JP2009084633A JP2007255445A JP2007255445A JP2009084633A JP 2009084633 A JP2009084633 A JP 2009084633A JP 2007255445 A JP2007255445 A JP 2007255445A JP 2007255445 A JP2007255445 A JP 2007255445A JP 2009084633 A JP2009084633 A JP 2009084633A
Authority
JP
Japan
Prior art keywords
nitriding
chamber
heater
processed
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007255445A
Other languages
Japanese (ja)
Other versions
JP5194288B2 (en
Inventor
Shunsuke Kimura
俊介 木村
Mitsuaki Okawa
光朗 大河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2007255445A priority Critical patent/JP5194288B2/en
Publication of JP2009084633A publication Critical patent/JP2009084633A/en
Application granted granted Critical
Publication of JP5194288B2 publication Critical patent/JP5194288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous type plasma nitriding treatment device where temperature control for the body to be treated can be performed correctly as possible, and uniform nitriding treatment can be efficiently performed to the whole of the body to be treated. <P>SOLUTION: Nitriding chamber heaters 26 are arranged on both the right and left sides in the carrying direction of the body W to be treated in a nitriding chamber 2, the right side heater 26R and the left side heater 26L are divided into the front/back sides and upper/lower sides of the carrying direction, respectively. The plasma nitriding treatment device is further provided with: thermocouples 33 measuring the temperature of the region corresponding to each divided heater 29 in the body W to be treated; and control parts 36 individually controlling the calorific power in each divided heater 29 in such a manner that the measured temperature of each thermocouple 33 reaches the preset objective temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋼材等の被処理体を窒化処理するプラズマ窒化処理装置に関する。本発明はまた、連続式プラズマ窒化処理方法に関する。   The present invention relates to a plasma nitriding apparatus for nitriding an object to be processed such as a steel material. The present invention also relates to a continuous plasma nitriding method.

鋼材等の被処理体を連続的に窒化処理するプラズマ窒化処理装置として、加熱室、窒化室(グロー放電処理室)、冷却室等の各室を水平直列に配設し、前記各室には被処理体の移送装置を、前記各室間には中間扉を配設したものが知られている(特許文献1の従来技術の項参照)。   As a plasma nitriding apparatus for continuously nitriding an object to be processed such as a steel material, heating chambers, nitriding chambers (glow discharge processing chambers), cooling chambers, etc. are arranged in series in a horizontal direction. An apparatus for transferring an object to be processed is known in which an intermediate door is provided between the chambers (see the section of the prior art in Patent Document 1).

また、冷却液通路を有する炉壁によって画成されたプラズマ窒化室内に被処理体を加熱するヒータを備えるプラズマ窒化処理装置も知られている(特許文献2参照)。   There is also known a plasma nitriding apparatus provided with a heater for heating an object to be processed in a plasma nitriding chamber defined by a furnace wall having a coolant passage (see Patent Document 2).

さらに、プラズマ窒化室内の被処理体を加熱するヒータを備え、該ヒータが上中下に分割され、各分割ヒータを個別制御可能とした装置も公知となっている(特許文献3の従来技術の項参照)。   Furthermore, an apparatus that includes a heater that heats an object to be processed in the plasma nitriding chamber and that is divided into upper, middle, and lower parts and that can individually control each of the divided heaters is known (the conventional technique of Patent Document 3). Section).

前記被処理体の典型例としては、特許文献2の図2にも示されているように、鋼製クランクシャフト等の被処理単体が枠体やトレー等の支持部材に複数支持されてなる、被処理単体の集合体が挙げられる。
特開昭59−96259号公報 特開2005−2444号公報 特開2004−238705号公報
As a typical example of the object to be processed, as shown in FIG. 2 of Patent Document 2, a plurality of objects to be processed such as a steel crankshaft are supported by a support member such as a frame or a tray. An aggregate of single objects to be processed can be mentioned.
JP 59-96259 A JP 2005-2444 A JP 2004-238705 A

一般に、プラズマ窒化処理においては、グロー放電による被処理体の加熱が進行すると、被処理体の自己発熱により、被処理体の周辺部よりも被処理体の中央部の温度が上がり易いので、被処理体の全体を均一に加熱することが難しい。例えば、前記の如く、被処理単体の集合体を被処理体とする場合には、集合体において中央部に近い被処理単体ほど回りの被処理単体からの自己発熱の影響を受け易いので、炉壁に近い周辺部の被処理単体との間に大きな温度差が生じてしまう。   In general, in the plasma nitriding process, when the object to be processed is heated by glow discharge, the temperature of the central part of the object to be processed is more likely to rise than the peripheral part of the object to be processed due to self-heating of the object to be processed. It is difficult to uniformly heat the entire treatment body. For example, as described above, in the case where an aggregate of single objects to be processed is used as an object to be processed, the closer to the central part of the aggregate in the aggregate, the more easily affected by self-heating from surrounding single objects to be processed. A large temperature difference will occur between the processing object alone in the vicinity of the wall.

特許文献3では、被処理体を放熱により加熱するヒータを上中下に分割し、各分割ヒータを個別制御可能として被処理体の温度の均一化を図っているが、これはバッチ炉に関するものであるから、前記ヒータは、被処理体の横回りの全てを取り囲むように環状に配設されていると推測される。よって、被処理体の通過を必要とする連続式のプラズマ窒化処理装置にそのまま適用することはできない。   In Patent Document 3, the heater for heating the object to be processed is divided into upper, middle, and lower parts, and each divided heater can be individually controlled so as to equalize the temperature of the object to be processed. This relates to a batch furnace. Therefore, it is presumed that the heater is arranged in an annular shape so as to surround the entire lateral circumference of the object to be processed. Therefore, it cannot be applied as it is to a continuous plasma nitriding apparatus that requires the object to pass through.

また、特許文献3のものは、被処理体を収容する密閉室を備え、この密閉室の外側の温度を前記各分割ヒータに対応させて設けた熱電対で計測するようになっているので、被処理体自体の温度を正確に制御するには不向きである。   Moreover, since the thing of patent document 3 is equipped with the sealed chamber which accommodates a to-be-processed object, and the temperature of the outer side of this sealed chamber is measured with the thermocouple provided corresponding to each said division | segmentation heater, It is unsuitable for accurately controlling the temperature of the object itself.

本発明は、前記の如き事情に鑑みてなされたもので、被処理体の温度制御を可及的に正確に行うことができ、被処理体の全体に対して均一な窒化処理を効率的に施すことができる、連続式のプラズマ窒化処理装置及び方法を提供しようとするものである。   The present invention has been made in view of the above-described circumstances, and can control the temperature of the object to be processed as accurately as possible, and can efficiently perform uniform nitriding on the entire object to be processed. An object of the present invention is to provide a continuous plasma nitriding apparatus and method that can be applied.

前記課題を解決するため、本発明に係るプラズマ窒化処理装置は、被処理体をプラズマ窒化処理するプラズマ窒化処理装置であって、窒化室内の被処理体を加熱する窒化室ヒータを備え、該窒化室ヒータが前記窒化室内の被処理体の搬送方向の左右両側に配設され、該窒化室ヒータは前記搬送方向の前後及び上下に複数に分割された分割ヒータを有し、さらに、前記被処理体の温度を測定する熱電対と、前記各分割ヒータの発熱量を個別に制御する制御部と、を備えている(請求項1)。   In order to solve the above-described problems, a plasma nitriding apparatus according to the present invention is a plasma nitriding apparatus that performs a plasma nitriding process on a workpiece, and includes a nitriding chamber heater that heats the workpiece in the nitriding chamber. Chamber heaters are disposed on the left and right sides in the transfer direction of the object to be processed in the nitriding chamber, and the nitriding chamber heater has a plurality of divided heaters divided forward and backward and vertically in the transfer direction. A thermocouple that measures the temperature of the body and a control unit that individually controls the amount of heat generated by each of the divided heaters are provided.

本発明によれば、被処理体は、前記窒化室において、プラズマを発生させるグロー放電により加熱(自己発熱)されるとともに、搬送方向の左右両側から前記窒化室ヒータによっても加熱される。ここで、本発明では、前記窒化室ヒータが搬送方向の前後及び上下に複数に分割されており、さらに、前記被処理体の温度が前記熱電対で測定される。そして、前記各制御部が前記各分割ヒータの発熱量を個別に制御する。これにより、窒化処理時に被処理体の全体が目標温度又はそれに近い温度に制御可能となる。よって、被処理体の全体に対して均一な窒化処理を効率的に施すことができる。   According to the present invention, the object to be processed is heated (self-heated) by glow discharge that generates plasma in the nitriding chamber, and is also heated by the nitriding chamber heater from the left and right sides in the transport direction. Here, in the present invention, the nitriding chamber heater is divided into a plurality of parts before and after and in the upper and lower directions in the transport direction, and the temperature of the object to be processed is measured by the thermocouple. And each said control part controls the emitted-heat amount of each said division | segmentation heater separately. Thereby, the whole object to be processed can be controlled to the target temperature or a temperature close thereto at the time of nitriding. Therefore, uniform nitriding treatment can be efficiently performed on the entire object to be processed.

前記窒化室ヒータは、前記窒化室内の被処理体の搬送方向の左右両側に配設されるので、被処理体の搬送の邪魔になることもない。   The nitriding chamber heaters are arranged on both the left and right sides in the conveying direction of the object to be processed in the nitriding chamber, so that the nitriding chamber heater does not interfere with the transfer of the object to be processed.

好適な実施の一形態として、前記窒化室が冷却液通路を有する炉壁によって画成され、前記各分割ヒータの前記炉壁側に断熱材が配設され、前記各分割ヒータと前記各断熱材が共通の熱伝導ケースで覆われている態様を例示する(請求項2)。   As a preferred embodiment, the nitriding chamber is defined by a furnace wall having a coolant passage, a heat insulating material is disposed on the furnace wall side of each of the divided heaters, and each of the divided heaters and each of the heat insulating materials. Is exemplified by a case in which is covered with a common heat conduction case (claim 2).

この場合、前記分割ヒータの発熱は、前記熱伝導ケースにより輻射熱となって被処理体を加熱する。よって、各分割ヒータにより、被処理体が広範囲に渡って均等に加熱される。   In this case, the heat generated by the divided heater is radiated by the heat conduction case to heat the object to be processed. Therefore, the object to be processed is uniformly heated over a wide range by each divided heater.

また、前記分割ヒータの前記炉壁側には前記断熱材が配設されているので、分割ヒータからの発熱が前記炉壁に奪われてしまうことが抑制される。加えて、被処理体の或る領域において温度が上がりすぎた場合には、その領域に対応する分割ヒータの発熱量が降下制御されるが、このとき、熱伝導ケースを通じて前記炉壁側への放熱が促進されるので、被処理体の温度降下の速度が速い。よって、被処理体の温度制御が迅速に行える。   Moreover, since the said heat insulating material is arrange | positioned at the said furnace wall side of the said divided heater, it is suppressed that the heat_generation | fever from a divided heater is taken away by the said furnace wall. In addition, if the temperature rises too much in a certain region of the object to be processed, the heat generation amount of the divided heater corresponding to that region is controlled to drop, but at this time, the heat is transferred to the furnace wall side through the heat conduction case. Since heat dissipation is promoted, the temperature drop speed of the object to be processed is high. Therefore, the temperature control of the object to be processed can be performed quickly.

プラズマ窒化処理では一定の真空状態においてグロー放電を降下・上昇させるためにグロー電圧上昇時に異常放電が発生しやすいが、このような場合やその他の理由により異常な加熱が起こった場合も、前記熱伝導ケースを通じて速やかに熱を水冷された炉壁に逃がすことができる。従来のヒータ構造では速やかに熱を逃がすことは困難であった。   In plasma nitriding, abnormal discharge is likely to occur when the glow voltage is increased because the glow discharge is lowered and increased in a certain vacuum state. However, in such a case and when abnormal heating occurs for other reasons, Heat can be quickly released to the water-cooled furnace wall through the conduction case. With the conventional heater structure, it is difficult to quickly release heat.

好適な実施の一形態として、前記被処理体を加熱室、前記窒化室、冷却室の順に搬送して前記窒化室でプラズマ窒化処理する態様を例示する(請求項3)。   As a preferred embodiment, a mode in which the object to be processed is transported in the order of a heating chamber, the nitriding chamber, and a cooling chamber and plasma nitriding treatment is performed in the nitriding chamber (Claim 3).

上記構成により、複数の被処理体を加熱室、窒化室、冷却室に順次移動させ、各室での処理を連続且つ並列に行うことできるので、高い量産性を有する。   With the above structure, a plurality of objects to be processed can be sequentially moved to the heating chamber, the nitriding chamber, and the cooling chamber, and the processing in each chamber can be performed continuously and in parallel, so that high mass productivity is achieved.

他の好適な実施の一形態として、前記窒化室ヒータにおいて、左側ヒータと右側ヒータのそれぞれが前記搬送方向の前後及び上下に複数に分割された分割ヒータを有する態様を例示する(請求項4)。   As another preferred embodiment, in the nitriding chamber heater, a mode in which each of the left side heater and the right side heater has a plurality of divided heaters divided in the front and rear and the top and bottom in the transport direction (Claim 4). .

他の好適な実施の一形態として、前記熱電対が、前記各分割ヒータに対応する領域の被処理体の温度を測定する複数の熱電対である態様を例示する(請求項5)。   As another preferred embodiment, a mode in which the thermocouple is a plurality of thermocouples that measure the temperature of the object to be processed in a region corresponding to each of the divided heaters is exemplified.

上記請求項4、請求項5の構成により、より細かな温度制御が可能となり好ましい。   The configurations of the fourth and fifth aspects are preferable because finer temperature control is possible.

他の好適な実施の一形態として、前記熱電対が炉壁から絶縁され、前記被処理体との放電の影響がない最小距離まで前記熱電対を前記被処理体に近接させて配置し、該被処理体近傍の温度を測定する態様を例示する(請求項6)。   In another preferred embodiment, the thermocouple is insulated from a furnace wall, and the thermocouple is disposed close to the object to be processed up to a minimum distance where there is no influence of discharge with the object to be processed. An example of measuring the temperature in the vicinity of the object to be processed will be exemplified (claim 6).

熱電対は放電による影響を受け、損傷するおそれがあり、また正確な測温ができなくなることが考えられる。また、従来、放電の影響を受けないように、例えば炉体に耐熱窓を開け、外部から放射温度計で被処理体を測定することも行われているが、放射温度計そのものの精度の問題と、構造上測定場所が限られるため、正確な温度の測定が困難である。本実施の形態では、熱電対を炉壁から絶縁し、且つ、前記被処理体との放電の影響がない最小距離(たとえば5〜20mm程度)まで前記熱電対を前記被処理体に近接させて配置し、該被処理体近傍の温度を測定することで、十分に精度の高い温度測定をすることができ、被処理物の温度管理が正確に行える。   Thermocouples are affected by discharge and may be damaged, and accurate temperature measurement may not be possible. In addition, conventionally, for example, a heat-resistant window is opened in the furnace body and the object to be processed is measured with a radiation thermometer from the outside so as not to be affected by the discharge, but there is a problem with the accuracy of the radiation thermometer itself. In addition, since the measurement place is limited due to the structure, it is difficult to measure the temperature accurately. In the present embodiment, the thermocouple is insulated from the furnace wall, and the thermocouple is brought close to the object to be processed up to a minimum distance (for example, about 5 to 20 mm) that is not affected by discharge with the object to be processed. By arranging and measuring the temperature in the vicinity of the object to be processed, the temperature can be measured with sufficiently high accuracy, and the temperature management of the object to be processed can be performed accurately.

一方、前記課題を解決するための本発明の方法は、被処理体を連続的に窒化室へと搬送してプラズマ窒化処理を行う連続式プラズマ窒化処理方法であって、前記窒化室において前記被処理体の搬送方向の左右両側にのみ設けられた放熱式の窒化室ヒータを搬送方向の前後及び上下に複数に分割し、前記被処理体において各分割ヒータに対応する領域の温度を測定し、前記被処理体の前記領域のすべてが予め設定した目標温度となるように前記各分割ヒータの発熱量を個別に制御して窒化処理を行うものである(請求項7)。   On the other hand, the method of the present invention for solving the above-described problem is a continuous plasma nitriding method in which the object to be processed is continuously transferred to the nitriding chamber and plasma nitriding is performed. Dividing the heat-dissipating nitriding chamber heaters provided only on both the left and right sides in the conveyance direction of the treatment body into a plurality of front and rear and top and bottom in the conveyance direction, and measuring the temperature of the region corresponding to each divided heater in the workpiece, Nitriding is performed by individually controlling the amount of heat generated by each of the divided heaters so that all of the region of the object to be processed has a preset target temperature.

以下、添付図面を参照して、本発明の実施の一形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の実施の一形態に係るプラズマ窒化処理装置の、一部を水平断面とした概略平面図、図2は、図1のII−II矢視断面図、図3は、分割ヒータの正面図、図4は、図3のIV−IV矢視断面図である。   1 is a schematic plan view of a part of a plasma nitriding apparatus according to an embodiment of the present invention, in which a part thereof is a horizontal section, FIG. 2 is a sectional view taken along the line II-II in FIG. 1, and FIG. FIG. 4 is a front view of the heater, and FIG. 4 is a sectional view taken along arrows IV-IV in FIG.

図1に示すように、本発明の実施の一形態に係るプラズマ窒化処理装置は、被処理体Wを加熱処理(予熱処理)する加熱室1と、該加熱室1において加熱処理された被処理体Wをプラズマを発生することにより窒化処理する窒化室2と、該窒化室2において窒化処理された被処理体Wを冷却処理する冷却室3と、を備えている。これら各室は、被処理体Wの搬送方向に沿って一列に、前記の順に並べて設けられている。前記加熱室1と前記窒化室2との間には、第一のシャッター室4が設けられ、同様に、前記窒化室2と前記冷却室3との間には、第二のシャッター室5が設けられている。   As shown in FIG. 1, a plasma nitriding apparatus according to an embodiment of the present invention includes a heating chamber 1 that heat-treats (preheat-treats) a workpiece W, and a treatment that is heat-treated in the heating chamber 1. A nitriding chamber 2 for nitriding the body W by generating plasma and a cooling chamber 3 for cooling the object to be processed W nitrided in the nitriding chamber 2 are provided. These chambers are provided in a line along the conveying direction of the workpiece W in the above order. A first shutter chamber 4 is provided between the heating chamber 1 and the nitriding chamber 2. Similarly, a second shutter chamber 5 is provided between the nitriding chamber 2 and the cooling chamber 3. Is provided.

前記被処理体Wは、例えば、被処理単体を枠体やトレー等の支持部材に複数支持させてなる被処理単体の集合体である。前記被処理単体としては、クランクシャフト又はカムシャフト等の金属製品が挙げられる。被処理単体の材質は、クランクシャフトの場合は例えば炭素鋼あるいは合金鋼等の鋼材であり、カムシャフトの場合は例えば鋳鉄等である。   The object to be processed W is, for example, an assembly of objects to be processed which is formed by supporting a plurality of objects to be processed on a support member such as a frame or a tray. Examples of the object to be treated include metal products such as a crankshaft or a camshaft. The material of the single object to be processed is a steel material such as carbon steel or alloy steel in the case of a crankshaft, and is cast iron or the like in the case of a camshaft.

前記加熱室1について説明する。該加熱室1は、加熱炉6の内部に画成されている。該加熱炉6の入口側には、被処理体Wの搬入口7と、該搬入口7を開閉する搬入口シャッター8が設けられている。前記加熱炉6の出口側には、被処理体Wの搬出口9と、該搬出口9を開閉する搬出口シャッター10が設けられている。該搬出口シャッター10は、前記第一のシャッター室4内を上下動する。   The heating chamber 1 will be described. The heating chamber 1 is defined inside the heating furnace 6. On the entrance side of the heating furnace 6, a carry-in port 7 for the workpiece W and a carry-in shutter 8 that opens and closes the carry-in port 7 are provided. On the outlet side of the heating furnace 6, a carry-out port 9 for the workpiece W and a carry-out shutter 10 that opens and closes the carry-out port 9 are provided. The carry-out shutter 10 moves up and down in the first shutter chamber 4.

前記加熱室1には、被処理体Wを搬送するチェーンコンベア11と、加熱室1内の被処理体Wを放射熱によって加熱する加熱室ヒータ12が設けられている。また、前記加熱室1には、前記加熱室ヒータ12の発熱が炉壁側へ拡散することを抑制する熱遮蔽体13と、加熱室1内の雰囲気を攪拌する送風機構(送風ファン)14が設けられ、前記加熱炉6の炉壁には、冷却液を流通させる冷却液通路15が内蔵され、該冷却液通路15は、冷却液源15aに連通している。   The heating chamber 1 is provided with a chain conveyor 11 that conveys the workpiece W and a heating chamber heater 12 that heats the workpiece W in the heating chamber 1 by radiant heat. The heating chamber 1 has a heat shield 13 that suppresses the heat generated by the heating chamber heater 12 from diffusing toward the furnace wall, and a blower mechanism (blower fan) 14 that stirs the atmosphere in the heating chamber 1. Provided in the furnace wall of the heating furnace 6 is a coolant passage 15 for circulating coolant, and the coolant passage 15 communicates with a coolant source 15a.

前記加熱室1には、加熱室1を減圧(真空引き)する加熱室減圧路16が接続され、該加熱室減圧路16は、真空ポンプ等を含む減圧機構17に接続されている。さらに、前記加熱室1には、加熱室1に加熱用ガス又はパージ用ガスとして例えば窒素ガスを供給する加熱室ガス供給路18が接続され、該加熱室ガス供給路18は、加熱用ガス供給源19に接続されている。   The heating chamber 1 is connected to a heating chamber decompression path 16 for decompressing (evacuating) the heating chamber 1, and the heating chamber decompression path 16 is connected to a decompression mechanism 17 including a vacuum pump and the like. Furthermore, the heating chamber 1 is connected to a heating chamber gas supply path 18 for supplying, for example, nitrogen gas as a heating gas or a purge gas to the heating chamber 1, and the heating chamber gas supply path 18 is connected to a heating gas supply. Connected to source 19.

次に、図1及び図2を参照して、前記窒化室2について説明する。該窒化室2は、横型円筒状の窒化炉20の内部に画成されている(いわゆる横型プラズマ窒化炉)。該窒化炉20は、金属(導体)によって構成されている。前記窒化炉20の入口側には、被処理体Wの搬入口21と、該搬入口21を開閉する搬入口シャッター22が設けられている。該搬入口シャッター22は、前記第一のシャッター室4内を上下動する。前記窒化炉20の出口側には、被処理体Wの搬出口23と、該搬出口23を開閉する搬出口シャッター24が設けられている。該搬出口シャッター24は、前記第二のシャッター室5内を上下動する。   Next, the nitriding chamber 2 will be described with reference to FIGS. The nitriding chamber 2 is defined inside a horizontal cylindrical nitriding furnace 20 (so-called horizontal plasma nitriding furnace). The nitriding furnace 20 is made of metal (conductor). On the entrance side of the nitriding furnace 20, a carry-in port 21 for the workpiece W and a carry-in shutter 22 for opening and closing the carry-in port 21 are provided. The carry-in shutter 22 moves up and down in the first shutter chamber 4. On the exit side of the nitriding furnace 20, a carry-out port 23 for the workpiece W and a carry-out shutter 24 that opens and closes the carry-out port 23 are provided. The carry-out shutter 24 moves up and down in the second shutter chamber 5.

前記窒化室2には、被処理体Wを搬送するチェーンコンベア25と、窒化室2内の被処理体Wを放射熱によって加熱する窒化室ヒータ26と、被処理体Wを前記チェーンコンベア25上の所定の位置でリフトアップする被処理体昇降機構27(図2参照)と、が設けられている。前記窒化炉20の炉壁には、冷却液を流通させる冷却液通路28が内蔵され、該冷却液通路28は冷却液源28aに連通している。   In the nitriding chamber 2, a chain conveyor 25 that conveys the workpiece W, a nitriding chamber heater 26 that heats the workpiece W in the nitriding chamber 2 by radiant heat, and the workpiece W on the chain conveyor 25. And a workpiece lifting mechanism 27 (see FIG. 2) that lifts up at a predetermined position. The furnace wall of the nitriding furnace 20 has a built-in coolant passage 28 for circulating a coolant, and the coolant passage 28 communicates with a coolant source 28a.

前記窒化室ヒータ26は、前記窒化室1内の被処理体Wの搬送方向の左右両側にのみ配設され、左側ヒータ26Lと右側ヒータ26Rのそれぞれが搬送方向の前後及び上下に複数に分割されている。各分割ヒータ29は、図3及び図4に示すように、ヒータユニット30の構成要素とされている。   The nitriding chamber heaters 26 are disposed only on the left and right sides in the conveyance direction of the workpiece W in the nitriding chamber 1, and each of the left heater 26L and the right heater 26R is divided into a plurality of front and rear and top and bottom in the conveyance direction. ing. Each divided heater 29 is a component of the heater unit 30 as shown in FIGS.

該各ヒータユニット30は、前記分割ヒータ29と、該分割ヒータ29の前記炉壁側に配設される断熱材31と、前記分割ヒータ29と前記断熱材31を共に覆う熱伝導ケース32と、を備えている。前記分割ヒータ29としては、帯状又はコイル状等の電熱要素を用いることができる。前記熱伝導ケース32は、良好な熱伝導性を有し、且つ、窒化温度に対する耐熱性を有する、例えばステンレス等の金属で形成する。前記各ヒータユニット30の中央部には、後述する熱電対33を挿通するための熱電対挿通孔30aが貫通形成されている。   Each of the heater units 30 includes the divided heater 29, a heat insulating material 31 disposed on the furnace wall side of the divided heater 29, a heat conduction case 32 that covers both the divided heater 29 and the heat insulating material 31, It has. As the divided heater 29, an electric heating element such as a strip shape or a coil shape can be used. The heat conduction case 32 is formed of a metal such as stainless steel having good heat conductivity and heat resistance against the nitriding temperature. A thermocouple insertion hole 30a for inserting a thermocouple 33 described later is formed through the central portion of each heater unit 30.

前記分割ヒータ29からの発熱は、前記熱伝導ケース32により輻射熱となって被処理体Wを加熱する。また、前記断熱材31は、被処理体Wの加熱時に前記分割ヒータ29からの発熱が前記炉壁に奪われてしまうことを抑制する。前記熱伝導ケース32は、被処理体W側の熱を前記炉壁側へと放散させて、被処理体Wの温度の降下制御を効率的にする作用も奏する。   Heat generated from the divided heater 29 becomes radiant heat by the heat conducting case 32 and heats the object W to be processed. Further, the heat insulating material 31 suppresses the heat generated from the divided heater 29 from being taken away by the furnace wall when the workpiece W is heated. The heat conduction case 32 also has an effect of efficiently dissipating the heat on the object to be processed W side to the furnace wall side and efficiently controlling the temperature drop of the object to be processed W.

前記各ヒータユニット30は、前記窒化室2内において、被処理体Wの左側に被処理体の搬送方向に対して前後及び上下に並べて複数配設され、同様に、被処理体Wの右側にも前後及び上下に並べて複数配設されている。本実施の形態では、図3及び図4に示す直方体の前記各ヒータユニット30が、図1及び図2に示すように、被処理体Wの左右両側に、前後方向に三つ、上下方向に二つ、相互間に大きな間隔をおかないで整然と並べて配設されている。左側の各ヒータユニット30と右側の各ヒータユニット30は、被処理体Wを挟んで略平行に正対している。   A plurality of heater units 30 are arranged on the left side of the object to be processed W in the nitriding chamber 2 side by side in the front-rear and top-bottom directions with respect to the conveyance direction of the object to be processed. Are also arranged side by side in front and rear and top and bottom. In the present embodiment, each of the rectangular parallelepiped heater units 30 shown in FIGS. 3 and 4 includes three in the front-rear direction and three in the vertical direction on the left and right sides of the workpiece W, as shown in FIGS. Two are arranged in an orderly manner without a large gap between them. Each heater unit 30 on the left side and each heater unit 30 on the right side face each other substantially in parallel with the workpiece W interposed therebetween.

図2に示すように、前記窒化室2には、前記被処理体Wにおいて前記各分割ヒータ29(前記各ヒータユニット30)に対応する領域の温度を測定する熱電対33が、前記各分割ヒータ29に対応して配設されている。前記各熱電対33は、前記炉壁から絶縁させて配設する。また、前記各熱電対33は、被処理体Wの各部の温度を可及的に正確に測定できるように、放電の影響が及ばない最小距離(たとえば5〜20mm程度)まで被処理体に近接させて配置する。これにより、被処理体Wの各部について十分に精度の高い温度測定をすることができ、被処理物の温度管理が正確に行える。   As shown in FIG. 2, in the nitriding chamber 2, thermocouples 33 that measure the temperatures of the regions corresponding to the respective divided heaters 29 (the respective heater units 30) in the workpiece W are provided with the respective divided heaters. 29 is provided correspondingly. Each thermocouple 33 is disposed insulated from the furnace wall. In addition, each thermocouple 33 is close to the object to be processed up to a minimum distance (for example, about 5 to 20 mm) that is not affected by the discharge so that the temperature of each part of the object to be processed W can be measured as accurately as possible. Let them be arranged. Thereby, temperature measurement with sufficiently high accuracy can be performed for each part of the workpiece W, and temperature management of the workpiece can be accurately performed.

前記各熱電対33は、温度調節器34を介して、サイリスタやトランジスタ等を含む電力制御器35に接続され、該各電力制御器35は前記各分割ヒータ29に接続されている。前記各温度調節器34と前記各電力制御器35は、前記各熱電対33の測定温度が予め設定した目標温度となるように前記各分割ヒータ29の発熱量を個別に制御する制御部36として機能する。すなわち、前記各熱電対33の測定温度を予め設定した目標温度に制御するために、前記各温度調節器34が前記各電力制御器35に制御信号を供給し、該各電力制御器35が前記各分割ヒータ29に供給する電力を調整する。   Each thermocouple 33 is connected to a power controller 35 including a thyristor, a transistor, and the like via a temperature controller 34, and each power controller 35 is connected to each of the divided heaters 29. Each of the temperature regulators 34 and each of the power controllers 35 is a control unit 36 that individually controls the amount of heat generated by each of the divided heaters 29 so that the measured temperature of each thermocouple 33 becomes a preset target temperature. Function. That is, in order to control the measured temperature of each thermocouple 33 to a preset target temperature, each temperature regulator 34 supplies a control signal to each power controller 35, and each power controller 35 The electric power supplied to each divided heater 29 is adjusted.

なお、前記左右のヒータ26L,26Rにおいて、被処理体Wを挟んで対向する各一対の分割ヒータは、回路上互いに並列なものとして制御されるようにしてもよい。   In the left and right heaters 26L and 26R, the pair of divided heaters facing each other with the workpiece W interposed therebetween may be controlled as being parallel to each other on the circuit.

図2に示すように、前記左側ヒータ26L(左側の6つのヒータユニットの集合体)と前記右側ヒータ(右側の6つのヒータユニットの集合体)の上端部間は、上部断熱材37で閉じられている。該上部断熱材37の中央部には開口38が設けられ、該開口38の上方には、該開口38を開閉する蓋体39が設けられている。該蓋体39は、窒化炉20の天井部に取り付けられた蓋体昇降機構40に連結されており、該蓋体昇降機構40の作動により上下動する。これにより、前記開口38の開度が調節され、前記被処理体W(特に、被処理体Wの上面中央部)の温度制御が行われる。但し、本発明においては、前記各分割ヒータ29の発熱量が個別に制御可能であるので、前記開口38による温度制御なしでも十分に被処理体の温度制御が可能である。   As shown in FIG. 2, an upper heat insulating material 37 closes the upper end of the left heater 26L (an assembly of six left heater units) and the right heater (an assembly of six right heater units). ing. An opening 38 is provided at the center of the upper heat insulating material 37, and a lid 39 that opens and closes the opening 38 is provided above the opening 38. The lid 39 is connected to a lid lifting mechanism 40 attached to the ceiling portion of the nitriding furnace 20, and moves up and down by the operation of the lid lifting mechanism 40. Thereby, the opening degree of the opening 38 is adjusted, and the temperature control of the object to be processed W (particularly, the center of the upper surface of the object to be processed W) is performed. However, in the present invention, since the amount of heat generated by each of the divided heaters 29 can be individually controlled, the temperature of the object to be processed can be sufficiently controlled without the temperature control by the opening 38.

図1に示すように、窒化処理時には、前記左側ヒータ26Lと前記右側ヒータ26Rの入口側端部間が、入口側断熱扉41で閉じられる。該入口側断熱扉41は、図示しない入口側扉昇降機構の作動により上下動する。前記入口側断熱扉41が下降位置にある時には、前記左右両側のヒータ26L,26R間の入口が閉塞され、前記入口側断熱扉41が上昇位置にある時には、前記左右両側のヒータ26L,26R間の入口が開放される。   As shown in FIG. 1, at the time of nitriding, the inlet side heat insulation door 41 closes the gap between the inlet side ends of the left heater 26L and the right heater 26R. The entrance-side heat insulating door 41 moves up and down by the operation of an entrance-side door elevating mechanism (not shown). When the entrance-side heat insulating door 41 is in the lowered position, the inlets between the left and right heaters 26L, 26R are closed, and when the inlet-side heat insulating door 41 is in the raised position, between the left and right heaters 26L, 26R. The entrance is opened.

同様に、窒化処理時には、前記左側ヒータ26Lと前記右側ヒータ26Rの出口側端部間も、出口側断熱扉42で閉じられる。該出口側断熱扉42は、図示しない出口側扉昇降機構の作動により上下動する。前記出口側断熱扉42が下降位置にある時には、前記左右両側のヒータ26L,26R間の出口が閉塞され、前記出口側断熱扉42が上昇位置にある時には、前記左右両側のヒータ26L,26R間の出口が開放される。   Similarly, at the time of nitriding, the outlet side heat insulation door 42 also closes between the outlet side end portions of the left heater 26L and the right heater 26R. The outlet side heat insulating door 42 moves up and down by the operation of an outlet side door lifting mechanism (not shown). When the outlet side heat insulating door 42 is in the lowered position, the outlet between the left and right heaters 26L, 26R is closed, and when the outlet side heat insulating door 42 is in the raised position, between the left and right heaters 26L, 26R. The exit is opened.

なお、図2に示すように、前記窒化炉20の上部には、前記入口側断熱扉41と前記出口側断熱扉42の上昇を許容する扉収容部43a,43bがそれぞれ上方へ突出して形成されている。   As shown in FIG. 2, at the upper part of the nitriding furnace 20, door accommodating portions 43a and 43b that allow the inlet side heat insulating door 41 and the outlet side heat insulating door 42 to rise are formed to protrude upward. ing.

図2に示すように、前記被処理体昇降機構27は、被処理体Wの下面を支持して該被処理体Wに電圧を印加するための電極体44と、該電極体44を窒化室2内において昇降させる昇降機45と、前記電極体44を前記昇降機45から絶縁させる絶縁体46とを備えている。   As shown in FIG. 2, the workpiece lifting mechanism 27 includes an electrode body 44 that supports the lower surface of the workpiece W and applies a voltage to the workpiece W, and the electrode body 44 is placed in the nitriding chamber. 2 is provided with an elevator 45 that moves up and down in 2 and an insulator 46 that insulates the electrode body 44 from the elevator 45.

前記電極体44は、窒化室2内において前記チェーンベルト25間に配設され、且つ、平面視(上から見たとき)において前記入口側断熱扉41と前記出口側断熱扉42の間に配設されている。前記電極体44は、前記被処理体Wの下部にも処理ガスが円滑に供給されるように、枠状又は格子状に形成されている。   The electrode body 44 is disposed between the chain belts 25 in the nitriding chamber 2 and is disposed between the inlet-side heat insulating door 41 and the outlet-side heat insulating door 42 in a plan view (when viewed from above). It is installed. The electrode body 44 is formed in a frame shape or a lattice shape so that the processing gas is smoothly supplied also to the lower portion of the object to be processed W.

前記電極体44には、前記窒化室1の外部に設けられているプラズマ用直流電源47の陰極が接続されている。一方、該プラズマ用直流電源47の陽極は、例えば窒化炉20の炉壁に対して接続される。前記陰極と前記陽極は前記絶縁体46によって絶縁されており、短絡による電圧低下やアーク放電等の異常放電の発生が防止される。前記電極体44によって導電体である被処理体Wを支持し、前記昇降機45によって前記絶縁体46及び前記電極体44を上昇させると、被処理体Wが前記チェーンコンベア25から持ち上げられ、前記電極体44以外の部分から絶縁した状態となる。   Connected to the electrode body 44 is a cathode of a DC power supply 47 for plasma provided outside the nitriding chamber 1. On the other hand, the anode of the DC power supply 47 for plasma is connected to, for example, the furnace wall of the nitriding furnace 20. The cathode and the anode are insulated by the insulator 46 to prevent the occurrence of abnormal discharge such as voltage drop or arc discharge due to short circuit. When the object to be processed W, which is a conductor, is supported by the electrode body 44 and the insulator 46 and the electrode body 44 are raised by the elevator 45, the object to be processed W is lifted from the chain conveyor 25, and the electrode It will be in the state insulated from parts other than the body 44. FIG.

前記昇降機45は、前記窒化炉20の下方に設けられた昇降駆動部48と、炉体の底部を貫通するように設けられた昇降支持棒49と、該昇降支持棒49の上端部に支持された昇降板50と、を備えている。該昇降支持板50上には、前記絶縁体46を介して前記電極体44が支持されている。   The elevator 45 is supported by an elevator drive unit 48 provided below the nitriding furnace 20, an elevator support bar 49 provided so as to penetrate the bottom of the furnace body, and an upper end part of the elevator support bar 49. And an elevating plate 50. The electrode body 44 is supported on the elevating support plate 50 through the insulator 46.

図1に示すように、前記窒化室2には、窒化室2内を減圧(真空引き)する窒化室減圧路51が接続されている。該窒化室減圧路51は、窒化室1の外部において、例えば真空ポンプ等を含む減圧機構52に接続されている。さらに、前記窒化室2には、例えば窒素ガス、水素ガス、プロパンガス等の炭化水素系のガス、アンモニアガス等を処理ガス又はパージ用ガスとして窒化室2内に供給する窒化室ガス供給路53が接続され、該窒化室ガス供給路53は、窒化室ガス供給源54に接続されている。前記窒化室ガス供給路53には、前記窒化室ガス供給路を開閉する開閉弁55と、窒化室ガスの供給量を調節する流量調節部(マスフローコントローラ)56が介装されている。なお、図1においては、簡略化のために窒化室ガス供給源54を一つだけ図示しているが、実際は、前記複数種類のガスに対応して、互いに並列状態の複数のガス供給源が前記窒素ガス供給路53に連通されている。   As shown in FIG. 1, the nitriding chamber 2 is connected to a nitriding chamber pressure reducing path 51 for depressurizing (evacuating) the inside of the nitriding chamber 2. The nitriding chamber decompression path 51 is connected to a decompression mechanism 52 including, for example, a vacuum pump or the like outside the nitriding chamber 1. Further, the nitriding chamber 2 is supplied with a nitriding chamber gas supply path 53 for supplying a hydrocarbon gas such as nitrogen gas, hydrogen gas, propane gas, ammonia gas or the like into the nitriding chamber 2 as a processing gas or a purge gas. And the nitriding chamber gas supply path 53 is connected to a nitriding chamber gas supply source 54. The nitriding chamber gas supply path 53 is provided with an open / close valve 55 for opening and closing the nitriding chamber gas supply path and a flow rate adjusting unit (mass flow controller) 56 for adjusting the supply amount of the nitriding chamber gas. In FIG. 1, only one nitriding chamber gas supply source 54 is shown for simplification, but actually, there are a plurality of gas supply sources in parallel with each other corresponding to the plurality of types of gases. The nitrogen gas supply path 53 is communicated.

次に、図1を参照して、前記冷却室3について説明する。該冷却室3は、冷却庫57の内部に画成されている。該冷却庫57の入口側には、被処理体Wの搬入口58と、該搬入口58を開閉する搬入口シャッター59が設けられている。該搬入口シャッター59は、前記第二のシャッター室5内を上下動する。前記冷却庫57の出口側には、被処理体Wの搬出口60と、該搬出口60を開閉する搬出口シャッター61が設けられている。   Next, the cooling chamber 3 will be described with reference to FIG. The cooling chamber 3 is defined inside the refrigerator 57. On the inlet side of the cooler 57, a carry-in port 58 for the workpiece W and a carry-in shutter 59 for opening and closing the carry-in port 58 are provided. The carry-in shutter 59 moves up and down in the second shutter chamber 5. On the outlet side of the cooler 57, a carry-out port 60 for the workpiece W and a carry-out shutter 61 for opening and closing the carry-out port 60 are provided.

前記冷却室3には、被処理体Wを搬送するチェーンコンベア62と、冷却室3内の雰囲気を攪拌する送風機構(送風ファン)63が設けられている。また、前記冷却室3の内壁には、熱交換を促進するための多数の冷却フィン64が設けられている。前記冷却庫57の炉壁には、冷却液を流通させる冷却液通路65が内蔵され、該冷却液通路65は冷却液源65aに連通している。   The cooling chamber 3 is provided with a chain conveyor 62 that conveys the workpiece W and a blower mechanism (blower fan) 63 that stirs the atmosphere in the cooling chamber 3. A number of cooling fins 64 for promoting heat exchange are provided on the inner wall of the cooling chamber 3. A cooling fluid passage 65 for circulating a cooling fluid is built in the furnace wall of the cooling chamber 57, and the cooling fluid passage 65 communicates with a cooling fluid source 65a.

前記冷却室3には、冷却室3を減圧(真空引き)する冷却室減圧路66が接続され、該冷却室減圧路66は、真空ポンプ等を含む減圧機構67に接続されている。さらに、前記冷却室3には、冷却室3に冷却用ガス又はパージ用ガスとして例えば窒素ガスを供給する冷却室ガス供給路68が接続され、該冷却室ガス供給路68は、冷却用ガス供給源69に接続されている。   The cooling chamber 3 is connected to a cooling chamber decompression path 66 for decompressing (evacuating) the cooling chamber 3, and the cooling chamber decompression path 66 is connected to a decompression mechanism 67 including a vacuum pump and the like. Further, a cooling chamber gas supply path 68 for supplying, for example, nitrogen gas as a cooling gas or a purge gas to the cooling chamber 3 is connected to the cooling chamber 3, and the cooling chamber gas supply path 68 is supplied with a cooling gas supply. Connected to source 69.

前記第一のシャッター室4と前記第二のシャッター室5には、ローラコンベア70が配設されている。これらのローラコンベア70は、前記加熱室1のチェーンコンベア11、前記窒化室2のチェーンコンベア25、前記冷却室3のチェーンコンベア62とともに、一連の被処理体搬送機構を構成する。   A roller conveyor 70 is disposed in the first shutter chamber 4 and the second shutter chamber 5. These roller conveyors 70, together with the chain conveyor 11 in the heating chamber 1, the chain conveyor 25 in the nitriding chamber 2, and the chain conveyor 62 in the cooling chamber 3, constitute a series of workpiece transfer mechanisms.

前記プラズマ窒化処理装置は、図示しない制御部の命令によって自動制御される。該制御部は、例えば汎用コンピュータ等を備え、図示しない各種の検出センサの検出値に基づいて、所定の処理プログラムにしたがって被処理体を自動的に処理する制御を行う。   The plasma nitriding apparatus is automatically controlled by a command from a control unit (not shown). The control unit includes, for example, a general-purpose computer, and performs control for automatically processing the object to be processed according to a predetermined processing program based on detection values of various detection sensors (not shown).

次に、前記プラズマ窒化処理装置による処理方法について説明する。   Next, a processing method using the plasma nitriding apparatus will be described.

前記加熱室1の搬入口シャッター8が開き、加熱室1に被処理体Wが搬入された後、前記搬入口シャッター8が閉じる。これにより、前記加熱室1が密閉状態となる。被処理体Wは、前記チェーンコンベア11で搬送されて、加熱室1内の所定の加熱位置に静止される。   After the entrance shutter 8 of the heating chamber 1 is opened and the workpiece W is carried into the heating chamber 1, the entrance shutter 8 is closed. Thereby, the heating chamber 1 is sealed. The workpiece W is transported by the chain conveyor 11 and stopped at a predetermined heating position in the heating chamber 1.

前記加熱室1が密閉状態になると、前記減圧機構17の作動により、前記加熱室1内が略真空状態まで減圧される。その後、前記加熱室ガス供給路18を通じて加熱室1内に窒素ガスが供給される。これにより、加熱室1内から酸化性雰囲気が排出されるとともに、加熱室1内の圧力が略真空状態よりも高くなる。   When the heating chamber 1 is in a sealed state, the inside of the heating chamber 1 is decompressed to a substantially vacuum state by the operation of the decompression mechanism 17. Thereafter, nitrogen gas is supplied into the heating chamber 1 through the heating chamber gas supply path 18. Thereby, while oxidizing atmosphere is discharged | emitted from the inside of the heating chamber 1, the pressure in the heating chamber 1 becomes higher than a substantially vacuum state.

この状態の加熱室1において、加熱室ヒータ12の発熱によって被処理体Wが加熱される。前記のように加熱室1内の圧力が略真空状態よりも高くなっているので、被処理体Wに対して加熱室ヒータ12からの熱が処理雰囲気を介して伝達されやすくなり、被処理体Wの加熱が効率的に行える。加熱室1の温度は、加熱室ヒータ12の発熱量を調節することで、所定の処理温度(例えば500℃程度)に制御される。また、前記送風機構14によって加熱室1内の雰囲気が攪拌され、加熱室1内の温度分布が均一化される。このような処理によって、被処理体Wは、例えば500℃程度まで加熱される。   In the heating chamber 1 in this state, the workpiece W is heated by the heat generated by the heating chamber heater 12. As described above, since the pressure in the heating chamber 1 is higher than the vacuum state, the heat from the heating chamber heater 12 is easily transmitted to the object to be processed W through the processing atmosphere, and the object to be processed is Heating of W can be performed efficiently. The temperature of the heating chamber 1 is controlled to a predetermined processing temperature (for example, about 500 ° C.) by adjusting the amount of heat generated by the heating chamber heater 12. In addition, the atmosphere in the heating chamber 1 is agitated by the air blowing mechanism 14, and the temperature distribution in the heating chamber 1 is made uniform. By such a process, the to-be-processed object W is heated to about 500 degreeC, for example.

一方、窒化室2は、搬入口21、搬出口23がそれぞれ前記シャッター22,24で閉じられて密閉され、窒化室1の減圧機構52の作動により減圧状態(例えば133.3Pa程度)とされる。また、窒化室ガス供給路53を通じて窒化室1内が窒素ガスによりパージされる。窒化室1の温度は、前記窒化室ヒータ26の発熱によって所定の温度(例えば500〜550℃程度)に昇温される。窒化室1内の温度制御は、窒化室ヒータ26の発熱量と冷却液通路28の冷却水の流量とを調節することによって行われる。   On the other hand, the inlet 21 and the outlet 23 are closed and sealed by the shutters 22 and 24, respectively, and the nitriding chamber 2 is brought into a reduced pressure state (for example, about 133.3 Pa) by the operation of the pressure reducing mechanism 52 of the nitriding chamber 1. . Further, the inside of the nitriding chamber 1 is purged with nitrogen gas through the nitriding chamber gas supply path 53. The temperature of the nitriding chamber 1 is raised to a predetermined temperature (for example, about 500 to 550 ° C.) by the heat generated by the nitriding chamber heater 26. The temperature control in the nitriding chamber 1 is performed by adjusting the heat generation amount of the nitriding chamber heater 26 and the flow rate of the cooling water in the coolant passage 28.

加熱室1における加熱処理が終了すると、再び加熱室1の減圧機構17が作動させられ、加熱室1内が窒化室2の圧力と同程度に減圧される。その後、加熱室1の搬出口9と窒化室2の搬入口21がそれぞれ開かれ、加熱室1と窒化室2が第一のシャッター室4を介して互いに連通させられる。窒化室2内では、前記入口側断熱扉41が上方へ移動させられ、前記左右両側のヒータ26L,26R間の入口が開放される。なお、このとき、電極体44は、昇降駆動部48の作動により、窒化室2のチェーンコンベア25の上面よりも低い位置に下降させられている。プラズマ用直流電源47による電圧の供給は停止されており、放電が発生しない状態になっている。   When the heat treatment in the heating chamber 1 is completed, the decompression mechanism 17 of the heating chamber 1 is operated again, and the inside of the heating chamber 1 is decompressed to the same extent as the pressure of the nitriding chamber 2. Thereafter, the carry-out port 9 of the heating chamber 1 and the carry-in port 21 of the nitriding chamber 2 are opened, and the heating chamber 1 and the nitriding chamber 2 are communicated with each other via the first shutter chamber 4. In the nitriding chamber 2, the inlet side heat insulating door 41 is moved upward, and the inlets between the left and right heaters 26L, 26R are opened. At this time, the electrode body 44 is lowered to a position lower than the upper surface of the chain conveyor 25 in the nitriding chamber 2 by the operation of the elevating drive unit 48. Supply of voltage by the DC power supply 47 for plasma is stopped, and no discharge is generated.

このような状態において、被処理体Wは、加熱室1から前記第一のシャッター室4を介して前記窒化室2へと搬送され、窒化室2のチェーンコンベア25により、前記電極体44の真上の位置で静止させられる。被処理体Wが窒化室2に搬入されると、窒化室2の搬入口21が閉じられ、窒化室2内は再び密閉状態にされる。   In such a state, the workpiece W is transported from the heating chamber 1 to the nitriding chamber 2 through the first shutter chamber 4, and the electrode body 44 is moved by the chain conveyor 25 in the nitriding chamber 2. It is stationary at the upper position. When the workpiece W is carried into the nitriding chamber 2, the carry-in port 21 of the nitriding chamber 2 is closed, and the inside of the nitriding chamber 2 is sealed again.

その後、窒化室ガス供給路53を通じて窒化室2内に窒素ガスを含む処理ガス(例えば、窒素ガス、水素ガス、プロパンガス、アンモニアガス等の混合流体)が供給される。これにより、窒化室2内の圧力が所定の処理圧力(例えば、400〜1067Pa程度)に昇圧される。   Thereafter, a processing gas containing nitrogen gas (for example, a mixed fluid such as nitrogen gas, hydrogen gas, propane gas, and ammonia gas) is supplied into the nitriding chamber 2 through the nitriding chamber gas supply path 53. Thereby, the pressure in the nitriding chamber 2 is increased to a predetermined processing pressure (for example, about 400 to 1067 Pa).

また、窒化室2内では、入口側断熱扉41が閉じられ、前記チェーンコンベア25上の被処理体Wは、前記左右両側のヒータ26L,26R、上部断熱材37、入口側断熱扉41、出口側断熱扉42によって囲まれた状態になる。この状態で、昇降駆動部48の駆動により昇降支持棒49が上昇させられ、昇降板50、絶縁体46、電極体44が一体的に上昇させられる。これにより、被処理体Wが電極板44に支持された状態でチェーンコンベア25から押し上げられ、図2に実線で示す所定の窒化処理高さ位置に保持される。   Further, in the nitriding chamber 2, the entrance-side heat insulating door 41 is closed, and the workpiece W on the chain conveyor 25 includes the left and right heaters 26L and 26R, the upper heat insulating material 37, the inlet-side heat insulating door 41, and the outlet. It will be in the state enclosed by the side heat insulation door 42. FIG. In this state, the elevating support rod 49 is raised by driving the elevating drive unit 48, and the elevating plate 50, the insulator 46, and the electrode body 44 are integrally raised. Thus, the workpiece W is pushed up from the chain conveyor 25 while being supported by the electrode plate 44, and is held at a predetermined nitriding height position indicated by a solid line in FIG.

その後、プラズマ用直流電源47によって電圧が印加され、窒化処理が行われる。すなわち、電極体44及び被処理体Wが陰極となり、炉体が陽極となって、両極間にグロー放電が起こり、プラズマが発生する。窒化室2内の処理ガスがイオン化され、このイオン化した処理ガス(窒素イオン)は、被処理体Wに衝突してその表面に浸入する。これにより、被処理体Wの表面に窒化鉄層が形成される。   Thereafter, a voltage is applied by the plasma direct current power source 47, and nitriding is performed. That is, the electrode body 44 and the workpiece W serve as a cathode, the furnace body serves as an anode, glow discharge occurs between the two electrodes, and plasma is generated. The processing gas in the nitriding chamber 2 is ionized, and the ionized processing gas (nitrogen ions) collides with the workpiece W and enters the surface thereof. Thereby, an iron nitride layer is formed on the surface of the workpiece W.

窒化処理が行われている間、窒化室2内の処理温度は、前記窒化室ヒータ26の発熱、グロー放電による加熱(イオン化した処理ガスが被処理体Wに衝突することによる発熱)、冷却液通路28の冷却水の流量や温度等を制御することで、例えば、500〜550℃程度の所定の温度に維持される。   While the nitriding process is being performed, the processing temperature in the nitriding chamber 2 is the heat generated by the nitriding chamber heater 26, the heating by glow discharge (the heat generated by the ionized processing gas colliding with the workpiece W), and the cooling liquid. By controlling the flow rate, temperature, and the like of the cooling water in the passage 28, for example, a predetermined temperature of about 500 to 550 ° C. is maintained.

また、本実施の形態では、前記左側ヒータ26L、右側ヒータ26Rのそれぞれが搬送方向の前後及び上下に複数に分割されており、さらに、前記被処理体Wにおいて各分割ヒータ29(各ヒータユニット30)に対応する領域の温度が前記熱電対33で測定される。そして、その測定温度が予め設定した目標温度となるように、前記各制御部36が前記各分割ヒータ29の発熱量を個別に制御する。これにより、窒化処理時に被処理体Wの全体が目標温度又はそれに近い温度に維持される。よって、被処理体Wの全体に対して均一な窒化処理を効率的に施すことができる。   In the present embodiment, each of the left heater 26L and the right heater 26R is divided into a plurality of front and rear and top and bottom in the transport direction, and each divided heater 29 (each heater unit 30 in the workpiece W). ) Is measured by the thermocouple 33. And each said control part 36 controls the emitted-heat amount of each said division | segmentation heater 29 separately so that the measured temperature may become the preset target temperature. Thereby, the whole to-be-processed object W is maintained at target temperature or the temperature close | similar to it at the time of nitriding. Therefore, uniform nitriding treatment can be efficiently performed on the entire workpiece W.

一般に、プラズマ窒化処理においては、グロー放電による被処理体の加熱が進行すると、被処理体の自己発熱により、被処理体の周辺部よりも被処理体の中央部や上部の温度が上がり易い。これに対し、本実施の形態では、被処理体Wの周辺部領域に対応する分割ヒータ29(ヒータユニット30)からの発熱量が相対的に大きくなるように制御され、逆に、被処理体Wの中央部領域(前後方向における中央部領域及び左右方向における中央部領域)に対応する分割ヒータ29(ヒータユニット)からの発熱量は相対的に小さくなるように制御する。また、被処理体Wの上部の分割ヒータを下部の分割ヒータに比べて発熱量を小さくなるように制御する。その結果、被処理体Wの全体が予め設定した目標温度に収束することになる。被処理体Wの前後にはヒータが存在しないので、これらの領域は、左右両側のヒータ26L,26Rの前部及び後部の分割ヒータ29(ヒータユニット)で加熱される。よって、左右のヒータ26L,26Rの前後方向の分割数は、いずれも少なくとも前中後の3つ以上とするのが好ましい。また、上下方向のヒータの分割数は2以上とするのが好ましい。   In general, in the plasma nitriding process, when the object to be processed is heated by glow discharge, the temperature of the central part or the upper part of the object to be processed is more likely to rise than the peripheral part of the object to be processed due to self-heating of the object to be processed. In contrast, in the present embodiment, the amount of heat generated from the divided heater 29 (heater unit 30) corresponding to the peripheral region of the workpiece W is controlled to be relatively large. The amount of heat generated from the divided heater 29 (heater unit) corresponding to the central region of W (the central region in the front-rear direction and the central region in the left-right direction) is controlled to be relatively small. In addition, the upper divided heater of the workpiece W is controlled so that the amount of heat generated is smaller than that of the lower divided heater. As a result, the entire workpiece W converges to a preset target temperature. Since there are no heaters before and after the workpiece W, these regions are heated by the front and rear divided heaters 29 (heater units) of the heaters 26L and 26R on the left and right sides. Therefore, it is preferable that the number of divisions in the front-rear direction of the left and right heaters 26L, 26R is at least three in the front, middle, and rear. Also, the number of heater divisions in the vertical direction is preferably 2 or more.

なお、図示例では、左右のヒータ26L,26Rをそれぞれ6つの分割ヒータ29(ヒータユニット30)で構成しているが、ヒータの分割数をこれより多くすれば、より細かな制御が可能となる。以上、前述のようにヒータが分割されていないと、プラズマ窒化処理において十分な温度制御ができない。   In the illustrated example, the left and right heaters 26L and 26R are each composed of six divided heaters 29 (heater units 30). However, if the number of heater divisions is increased, finer control is possible. . As described above, if the heater is not divided as described above, sufficient temperature control cannot be performed in the plasma nitriding process.

本実施の形態では、前記窒化室ヒータ26は、前記窒化室2内の被処理体Wの搬送方向の左右両側にのみ配設されているので、被処理体Wの搬送の邪魔にはならない。   In the present embodiment, the nitriding chamber heaters 26 are disposed only on the left and right sides of the nitriding chamber 2 in the conveying direction of the workpiece W, so that the nitriding chamber heater 26 does not interfere with the conveyance of the workpiece W.

また、本実施の形態では、前記窒化室2が冷却液通路28を有する炉壁によって画成され、前記各分割ヒータ29の前記炉壁側に断熱材31が配設され、前記各分割ヒータ29と前記各断熱材31が共通の熱伝導ケース32で覆われてヒータユニット30をなしている。この構成により、前記分割ヒータ29からの発熱は、前記熱伝導ケース32により輻射熱となって被処理体Wを加熱する。よって、各分割ヒータ29により、被処理体Wが広範囲に渡って均等に加熱される。   In the present embodiment, the nitriding chamber 2 is defined by a furnace wall having a coolant passage 28, and a heat insulating material 31 is disposed on the furnace wall side of each divided heater 29. Each of the heat insulating materials 31 is covered with a common heat conduction case 32 to form a heater unit 30. With this configuration, the heat generated from the divided heater 29 is radiated by the heat conduction case 32 to heat the workpiece W. Therefore, the workpiece W is uniformly heated over a wide range by each divided heater 29.

前記分割ヒータ29と炉壁との間には前記断熱材31が配設されているので、分割ヒータ29からの発熱が炉壁に奪われてしまうことも抑制され、加熱効率が高い。加えて、被処理体Wの或る領域において温度が上がりすぎた場合には、その領域に対応する分割ヒータ29の発熱量が自動的に降下制御されるが、このとき、熱伝導ケース32を通じて前記炉壁側への放熱が促進されるので、被処理体Wの温度降下の速度が速い。よって、被処理体Wの温度制御が迅速に行える。   Since the heat insulating material 31 is disposed between the divided heater 29 and the furnace wall, the heat generated from the divided heater 29 is prevented from being taken away by the furnace wall, and the heating efficiency is high. In addition, when the temperature rises excessively in a certain area of the workpiece W, the amount of heat generated by the divided heater 29 corresponding to that area is automatically controlled to drop. Since heat dissipation to the furnace wall side is promoted, the temperature drop speed of the workpiece W is high. Therefore, the temperature control of the workpiece W can be performed quickly.

さらに、温度が上がりやすい被処理体Wの上部の中央部は、前記蓋体昇降機構40を作動させて前記上部断熱材37の前記開口38の開度を調節することで温度制御を行うことができる。   Further, the central portion of the upper portion of the object to be processed W whose temperature is likely to rise can be controlled by operating the lid lifting mechanism 40 and adjusting the opening of the opening 38 of the upper heat insulating material 37. it can.

プラズマ窒化処理は前述のように、500℃程度の温度で且つ減圧下で行うため、ヒータの輻射熱による加熱も、またガスによる熱伝導も大きくない、すなわち被処理体に熱が伝わりにくく、一般的には非常に制御の難しい状態にある。また、グロー放電によって被処理体は自己発熱するが、それも温度制御の困難さに加わる。よって、従来は被処理体の被処理単体の場所による温度ばらつきを抑制すること、温度管理を正確にすることは困難であったが、本実施の形態の構成により飛躍的に温度制御の精度が向上し、且つ温度ばらつきも著しく小さくすることが可能となった。   As described above, since the plasma nitriding process is performed at a temperature of about 500 ° C. and under reduced pressure, the heating by the radiant heat of the heater and the heat conduction by the gas are not large, that is, the heat is not easily transmitted to the object to be processed. It is in a very difficult state to control. Further, the object to be processed self-heats due to glow discharge, which also adds to the difficulty of temperature control. Therefore, in the past, it has been difficult to suppress temperature variation due to the location of a single object to be processed and to accurately control temperature, but the configuration of this embodiment dramatically improves the accuracy of temperature control. It was possible to improve the temperature variation significantly.

また、プラズマ窒化処理法においては、被処理体の表面にイオン化したガスが衝突することで発熱が行われるので、被処理体がある程度以上の量を有しないと、被処理体の温度が上昇しない。しかし、被処理単体の集合を大きくして被処理体を大型にすると、被処理体の中央部付近と周辺部との温度差がますます大きくなってしまう。これに対し、窒化室ヒータ26を併用し、該窒化室ヒータ26として多数の分割ヒータ29を用い、各分割ヒータ29ごとに発熱量を制御する本方式によれば、被処理体Wの大きさや荷姿にも左右されることなく、常に被処理体の全体を均一な温度で、即ち被処理単体間の温度のばらつきを極力小さくして窒化処理することができ、被処理物の窒化の品質のばらつきを抑制することができた。   Further, in the plasma nitriding method, heat is generated by collision of ionized gas with the surface of the object to be processed, so that the temperature of the object to be processed does not increase unless the object to be processed has a certain amount or more. . However, if the size of the object to be processed is increased by enlarging the set of objects to be processed, the temperature difference between the vicinity of the center of the object to be processed and the peripheral part will become larger. In contrast, according to the present system in which the nitriding chamber heater 26 is used in combination, a number of divided heaters 29 are used as the nitriding chamber heater 26, and the amount of heat generated is controlled for each divided heater 29, the size of the workpiece W can be increased. Regardless of the package shape, the entire workpiece can always be nitrided at a uniform temperature, that is, with as little variation in temperature between the workpieces as possible. It was possible to suppress the variation of.

なお、本発明の発明者等の試験によれば、前記窒化室2における窒化処理時の被処理体Wの様々な領域(例えば、温度測定箇所は9箇所)の温度は、被処理体Wの目標温度を520℃に設定した場合、窒化処理開始当初に目標温度より上下それぞれ15℃程度(合計30℃程度)のばらつき範囲内にあり、窒化時間の経過にしたがい、目標温度より上下それぞれ約7〜8℃程度(合計15℃程度)のばらつき範囲内へと収束した。文献(「イオン窒化法」山中久彦箸、日刊工業新聞社発行)によれば、イオン窒化の際の被処理体の各部の温度差は、被処理体自体が発熱することから、炉の中央部付近と炉壁に近い部分とで、100℃前後に及ぶ場合がある。これと比較すれば、本実施の形態による被処理体Wの温度の均一化効果が顕著なものであることが理解されるであろう。   According to the tests by the inventors of the present invention, the temperatures of various regions of the object to be processed W during the nitriding process in the nitriding chamber 2 (for example, nine temperature measurement locations) When the target temperature is set to 520 ° C., it is within a variation range of about 15 ° C. above and below the target temperature at the beginning of the nitriding process (about 30 ° C. in total), and about 7 each above and below the target temperature as the nitriding time elapses. It converged within a variation range of about -8 ° C (about 15 ° C in total). According to the literature (“Ion nitriding method”, Hishiko Yamanaka chopsticks, published by Nikkan Kogyo Shimbun Co., Ltd.), the temperature difference of each part of the object to be processed during ion nitriding is due to the fact that the object itself generates heat. There are cases where the temperature is around 100 ° C. between the vicinity and the portion close to the furnace wall. Compared with this, it will be understood that the temperature uniformizing effect of the workpiece W according to the present embodiment is remarkable.

また、市販されている炉についても温度ばらつきを調査したが、最も温度ばらつきの良いもので、且つ窒化時間が経過して安定した状態でも目標温度に対して25℃程度(合計50℃)であり、本願の約7〜8℃程度(合計15℃)程度とは大きく異なる。なお、この炉はたて型でヒータ付であり、構造が特許文献2と同様な構造のものである。   In addition, the temperature variation was also investigated for commercially available furnaces, but the temperature variation was the best, and it was about 25 ° C. (total 50 ° C.) with respect to the target temperature even when the nitriding time was stable. This is significantly different from about 7-8 ° C. (15 ° C. in total) of the present application. This furnace is a vertical mold with a heater, and has the same structure as that of Patent Document 2.

また、本発明の温度制御によれば、従来困難であったプラズマ窒化の量産化、あるいは自動化が可能となり、安定した製品を大量に供給することが可能になった。   Further, according to the temperature control of the present invention, mass production or automation of plasma nitriding, which has been difficult in the past, can be performed, and a stable product can be supplied in large quantities.

以上のようにして窒化室2における窒化処理が終了すると、プラズマ用直流電源47による電圧の供給が停止され、グロー放電が停止される。また、昇降駆動部48の駆動により被処理体Wがチェーンコンベア25上に戻される。その後、出口側断熱壁42が上昇させられ、前記左右のヒータ26L,26Rの出口側が開かれる。さらに、窒化室2の搬出口23が開き、被処理体Wは、窒化室2から前記第二のシャッター室5を介して前記冷却室3へと搬送される。   When the nitriding process in the nitriding chamber 2 is completed as described above, the supply of voltage by the plasma DC power supply 47 is stopped, and the glow discharge is stopped. Further, the workpiece W is returned onto the chain conveyor 25 by the driving of the elevating drive unit 48. Thereafter, the outlet side heat insulating wall 42 is raised, and the outlet sides of the left and right heaters 26L, 26R are opened. Further, the carry-out port 23 of the nitriding chamber 2 is opened, and the workpiece W is transferred from the nitriding chamber 2 to the cooling chamber 3 through the second shutter chamber 5.

窒化室2と冷却室3を連通させる際には、冷却室3内を窒素ガスによってパージしておくのが好ましい。これにより、冷却室3から窒化室2へと酸化性雰囲気が流入するのを防止できる。冷却室3のパージは、減圧機構67の作動により冷却室3を減圧し、冷却室ガス供給路68を通じて窒素ガスを供給することで行うことができる。   When the nitriding chamber 2 and the cooling chamber 3 are communicated with each other, the inside of the cooling chamber 3 is preferably purged with nitrogen gas. Thereby, it is possible to prevent the oxidizing atmosphere from flowing from the cooling chamber 3 to the nitriding chamber 2. The purging of the cooling chamber 3 can be performed by depressurizing the cooling chamber 3 by operating the decompression mechanism 67 and supplying nitrogen gas through the cooling chamber gas supply path 68.

冷却室3では、冷却液通路65に供給される冷却水によって、室内の雰囲気が冷却され、冷却フィン64によって被処理体Wの冷却が促進される。また、前記送風機構63によって冷却室3内の雰囲気が攪拌され、冷却室3内の温度分布が均一化され、また速やかに冷却することができる。このような冷却処理によって、被処理体は、例えば500〜550℃程度から100〜150℃程度まで下げられる。   In the cooling chamber 3, the indoor atmosphere is cooled by the cooling water supplied to the coolant passage 65, and the cooling of the workpiece W is promoted by the cooling fins 64. In addition, the atmosphere in the cooling chamber 3 is agitated by the blower mechanism 63, the temperature distribution in the cooling chamber 3 is made uniform, and cooling can be performed quickly. By such a cooling process, the object to be processed is lowered, for example, from about 500 to 550 ° C. to about 100 to 150 ° C.

冷却処理が完了すると、搬出口60が開かれ、冷却室3から被処理体Wが搬出される。以上のようにして、プラズマ窒化処理システムにおける一連の処理工程が終了する。   When the cooling process is completed, the carry-out port 60 is opened, and the workpiece W is carried out from the cooling chamber 3. As described above, a series of processing steps in the plasma nitriding system is completed.

本発明の実施の一形態に係るプラズマ窒化処理装置の、一部を水平断面とした概略平面図である。1 is a schematic plan view in which a part of a plasma nitriding apparatus according to an embodiment of the present invention is a horizontal section. 図1のII−II矢視断面図である。It is II-II arrow sectional drawing of FIG. 分割ヒータの正面図である。It is a front view of a division | segmentation heater. 図3のIV−IV矢視断面図である。FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3.

符号の説明Explanation of symbols

1 加熱室
2 窒化室
3 冷却室
26 窒化室ヒータ
26L 左側ヒータ
26R 右側ヒータ
28 冷却液通路
29 分割ヒータ
31 断熱材
32 熱伝導ケース
33 熱電対(温度計)
36 制御部(発熱制御部)
DESCRIPTION OF SYMBOLS 1 Heating chamber 2 Nitriding chamber 3 Cooling chamber 26 Nitriding chamber heater 26L Left side heater 26R Right side heater 28 Coolant passage 29 Split heater 31 Heat insulating material 32 Heat conduction case 33 Thermocouple (thermometer)
36 Control unit (heat generation control unit)

Claims (7)

被処理体(W)をプラズマ窒化処理するプラズマ窒化処理装置であって、窒化室(2)内の被処理体(W)を加熱する窒化室ヒータ(26)を備え、該窒化室ヒータ(26)が前記窒化室(2)内の被処理体(W)の搬送方向の左右両側に配設され、該窒化室ヒータ(26)は前記搬送方向の前後及び上下に複数に分割された分割ヒータ(29)を有し、さらに、前記被処理体(W)の温度を測定する熱電対(33)と、前記各分割ヒータ(29)の発熱量を個別に制御する制御部(36)と、を備えている、プラズマ窒化処置装置。   A plasma nitriding apparatus for plasma nitriding a target object (W), comprising a nitriding chamber heater (26) for heating the target object (W) in the nitriding chamber (2), the nitriding chamber heater (26) ) Are arranged on both the left and right sides in the transfer direction of the object to be processed (W) in the nitriding chamber (2), and the nitriding chamber heater (26) is divided into a plurality of heaters before and after the transfer direction and vertically. A thermocouple (33) that measures the temperature of the object to be processed (W), and a controller (36) that individually controls the amount of heat generated by each of the divided heaters (29), A plasma nitriding treatment apparatus comprising: 前記窒化室(2)が冷却液通路(28)を有する炉壁によって画成され、前記各分割ヒータ(29)の前記炉壁側に断熱材(31)が配設され、前記各分割ヒータ(29)と前記各断熱材(31)が共通の熱伝導ケース(32)で覆われている、請求項1に記載のプラズマ窒化処理装置。   The nitriding chamber (2) is defined by a furnace wall having a coolant passage (28), a heat insulating material (31) is disposed on the furnace wall side of each divided heater (29), and each divided heater ( 29. The plasma nitriding apparatus according to claim 1, wherein 29) and each of the heat insulating materials (31) are covered with a common heat conduction case (32). 前記被処理体(W)を加熱室(1)、前記窒化室(2)、冷却室(3)の順に搬送して前記窒化室(2)でプラズマ窒化処理する、請求項1または2に記載のプラズマ窒化処理装置。   The said to-be-processed object (W) is conveyed in order of a heating chamber (1), the said nitriding chamber (2), and a cooling chamber (3), and is plasma-nitrided in the said nitriding chamber (2). Plasma nitriding equipment. 前記窒化室ヒータ(26)において、左側ヒータ(26L)と右側ヒータ(26R)のそれぞれが前記搬送方向の前後及び上下に複数に分割された分割ヒータ(29)を有する、請求項1,2又は3に記載のプラズマ窒化処理装置。   In the nitriding chamber heater (26), each of the left side heater (26L) and the right side heater (26R) has a divided heater (29) divided into a plurality of front and rear and top and bottom in the transport direction. 4. The plasma nitriding apparatus according to 3. 前記熱電対(33)が、前記各分割ヒータ(29)に対応する領域の被処理体(W)の温度を測定する複数の熱電対(33)である、請求項1乃至4のいずれか一項に記載のプラズマ窒化処理装置。   The thermocouple (33) is a plurality of thermocouples (33) for measuring the temperature of the workpiece (W) in a region corresponding to each of the divided heaters (29). The plasma nitriding apparatus according to item. 前記熱電対(33)が炉壁から絶縁され、前記被処理体(W)との放電の影響がない最小距離まで前記熱電対(33)を前記被処理体(W)に近接させて配置し、該被処理体(W)近傍の温度を測定する、請求項1乃至5のいずれか一項に記載のプラズマ窒化処理装置。   The thermocouple (33) is insulated from the furnace wall, and the thermocouple (33) is disposed close to the object to be processed (W) to a minimum distance that is not affected by discharge with the object to be processed (W). The plasma nitriding apparatus according to claim 1, wherein the temperature in the vicinity of the object to be processed (W) is measured. 被処理体(W)を連続的に窒化室(2)へと搬送してプラズマ窒化処理を行う連続式プラズマ窒化処理方法であって、前記窒化室(2)において前記被処理体(W)の搬送方向の左右両側に設けられた窒化室ヒータ(26)を搬送方向の前後及び上下に複数に分割し、前記被処理体(W)において各分割ヒータ(29)に対応する領域の温度を測定し、前記被処理体(W)の前記領域のすべてが目標温度となるように前記各分割ヒータ(29)の発熱量を個別に制御して窒化処理を行う、連続式プラズマ窒化処理方法。   A continuous plasma nitriding method for performing a plasma nitriding process by continuously transferring an object to be processed (W) to a nitriding chamber (2), wherein the object to be processed (W) is formed in the nitriding chamber (2). The nitriding chamber heaters (26) provided on both the left and right sides in the transport direction are divided into a plurality of front and rear and top and bottom in the transport direction, and the temperatures of the regions corresponding to the divided heaters (29) in the workpiece (W) are measured. A continuous plasma nitriding method in which nitriding is performed by individually controlling the amount of heat generated by each of the divided heaters (29) so that all of the region of the object to be processed (W) reaches a target temperature.
JP2007255445A 2007-09-28 2007-09-28 Plasma nitriding apparatus and continuous plasma nitriding method Active JP5194288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255445A JP5194288B2 (en) 2007-09-28 2007-09-28 Plasma nitriding apparatus and continuous plasma nitriding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255445A JP5194288B2 (en) 2007-09-28 2007-09-28 Plasma nitriding apparatus and continuous plasma nitriding method

Publications (2)

Publication Number Publication Date
JP2009084633A true JP2009084633A (en) 2009-04-23
JP5194288B2 JP5194288B2 (en) 2013-05-08

Family

ID=40658440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255445A Active JP5194288B2 (en) 2007-09-28 2007-09-28 Plasma nitriding apparatus and continuous plasma nitriding method

Country Status (1)

Country Link
JP (1) JP5194288B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588632A (en) * 2018-07-17 2018-09-28 嘉兴合邦机械科技有限公司 A kind of vacuum nitriding stove
CN112703268A (en) * 2018-10-15 2021-04-23 株式会社神户制钢所 Nitriding apparatus and nitriding method
CN115612978A (en) * 2022-10-25 2023-01-17 扬州大学 Nitriding device for stainless steel marble

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651775A (en) * 2015-03-19 2015-05-27 江西省机械科学研究所 Device for improving ion nitriding effect

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104536A (en) * 1977-02-24 1978-09-11 Kawasaki Heavy Ind Ltd Treating apparatus of ion nitriding
JPH0657403A (en) * 1992-08-14 1994-03-01 Daido Steel Co Ltd Continuous type plasma heat treatment furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104536A (en) * 1977-02-24 1978-09-11 Kawasaki Heavy Ind Ltd Treating apparatus of ion nitriding
JPH0657403A (en) * 1992-08-14 1994-03-01 Daido Steel Co Ltd Continuous type plasma heat treatment furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588632A (en) * 2018-07-17 2018-09-28 嘉兴合邦机械科技有限公司 A kind of vacuum nitriding stove
CN112703268A (en) * 2018-10-15 2021-04-23 株式会社神户制钢所 Nitriding apparatus and nitriding method
CN112703268B (en) * 2018-10-15 2023-02-21 株式会社神户制钢所 Nitriding apparatus and nitriding method
CN115612978A (en) * 2022-10-25 2023-01-17 扬州大学 Nitriding device for stainless steel marble
CN115612978B (en) * 2022-10-25 2023-08-15 扬州大学 Nitriding device for stainless steel marble

Also Published As

Publication number Publication date
JP5194288B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
US6403927B1 (en) Heat-processing apparatus and method of semiconductor process
US9587884B2 (en) Insulation structure and method of manufacturing semiconductor device
JP4458107B2 (en) Vacuum carburizing method and vacuum carburizing apparatus
US8257644B2 (en) Iron core annealing furnace
US6307184B1 (en) Thermal processing chamber for heating and cooling wafer-like objects
US8465598B2 (en) Vacuum carburization processing method and vacuum carburization processing apparatus
TWI662596B (en) Gas cooled substrate support for stabilized high temperature deposition
JP4990636B2 (en) Vacuum processing equipment using a transport tray
US20120064472A1 (en) Vertical-type heat treatment apparatus
JPH06310448A (en) Heat treatment device
US20120008925A1 (en) Temperature sensing device and heating device
JP5194288B2 (en) Plasma nitriding apparatus and continuous plasma nitriding method
US7935188B2 (en) Vertical thermal processing apparatus and method of using the same
JP4929657B2 (en) Carburizing treatment apparatus and method
JP4956209B2 (en) Plasma nitriding system and plasma nitriding method
US9324591B2 (en) Heat treatment apparatus and heat treatment method
JP5276796B2 (en) Plasma processing furnace
JP5144952B2 (en) Plasma processing furnace and plasma processing method
JP2007242850A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP5145005B2 (en) Plasma processing furnace and method for measuring temperature of workpiece in plasma processing furnace
JP4746700B1 (en) Vacuum processing equipment
JP2014214969A (en) Continuous heat treatment furnace
JP3230921U (en) Industrial furnace
JP5028459B2 (en) Plasma processing equipment
JP2010016285A (en) Heat treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5194288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250