JP2009084146A - Hardening material of molten slag and production method for hardened product of molten slag using the same hardening material - Google Patents
Hardening material of molten slag and production method for hardened product of molten slag using the same hardening material Download PDFInfo
- Publication number
- JP2009084146A JP2009084146A JP2008231687A JP2008231687A JP2009084146A JP 2009084146 A JP2009084146 A JP 2009084146A JP 2008231687 A JP2008231687 A JP 2008231687A JP 2008231687 A JP2008231687 A JP 2008231687A JP 2009084146 A JP2009084146 A JP 2009084146A
- Authority
- JP
- Japan
- Prior art keywords
- molten slag
- coal ash
- fine aggregate
- age
- hardened
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002893 slag Substances 0.000 title claims abstract description 296
- 239000000463 material Substances 0.000 title claims abstract description 165
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000010883 coal ash Substances 0.000 claims abstract description 87
- 239000003513 alkali Substances 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000004898 kneading Methods 0.000 claims abstract description 12
- 239000004848 polyfunctional curative Substances 0.000 claims description 39
- 230000004936 stimulating effect Effects 0.000 claims description 23
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 8
- 239000004115 Sodium Silicate Substances 0.000 claims description 7
- 235000019795 sodium metasilicate Nutrition 0.000 claims description 7
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 7
- 235000019353 potassium silicate Nutrition 0.000 claims description 5
- 230000014509 gene expression Effects 0.000 claims description 4
- 239000012615 aggregate Substances 0.000 claims description 3
- 238000001723 curing Methods 0.000 description 29
- 239000004570 mortar (masonry) Substances 0.000 description 26
- 238000006467 substitution reaction Methods 0.000 description 25
- 238000002156 mixing Methods 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 17
- 230000006835 compression Effects 0.000 description 13
- 238000007906 compression Methods 0.000 description 13
- 239000004568 cement Substances 0.000 description 11
- 239000002956 ash Substances 0.000 description 10
- 230000008602 contraction Effects 0.000 description 10
- 239000002699 waste material Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 238000004056 waste incineration Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 239000000920 calcium hydroxide Substances 0.000 description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000002013 dioxins Chemical class 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000010813 municipal solid waste Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Furnace Details (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、都市ごみ焼却灰から得られる溶融スラグ硬化材及びこれを用いた溶融スラグ硬化体の製造方法に関する。 The present invention relates to a molten slag hardened material obtained from municipal waste incineration ash and a method for producing a molten slag hardened body using the same.
現在、日本における一般廃棄物の排出量は、年間約5000万トンで、国民一人当り、1日に1kgのごみを排出していることになる。最近までそれらの一般廃棄物は、そのほとんどが焼却され、埋め立て処分されてきた。しかし、焼却灰にはダイオキシン類等の有害物質が含まれていることがわかり、現在ではそれらの有害物質を取り除くために、ごみの焼却に伴って発生する焼却灰を更に高温で溶融する処理方法などを取ることが義務づけられている。 Currently, the amount of general waste discharged in Japan is about 50 million tons per year, which means that 1 kg of garbage is discharged per person per day. Until recently, most of these municipal wastes were incinerated and landfilled. However, it was found that incineration ash contains harmful substances such as dioxins, and now, in order to remove these harmful substances, the incineration ash generated by incineration of waste is melted at a higher temperature. It is obliged to take.
溶融された焼却灰は、冷却水により急冷され、溶融スラグ(水砕スラグ)とした後に埋立地に廃棄処分されている。その一方で、将来的な埋立地の確保が困難であることが予想されることから、溶融スラグの有効利用が検討されている。現在、検討されている溶融スラグの利用方法としては、コンクリート用細骨材としての利用や、路盤材としての利用が挙げられるが、増加する一般廃棄物の排出量を考慮すると、都市ごみ焼却灰から得られる溶融スラグの安定した利用方法が望まれる。 The incinerated ash that has been melted is rapidly cooled with cooling water, converted into molten slag (granulated slag), and then disposed of in landfills. On the other hand, effective utilization of molten slag is being studied because it is expected that it will be difficult to secure a landfill in the future. Currently, the use of molten slag that has been studied includes the use as fine aggregate for concrete and the use as roadbed material. Considering the increasing amount of general waste, municipal solid waste incineration ash A stable utilization method of molten slag obtained from the above is desired.
そこで、本出願人らは、先に、溶融スラグの微粉末からなる溶融スラグ硬化材を提案している(特許文献1参照)。この溶融スラグ硬化材は、単に水を混ぜただけでは硬化しないが、水とアルカリ刺激材とを含むことによって硬化することからセメントの代替物として使用することができる。
しかしながら、本発明者らは、前記特許文献1の溶融スラグ硬化材について更に検討を重ねた結果、この溶融スラグ硬化材を、水及びアルカリ刺激材と練り合わせて硬化させた溶融スラグ硬化体は、初期強度については十分であるものの、材齢を重ねるとその強度が低下することを見出した。 However, as a result of further investigations on the molten slag hardened material of Patent Document 1, the present inventors have found that the molten slag hardened material obtained by kneading and curing the molten slag hardened material with water and an alkali stimulating material is an initial product. Although the strength is sufficient, it was found that the strength decreases with age.
本発明の課題は、水及びアルカリ刺激材と練り合わせて得た溶融スラグ硬化体の経時的な強度の低下を抑制することができる溶融スラグ硬化材及びこれを用いた溶融スラグ硬化体の製造方法を提供することにある。 An object of the present invention is to provide a molten slag hardened material capable of suppressing a decrease in strength over time of a molten slag hardened body obtained by kneading with water and an alkali stimulating material, and a method for producing a molten slag hardened body using the same. It is to provide.
前記課題を解決する本発明の溶融スラグ硬化材は、溶融スラグの粉砕物と、細骨材と、石炭灰とを含むことを特徴とする。
そして、前記課題を解決する本発明の溶融スラグ硬化体の製造方法は、溶融スラグの粉砕物、アルカリ刺激材、細骨材、及び石炭灰を含む溶融スラグ硬化材と、水とを混練し、得られた混練物を高温養生して硬化させることを特徴とする。
The molten slag hardener of the present invention that solves the above-mentioned problems is characterized by containing a pulverized molten slag, fine aggregate, and coal ash.
And the manufacturing method of the fusion slag hardening object of the present invention which solves the above-mentioned subject knead the molten slag hardening material containing the pulverized material of the fusion slag, the alkali stimulating material, the fine aggregate, and the coal ash, and water, The obtained kneaded product is cured by high temperature curing.
本発明によれば、水及びアルカリ刺激材と練り合わせて得た溶融スラグ硬化体の経時的な強度の低下を抑制する溶融スラグ硬化材及びこれを用いた溶融スラグ硬化体の製造方法を提供することができる。 According to the present invention, there is provided a molten slag hardened material which suppresses a decrease in strength over time of a molten slag hardened body obtained by kneading with water and an alkali stimulating material, and a method for producing a molten slag hardened body using the same. Can do.
以下に、本発明の溶融スラグ硬化材及びこれを用いた溶融スラグ硬化体の製造方法の実施形態について詳細に説明する。ここでは、先ず溶融スラグ硬化材について説明した後に、溶融スラグ硬化体の製造方法について説明する。
本実施形態に係る溶融スラグ硬化材は、溶融スラグの粉砕物と、細骨材と、石炭灰と、アルカリ刺激材とを含んでいる。
Below, embodiment of the manufacturing method of the molten slag hardening material of this invention and a molten slag hardening body using this is described in detail. Here, after explaining a molten slag hardening material first, the manufacturing method of a molten slag hardening body is demonstrated.
The molten slag hardening material according to the present embodiment includes a pulverized product of molten slag, fine aggregate, coal ash, and an alkali stimulating material.
(溶融スラグ)
本実施形態での溶融スラグは、都市の生活環境から排出される一般ごみの焼却灰(都市ごみ焼却灰)から得られたガラス質のものであって、一般廃棄物溶融スラグと称されるものである。
この溶融スラグは、都市ごみ焼却灰を、ダイオキシン類を除去するために1300℃以上、望ましくは1400℃以上の高温で溶融した後に、この溶融物を水中で急冷して得ることができる。この溶融スラグは、都市ごみ焼却灰の溶融物が急冷される際に粒状に粉砕することで水砕スラグとも称されている。
(Molten slag)
The molten slag in the present embodiment is a vitreous material obtained from incineration ash (general waste incineration ash) of general waste discharged from the urban living environment, and is referred to as general waste molten slag It is.
This molten slag can be obtained by melting municipal waste incineration ash at a high temperature of 1300 ° C. or higher, preferably 1400 ° C. or higher to remove dioxins, and then rapidly cooling the melt in water. This molten slag is also called granulated slag by being pulverized into granules when the municipal waste incineration ash melt is quenched.
この溶融スラグは、SiO2、Al2O3、CaOを主成分としており、溶融方式の違いによって、その組成に差が生じることもあるが、例えば、SiO2を38.3質量%、CaOを36.1質量%、Al2O3を14.9質量%、Fe2O3を2.3質量%、及びNa2Oを1.3質量%含むものが挙げられる。
そして、溶融スラグは、非晶化することで結晶化エネルギを内在しており、潜在水硬性を有している。つまり、溶融スラグは、単に水を混ぜただけでは硬化しないが、水と後記するアルカリ刺激材とを含むことによって硬化する。したがって、本実施形態での溶融スラグは、他の細骨材等の成分を結合する結合材として機能する。
This molten slag is mainly composed of SiO 2 , Al 2 O 3 , and CaO, and the composition may vary depending on the melting method. For example, 38.3 mass% of SiO 2 and CaO Examples include 36.1% by mass, Al 2 O 3 14.9% by mass, Fe 2 O 3 2.3% by mass, and Na 2 O 1.3% by mass.
And the molten slag contains crystallization energy by making it amorphous, and has latent hydraulic property. That is, the molten slag is not cured by simply mixing water, but is cured by including water and an alkali stimulating material described later. Therefore, the molten slag in the present embodiment functions as a binding material that combines components such as other fine aggregates.
このような溶融スラグの平均粒径(メジアン径)は、1〜30μmが望ましい。このような平均粒径の溶融スラグは、前記した水砕スラグを所定の粉砕機で更に粉砕処理したものであってもよい。
ちなみに、平均粒径(メジアン径)が1μm以上の溶融スラグを含む溶融スラグ硬化材は、溶融スラグ硬化材中で溶融スラグの再凝集を防止することができると共に、それ以上に微細化する工程が不要となって、溶融スラグ硬化材の製造コストを低減することができる。また、平均粒径(メジアン径)が30μm以下の溶融スラグを含む溶融スラグ硬化材は、得られる溶融スラグ硬化体の圧縮強度を良好にすることができる。
The average particle size (median diameter) of such molten slag is preferably 1 to 30 μm. The molten slag having such an average particle diameter may be obtained by further pulverizing the above-described granulated slag with a predetermined pulverizer.
Incidentally, a molten slag hardened material containing a molten slag having an average particle size (median diameter) of 1 μm or more can prevent re-aggregation of the molten slag in the molten slag hardened material, and has a process of further refinement. It becomes unnecessary, and the manufacturing cost of the molten slag hardened material can be reduced. Moreover, the molten slag hardening | curing material containing molten slag whose average particle diameter (median diameter) is 30 micrometers or less can make the compression strength of the molten slag hardening body obtained favorable.
(細骨材)
細骨材としては、例えば、川砂、海砂、砕砂等が挙げられる。
細骨材の溶融スラグ硬化材中における含有量としては、下記関係式(1)を満足するように設定されることが望ましい。
(Fine aggregate)
Examples of the fine aggregate include river sand, sea sand, and crushed sand.
The content of the fine aggregate in the molten slag hardener is preferably set so as to satisfy the following relational expression (1).
1.77≦V2/V1≦2.10 ・・・(1)
(但し、前記式(1)中、V1は、前記溶融スラグ硬化材に含まれる前記溶融スラグの体積を表し、V2は、前記溶融スラグ硬化材に含まれる前記細骨材の体積を表す)
なお、ここでの体積V1,V2は、JIS R 5201(セメントの物理試験方法)に準拠して測定した各粉体の密度に基づいて質量から換算したものである。
1.77 ≦ V2 / V1 ≦ 2.10 (1)
(However, in said Formula (1), V1 represents the volume of the said molten slag contained in the said molten slag hardening material, and V2 represents the volume of the said fine aggregate contained in the said molten slag hardening material).
The volumes V1 and V2 here are converted from mass based on the density of each powder measured according to JIS R 5201 (cement physical test method).
また、溶融スラグ硬化材中の細骨材は、質量換算で、例えば、前記溶融スラグ硬化材100質量部に対して、200質量部程度とすることが望ましい。なお、この溶融スラグに対する細骨材の質量換算による比は、使用する溶融スラグ及び細骨材の性状に応じて本発明の課題を阻害しない限りにおいて変更することもできる。 The fine aggregate in the molten slag hardener is preferably about 200 parts by mass in terms of mass, for example, with respect to 100 parts by weight of the molten slag hardener. In addition, the ratio by the mass conversion of the fine aggregate with respect to this molten slag can also be changed as long as the subject of this invention is not inhibited according to the property of the molten slag and fine aggregate to be used.
(石炭灰)
石炭灰は、我国においては主として石炭火力発電所から石炭の燃焼によって生じる粉塵として得られる。石炭灰としては、例えば、フライアッシュ、シリンダフライアッシュ、クリンカフライアッシュ等が挙げられる。このような石炭灰は、SiO2及びAl2O3を主成分としており、石炭の産地(成分)の違いによって、その組成に差が生じることもあるが、例えば、CaOを4.5質量%、SiO2を57.5質量%、Al2O3を27.7質量%、Fe2O3を5.4質量%、及びNa2Oを0.6質量%含むものが挙げられる。
(Coal ash)
Coal ash is obtained in Japan as dust generated by coal combustion mainly from coal-fired power plants. Examples of the coal ash include fly ash, cylinder fly ash, clinker fly ash, and the like. Such coal ash is mainly composed of SiO 2 and Al 2 O 3 , and there may be a difference in composition depending on the production area (component) of coal. , SiO 2 57.5% by mass, Al 2 O 3 27.7% by mass, Fe 2 O 3 5.4% by mass, and Na 2 O 0.6% by mass.
石炭灰の溶融スラグ硬化材中における含有量としては、下記関係式(2)を満たすように設定されることが望ましい。
0.05≦V3/(V2+V3)≦0.20 ・・・(2)
(但し、前記式(2)において、V2は、前記式(1)中のV2と同義であり、V3は、前記溶融スラグ硬化材に含まれる前記石炭灰の体積を表す)
The content of coal ash in the molten slag hardener is preferably set so as to satisfy the following relational expression (2).
0.05 ≦ V3 / (V2 + V3) ≦ 0.20 (2)
(However, in said Formula (2), V2 is synonymous with V2 in said Formula (1), and V3 represents the volume of the said coal ash contained in the said molten slag hardening material).
この式(2)におけるV3/(V2+V3)は、溶融スラグ硬化材中の溶融スラグに対して、所定量で含まれる前記細骨材の一部を置き換えるように石炭灰の配合量が決定される場合に、それらの体積で換算した置換率に相当する。以下に、「100×V3/(V2+V3)」を「石炭灰置換百分率(%)」ということがある。
したがって、本発明の溶融スラグ硬化材は、石炭灰置換百分率(%)が5%以上、20%以下と言い換えることができる。
なお、ここでの体積V3は、JIS R 5201(セメントの物理試験方法)に準拠して測定した粉体の密度に基づいて質量から換算したものである。
V3 / (V2 + V3) in the formula (2) is determined so that the blending amount of coal ash is replaced so as to replace a part of the fine aggregate contained in a predetermined amount with respect to the molten slag in the molten slag hardened material. In this case, it corresponds to the substitution rate converted by their volume. Hereinafter, “100 × V3 / (V2 + V3)” may be referred to as “coal ash replacement percentage (%)”.
Therefore, the molten slag hardening material of the present invention can be rephrased as a coal ash substitution percentage (%) of 5% or more and 20% or less.
In addition, the volume V3 here is converted from mass based on the density of the powder measured based on JISR5201 (the physical test method of cement).
(アルカリ刺激材)
本実施形態でのアルカリ刺激材としては、例えば、無水メタケイ酸塩、水ガラス、水酸化ナトリウム、水酸化カルシウム等が挙げられる。アルカリ刺激材は、単独で使用してもよいし、2種以上を混合して使用してもよい。中でも、無水メタケイ酸ナトリウム及び水酸化ナトリウムは、溶融スラグの水硬性の向上や取り扱いが容易であって、得られる溶融スラグ硬化体の圧縮強度を高めることができることから望ましく、無水メタケイ酸ナトリウムは最も望ましい。
(Alkali stimulant)
Examples of the alkali stimulating material in the present embodiment include anhydrous metasilicate, water glass, sodium hydroxide, calcium hydroxide and the like. An alkali stimulating material may be used independently and may mix and use 2 or more types. Among them, anhydrous sodium metasilicate and sodium hydroxide are desirable because it is easy to improve and handle the hydraulic properties of the molten slag and can increase the compressive strength of the resulting molten slag cured body. desirable.
溶融スラグ硬化材におけるアルカリ刺激材の配合量は、溶融スラグ100質量部に対して10質量部以上とすることが望ましい。そして、溶融スラグの配合量SLに対するアルカリ刺激材の配合量ALの比(AL/SL)が増加するに伴って溶融スラグ硬化体の圧縮強度は増加する傾向にあるが、製造コスト等を考慮すると、アルカリ刺激材の配合量は、10質量部以上、35質量部以下とすることが更に望ましい。 As for the compounding quantity of the alkali stimulating material in a molten slag hardening material, it is desirable to set it as 10 mass parts or more with respect to 100 mass parts of molten slag. And the compression strength of the molten slag hardened body tends to increase as the ratio (AL / SL) of the blending amount AL of the alkali stimulating material to the blending amount SL of the molten slag increases. The blending amount of the alkali stimulating material is more preferably 10 parts by mass or more and 35 parts by mass or less.
本実施形態に係る溶融スラグ硬化材は、前記した溶融スラグ、細骨材、石炭灰及びアルカリ刺激材を所定の量で配合し、これらを混合することで製造することができる。また、溶融スラグ硬化材は、粗骨材を更に含むものであってもよい。 The molten slag hardening material according to the present embodiment can be manufactured by blending the above-described molten slag, fine aggregate, coal ash, and alkali stimulating material in predetermined amounts and mixing them. Moreover, the molten slag hardening material may further contain a coarse aggregate.
次に、本実施形態に係る溶融スラグ硬化材を使用した溶融スラグ硬化体の製造方法について説明する。
この製造方法は、前記した溶融スラグの粉砕物、アルカリ刺激材、細骨材、及び石炭灰を、前記した所定の配合量で配合する溶融スラグ硬化材の調製工程と、得られた溶融スラグ硬化材に水を加えて混練する混練工程と、得られた混練物を高温養生する養生工程とを有する。
Next, the manufacturing method of the molten slag hardening body using the molten slag hardening material which concerns on this embodiment is demonstrated.
This manufacturing method includes the above-described molten slag pulverized product, alkali stimulating material, fine aggregate, and coal ash in the above-described predetermined blending amount, and a molten slag hardener preparation step and the obtained molten slag hardening A kneading step of adding water to the material and kneading; and a curing step of curing the obtained kneaded material at a high temperature.
調製工程では、前記したように、溶融スラグの粉砕物、アルカリ刺激材、細骨材、及び石炭灰が、所定の配合量で配合され、これらが空練りされることで溶融スラグ硬化材が調製される。 In the preparation step, as described above, a molten slag pulverized product, an alkali stimulant, fine aggregate, and coal ash are blended in a predetermined blending amount, and these are kneaded to prepare a molten slag hardener. Is done.
混練工程で溶融スラグ硬化材に加えられる水の量としては、溶融スラグ硬化材に含まれる溶融スラグ100質量部に対して、50質量部程度でよい。
なお、この混練工程で得られる混練物には、アルカリ刺激材、細骨材、石炭灰、及び水のほか、粗骨材が配合されてもよい。この粗骨材の配合量は、溶融スラグ硬化材と水との合計体積(モルタル体積)を1とした場合に、粗骨材の体積が0.45程度となるように設定すればよい。なお、粗骨材は、水を加える前の溶融スラグ硬化材に配合してもよい。
The amount of water added to the molten slag hardened material in the kneading step may be about 50 parts by weight with respect to 100 parts by weight of the molten slag hardened material.
The kneaded product obtained in this kneading step may be blended with coarse aggregate in addition to alkali stimulating material, fine aggregate, coal ash, and water. What is necessary is just to set the compounding quantity of this coarse aggregate so that the volume of a coarse aggregate may be set to about 0.45 when the sum total volume (mortar volume) of a molten slag hardening material and water is set to 1. In addition, you may mix | blend a coarse aggregate with the molten slag hardening material before adding water.
養生工程では、水が加えられて発熱する溶融スラグ硬化材を保温し、必要に応じて加熱することで、溶融スラグ硬化材と水を含む混練物が高温養生される。ここで、「高温養生 」とは、高温によるセメント系混合材料の養生であり、セメント系混合材料の硬化に当り、強度の発現を早く得ることのできる公知の高温養生をいう。具体的には、高温養生は、40〜150℃の温度で養生され、望ましくは65℃で行われる。このような高温養生は、蒸気養生法、封緘養生法等を使用して行われればよい。そして、このような高温養生によって、溶融スラグ硬化体の圧縮強度は増大することとなる。 In the curing step, the molten slag hardened material that generates heat when water is added is kept warm, and the kneaded material containing the molten slag hardened material and water is cured at a high temperature by heating as necessary. Here, “high temperature curing” refers to curing of a cement-based mixed material at a high temperature, and refers to a known high-temperature curing that can quickly develop strength when the cement-based mixed material is cured. Specifically, the high temperature curing is performed at a temperature of 40 to 150 ° C., and preferably at 65 ° C. Such high temperature curing may be performed using a steam curing method, a sealed curing method, or the like. And the compressive strength of a molten slag hardening body will increase by such high temperature curing.
次に、本実施形態に係る溶融スラグ硬化材及び溶融スラグ硬化体の製造方法の作用効果について説明する。
本実施形態に係る溶融スラグ硬化材によれば、溶融スラグ、細骨材及び石炭灰を含んで構成されているので、水及びアルカリ刺激材と共に練り合わせて得られた溶融スラグ硬化体の経時的な強度の低下を抑制することができる。
Next, the effect of the manufacturing method of the molten slag hardening material and molten slag hardening body which concerns on this embodiment is demonstrated.
According to the molten slag hardened material according to the present embodiment, since it is configured to include molten slag, fine aggregate, and coal ash, the time-lapse of the molten slag hardened body obtained by kneading together with water and an alkali stimulant. A decrease in strength can be suppressed.
また、本実施形態に係る溶融スラグ硬化材は、溶融スラグと、細骨材と、石炭灰とを含むことから、経時的な収縮量が小さく、しかも材齢を経ても空隙等の発生を防止することができる。そして、このような効果は、前記式(1)及び(2)を満足するように溶融スラグ、細骨材及び石炭灰が配合されることでより顕著に現れる。 Moreover, since the molten slag hardened material according to the present embodiment includes molten slag, fine aggregate, and coal ash, the amount of shrinkage with time is small, and the generation of voids and the like is prevented even after aging. can do. And such an effect appears more notably by mix | blending molten slag, fine aggregate, and coal ash so that the said Formula (1) and (2) may be satisfied.
このような配合比で溶融スラグ、細骨材、及び石炭灰を含む溶融スラグ硬化材は、例えば、この溶融スラグ硬化材中に100質量部といった所定の量で含まれる溶融スラグに対して、所定の比の範囲内で細骨材が配合される際に、この細骨材の一部を所定の比で石炭灰と置き換えたものに等しい。 The molten slag hardened material containing molten slag, fine aggregate, and coal ash at such a blending ratio is, for example, predetermined with respect to the molten slag contained in a predetermined amount of 100 parts by mass in the molten slag hardened material. When the fine aggregate is blended within the range of the ratio, it is equal to a part of the fine aggregate replaced with coal ash at a predetermined ratio.
また、本実施形態に係る溶融スラグ硬化材によれば、従来のセメントの製造において石灰石を焼成してCaCO3→CaO+CO2を生成する際に多量に排出されていたCO2をセメントの溶融スラグによる代替で大幅に削減することができる。つまり、石灰石の焼成により生じるCO2及び焼成に石炭を用いるとしてその場合の燃焼によって生じるCO2は、セメント1トン当り、約850kgとなるから、本実施形態に係る溶融スラグ硬化材は、セメントに代えて都市ごみ由来の溶融スラグをセメント原料に置換することによって、地球環境に重大な影響を及ぼす温暖化ガスの排出を大巾に削減することができる。 Further, according to the molten slag cured material according to the present embodiment, the CO 2 which has a large amount of discharge when firing the limestone in the manufacture of conventional cements generating a CaCO 3 → CaO + CO 2 by molten slag cement Substituting can be significantly reduced. That, CO 2 generated by the combustion of the case as used coal to CO 2 and firing caused by firing of limestone, cement per ton, from approximately 850 kg, molten slag cured material according to the present embodiment, the cement Instead, by replacing molten slag derived from municipal waste with cement raw material, it is possible to greatly reduce the emission of greenhouse gases that have a significant impact on the global environment.
また、本実施形態に係る溶融スラグ硬化材においては、細骨材として天然砂が使用される場合には、天然資源である天然砂に置き換えて産業廃棄物である石炭灰が使用されるので、この溶融スラグ硬化材によれば天然資源の枯渇を防止することができる。 Moreover, in the molten slag hardening material according to the present embodiment, when natural sand is used as the fine aggregate, since coal ash that is industrial waste is used instead of natural sand that is a natural resource, According to this molten slag hardening material, the depletion of natural resources can be prevented.
本発明の溶融スラグ硬化材を実施例によって更に具体的に説明する。
(実施例1)
<溶融スラグ硬化材の調製>
この実施例1では、先ず、シャフト式ガス化溶融炉で一般廃棄物から得られた溶融スラグ(都市ごみ溶融スラグ)を粉砕することによって、平均粒径(メジアン径)が約13μm、比重が2.80、比表面積が3750cm2/gとなった溶融スラグを得た。
The molten slag hardener of the present invention will be described more specifically with reference to examples.
Example 1
<Preparation of molten slag hardener>
In Example 1, first, the average particle size (median diameter) is about 13 μm and the specific gravity is 2 by pulverizing the molten slag (city waste molten slag) obtained from the general waste in the shaft type gasification melting furnace. A molten slag having a specific surface area of 3750 cm 2 / g was obtained.
次に、この溶融スラグ35.7mLに対して、細骨材75.1mL及び石炭灰4.0mLが配合されることで、前記式(1)のV2/V1が2.10で、前記式(2)のV3/(V2+V3)が0.05となる組成物が調製された。つまり、この組成物は、前記した石炭灰置換百分率が5%となっている。
なお、ここで使用した細骨材は、岩瀬産砕砂であり、比重が2.53で、粗粒率(F.M.)が2.83であった。また、石炭灰は、JIS灰(II種)であって、比重が2.20で、比表面積が3460cm2/gであった。
Next, 75.1 mL of fine aggregate and 4.0 mL of coal ash are blended with 35.7 mL of this molten slag, so that V2 / V1 of the equation (1) is 2.10, A composition in which V3 / (V2 + V3) of 2) was 0.05 was prepared. That is, this composition has the above-mentioned percentage of coal ash replacement of 5%.
The fine aggregate used here was crushed sand from Iwase, the specific gravity was 2.53, and the coarse particle ratio (FM) was 2.83. Further, the coal ash was JIS ash (type II) having a specific gravity of 2.20 and a specific surface area of 3460 cm 2 / g.
このような組成物にアルカリ刺激材としての無水メタケイ酸ナトリウムが溶融スラグ100質量部に対して20質量部となるように配合され、そして、これらがモルタルミキサーで1分間空練りされることで本発明の溶融スラグ硬化材が調製された。ちなみに、この溶融スラグ硬化材は、質量換算で、溶融スラグ100質量部に対して、細骨材が190質量部、石炭灰が8.8質量部、及びアルカリ刺激材が20質量部からなる。以下、この溶融スラグ硬化材を石炭灰置換百分率5%の溶融スラグ硬化材という。 In such a composition, anhydrous sodium metasilicate as an alkali stimulant is blended so as to be 20 parts by mass with respect to 100 parts by mass of molten slag, and these are kneaded with a mortar mixer for 1 minute. An inventive molten slag hardener was prepared. Incidentally, this molten slag hardener consists of 190 parts by mass of fine aggregate, 8.8 parts by mass of coal ash, and 20 parts by mass of alkali stimulating material with respect to 100 parts by mass of molten slag. Hereinafter, this molten slag hardener is referred to as a molten slag hardener with a coal ash substitution percentage of 5%.
<溶融スラグ硬化体(モルタル)の製造>
先ず、得られた溶融スラグ硬化材に水が配合されてこれらがモルタルミキサーで1分30秒間混練(本練り)された。水の配合量は、溶融スラグ100質量部に対して50質量部となるように設定された。この混練物(フレッシュのモルタル)のフロー値がJIS R 5201(セメントの物理試験方法)に準拠して測定された。その結果を図1に示す。図1は、溶融スラグ硬化材に水を配合して混練した混練物(フレッシュのモルタル)のフロー値を示すグラフであり、横軸が石炭灰置換百分率(%)であり、縦軸がフロー値(mm)である。
<Manufacture of molten slag hardened body (mortar)>
First, water was blended in the obtained molten slag hardener, and these were kneaded (main kneaded) for 1 minute 30 seconds with a mortar mixer. The compounding quantity of water was set so that it might be 50 mass parts with respect to 100 mass parts of molten slag. The flow value of the kneaded product (fresh mortar) was measured according to JIS R 5201 (cement physical test method). The result is shown in FIG. FIG. 1 is a graph showing the flow value of a kneaded product (fresh mortar) in which water is mixed and kneaded with a molten slag hardener, the horizontal axis is the percentage of coal ash substitution (%), and the vertical axis is the flow value. (Mm).
次に、この混練物は、口径50mm、深さ100mmの有底円筒形状の枠に2層に詰められた。この際、各層ごとにその表面が平らになるように15回程度突き均された。そして、枠に詰められた混練物に蒸気養生が施された。その結果、枠内で溶融スラグ硬化材が硬化することによって、溶融スラグ硬化体が得られた。ちなみに、蒸気養生は、30℃で2時間実施された後に、毎分15℃ で最高温度65℃まで昇温させ、同温度で5時間保存することによって行われた。 Next, this kneaded material was packed into two layers in a bottomed cylindrical frame having a diameter of 50 mm and a depth of 100 mm. At this time, each layer was smoothed about 15 times so that its surface was flattened. And the steam curing was given to the kneaded material packed in the frame. As a result, a molten slag hardened material was obtained by curing the molten slag hardened material within the frame. By the way, steam curing was performed at 30 ° C. for 2 hours, and then the temperature was raised to 15 ° C./min up to a maximum temperature of 65 ° C. and stored at the same temperature for 5 hours.
この溶融スラグ硬化体は、後記する所定の材齢(日)まで、20±1℃、60±5%RHの恒温恒湿法で保存された。そして、溶融スラグ硬化体の圧縮強度が、所定の材齢(日)、つまり、前記した蒸気養生後、1日経過したものを材齢1日とし、材齢1日目、材齢7日目、材齢28日目、及び材齢91日目のそれぞれにおいて測定された。圧縮強度の測定は、JIS A 1108に準拠して行われた。その結果を図2に示す。図2は、溶融スラグ硬化体(モルタル)の材齢(日)に対する圧縮強度(MPa)の関係を示すグラフである。なお、図2中、括弧書きの(%)は、石炭灰置換百分率である。 This molten slag hardened body was preserve | saved by the constant temperature / humidity method of 20 +/- 1 degreeC and 60 +/- 5% RH until the predetermined age (day) mentioned later. And the compressive strength of the molten slag hardened body is a predetermined age (day), that is, one day after the above steam curing is defined as material age 1 day, material age 1 day, material age 7 day , Measured on the 28th day of age, and on the 91st day of age. The compressive strength was measured according to JIS A 1108. The result is shown in FIG. FIG. 2 is a graph showing the relationship of the compressive strength (MPa) to the age (day) of the molten slag hardened body (mortar). In FIG. 2, (%) in parentheses is the percentage of coal ash replacement.
そして、材齢1日目の圧縮強度を1とした場合において、所定の材齢(日)の経過後における圧縮強度の比を圧縮強度比として図3に示す。図3は、溶融スラグ硬化体の材齢28日目及び材齢91日目における圧縮強度比を示すグラフである。 Then, when the compressive strength on the first day of age is 1, the ratio of compressive strength after the lapse of a predetermined age (day) is shown in FIG. 3 as the compressive strength ratio. FIG. 3 is a graph showing the compressive strength ratio of the cured slag cured body on the 28th day and the 91st day.
本実施例1では、前記した蒸気養生後、所定の材齢(日)の経過後における溶融スラグ硬化体(モルタル)の収縮量(μm)が測定された。その結果を図4に示す。図4は、所定の材齢(日)の経過後における溶融スラグ硬化体(モルタル)の収縮量(μm)を示すグラフである。 In Example 1, the shrinkage amount (μm) of the cured slag hardened body (mortar) after the lapse of a predetermined age (day) after the steam curing described above was measured. The result is shown in FIG. FIG. 4 is a graph showing the contraction amount (μm) of the cured slag hardened body (mortar) after the lapse of a predetermined age (day).
(実施例2)
<溶融スラグ硬化材の調製>
この実施例2では、溶融スラグ35.7mLに対して、細骨材71.2mL及び石炭灰7.9mLが配合されることで、前記式(1)のV2/V1が1.99で、前記式(2)のV3/(V2+V3)が0.10となる組成物が調製された。つまり、この組成物は、前記した石炭灰置換百分率が10%となっている。なお、ここで使用した溶融スラグ、細骨材及び石炭灰は、実施例1と同様のものである。
(Example 2)
<Preparation of molten slag hardener>
In Example 2, by adding 71.2 mL of fine aggregate and 7.9 mL of coal ash to 35.7 mL of molten slag, V2 / V1 of the formula (1) is 1.99, A composition having V3 / (V2 + V3) of formula (2) of 0.10 was prepared. That is, this composition has the above-mentioned percentage of coal ash substitution of 10%. The molten slag, fine aggregate, and coal ash used here are the same as those in Example 1.
そして、溶融スラグ、細骨材及び石炭灰の配合量を、前記したV2/V1が1.99、V3/(V2+V3)が0.10となるように設定した以外は、実施例1と同様にして、本発明の溶融スラグ硬化材が調製された。ちなみに、この溶融スラグ硬化材は、質量換算で、溶融スラグ100質量部に対して、細骨材が180質量部、石炭灰が17.4質量部、及びアルカリ刺激材が20質量部からなる。以下、この溶融スラグ硬化材を石炭灰置換百分率10%の溶融スラグ硬化材という。 The blending amounts of molten slag, fine aggregate and coal ash were the same as in Example 1 except that V2 / V1 was set to 1.99 and V3 / (V2 + V3) was set to 0.10. Thus, the molten slag curing material of the present invention was prepared. Incidentally, this molten slag hardener consists of 180 parts by mass of fine aggregate, 17.4 parts by mass of coal ash, and 20 parts by mass of alkali stimulating material with respect to 100 parts by mass of molten slag. Hereinafter, this molten slag hardened material is referred to as a molten slag hardened material having a coal ash substitution percentage of 10%.
<溶融スラグ硬化体(モルタル)の製造>
本実施例2で得られた溶融スラグ硬化材を使用した以外は、実施例1と同様にして溶融スラグ硬化体が製造された。この際、実施例1と同様にして、溶融スラグ硬化材と水との混練物のフロー値が測定された。その結果を図1に示す。
そして、得られた溶融スラグ硬化体の圧縮強度が実施例1と同様にして測定された。その結果を図2に示す。
また、溶融スラグ硬化体の材齢28日目及び材齢91日目における圧縮強度比を図3に示す。
また、実施例1と同様に、所定の材齢(日)の経過後における溶融スラグ硬化体の収縮量(μm)が測定された。その結果を図4に示す。
<Manufacture of molten slag hardened body (mortar)>
A molten slag hardened body was produced in the same manner as in Example 1 except that the molten slag hardened material obtained in Example 2 was used. Under the present circumstances, it carried out similarly to Example 1, and measured the flow value of the kneaded material of molten slag hardening | curing material and water. The result is shown in FIG.
The compressive strength of the obtained molten slag cured body was measured in the same manner as in Example 1. The result is shown in FIG.
Moreover, the compression strength ratio in the age 28th day and the material age 91st day of a molten slag hardening body is shown in FIG.
Moreover, the shrinkage | contraction amount (micrometer) of the molten slag hardening body after progress of predetermined | prescribed age (day) was measured similarly to Example 1. FIG. The result is shown in FIG.
(実施例3)
<溶融スラグ硬化材の調製>
この実施例3では、溶融スラグ35.7mLに対して、細骨材67.2mL及び石炭灰11.9mLが配合されることで、前記式(1)のV2/V1が1.88で、前記式(2)のV3/(V2+V3)が0.15となる組成物が調製された。つまり、この組成物は、前記した石炭灰置換百分率が15%となっている。なお、ここで使用した溶融スラグ、細骨材及び石炭灰は、実施例1と同様のものである。
(Example 3)
<Preparation of molten slag hardener>
In Example 3, 67.2 mL of fine aggregate and 11.9 mL of coal ash are blended with 35.7 mL of molten slag so that V2 / V1 of the formula (1) is 1.88, A composition having V3 / (V2 + V3) of formula (2) of 0.15 was prepared. That is, this composition has the above-mentioned coal ash substitution percentage of 15%. The molten slag, fine aggregate, and coal ash used here are the same as those in Example 1.
そして、溶融スラグ、細骨材及び石炭灰の配合量を、前記したV2/V1が1.88、V3/(V2+V3)が0.15となるように設定した以外は、実施例1と同様にして、本発明の溶融スラグ硬化材が調製された。ちなみに、この溶融スラグ硬化材は、質量換算で、溶融スラグ100質量部に対して、細骨材が170質量部、石炭灰が26.2質量部、及びアルカリ刺激材が20質量部からなる。以下、この溶融スラグ硬化材を石炭灰置換百分率15%の溶融スラグ硬化材という。 The blending amounts of molten slag, fine aggregate and coal ash were the same as in Example 1 except that V2 / V1 was set to 1.88 and V3 / (V2 + V3) was set to 0.15. Thus, the molten slag curing material of the present invention was prepared. Incidentally, this molten slag hardener consists of 170 parts by mass of fine aggregate, 26.2 parts by mass of coal ash, and 20 parts by mass of the alkali stimulating material with respect to 100 parts by mass of molten slag. Hereinafter, this molten slag hardener is referred to as a molten slag hardener with a coal ash substitution percentage of 15%.
<溶融スラグ硬化体(モルタル)の製造>
本実施例3で得られた溶融スラグ硬化材を使用した以外は、実施例1と同様にして溶融スラグ硬化体が製造された。この際、実施例1と同様にして、溶融スラグ硬化材と水との混練物のフロー値が測定された。その結果を図1に示す。
そして、得られた溶融スラグ硬化体の圧縮強度が実施例1と同様にして測定された。その結果を図2に示す。
また、溶融スラグ硬化体の材齢28日目及び材齢91日目における圧縮強度比を図3に示す。
また、実施例1と同様に、所定の材齢(日)の経過後における溶融スラグ硬化体の収縮量(μm)が測定された。その結果を図4に示す。
<Manufacture of molten slag hardened body (mortar)>
A molten slag hardened body was produced in the same manner as in Example 1 except that the molten slag hardened material obtained in Example 3 was used. Under the present circumstances, it carried out similarly to Example 1, and measured the flow value of the kneaded material of molten slag hardening | curing material and water. The result is shown in FIG.
The compressive strength of the obtained molten slag cured body was measured in the same manner as in Example 1. The result is shown in FIG.
Moreover, the compression strength ratio in the age 28th day and the material age 91st day of a molten slag hardening body is shown in FIG.
Moreover, the shrinkage | contraction amount (micrometer) of the molten slag hardening body after progress of predetermined | prescribed age (day) was measured similarly to Example 1. FIG. The result is shown in FIG.
(実施例4)
<溶融スラグ硬化材の調製>
この実施例4では、溶融スラグ35.7mLに対して、細骨材63.3mL及び石炭灰15.8mLが配合されることで、前記式(1)のV2/V1が1.77で、前記式(2)のV3/(V2+V3)が0.20となる組成物が調製された。つまり、この組成物は、前記した石炭灰置換百分率が20%となっている。なお、ここで使用した溶融スラグ、細骨材及び石炭灰は、実施例1と同様のものである。
Example 4
<Preparation of molten slag hardener>
In Example 4, 63.3 mL of fine aggregate and 15.8 mL of coal ash are blended with 35.7 mL of molten slag so that V2 / V1 of the formula (1) is 1.77, A composition having V3 / (V2 + V3) of the formula (2) of 0.20 was prepared. That is, this composition has the above-mentioned coal ash substitution percentage of 20%. The molten slag, fine aggregate, and coal ash used here are the same as those in Example 1.
そして、溶融スラグ、細骨材及び石炭灰の配合量を、前記したV2/V1が1.77、V3/(V2+V3)が0.20となるように設定した以外は、実施例1と同様にして、本発明の溶融スラグ硬化材が調製された。ちなみに、この溶融スラグ硬化材は、質量換算で、溶融スラグ100質量部に対して、細骨材が160質量部、石炭灰が34.8質量部、及びアルカリ刺激材が20質量部からなる。以下、この溶融スラグ硬化材を石炭灰置換百分率20%の溶融スラグ硬化材という。 The blending amounts of molten slag, fine aggregate, and coal ash were the same as in Example 1 except that V2 / V1 was set to 1.77 and V3 / (V2 + V3) was set to 0.20. Thus, the molten slag curing material of the present invention was prepared. Incidentally, this molten slag hardener consists of 160 parts by mass of fine aggregate, 34.8 parts by mass of coal ash, and 20 parts by mass of alkali stimulating material with respect to 100 parts by mass of molten slag. Hereinafter, this molten slag hardener is referred to as a molten slag hardener with a coal ash substitution percentage of 20%.
<溶融スラグ硬化体(モルタル)の製造>
本実施例4で得られた溶融スラグ硬化材を使用した以外は、実施例1と同様にして溶融スラグ硬化体が製造された。この際、実施例1と同様にして、溶融スラグ硬化材と水との混練物のフロー値が測定された。その結果を図1に示す。
そして、得られた溶融スラグ硬化体の圧縮強度が実施例1と同様にして測定された。その結果を図2に示す。
<Manufacture of molten slag hardened body (mortar)>
A molten slag cured body was produced in the same manner as in Example 1 except that the molten slag cured material obtained in Example 4 was used. Under the present circumstances, it carried out similarly to Example 1, and measured the flow value of the kneaded material of molten slag hardening | curing material and water. The result is shown in FIG.
The compressive strength of the obtained molten slag cured body was measured in the same manner as in Example 1. The result is shown in FIG.
また、溶融スラグ硬化体の材齢28日目及び材齢91日目における圧縮強度比を図3に示す。そして、溶融スラグ硬化体の材齢1日目、材齢7日目、材齢14日目及び材齢28日目における圧縮強度比を図5に示す。図5は、実施例4で得られた溶融スラグ硬化体の材齢(日)と圧縮強度比との関係を示すグラフである。そして、図5には、後記する参考例の溶融スラグ硬化体の圧縮強度比を併記する。 Moreover, the compression strength ratio in the age 28th day and the material age 91st day of a molten slag hardening body is shown in FIG. And the compression strength ratio in the material age 1st day, material age 7th day, material age 14th day, and material age 28th day of a molten slag hardening body is shown in FIG. FIG. 5 is a graph showing the relationship between the age (days) of the molten slag hardened body obtained in Example 4 and the compression strength ratio. And in FIG. 5, the compression strength ratio of the molten slag hardening body of the reference example mentioned later is written together.
また、実施例1と同様に、所定の材齢(日)の経過後における溶融スラグ硬化体の収縮量(μm)が測定された。その結果を図4に示す。 Moreover, the shrinkage | contraction amount (micrometer) of the molten slag hardening body after progress of predetermined | prescribed age (day) was measured similarly to Example 1. FIG. The result is shown in FIG.
図6(a)は、実施例4で得られた材齢1日目の溶融スラグ硬化体の走査型電子顕微鏡(SEM)による顕微鏡写真、図6(b)は、実施例4で得られた材齢91日目の溶融スラグ硬化体の走査型電子顕微鏡(SEM)による顕微鏡写真である。 6A is a photomicrograph of a cured slag cured material of the first day of age obtained in Example 4 by a scanning electron microscope (SEM), and FIG. 6B is obtained in Example 4. FIG. It is a microscope picture by the scanning electron microscope (SEM) of the molten slag hardened | cured material of the 91st day of age.
(比較例1)
<溶融スラグ硬化材の調製>
この比較例1では、溶融スラグ35.7mLに対して、細骨材79.1mLが配合され、石炭灰が配合されないことで、前記式(1)のV2/V1が2.22で、前記式(2)のV3/(V2+V3)が「0」となる組成物が調製された。つまり、この組成物は、前記した石炭灰置換百分率が0%となっている。なお、ここで使用した溶融スラグ及び細骨材は、実施例1と同様のものである。
(Comparative Example 1)
<Preparation of molten slag hardener>
In Comparative Example 1, 79.1 mL of fine aggregate is blended with 35.7 mL of molten slag, and coal ash is not blended. Thus, V2 / V1 of the formula (1) is 2.22, and the formula A composition in which V3 / (V2 + V3) of (2) was “0” was prepared. In other words, this composition has the above-described percentage of coal ash substitution of 0%. The molten slag and fine aggregate used here are the same as those in Example 1.
そして、溶融スラグ及び細骨材の配合量を、前記したV2/V1が2.22、V3/(V2+V3)が「0」なるように設定した以外は、実施例1と同様にして、本発明の溶融スラグ硬化材が調製された。ちなみに、この溶融スラグ硬化材は、質量換算で、溶融スラグ100質量部に対して、細骨材が200質量部、石炭灰が0質量部、及びアルカリ刺激材が20質量部からなる。以下、この溶融スラグ硬化材を石炭灰置換百分率0%の溶融スラグ硬化材という。 Then, the present invention was carried out in the same manner as in Example 1 except that the blending amounts of molten slag and fine aggregate were set so that V2 / V1 was 2.22 and V3 / (V2 + V3) was “0”. A molten slag hardener was prepared. Incidentally, this molten slag hardener consists of 200 parts by mass of fine aggregate, 0 parts by mass of coal ash, and 20 parts by mass of alkali stimulating material with respect to 100 parts by mass of molten slag. Hereinafter, this molten slag hardener is referred to as a molten slag hardener with a coal ash substitution percentage of 0%.
<溶融スラグ硬化体(モルタル)の製造>
本比較例1で得られた溶融スラグ硬化材を使用した以外は、実施例1と同様にして溶融スラグ硬化体が製造された。この際、実施例1と同様にして、溶融スラグ硬化材と水との混練物のフロー値が測定された。その結果を図1に示す。
<Manufacture of molten slag hardened body (mortar)>
A molten slag hardened body was produced in the same manner as in Example 1 except that the molten slag hardened material obtained in Comparative Example 1 was used. Under the present circumstances, it carried out similarly to Example 1, and measured the flow value of the kneaded material of molten slag hardening | curing material and water. The result is shown in FIG.
そして、得られた溶融スラグ硬化体の圧縮強度が実施例1と同様にして測定された。その結果を図2に示す。
また、溶融スラグ硬化体の材齢28日目及び材齢91日目における圧縮強度比を図3に示す。
また、実施例1と同様に、所定の材齢(日)の経過後における溶融スラグ硬化体の収縮量(μm)が測定された。その結果を図4に示す。
図7(a)は、比較例1で得られた材齢1日目の溶融スラグ硬化体の走査型電子顕微鏡(SEM)による顕微鏡写真、図7(b)は、比較例1で得られた材齢91日目の溶融スラグ硬化体の走査型電子顕微鏡(SEM)による顕微鏡写真である。
The compressive strength of the obtained molten slag cured body was measured in the same manner as in Example 1. The result is shown in FIG.
Moreover, the compression strength ratio in the age 28th day and the material age 91st day of a molten slag hardening body is shown in FIG.
Moreover, the shrinkage | contraction amount (micrometer) of the molten slag hardening body after progress of predetermined | prescribed age (day) was measured similarly to Example 1. FIG. The result is shown in FIG.
FIG. 7A is a photomicrograph obtained by scanning electron microscope (SEM) of the cured slag cured material of the first day of age obtained in Comparative Example 1, and FIG. 7B is obtained in Comparative Example 1. It is a microscope picture by the scanning electron microscope (SEM) of the molten slag hardened | cured material of material age 91st.
(実施例1から実施例4及び比較例1で得られた溶融スラグ硬化材の評価)
図2に示すように、比較例1の溶融スラグ硬化材を使用して製造された溶融スラグ硬化体(石炭灰置換百分率0%)は、材齢7日目から圧縮強度が低下し始めている。
これに対して、実施例1の溶融スラグ硬化材から製造された溶融スラグ硬化体(石炭灰置換百分率5%)は、材齢7日目を経過しても良好な圧縮強度を維持している。
そして、石炭灰置換百分率が10%以上の実施例2、実施例3及び実施例4では、比較例1とは逆に、材齢7日目から更に圧縮強度が増している。
(Evaluation of the molten slag hardener obtained in Examples 1 to 4 and Comparative Example 1)
As shown in FIG. 2, the compression strength of the molten slag hardened body (coal ash substitution percentage 0%) manufactured using the molten slag hardened material of Comparative Example 1 starts to decrease from the 7th day of material age.
On the other hand, the molten slag hardened body manufactured from the molten slag hardened material of Example 1 (percentage of coal ash replacement 5%) maintains good compressive strength even after the 7th day of material age. .
And in Example 2, Example 3 and Example 4 with a coal ash substitution percentage of 10% or more, the compressive strength is further increased from the seventh day of age, contrary to Comparative Example 1.
また、図3に示すように、溶融スラグ硬化体(モルタル)の圧縮強度比は、比較例1での溶融スラグ硬化体(石炭灰置換百分率0%)における材齢28日目のものが1.0を下回っている。これに対して、石炭灰置換百分率が5%以上の実施例1から実施例4での溶融スラグ硬化体は、材齢28日目及び材齢91日目の圧縮強度比のいずれもが、「1.0」をはるかに上回っている。そして、比較例1では、材齢28日目の圧縮強度比よりも材齢91日目の圧縮強度比が低下しているのに対して、実施例1から実施例4では、これとは逆に材齢91日目の圧縮強度比が材齢28日目の圧縮強度比よりも向上している。 Moreover, as shown in FIG. 3, the compression strength ratio of the molten slag hardened body (mortar) is 1. for the molten slag hardened body in Comparative Example 1 (coal ash substitution percentage 0%) at the age of 28 days. Below 0. On the other hand, as for the molten slag hardened | cured material in Example 1- Example 4 whose coal ash substitution percentage is 5% or more, all of the compressive strength ratio of material age 28th day and material age 91st day are " It is far above 1.0 ”. In Comparative Example 1, the compressive strength ratio at the age of 91 days is lower than the compressive strength ratio at the age of 28 days, whereas in Examples 1 to 4, the opposite is true. Further, the compressive strength ratio at the age of 91 days is improved from the compressive strength ratio at the age of 28 days.
また、図4に示すように、石炭灰置換百分率の増加に伴って溶融スラグ硬化体(モルタル)の収縮量は小さくなっている。つまり、石炭灰置換百分率が5%以上の実施例1から実施例4での溶融スラグ硬化体は、比較例1の溶融スラグ硬化体よりも収縮量が小さいので体積が安定し易く、溶融スラグ硬化体のひび割れの発生を防止することができる。 Moreover, as shown in FIG. 4, the shrinkage | contraction amount of the molten slag hardened | cured material (mortar) is small with the increase in the coal ash substitution percentage. That is, the molten slag cured body in Examples 1 to 4 having a coal ash substitution percentage of 5% or more has a smaller shrinkage than the molten slag cured body of Comparative Example 1, and thus the volume is easily stabilized. Generation of cracks in the body can be prevented.
その一方で、図1に示すように、石炭灰置換百分率の増加に伴ってフレッシュのモルタルのフロー値は減少する傾向にある。つまり、フレッシュのモルタルの混練時の作業性を考慮すると、フロー値が180mm程度となる石炭灰置換百分率が20%(実施例4)となるものが望ましいこととなる。 On the other hand, as shown in FIG. 1, the flow value of fresh mortar tends to decrease as the percentage of coal ash replacement increases. That is, considering workability at the time of kneading fresh mortar, it is desirable that the coal ash replacement percentage at which the flow value is about 180 mm is 20% (Example 4).
また、図7(a)に示すように、比較例1での溶融スラグ硬化体(石炭灰置換百分率0%)は、材齢1日目においては空隙等の欠陥を生じていないが、図7(b)に示すように、材齢91日目においては空隙等の欠陥を生じている。
これに対して、実施例4での溶融スラグ硬化体(石炭灰置換百分率20%)は、図6(a)及び(b)に示すように、材齢1日目及び材齢91日目のいずれにおいても空隙等の欠陥を生じていない。
Moreover, as shown to Fig.7 (a), although the molten slag hardening body (coal ash substitution percentage 0%) in the comparative example 1 has not produced defects, such as a space | gap, on the 1st day of age, FIG. As shown in (b), defects such as voids are produced at the age of 91 days.
On the other hand, as shown in FIGS. 6 (a) and 6 (b), the molten slag hardened body in Example 4 (coal ash substitution percentage 20%) is the first day of material age and the 91st day of material age. In any case, defects such as voids are not generated.
以上の実施例1から実施例4及び比較例1から明らかなように、本発明の溶融スラグ硬化材は、溶融スラグと、細骨材と、石炭灰とを含むことから、得られた溶融スラグ硬化体の経時的な強度の低下を抑制することができることが検証された。 As apparent from the above Examples 1 to 4 and Comparative Example 1, the molten slag hardened material of the present invention contains molten slag, fine aggregate, and coal ash, so that the obtained molten slag was obtained. It was verified that a decrease in strength over time of the cured body can be suppressed.
また、本発明の溶融スラグ硬化材は、溶融スラグと、細骨材と、石炭灰とを含むことから、経時的な収縮量が小さく、しかも材齢を経ても空隙等の発生を防止することができることが確認された。
そして、このような効果は、前記したV2/V1、及びV3/(V2+V3)が前記式(1)及び(2)を満足する実施例1から実施例4においてより顕著に現れることが確認された。なお、実施例1から実施例4及び比較例1におけるV2/V1、及びV3/(V2+V3)を次の表1に纏めて記す。
Further, since the molten slag hardened material of the present invention contains molten slag, fine aggregate, and coal ash, the amount of shrinkage with time is small, and the generation of voids and the like is prevented even after aging. It was confirmed that
And it was confirmed that such an effect appears more remarkably in Example 1 to Example 4 where V2 / V1 and V3 / (V2 + V3) described above satisfy the expressions (1) and (2). . In addition, V2 / V1 and V3 / (V2 + V3) in Examples 1 to 4 and Comparative Example 1 are collectively shown in the following Table 1.
但し、表1中、V1は、溶融スラグ硬化材に含まれる溶融スラグの体積を表し、V2は、溶融スラグ硬化材に含まれる細骨材の体積を表し、V3は、溶融スラグ硬化材に含まれる石炭灰の体積を表す。 However, in Table 1, V1 represents the volume of the molten slag contained in the molten slag hardened material, V2 represents the volume of the fine aggregate contained in the molten slag hardened material, and V3 is contained in the molten slag hardened material. Represents the volume of coal ash.
そして、図5に示すように、実施例4の溶融スラグ硬化材(V2/V1が1.77であって、V3/(V2+V3)が0.20)から得られた溶融スラグ硬化体は、材齢1日目の圧縮強度比よりも、材齢28日目の圧縮強度比よりも大きくなっている。 And as shown in FIG. 5, the molten slag hardened | cured material obtained from the molten slag hardened material (V2 / V1 is 1.77 and V3 / (V2 + V3) is 0.20) of Example 4 is a material. It is larger than the compressive strength ratio on the 28th day of age than the compressive strength ratio on the first day of age.
その一方で、参考例の溶融スラグ硬化体は、材齢1日目からの材齢28日目までの圧縮強度比が1.0程度になっている。ちなみに、この参考例は、V2/V1が2.77であり、V3/(V2+V3)が0.08となるように溶融スラグ、細骨材、及び石炭灰を配合した溶融スラグ硬化材から得られた溶融スラグ硬化体を示している。更に詳しくは、この溶融スラグ硬化材は、比較例1の、溶融スラグ35.7mLに対して細骨材79.1mLが配合された溶融スラグ硬化材をベースに、この溶融スラグの一部である7.1mLを石炭灰に置き換えたもので、溶融スラグ28.6mL、細骨材79.1mL、及び石炭灰7.1mLを含んで構成されている。 On the other hand, the molten slag cured body of the reference example has a compressive strength ratio of about 1.0 from the first day of material age to the 28th day of material age. By the way, this reference example is obtained from a molten slag hardened material blended with molten slag, fine aggregate, and coal ash so that V2 / V1 is 2.77 and V3 / (V2 + V3) is 0.08. The molten slag hardened body is shown. More specifically, this molten slag hardened material is a part of this molten slag based on the molten slag hardened material in which 79.1 mL of fine aggregate is blended with 35.7 mL of molten slag of Comparative Example 1. 7.1 mL is replaced with coal ash, and includes 28.6 mL of molten slag, 79.1 mL of fine aggregate, and 7.1 mL of coal ash.
つまり、実施例4では、体積換算で細骨材の20%を石炭灰で置き換えたものであるのに対して、参考例では、体積換算で溶融スラグの20%を石炭灰で置き換えたものである。
したがって、図5に示すように、体積換算で同じ割合で石炭灰を含むものであっても、溶融スラグを石炭灰で置き換えた溶融スラグ硬化体(参考例)よりも、細骨材を石炭灰で置き換えた溶融スラグ硬化体(実施例4)のほうが、材齢を経て圧縮強度比が増加することが検証された。
That is, in Example 4, 20% of fine aggregate was replaced with coal ash in volume conversion, whereas in Reference Example, 20% of molten slag was replaced with coal ash in volume conversion. is there.
Therefore, as shown in FIG. 5, even if the coal ash is contained in the same proportion in terms of volume, the fine aggregate is more coal ash than the molten slag hardened body (reference example) in which the molten slag is replaced with coal ash. It was verified that the molten slag cured body (Example 4) replaced with the above increased the compressive strength ratio with age.
(実施例5から実施例8)
<溶融スラグ硬化体(コンクリート)の製造>
実施例5から実施例8では、実施例1から実施例4のそれぞれで調製した前記モルタル(溶融スラグ硬化材に水を加えたフレッシュのモルタル)に粗骨材を配合してフレッシュのコンクリートを調製した。なお、粗骨材の配合量は、体積比で、実施例1から実施例4のそれぞれで調製した前記モルタルが「1」に対して、粗骨材が「0.45」となるように設定した。
(Example 5 to Example 8)
<Manufacture of molten slag hardened body (concrete)>
In Examples 5 to 8, fresh concrete was prepared by blending coarse aggregate with the mortar (fresh mortar obtained by adding water to a molten slag hardener) prepared in each of Examples 1 to 4. did. The blending amount of the coarse aggregate is set by volume ratio so that the coarse mortar prepared in each of Examples 1 to 4 is “1” and the coarse aggregate is “0.45”. did.
得られたそれぞれのフレッシュのコンクリートにおけるスランプ値がJIS A 1101(コンクリートのスランプ試験方法)に準拠して測定された。その結果を図8に示す。図8は、溶融スラグ硬化材に水及び粗骨材を配合して混練した混練物(コンクリート)のスランプ値を示すグラフであって、横軸が石炭灰置換百分率(%)を表し、縦軸がスランプ値(cm)を表す。 The slump value in each of the obtained fresh concrete was measured according to JIS A 1101 (concrete slump test method). The result is shown in FIG. FIG. 8 is a graph showing a slump value of a kneaded material (concrete) obtained by mixing and kneading water and coarse aggregate with a molten slag hardened material, where the horizontal axis represents the percentage of coal ash substitution (%), and the vertical axis Represents the slump value (cm).
次に、実施例5から実施例8で得られたフレッシュのコンクリートは、口径50mm、深さ100mmの有底円筒形状の枠に注入された後に蒸気養生が施されることで硬化して溶融スラグ硬化体(コンクリート)となった。なお、蒸気養生は、実施例1と同様の条件で行われた。 Next, the fresh concrete obtained in Example 5 to Example 8 is injected into a bottomed cylindrical frame having a diameter of 50 mm and a depth of 100 mm, and then cured by steam curing to melt slag. It became a hardened body (concrete). Note that the steam curing was performed under the same conditions as in Example 1.
そして、この溶融スラグ硬化体は、後記する所定の材齢(日)まで、20±1℃、60±5%RHの恒温恒湿法で保存された。そして、溶融スラグ硬化体の圧縮強度が、実施例1と同様に測定された。その結果を図9に示す。図9は、溶融スラグ硬化体(コンクリート)の材齢(日)に対する圧縮強度(MPa)の関係を示すグラフである。なお、図9中、括弧書きの(%)は、石炭灰置換百分率である。 And this molten slag hardening body was preserve | saved by the constant temperature / humidity method of 20 +/- 1 degreeC and 60 +/- 5% RH until the predetermined | prescribed age (day) mentioned later. The compressive strength of the molten slag hardened body was measured in the same manner as in Example 1. The result is shown in FIG. FIG. 9 is a graph showing the relationship of the compressive strength (MPa) to the age (days) of the molten slag hardened body (concrete). In addition, in FIG. 9, (%) in parentheses is the percentage of coal ash replacement.
そして、前記した蒸気養生後、所定の材齢(日)の経過後における溶融スラグ硬化体(コンクリート)の収縮量(μm)が測定された。その結果を図10に示す。図10は、所定の材齢(日)の経過後における溶融スラグ硬化体(コンクリート)の収縮量(μm)を示すグラフである。 And the shrinkage | contraction amount (micrometer) of the molten slag hardened | cured material (concrete) after progress of predetermined | prescribed age (day) after the above-mentioned steam curing was measured. The result is shown in FIG. FIG. 10 is a graph showing the shrinkage (μm) of the molten slag hardened body (concrete) after the lapse of a predetermined age (day).
(実施例5から実施例8で得られた溶融スラグ硬化材の評価)
図9に示すように、実施例5から実施例8の溶融スラグ硬化材を使用して製造された溶融スラグ硬化体(石炭灰置換百分率5%〜20%)は、材齢7日目から更に圧縮強度が増している。
(Evaluation of the molten slag hardener obtained in Example 5 to Example 8)
As shown in FIG. 9, the molten slag hardened body manufactured using the molten slag hardened material of Examples 5 to 8 (coal ash replacement percentage 5% to 20%) is further increased from the seventh day of the material age. Compressive strength is increasing.
また、図10に示すように、石炭灰置換百分率の増加に伴って溶融スラグ硬化体(モルタル)の収縮量は小さくなっている。つまり、石炭灰置換百分率が5%以上の実施例5から実施例8での溶融スラグ硬化体(コンクリート)は、収縮量が比較的に小さいので体積が安定し易く、溶融スラグ硬化体のひび割れの発生を防止することができる。 Moreover, as shown in FIG. 10, the shrinkage | contraction amount of molten slag hardened | cured material (mortar) is small with the increase in the coal ash substitution percentage. That is, the molten slag hardened bodies (concrete) in Examples 5 to 8 having a coal ash substitution percentage of 5% or more have a relatively small shrinkage, and thus the volume is easily stabilized. Occurrence can be prevented.
また、図8に示すように、石炭灰置換百分率が増加してもフレッシュのコンクリートのスランプ値は良好な範囲に維持されており、フレッシュのコンクリートの混練時の作業性も良好となることが検証された。 In addition, as shown in FIG. 8, it is verified that the slump value of fresh concrete is maintained in a good range even when the percentage of coal ash replacement increases, and the workability during mixing of fresh concrete is also improved. It was done.
(実施例9から実施例12)
この実施例9から実施例12では、平均粒径(メジアン径)が約13μmの溶融スラグに代えて、平均粒径が5μmの溶融スラグを使用し、且つアルカリ刺激材として図11に示すものを使用した以外は、実施例1と同様に、溶融スラグ硬化材を調製すると共に、この溶融スラグ硬化材を使用して溶融スラグ硬化体(モルタル)を製造した。そして、各実施例で製造した溶融スラグ硬化体(モルタル)のそれぞれにおいて、材齢28日目の圧縮強度が実施例1と同様に測定された。その結果を図11に示す。図11は、アルカリ刺激材が、水ガラス、無水メタケイ酸ナトリウム、水酸化ナトリウム、又は水酸化カルシウムである場合に、その種類と得られた溶融スラグ硬化体の圧縮強度との関係を示すグラフである。
(Example 9 to Example 12)
In Examples 9 to 12, instead of molten slag having an average particle diameter (median diameter) of about 13 μm, molten slag having an average particle diameter of 5 μm is used, and the alkali stimulating material shown in FIG. 11 is used. Except having used, similarly to Example 1, while preparing the molten slag hardening material, the molten slag hardening material (mortar) was manufactured using this molten slag hardening material. In each of the molten slag hardened bodies (mortar) produced in each example, the compressive strength at the age of 28 days was measured in the same manner as in Example 1. The result is shown in FIG. FIG. 11 is a graph showing the relationship between the type and the compressive strength of the obtained molten slag hardened body when the alkali stimulating material is water glass, anhydrous sodium metasilicate, sodium hydroxide, or calcium hydroxide. is there.
(実施例9から実施例12で得られた溶融スラグ硬化材の評価)
図11に示すように、アルカリ刺激材として、水ガラス、無水メタケイ酸ナトリウム、又は水酸化ナトリウムを含む溶融スラグ硬化材を使用した溶融スラグ硬化体は、水酸化カルシウムを使用したものよりもはるかに圧縮強度に優れることが検証された。そして、無水メタケイ酸ナトリウムを使用した溶融スラグ硬化体(実施例10)は、最も圧縮強度に優れていた。
(Evaluation of the molten slag hardened material obtained in Examples 9 to 12)
As shown in FIG. 11, the molten slag hardened body using a molten slag hardener containing water glass, anhydrous sodium metasilicate, or sodium hydroxide as an alkali stimulant is far more than that using calcium hydroxide. It was verified that the compressive strength was excellent. And the molten slag hardening body (Example 10) which uses anhydrous sodium metasilicate was most excellent in compressive strength.
Claims (6)
1.77≦V2/V1≦2.10 ・・・(1)
0.05≦V3/(V2+V3)≦0.20 ・・・(2)
(但し、前記式(1)及び(2)において、V1は、前記溶融スラグ硬化材に含まれる前記溶融スラグの体積を表し、V2は、前記溶融スラグ硬化材に含まれる前記細骨材の体積を表し、V3は、前記溶融スラグ硬化材に含まれる前記石炭灰の体積を表す) The molten slag hardener according to claim 1, wherein the molten slag, the fine aggregate, and the coal ash are included so as to satisfy the following relational expressions (1) and (2).
1.77 ≦ V2 / V1 ≦ 2.10 (1)
0.05 ≦ V3 / (V2 + V3) ≦ 0.20 (2)
(However, in said Formula (1) and (2), V1 represents the volume of the said molten slag contained in the said molten slag hardening material, and V2 is the volume of the said fine aggregate contained in the said molten slag hardening material. V3 represents the volume of the coal ash contained in the molten slag hardener)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008231687A JP4774089B2 (en) | 2007-09-10 | 2008-09-10 | Molten slag hardened material and method for producing a molten slag hardened body using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007234403 | 2007-09-10 | ||
JP2007234403 | 2007-09-10 | ||
JP2008231687A JP4774089B2 (en) | 2007-09-10 | 2008-09-10 | Molten slag hardened material and method for producing a molten slag hardened body using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009084146A true JP2009084146A (en) | 2009-04-23 |
JP4774089B2 JP4774089B2 (en) | 2011-09-14 |
Family
ID=40658041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008231687A Active JP4774089B2 (en) | 2007-09-10 | 2008-09-10 | Molten slag hardened material and method for producing a molten slag hardened body using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4774089B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101137717B1 (en) | 2009-12-14 | 2012-04-20 | 한국건설기술연구원 | Concrete composition making method with milling stone |
JP2017518256A (en) * | 2014-06-06 | 2017-07-06 | エーエスシーイーエム ビー.ブイ. | Cement compound and method for producing the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1129345A (en) * | 1997-07-09 | 1999-02-02 | Sekisui Chem Co Ltd | Hardening inorganic composition |
JPH11276014A (en) * | 1998-03-31 | 1999-10-12 | Taiheiyo Cement Corp | Hardened body to which organism easily attaches |
JP2000018438A (en) * | 1998-07-03 | 2000-01-18 | Taiheiyo Cement Corp | Acidproof hume pipe and manufacture thereof |
JP2000053459A (en) * | 1998-08-04 | 2000-02-22 | Taiheiyo Cement Corp | Acid resistant manhole and its production |
JP2001163656A (en) * | 1999-12-03 | 2001-06-19 | Tajima Roofing Co Ltd | Hydraulic composition and building material produced from the same |
JP2004115291A (en) * | 2002-09-24 | 2004-04-15 | Chikanori Hashimoto | Solidified body using coal ash, and method of producing the same |
JP2005060189A (en) * | 2003-08-19 | 2005-03-10 | Kimio Fukuzawa | Setting material and production method of hardened product using the same |
-
2008
- 2008-09-10 JP JP2008231687A patent/JP4774089B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1129345A (en) * | 1997-07-09 | 1999-02-02 | Sekisui Chem Co Ltd | Hardening inorganic composition |
JPH11276014A (en) * | 1998-03-31 | 1999-10-12 | Taiheiyo Cement Corp | Hardened body to which organism easily attaches |
JP2000018438A (en) * | 1998-07-03 | 2000-01-18 | Taiheiyo Cement Corp | Acidproof hume pipe and manufacture thereof |
JP2000053459A (en) * | 1998-08-04 | 2000-02-22 | Taiheiyo Cement Corp | Acid resistant manhole and its production |
JP2001163656A (en) * | 1999-12-03 | 2001-06-19 | Tajima Roofing Co Ltd | Hydraulic composition and building material produced from the same |
JP2004115291A (en) * | 2002-09-24 | 2004-04-15 | Chikanori Hashimoto | Solidified body using coal ash, and method of producing the same |
JP2005060189A (en) * | 2003-08-19 | 2005-03-10 | Kimio Fukuzawa | Setting material and production method of hardened product using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101137717B1 (en) | 2009-12-14 | 2012-04-20 | 한국건설기술연구원 | Concrete composition making method with milling stone |
JP2017518256A (en) * | 2014-06-06 | 2017-07-06 | エーエスシーイーエム ビー.ブイ. | Cement compound and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4774089B2 (en) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108218272B (en) | Environment-friendly artificial aggregate (aggregate) derived from waste | |
Vijayakumar et al. | Studies on glass powder as partial replacement of cement in concrete production | |
KR101137717B1 (en) | Concrete composition making method with milling stone | |
KR101889783B1 (en) | Solidified agent and making method of it using high-calcium fly ash and steel making slags | |
KR102107600B1 (en) | Pile Filler Composition Using Supercritical Fluidized Bed Combustion Boiler Flyash and Manufacturing Method of the Pile Filler | |
KR101165694B1 (en) | Non-sintering binder using fly-ash and a concrete composition using thereof | |
JP2012201519A (en) | Cement composition | |
JP5583429B2 (en) | Hydraulic composition | |
KR20150005019A (en) | Composition of artificial aggregate of geopolymer bind and making method using inorganic waste sludges | |
KR20170106746A (en) | Composition of non-cement type unsintered inorganic binder using circulation resorce | |
JP4774089B2 (en) | Molten slag hardened material and method for producing a molten slag hardened body using the same | |
JP6300678B2 (en) | Method for promoting curing and production of geopolymer composition | |
JP2009184895A (en) | Cement additive and cement composition | |
KR101852483B1 (en) | Makinh method of Solidified agent using high-calcium fly ash | |
KR101188498B1 (en) | Composition for non-cement concrete using bottom ash and manufacturing method thereof | |
KR100526037B1 (en) | Concret compositions having high compression intensity by using bottom-ash | |
JP6440339B2 (en) | Geopolymer composition | |
JP2010195601A (en) | Cement composition | |
KR20170079661A (en) | Composition of eco-friendly ready-mixed concrete using industrial wastes | |
JP6831976B2 (en) | Shrinkage reducing agent for geopolymer and cured geopolymer | |
JP4574789B2 (en) | Cement composition | |
JP3936992B1 (en) | Subbase improvement material by mixing finely pulverized waste molten slag and slaked lime | |
JP2016064940A (en) | Manufacturing method of cement clinker | |
KR101617692B1 (en) | A composition of loess concrete and that mixing method | |
JP4350967B2 (en) | Method for producing hardened slag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110607 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110624 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4774089 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |